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Abstract
Every stationary subgroup of the quasiconformal mappirasscigroup of a
Riemann surface acts on the Teichmuller space discontityidfuthe surface satisfies
a certain geometric condition. In this paper, we constructhsa Riemann surface
that the quasiconformal mapping class group is non-statjohut it still acts on the
Teichmuller space discontinuously.

1. Introduction and statement of results

For a Riemann surfac® of analytically infinite type whose Teichmiller space
T(R) is infinite dimensional, the action of the quasiconformahpping class group
MCG(R) on T(R) is not discontinuous in general. However, we have shown9jn [
that certain subgroups of MC®J act on T(R) discontinuously. For example, under
certain geometric conditions oR, a subgroupG¢(R) of all quasiconformal mapping
classes that preserve the free homotopy class of a simme geodesic acts onT(R)
discontinuously. Also we have shown in [8] that the everyutivial mapping class
group E(R) acts onT(R) discontinuously as well as the pure mapping class group
P(R). These subgroups have a common property: they are stationa

DEeFINITION 1.1. A subgroupG of MCG(R) is said to bestationaryif there ex-
ists a compact subsurfad®’ of R such thatg(W) "W # @ for every representativg
of every element of5. An element §] € MCG(R) is said to be stationary if the cyclic
group generated byg] is stationary.

REMARK 1.2. There exists a subgrop ¢ MCG(R) such that each element of
G is stationary butG is not stationary. Indeed, there exists an abstract coleniab
finite group ' such that every element df is of finite order, and for any countable
group I, there exists a Riemann surfaésuch that the group Corf) of all confor-
mal automorphisms oR contains a subgrouf isomorphic toI'. Then we may regard
G as a subgroup of MC@). Every elementd] € G is stationary since it is of fi-
nite order. On the other hand; is not stationary since CorfR) acts onR properly
discontinuously.
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Actually, for stationary subgroups in general, we know tb#ofving result. The
lower and upper bound conditions are defined later in Se@ion

Proposition 1.3. [6, Theorem 4.8]Let R be a hyperbolic Riemann surface satis-
fying the lower and upper bound conditions and having no lidemindary at infinity
Then every stationary subgroup BfCG(R) acts on TR) discontinuously

On the other hand, we did not know any example of a non-st@tyosubgroup
that acts discontinuously, not to say the whole quasicomfbrmapping class group
MCG(R). In fact, if the genus ofR is positive finite or the number of the punctures
of R is positive finite, then MCGR) must be stationary (see [9, Theorem 2]). Further-
more, a countable quasiconformal mapping class group et in [10] acts discon-
tinuously but it is also stationary as is seen in Section 5.

In Section 3, we first give an easy example of a Riemann surfRcaich that
a non-stationary cyclic subgroup of MCG(R) acts onT(R) discontinuously. Actu-
ally, this argument tells us certain obstruction for makig desired Riemann surfaces.
Then in Section 4, we prove the following, which is the maigule of this paper.

Theorem 1.4. There exists a Riemann surface R such that the whole quasi-
conformal mapping class groupMCG(R) is non-stationary but acts on (R)
discontinuously

The existence of non-stationary and discontinuous quafomal mapping class
groups is crucial for the theory of dynamics on infinite disienal Teichmdller spaces
because it requires further investigations completeljeddht from those in the finite
dimensional cases.

2. Preliminaries

Throughout this paper, we assume that a Riemann suRasehyperbolic. Namely,
the universal covering surface @& is the upper half-planél that admits the hyper-
bolic metric. We denote the hyperbolic length of an aron R by I(c). We say that
R satisfies thdower bound conditiorif the injectivity radius at every point oR ex-
cept cusp neighborhoods is uniformly bounded away from,zarm R satisfies the
upper bound conditiorif there exists a subdomaiR of R such that the injectivity ra-
dius at every point ofR is uniformly bounded from above and that the simple closed
curves inR carry the fundamental group d®. If the injectivity radius at any point
of R is uniformly bounded from above, then cleaf® satisfies the upper bound con-
dition. The lower and upper bound conditions are invariamex quasiconformal de-
formations. For a non-trivial and non-cuspidal simple ebsurvec on R, we denote
the simple closed geodesic that is freely homotopic tay c..
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The Teichmiiller space {R) is the set of all equivalence classe§] [of quasi-
conformal homeomorphism$ on R. Here we say that two quasiconformal homeo-
morphismsf; and f, on R are equivalentif there exists a conformal homeomorphism
h: f(R) - f2(R) such thath*1 o ho f; is homotopic to the identity by a homotopy
that keeps every point of the ideal boundary at infinity fixatbtighout. The distance
between two points f;] and [f,] in T(R) is defined byd([ f1], [ f2]) = (1/2) log K(f),
where f is an extremal quasiconformal homeomorphism in the sereeitdh maximal
dilatation K (f) is minimal in the homotopy class of, o f;*. Thend is a complete
metric onT(R), which is called the Teichmiller distance.

