Nakamura, T.
Osaka J. Math.
43 (2006), 609-623

ON THE CROSSING NUMBER OF 2-BRIDGE KNOT
AND THE CANONICAL GENUS OF ITS WHITEHEAD DOUBLE

TAkUJI NAKAMURA

(Received September 14, 2005)

Abstract
By using Morton’s inequality we study the canonical genus ofWaitehead
double of a knot. We show that the crossing number of a 2-brikigot coincides
with the canonical genus of its Whitehead double.

1. Introduction

A link is a closed 1-manifold smoothly embedded in the 3-spi&reand aknot
is a link with one connected component. Seifert surfaceof a knot K is a compact,
connected, orientable surfa@in S® such that the boundary @& is K. The minimal
genus among all Seifert surfaces léfis called thegenusfor K, denoted byg(K). A
Seifert surface oK with the minimal genus is called minimal genus Seifert surface
of K. A Seifert surface ofK is said to becanonicalif it is obtained from a dia-
gram of K by applying Seifert’s algorithm. Then the minimal genus agall canon-
ical Seifert surfaces oK is called thecanonical genusfor K, denoted byg.(K).
A Seifert surfaceS of K is said to befree if the fundamental group of the com-
plement of S, namely, 7:(S* — S) is a free group. Then the minimal genus among
all free Seifert surfaces oK is called thefree genusfor K, denoted byg:(K). For
these “genus” of knots we have the fundamental inequadif)<) < g¢(K) < gc(K),
since any canonical Seifert surface is free. There are afletooks constructing knots
which give the above inequality strictly. For the free gerams the genus, in 1972,
H.C. Lyon [6] constructed a family of knots without free imapressible Seifert sur-
faces, hencg(K) < g¢(K). In 1987, Y. Moriah [8] showed that there exists a kot
such thatg:(K) — g(K) > n for any positive integen. Subsequently, a similar result
was showed by C. Livingston [7]. On the other hand, H.R. Moff@npointed out that
a twisted Whitehead double of the trefoil knot has the cacainjenus at least three
although its genus is one. Later, A. Kawauchi [3] showed thate exists a knoK
such thatg.(K) — g(K) = 2n for any positive integen. After that, M. Kobayashi and
T. Kobayashi [5] showed that there exists a kiotsuch thatg.(K) — g (K) = n and
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g:(K) — g(K) = n for any positive integen. Knots in these results are satellite knots
or composite knots. The author [11] showed that there existénple fibered knoK
such thatg.(K) > n and g{(K) = 3 for any positive integen (> 3). Shortly after,
J.J. Tripp [14] showed that the canonical genus of a twistddtélead double of a
torus knot of type (2n) is equal ton. Then he has conjectured thiie crossing num-
ber of a knot coincides with the canonical genus of its Wiiaehdouble We give a
partial affirmative answer to this conjecture. In fact, wevar.

Theorem 1. The crossing number of 3-bridge knot coincides with the canoni-
cal genus of its Whitehead double

REMARK 2. After having done this work, H. Gruber [2] extended thisulein a
different way, that is, he showed that the above questiorffilsnative for all algebraic
alternating knots in Conway'’s sense.

This paper is organized as follows. In Section 2, we will prepseveral defi-
nitions and notation Whitehead doublesdoubled links Conway's normal formand
Morton’s inequality ([9, Theorem 2]). In Sections 3 and 4, we will show that the
canonical genus of a Whitehead double of a 2-bridge knot isaletp the crossing
number of the 2-bridge knot by using Rudolph’s techniquelig, [Section 2].

Throughout this paper, all manifolds i8® are oriented unless otherwise stated.
For the definition of standard terms in knot theory, we retefi], [4], [10] and [12].

2. Preliminaries

2.1. Doubles of knots and links. Let C be a knot in an unknotted solid torus
St x B? as in Fig. 1 (a), called the Whitehead clasp, a4(K) a tubular neighbor-
hood of a nontrivial knotk in S* as in Fig. 1 (b). Letf: St x B2 — N(K) be an
orientation preserving homeomorphism takif@ x B2 to the meridian disk ofN(K),
and S' x {0} to K. We call the knotf (C) the m-twisted Whitehead doubkf K, de-
note by Dn(K), if the linking number of f(I) and K is equal tom, wherel is the
preferred longitude ofS* x B2.