The quasiconformal mapping clagg] is a homotopy class of quasiconformal auto-
morphismsg of a Riemann surfacdR, and thequasiconformal mapping class group
MCG(R) is the group of all quasiconformal mapping classesRonHere we also con-
sider homotopy classes relative to the ideal boundary atiinfiA mapping classd] is
said to beeventually trivialif there exists a compact subsurfadg C R such that, for
each connected componewit of R — Vjy that is not a cusp neighborhood, the restric-
tion glw: W — R is homotopic to the inclusion map|ig: W — R. The eventually
trivial mapping class group ER) of R is the group of all eventually trivial mapping
classes orR. Furthermore thgure mapping class group (R) of R is the group of
mapping classesg] such thatg fix all non-cuspidal ends oR.

Every elementd] € MCG(R) induces a biholomorphic automorphisigl| of T(R)
by [f] — [f o g~], which is also an isometry with respect to the Teichmiillés- d
tance. Let AutT (R)) be the group of all biholomorphic automorphismsTdafR). Then
we have a homomorphisnt MCG(R) — Aut(T(R)) by [g] — [g]. and define the
Teichmdaller modular group by Mo®) = (MCG(R)). It is known that the homo-
morphism. is injective except for a few low dimensional cases. Thus ves mdentify
Mod(R) with MCG(R).

We say that a subgrou ¢ MCG(R) acts at a poinp € T(R) discontinuouslyif
there exists a neighborhodd of p such that the number of elementy] E G satisfy-
ing [0]:(U)NU #@ is finite. This is equivalent to that there exist no distinigineents
[gn] € G such thatd([gn]«(pP), p) — 0 asn — oo (see [5]). We say thaG acts
on T(R) discontinuously ifG acts at every point ifil (R) discontinuously. IfR has
the ideal boundary at infinity, then the action of MG®(is discontinuous at no points
of T(R).

3. A Riemann surface with length parameters

In this section, we construct a Riemann surf&é&om pairs of pants whose quasi-
conformal mapping class group MCB) has a cyclic non-stationary subgro@ that
acts onT(R) discontinuously. Although this property itself is weakban that of the
Riemann surface as in Theorem 1.4, the surface in Proposiib below has the ad-
vantage of flexibility: by changing length parameters, weehquasiconformal mapping
classes of various types as is explained in Remark 3.4 below.
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Hereafter,P(11,12,13) denotes a pair of pants whose geodesic boundary components
have the hyperbolic lengthsg, I, andl;. We allow the casé; = 0, which means that
the boundary component degenerates into a puncture. A ppardas P has three sym-
metry axes, which are the shortest geodesic arcs conndetmdpoundary components
and which divideP into two congruent polygons.

First we make a surfac8 with indefinite parameterf;}icz as follows. For every
i € Z, we take two pairs of pant®~ = P7(l;,1,1) andP" = P*(lj, 1, 1) with ge-
odesic boundary componenta (b, c") and &', b', c') respectively. Lei* be the
symmetry axis ofP* connectingb™ and ¢*. Similarly, 8= is the symmetry axis con-
nectingc® anda*, and y* is the one connecting™ and b™. We give an orientation
to each boundary component QF counterclockwise when we view from the inside of
Pii. Furthermore we parametrize each boundary componeﬁ’foby a normalized arc
length parametef (0 <6 < 1) with respect to the hyperbolic metric (that is, the nor-
malization means the variation of the paramter is one) shaha™(0) = a*(1) € 7,
b*(0) =b"(1) € " andc*(0) =c*(1) € B*.

We glue P and P by identifying a (¢) with a"(1—0) andb, (¢) with b*(1—6)
for all 6. Then we obtain a torug\y with two geodesic boundary componermfs and
¢’ havinga; (9) =a’(1—6) andb, (9) =b’(1—6) as simple closed geodesias and
by in it. Note thatl(bj) =1 for all i, butl(a) =1; are indefinite. Furthermore, for each
i € Z, we glue A and A1 by identifying ¢ () with ¢,,(1— 0) for all 6. Then the
resulting surface of infinite genus is denoted 8ywhich is our Riemann surface of
indefinite parameterd;}icz.

Assume here that all the parametérsare the same. Then this surface admits a
conformal automorphisng determined by a translation such thtA;) = Aj.1 for all
i. We consider this particular mapping clagg pf S hereafter.

After the preparation of those notations, we can state tlaenple of our Riemann
surface as follows.

Proposition 3.1. Let R be a Riemann surface obtained by taking the lengths
{li}iez of S so that;l — 0 as i — oo and thatl/e® < l;/ljs; < € for every i
Then the mapping clasgy] of R belongs toMCG(R) and the cyclic non-stationary
subgroup G generated bg] acts on TR) discontinuously

The following two lemmas, which give certain estimates @& thaximal dilatations
of quasiconformal homeomorphisms, will be used in the wawfour statements here
and later.

Lemma 3.2 ([2]). Let P = P(ly,12,13) and P = P’(I3,1,13) be pairs of pants
(possibly degeneratewith maxlq, 17, 12,13} < L. Suppose that := [log(l1/1])] < 2.
Then there exists a quasiconformal homeomorphysmP — P’ preserving the sym-
metry axes such that (¢) < 1 +Ce¢ for a constant C= C(L) depending only on L
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and that it is identical on each boundary component with eespo the normalized arc
length parameter

Lemma 3.3 ([12], [13]). Let ¢ be a simple closed geodesic on a Riemann sur-
face R with the hyperbolic length(d) and f: R — R’ a quasiconformal homeo-
morphism of R onto another Riemann surface Fhen the hyperbolic lengtH f (c).)
of the geodesic (t). satisfies

1
m|(c) = 1(f(c):) = K(f)I(c).

Proof of Proposition 3.1. By applying Lemma 3.2 to each pdipants, we see
that there exists a quasiconformal automorphismof R in the mapping classg] such
that K(h|a) < 1+C(Li)s on A;. Hereeg = |log(i/li+1)| <2 andL; = maxl;, li+1, 1}
for everyi. Hence the mapping clasg][belongs to MCGR).

We will prove thatG acts onT(R) discontinuously. First we show th&@ acts
at the base poind = [id] € T(R) discontinuously. Suppose to the contrary that there
exists a subsequendgg™]} such thatd([g"].(0),0) — 0 ask — oo. Then there
exist representativelsy in the mapping classeg] such thatK (hy) — 1 ask — oo.
However, sincehg(ap) is freely homotopic toa, , we haveK(hy) > lo/ln, — oo by
Lemma 3.3. This is a contradiction.

Next consider an arbitrary poinp = [f] € T(R), where f is a quasiconformal
homeomorphism oR. Then, again by Lemma 3.3, the simple closed geodekfas).
on f(R) satisfyl(f(a,)s) — 0 asn — +o0. Then by the same consideration, we see
that G acts atp € T(R) discontinuously. ]

REMARK 3.4. In Proposition 3.1, we can choose the parameterR @fs|; =
|_; = 1/2" for i > 0. Then the quasiconformal mapping clasg fs not asymptoti-
cally comformal. Indeed, sincfog(i/li+1)| = log 2 for everyi, Theorem 3.6 in [7]
yields the assertion. For the definifion of asymptoticallynémrmal homeomorphisms,
see [4]. Also, we can sdy = 1 andl; =1 = 1/i fori > 1 as well. In this case,
the quasiconformal mapping clasg] [is asymptotically comformal. Indeed, by apply-
ing Lemma 3.2 as in the proof of Proposition 3.1, there exéstguasiconformal au-
tomorphismh in the mapping classg] such thatK(h|s) < 1+C(1)s; on A, where
&i = |log(ii /li+1)l = llog(( +1)/i)| — 0 asi — oo.