Let w(P) be the writhe of a diagran® of a knotK, that is, the sum of the signs

of all crossings inP, defined assgn(X) =1 andsgn(X) = —1. Then we
see that thaw(P)-twisted Whitehead double dk has a “nice” diagram, which is the
2-parallel diagram foP with a clasp. See Fig. 1 (d). We denote BYP) this diagram
of the w(P)-twisted Whitehead double df.

Lemma 3. Let P be a knot diagram on?Swith n crossings Then the genus of
a canonical Seifert surface obtained from(B) is equal to n
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(a)

Fig. 2.

Proof. We see that there exish 23 Seifert circles inD(P) by applying Seifert’s
algorithm. Since the number of crossings{P) is 4n + 2, the genus of a canonical
Seifert surface obtained fro@(P) is {1+ (4n+2)— (2n+3)}/2 =n. [l

Lemma 3 gives an upper bound on the canonical genuBgfK) for a knot K.
We give a lower bound in order to prove Theorem 1 by using theviROY poly-
nomial in the next section.

Let L be a link withu componentKy, K, ..., K, in S andV; (i=1,2,..., 1)
an unknotted solid toru$' x B? containing a 2-component parallel link; with the
opposite orientation as in Fig. 2. Left: V; — N(K;) be an orientation preserving
homeomorphism taking the meridian disk 9 to the meridian disk ofN(K;), and
the core ofV;, namely, St x {0}, to K;. We call the link fy(L1) U---U f,(L,) the
(my, ..., m,)-twisted doubled linlof L, if the linking number off;(l;) and K; is equal
to m;, wherel; is the preferred longitude o¥; for eachi.

Let P be a diagram ofL, and P, the subdiagram of corresponding toK; for
i =1,2,...,u Let wj be the writhe of . Similarly to the case of the Whitehead
doubles of knots, we see that the(. .., w,)-twisted doubled link ofL has a “nice”
diagram, which is the 2-parallel diagram f&. We denote byD, (P) this diagram of
the ws, ..., w,)-twisted doubled link ofL.

2.2. 2-bridge links and Conway’s normal forms. A link L is said to be a
2-bridge link if L has a diagram as in Fig. 3, call&€onway’s normal formFor a
link diagram as in Fig. 3, eachg| presents the number of half-twists for integers
ai, ay, ..., am. In this paper, for the sign of;, we assume that a right-handed half-
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twist is positive ifi is odd, and a left-handed half-twist is positiveiifis even. See
Fig. 3 (b). We denote this link diagram W9(as, a, . . ., an).

A diagramC(as, ay, ..., an) is a 2-bridge link diagram. Conversely, any 2-bridge
link L has a diagram of typ€(a, ap, ..., am). A diagramC(ay, a2, ..., an) is called
Conway’s normal form of a 2-bridge link. (For more information, see [1] or [4].) It
is well known that a 2-bridge link is an alternating link anad alternating diagram is
realized by Conway’s normal forr€(ay, ap, ..., am) with a >0 fori =1,2,...,m.

2.3. Morton’s inequality and Canonical genus. Let P_(v, Z2) be the HOMFLY
polynomial of a link L calculated by the following recursive relations.
(1) Po(v,2)=1,
(2) v7'PL(v,2) —vPL (v,2) =ZR,(v, 2),
where O is the trivial knot andL., L_ and Ly are three links that are identical except

near one pointX, X and ) ( respectively.

In [9], Morton showed the following inequality, callddorton’s inequality We de-
note the maximal degree inof P_(v, z) by maxdeg P, (v, 2).

Theorem 4 ([9, Theorem 2]). For a diagram D of a link L,
maxdeg P, (v, z) < ¢(D) — s(D) + 1,

where ¢D) is the number of crossings andB) is the number of Seifert circles in,D
respectively

The equality holds for alternating links, positive linksdamany other links. The
right-hand side of Morton’s inequality is the first Betti nuenbof a canonical Seifert
surface obtained fronD. Thus the half of the maximal degree znof Pk (v, z) gives a
lower bound for the canonical genus for a knot that is, maxdegPx (v, z) < 2g.(K).
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Fig. 4.