REMARK 3.5. LetR; be a Riemann surface such that the paramétera S are
bounded from above and away from zero. Then= ([g]) € MCG(R;) does not act
on T(R;) discontinuously. Indeed, leRy be a Riemann surface with = 1 for all
i € Z. ThenR; is a quasiconformal deformation ¢ and hencel (R;) = T(Ry). On
the Riemann surfac®,, the mapping classg] has a conformal representative. Then
G does not act discontinuously at= [id] € T(Ry).
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4. Proof of main theorem

In this section, we will prove Theorem 1.4. If a Riemann scefé&® has a se-
quence of simple closed geodesics whose hyperbolic lertgti to 0, namely, ifR
dose not satisfy the lower bound condition, then the actioMGG(R) on T(R) is not
discontinuous (see [5, Theorem 1]). In particular, the Riemsurface as in Proposi-
tion 3.1 is not appropriate for Theorem 1.4. The Riemannaserfas in Remark 3.5 is
not appropriate either by the reason explained there.

Proof of Theorem 1.4. First we define a sequefigh.n Of positive numbers as
follows. Fix a constanK > 1 once and for all. Sey =1 and take a degenerate pair
of pantsP; = P(l4,11,0). Let 1 be the supremum off < I, + 1 such that there exist
K-quasiconformal homeomorphisms P; — P(l1,n,0) and¢’: P, — P(#,n, 0) that
preserve the symmetry axes and that are identical on eaahdhou component with
respect to the normalized arc length parameter. Then wé sef.

Here the above supremum is actually attained. Indeed, we dakequencen;)
converging ton”such that there exisK-quasiconformal homeomorphismsg: P; —
P(l1, nj, 0) and <pj: P. — P(j,n;,0). It is enough to considep; and (p} on the
symmetric halfD; of P, and we may assume that their imagggD1) = D(I1, n;, 0)
and ¢{(D1) = D(nj, nj, 0) are embedded in the hyperbolic plaHein such a way that
D(l1, »j, 0) and D(n;, n;, 0) converge to pentagorS(l4, 7, 0) and D(7, i}, 0) respec-
tively in the sense of Carathéodory. Then and <p; converge toK-quasiconformal
homeomorphisms,, and ¢_ respectively (see [11, Theorem 5.2]). Moreover, by an
application of the Carathéodory convergence theorem @e&Heorem 3.1]), their im-
agesgx(D1) and ¢/ (D1) are coincident withD(l1, 7, 0) and D(#, 7, 0) respectively
and they are affine on the two sides Bf with respect to the hyperbolic metric. This
implies thatg., and ¢, attain the supremum.

Assuming that,, has been determined, we defig; as follows. For a degenerate
pair of pantsP, = P(l,In, 0), letly+; be the supremum af <I,+1 (which is actually
the maximum by the same reason as above) such that there kexjsiasiconformal
homeomorphismg: P, — P(ln, n,0) and¢’: P, — P(n, n, 0) that preserve the sym-
metry axes and that are identical on each boundary compavigdnrespect to the nor-
malized arc length parameter. In this way, we hiyvdéor n > 1 inductively.

Next we prove that, — co. Suppose to the contrary that dyp=: | < co. Let
C(-) be the constant as in Lemma 3.2. Since Isup I, we can take an integer

such that
| i K -1\ 51
>max | -expl ——— |, | — = |.
" ™ e 2

Then by Lemma 3.2, there exist/*-quasiconformal homeomorphisms between pairs
of pantsP(ly,1n, 0) andP(l,,1,0), and between pairs of panB(l,,I,0) and P(l,1,0).
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Furthermore, take a constant> i such that

- KY4—1\ . 1
[T m|n|:l -exp<m),l + §:|.

Then by Lemma 3.2, there exisk“-quasiconformal homeomorphisms between
P(T,1,0) and P (I, ,0), and betweerP (T, x,0) and P(,,0). By composing the four
K ¥/4-quasiconformal homeomorphisms, we obtaiK ajuasiconformal homeomorphism
betweenP(l,,1,, 0) and P(u, i, 0). Also, since there is & ¥4-quasiconformal homeo-
morphism betweerP (15,1, 0) and P(ln, 1, 0), we have &K ¥/2-quasiconformal homeo-
morphism betweerP(l,, I, 0) and P(ln, i, 0). Remark thate — 1, < 1. Sincep > I,
they contradict the definition df;.;.

Now we construct the desired Riemann surf&Re For eachi € Z — {0}, we
take degenerate pairs of pamdg = P(l}|, 1}, 0) with geodesic boundary components
(& ,a" %) and B; = P(lji, lji+1, 0) with geodesic boundary components (b, ).
Here x; andy, are punctures. For = 0, we setBy = P(1, 1, 0) (namelylg = 1) with
geodesic boundary components,(bf, Yo) (the two components have the same name).

Let s* C A be the symmetry axis connectirgf with x;, and lett* c B; be the
symmetry axis connectingii with y;. We parametrize the boundary components of
A and B; counterclockwise by a normalized arc length paramet¢d < 6 < 1) with
respect to the hyperbolic metric such trat(0) = a*(1) € s* and b*(0) =b*(1) e t*.

We glue By and A; by identifying onebg(0) with a; (1 — #), and glueB, and
A_; by identifying the otheryj(9) with a=;(1 —6). For eachi > 1, we glue A and
Bi by identifying a"(¢) with b (1 — 6), and glueB; and A1 by identifying b (0)
with a;,,(1 —6). Also for eachi < —1, we glueA; and B; by identifying & () with
b~ (1—6), and glueB; and A;_; by identifying b (6) with a_,(1—0). In this manner,
we obtain a planar Riemann surfa&e

Let v be the geodesic line consisting of all the symmetry axe#oénd B; other
thans® andt*. If the hyperbolic length ob is infinite, thenR has no ideal boundary
at infinity. Otherwise, we reconstru® as follows. For each, we prepare more than
1/I(vN A) copies of A, and glue them in the same way as above to obfaiwhose
boundary components other than punctures are more thanpare ia the hyperbolic
distance. Then, replacing; with A;, we makeR. In this sense, we may assume that
the Riemann surfac® constructed above has no ideal boundary at infinity.

The union of the symmetry axes Ut~ (i # 0) makes a geodesic line connecting
the puncturesg with y;. Similarly, t", Us (i > 1) ort" Us_; (i < 0) makes
a geodesic line connecting ; with x; (i > 1) ory; with x;_1 (i < 0). All these
geodesic lines together with divide the Riemann surfacR into the symmetric halves
R° and R*, which are simply connected. Also they divide the pair of tpa#y into
the symmetric halvegy = Ai N R° and A’ = A N R*, and divide the pair of pants;
as well.
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The quasiconformal mapping class group M&EB(s non-stationary. Indeed, by
the definition of the sequendg,}, there existk >-quasiconformal homeomorphisms be-
tween Ay and B; (i # 0), betweenB;_; and A; (i > 1) and betweerB; and Aj_;

(i <0). Hence there exists K ?-quasiconformal automorphisigp of R that maps{A;}
to {Bj}. Clearly this mapping clasg)] € MCG(R) is non-stationary.

Next we will prove that MCGR) acts onT(R) discontinuously. To see this, we
use the following.

Proposition 4.1. The Riemann surface R satisfies the lower and upper bound
conditions

Proof. The hyperbolic distances between geodesic arcg;iand B; (i # 0)
satisfy

coshd(s’,a") = %;

These are obtained by the combination of formulae for hygerkpentagons (see [1,
Theorem 7.18.1]). Sinck;+1 <|;j;+1, the above four distances are uniformly bounded
from above and away from zero. In fact, we have

lim supcoshd(t*, b™) < 1 +e'/?;

i i
i—+o0

lim inf coshd(t ", bf) = 1 +e71/2,
| — 00

First we prove thatR satisfies the lower bound condition. We will show that the
hyperbolic lengthd(c) of all simple closed geodesiason R are uniformly bounded
away from zero. Take arbitrarily other thare™ or b*. (Remark that (&") > 1 and
I(b*) > 1.) Leti (# 0) be an integer of the largest absolute value satisfyitigeei
cNA #Z@ orcn B #@. In the case wherenN Aj # ¥ andcn B; = @, we consider
the connected components off A” andcn A?, which are simple geodesic arcs. Then
at least one of them, say, connects eitheg” with a~ or 5" with v N A;. Indeed,
otherwise bothc N A7 and c N A7 connects™ and 5, which means that surrounds
only one punctureq. If ¢’ connectss™ with a, thenl(c’) > d(s*,a ") > arccosh 2 by
the above formula. It’ connectss® with v N A, thenl(c’) > 1(a")/2 > 1/2. In both
cases, we havi(c) > 1/2. Also in the case wheren B; # ¢, we can apply the same
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argument sincel(t*, b) > arccosh 2 and(b’)/2 > 1/2. Hence in all cases, we have
[(c) > 1/2 and conclude thaR satisfies the lower bound condition.