3. Lemmas

In the next section, we will prove the following propositioret L, , be the dou-
bled link of a 2-bridge linkL, which has the diagrand, (P), where P is Conway’s
normal formC(ay, ap,...,am) of L such thata; +a, +---+a, = n anda > 0 for
i=12...,m. See Fig. 4.

Proposition 5. For a link Ly, we have
maxdeg P, . (v,2) =2n— 1.

Note thatC(1, ap, as,...,am) is equivalent toC(—a,—1, —ags, ..., —am). Hence
we may assume, without loss of generality, tlat> 2. We note that the crossing
number, the canonical genus and the maximal degreedh P (v, 2) of a link L are
the same as those of the mirror imagelof Similarly, we may assume that, > 2.

Let k := n—m (> 1) be a positive integer. In order to prove Proposition 5 by
induction on the lexicographic order of a paim,(k) of positive integeram, k, we first
prove the cases (k), (2,k) and fn, 2) respectively. The first case,,ld), has been
proved by Tripp in [14, Proposition 1]. Thus we show the secaease, ifh, 2), that
is,a1 =an =2 andg =1 (2<i <m-1) as follows. Hereafter, we denote biyL )
the maximal degree iz for P__ (v, z) for short.

Lemma 6. Forthe doubled link k_», (n > 3) of a2-bridge link C(2,1, ..., 1, 2),
we have

d(Ln2n)=2n—1.
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Proof of Lemma 6. We prove Lemma 6 by induction an By direct calcula-
tions, we haved(L,3) =5, d(L24) =7 andd(L35) = 9.

Assume that Lemma 6 holds for every positive integer lesa th§> 6). We use
a technique in [13, Section 2] to compui®  ,. (v, z). By constructing a resolution
tree with respect to the local diagram in the dotted circlpicted in Fig. 4, we have
eleven links A}, A7, ..., A? and B], ..., B} with diagrams identical to the diagram
as in Fig. 4 except as indicated in Fig. 5. (The local diagrdnmlLg@ ,, in Fig. 5 is
added two crossings by Reidemeister move Il.) We use thiotepate P, , (v, 2) in
a standard way. In the partial resolution tree as in Fig. &,htbrizontal lines (resp. the
vertical lines) are labeledz or —v~'z (resp.v? or v~2) according to the sign of the
crossing which will be altered by a smoothing (resp. crasgihange).

Then we have:
PL, o, = V2 (Par — Pay — Py + Pan) — z& (Pag + Pap) + Pas
+ Ule(PBf + PBZ") — UZ(PBQ + PB‘?) .

(%)

Claim 7. d(A") <1lfori=234,5.

Proof of Claim 7. We can deform eadX' into a diagram of a 2-component link
which is the boundary of an unknotted, twisted annulusifer 2, 3,4,5. Since the
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canonical Seifert surface obtained from the diagram, ngmbe annulus has the first
Betti number one, the conclusion follows from Morton’s inafity. L
Hence we see that none @, ..., A contributes anything ta(L,—2,) by in-

duction hypothesis and the equality) Wwhenn > 6. Fori =1, 2, 3,4, we have then
1) d(Ln-2.n) < maxd(A]) + 2, d(Ag) +2,d(A7), d(B") + 1}.

By some deformations, it is easily seen that (i = 1, 6,7) is thet;-twisted dou-
bled link of a 2-bridge knoK or the ¢;, t/)-twisted doubled link of a 2-bridge link
for some integers; andt/.

Claim 8. For any integers it and {, we have ¢A]) = d(Ln-an-1), d(A) =
d(Ln-4n-2) and (A7) = d(Ln_s5n-3).

Proof of Claim 8. We prove Claim 8 only for the case whegis thet;-twisted
doubled link of a 2-bridge knoK;. The other case can be proved similarly.

We see thaK; has a diagranD; of Conway’'s normal fornC(2, a;, az, .. ., am, 2)
or C(—2, —a;, —a, ..., —am,—2), wherea; =1 (1 < j <m)andmy = n -5,
Mg =n—6andm; = n— 7. Let w; be the writhe ofD;. If t = wj, we have the
conclusion obviously. Supposg — wi > 0. (The case¢tji — wj < 0 can be proved
similarly.) For A? (i = 1,6,7) by a skein relation for the crossing in the dotted circle
in Fig. 6, we have:

Pan = v 2 P — v 1z R~

for certain linksL” and L".