Next we prove thaiR satisfies the upper bound condition. We consider a dividing
simple closed geodesigy; (i # 0) that bounds a doubly-connected domain together
with §"Ut~, which surrounds; andy;. Also we take a simple closed geodesjt 1
surrounding eithery;_; andx; (i > 1) ory; andx;_1 (i < 0) in the same manner as
above. For each integen # 0, let Z,,, be one of the connected componentsRof ¢,
that contains the two punctures, and set

R=BoU | Znm.

The homomorphismrl(li) — m1(R) induced by the inclusion maR < R is sur-
jective because the connected components of the compleRienR are simply con-
nected. Hence we have only to show that the injectivity radiiall points in R are
uniformly bounded from above.

We will show that the hyperbolic lengths g¢f, are uniformly bounded from above.
For disjoint geodesic arcs and a in the simply-connected domaiR°, we denote by
e(s — a) € a the end point of the shortest geodesic arc connediagth a. Then we
see that

1(¢2i) < 2{d(s7, &") +d(e(s” — &), ety — b)) +d(t", b7)}

for example. Hence we have only to estimate the distancesebetthese end points.
By a formula for the Lambert quadrilaterals (see [1, Theoiehy.1 (i)]), we have

d(e(s™ — a"),elt" - b))

. 1 , 1 , )
= arcsinR m} — arcsml-{m} (i £0);

d(e(t” — bi+), e<§++1 — a,1))

= arcsini SN arcsinr{;} (i >1);
sinhd(t ", b sinhd(s",;, a,) -

d(et” — b"),e(s_; = &)

—arcsin%{; —arcsin%{;} (i <0
- sinhd(t™, b") sinhd(s* ,,a~,) -

which are uniformly bounded from above. Hence we conclu@g {5, < § for some
constants > 0.

Since the hyperbolic area df, is 2r, there exists a constamt > O independ-
ent of m such that the radius of any embedded disk in akhy is not greater than
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r. This means that, for everg € Z,, there exists either a non-trivial closed curve
passing througltz whose length is not greater tham,2or an arc connecting with

¢{m = dZm whose length is not greater than Hence, for everyz € Z, there is

a non-trivial closed curve passing throughwhose length is not greater tham 23§.
Thus we conclude that the injectivity radii of all points &f are uniformly bounded
from above. [

Proof of Theorem 1.4 continued. We prove that M&E(@cts onT(R) discon-
tinuously. First we show that MC@®) acts at the base poird = [id] € T(R) dis-
continuously. Suppose to the contrary that there is a segueh distinct elements
[gn] € MCG(R) such thatd([gn]+(0),0) — 0 asn — oco. If the sequencd[g,]} is sta-
tionary, namely, if there exists a compact subsurfd¢®f R such thatg,(W)NW # ¢
for every representativg, for everyn, then we have a contradiction by Proposition 1.3
(applied to the sequence instead of a subgroup) and Prmpoditl. Thus we may as-
sume that the sequenép,]} is non-stationary.

Let X; andY; be horocyclic cusp neighborhoods yf and y; respectively whose
hyperbolic areas are 1. Fér> 1, set

Wi =(Bo—Yo)U [ ((A = Xi)U(B =Y},
1<li|=k

which is a compact subsurface &. Then there exishy € N and a representative
On, € [gn] such thatgn (W) "W = . In particular,gn, (Co). "W = @, wherecg := b

is a geodesic boundary component Bf and gy, (Co). is the simple closed geodesic
that is freely homotopic ta,, (Co). Without loss of generality, we may assume that
On, (Co)« belongs tonﬁik{(Ai — Xi) U (Bi —Y;)}, whereiy > k+ 1 is the minimum
integer satisfying this property. We may also assume thgco). is neithera,-i nor
b, for if gn (co)« is eithera™ or b* then the estimate below is obvious.

First we consider the case whegg (co). N A, # 4. The geodesi@py, (Co)« has in-
tersection withs, . Indeed, otherwise, the homotopy classggf(co) has a closed curve
that is shorter tham,, (co).. We consider the connected componentsgQ{cy). N R°
and gy, (co)« N R°*, which are simple geodesic arcs. Then one of these arcshwviic
denoted byc,, connectss, with v. Indeed, suppose tha,, (co). has no intersection
with v. Then one connected component Rf— gy, (Co). has only finitely many punc-
tures. However, sincey divides R into two connected components both of which have
infinitely many punctures and singg, is homeomorphicgs, (o). has the same prop-
erty ascy. This is a contradiction. Also in the case whegg (Co). N B, # @ but
On (Co) N A, =9, by applying the same argument as above, we conclude thabfone
the simple geodesic ara, (Co)- N R” and gn, (Co) N R* connectst;  with v.

Here we see thali(c,) > (1/2) (aif) since aif restricted toR®> or R* are short-
est geodesic arcs connectisg with v andt; with v. Then we haved (g, (Co).) >
(1/2)i, — oo ask — oo. On the other hand, we can choose representagjyes [gn,]
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such thatK(gp, ) — 1 ask — co. However by Lemma 3.3, we have

1(9n, (Co)-)
I(co)

which is a contradiction. Hence we conclude that M&B&cts at the base poimt =
[id] € T(R) discontinuously.

For an arbitrary pointp = [f] € T(R), the Riemann surfacd (R) satisfies the
lower and upper bound conditions amn¢if (aii)*) = o0 asi — =£oo because these
properties are quasiconformally invariant. Thus we canlyapipe same argument as
above and conclude that MCRJ acts atp discontinuously. ]

K(g,) = =1(9hn, (Co)+),

5. A stationary countable mapping class group

In this section, we will prove that MC@) is stationary for the Riemann surface
R that was constructed in [10]. This surfagehas a property that MC@) consists
only of a countable number of elements, and as a consequet@B(R) acts onT(R)
discontinuously (see [10, Theorem 1]).

The Riemann surfac® was constructed as follows. SBy = P(1, 1, 1) andP, =
P(n!, (n+1)!, (n+1)!) for every integem > 1. We denote the geodesic boundary com-
ponent of lengthn! in each pair of pants by,. We prepare 2! copies of P, for
eachn > 0 and glue the geodesic boundary components as follows: W the geo-
desic boundary components of the 2 copies ofP, together. The resulting hyperbolic
surface with 4 geodesic boundary componentss denoted byR;. Next we glue the
geodesic boundary componert of each copy ofP; to the 4 boundary components of
R;. The resulting hyperbolic surface with 8 geodesic boundamynponentsc, is de-
noted by R,. Continuing this process, for every integer- 1, we obtain a hyperbolic
surfaceR, with 2" geodesic boundary componemtswhich is made ofR,_; and 2
copies of P,_;. Then take the exhaustion of these compact subsurfRgesvhich is
R= Uﬁ‘;o R.. Each connected component B~ R, is denoted byE,. At each step of
gluing, we give an appropriate amount of twist along the gsadboundaries so that
R is a complete hyperbolic surface without ideal boundarynéibity. Then R has the
following property.

Lemma 5.1 ([10, Theorem 3]). Let g: R — R be a K-quasiconformal auto-
morphism of the Riemann surface R'hen on each component [Eof R — R, for
n > maxK, 5}, the g restricted to g is homotopic to a conformal homeomorphism of
E, onto another component of RR,.

We will prove the following.

Proposition 5.2. Let R be the Riemann surface constructed abdlenMCG(R)
is stationary
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Proof. LetR; be the compact subsurface defined as above. We will prove that
o(Ry) N Ry # 0 for every representativeg of every elementd] € MCG(R). Suppose
to the contrary that there exists somg puch thatg(R;) N Ry = #. Let K be the
maximal dilatation ofg and take an integem with n > maxK,5}. The number of the
componentsE, of R — R, is 2"*! and precisely /4 of them belong to each of the
four components; of R — Ry.

By Lemma 5.1, §] gives a permutation of the"? componentsE,. Sinceg is
homeomorphic, there are"2/4 componentsE, in each of the four components of
R — g(Ry). By the assumption thag(R;) N Ry = @, the imageg(R;) belongs to some
Ei. Then we see that there should be at least2?8'/4 componentsE, belonging
to this E;. This is a contradiction. Hence we conclude tgéR;) N R, # ¢ for every
representativeg of every [g] € MCG(R), which means that MC@) is stationary. []
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