Then we see thaL” is equivalent to the trivial knot. (In the case wheh8 is a
(ti, t')-twisted doubled link of a 2-bridge link."” is the 3-component trivial link or a
3-component link which is the split union of the trivial knahd the boundary of an
unknotted, twisted annulus.) On the other hahdjs (t —1)-twisted doubled link oK
andd(L’) = d(A"). By repeating this procedure if necessary, we obtain theomim-
age ofLy_3n_1 from Al, Ly_4n> from AZ and the mirror imagd.,,_sn_3 from A7,
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respectively as the result of crossing changes. Hence we th@vconclusion by induc-
tion hypothesis. ]

Claim 9. d(B") <2n—6fori=1234.

Proof of Claim 9. First we deform the upper diagraBfi (i = 1, 2, 3, 4) into the
lower diagram as in Fig. 7, where each rectangle containsanee tangleT .

Now we consider the lower diagrams & and B]. Then by performing cross-
ing changes at the crossings in the dotted circles in Fig.)Arésp. Fig. 7 (c)), we
obtain a diagram with 2— 3 Seifert circles andl— 12 crossings from the lower di-
agram of Bf' (resp. a diagram withr2— 1 Seifert circles and m— 8 crossings from
the lower diagram ofB]). On the other hand, smoothing at each crossing yields a 2-
component link which is the boundary of an unknotted, tvdsa@nulus (or a link with
d(Ln_5.n_3) for B:T)

For the lower diagram oB), we consider the crossings labeled 1, 2, 3 and 4 as
in Fig. 7 (b). Then by moving the crossing 2 along the dotteé ks in Fig. 7 (b), we
see that the crossing 2 and one of the other labeled crosanegsancelled wherever
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the crossing 2 reaches. Hence we see that the other pair sdicgsa, b say, forms a
right-handed full-twist. Then by performing crossing cbes at eithem or b and the
crossing in the dotted circle in Fig. 7 (b), we obtain a diagnaith 2n—3 Seifert cir-
cles and # —12 crossings from the lower diagram Bf. On the other hand, smooth-
ing at each crossing yields also a 2-components link whictihésboundary of an un-
knotted, twisted annulus, or a link witth(L,_5,_3).

For the lower diagram oB}, we also consider the crossings labeled 1, 2, 3 and 4
as in Fig. 7 (d). Note that the crossings labeled 1 and 4 arigiyggsand the crossings
labeled 2 and 3 are negative. Hence there are two cases tonsleed.

Case 1. The crossing 1 and the crossing 2 or 3 are cancelled by mavie
crossing 1 along the dotted line as in Fig. 7 (d). Then we satttie other crossings
are also cancelled.

CAse 2. The crossing 1 and the crossing 4 form a right-handedtviidt by
moving the crossing 1 along the dotted line as in Fig. 7 (d)erlithe other pair of
crossings 2 and 3 forms a left-handed full-twist. In thise;awe perform crossing
changes at the crossings 1 and 2.

In both cases we obtain a diagram with-21 Seifert circles and @—8 crossings.
Smoothing at each crossing yields also a 2-components limkhnis the boundary of
an unknotted, twisted annulus.

Then we obtain, by Morton’s inequality and induction hypaike

d(B") < max{(4n —12)— (2n—3)+ 1L (4n—-8)—(2n — 1)+ L d(Ln 50 3) + 1}
max2n — 8,2n - 6,2(n—3)— 1+ 1}
2n — 6.

The proof of Claim 9 is completed. ]

By inequality (1) and Claim 9, we have
) d(Ln—2.n) < max{d(A]) + 2 d(Ag) +2,d(A7), (2n —6) +1}.

Sinced(AY), d(A7) andd(A?) are equal tad(Ln-3n-1), d(Ln-sn-2), d(Ln-5n-3),
respectively, by Claim 8, it follows from induction hypo#ie

d(Ln—Z.n) =< max{d(l—n—s.n—l) + 2, d(l—n—4.n—2) + 2, d(Ln—S.n—S)v 2n — 5}
max{2n—1)—1+22n—-2)—1+22(n—-3)—1,2n—5}
max{2n—1,2n—-3,2n —7,2n — 5}.

Since there exist the terms iR, ,, whose degree irz is 2n — 1, we obtain
d(Ln—2n) = 2n — 1. This completes the proof of Lemma 6. O

Next, we study the third case,[).
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Lemma 10. For the doubled link L, of a 2-bridge link C(a;, a2), we have
d(Lzn)=2n-1

Proof of Lemma 10. We prove Lemma 10 by induction rmnFirst, direct calcu-
lations show thad(L,4) = 7 andd(L25) = 9. Now assume that Lemma 10 holds for
every positive integer less than(> 6).

We construct a partial resolution tree fan, as in the proof of Lemma 6. We
also obtain A7, A,..., A7 and Bf,...,Bj. Note that Claim 7 holds for these
AJ, ..., Al and Claim 8 holds forA7, A§ and A7.

If a; > 2, then we see thad(A]) = d(L2n-1), d(Af) = d(L1n_a) and d(A7) =
d(Lan-2) (or d(Lyn_2) if & = 3), respectively by Claim 8. I1&; = 2, then we have
d(A]) = d(Lyn-1), d(A?) = d(L1n-2) and d(A7) = 1, since A} is equivalent to the
boundary of an unknottedj,-twisted annulus. Hence by induction hypothesis, ifer
1,2, 3,4, we have,

d(LZ.n) < max{d(LZn—l) + 2’ d(l—l.n—al) + 2, d('—2.n—2), d(Bi) + l}
max{2n—1)—1+22nh—a)—1+22n—-2)—1,d(B) +1}
max{2n — 1,2n — 2a; + 1, 2n — 5,d(B;) + 1}.

Sincea; > 2, it follows fori =1, 2, 3, 4,
3) d(Lzn) < max(2n —1,d(B;) + 1}.
Claim 11. d(B") <2n—2fori =123 4.

Proof of Claim 11. We consider two cases suchagas 2 anda; > 2.

Case 1. Supposea; = 2. We can deform the diagram @" into a diagram
whose canonical Seifert surface has the first Betti number §ee Fig. 8, which illus-
trates the case oB;. (The diagram ofB (for i =2, 3,4) can be deformed similarly.)
Therefore we havel(B[") < 2 by Morton’s inequality.

CAse 2. Supposes; > 2. We can deform both diagrams & and B} into di-
agrams with 3, + 3 Seifert circles and & + 4 crossings. Thus the conclusion follows
from Morton’s inequality.

We deform the diagranB; into the diagram in Fig. 9 (b). Then, we obtain the
diagram Bg‘l by applying crossing change at each of the crossings laldel2d3 and
4 as indicated in Fig. 9 (b). In order to calculad¢B;]), we construct a partial res-
olution tree with respect to the crossings213 and 4 in this order. LeL; be the
link obtained fromB!' by a smoothing at the crossing labeledor i = 1,2,3,4 re-
spectively.
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Then we see thati(L;) = d(AQ‘l) by Claim 8. We also see that none of three
links L2, L3 and L4 contributes anything ta(B]) by the argument parallel to that in
the proof of Claim 7. Thus we obtain

d(B})< max{d(AT™Y) +1,d(By™)} .

Furthermore we obtain the following inequality by replagiB; by Bg‘l in the above
argument:

d(B;™") < max{d(A}%) +1,d(B"?)}.
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Therefore we have by induction hypothesis

d(B]) < max{d(A]" ") +1,d(B} ?)}
= max{2(n - 2)— 1+ 1 d(B}?)}.

Furthermore by performing a crossing change at the crodsinfpe dotted circle in
Fig. 10, we obtain fromB{‘*2 a new diagram with 2 + a;) — 4 Seifert circles and
4(ay +ap) — 9 crossings. Smoothing at this crossing yields a 2-compsnlark which
is the boundary of an unknotted twisted annulus. By a skeatios, we see that it
does not contribute anything (B} ~?).

Sincea; +a, = n, we haved(Bf‘z) < 2n — 4 by Morton’s inequality, and hence,
d(Bf) <2n-—4.

We apply this argument t®), and we have, by induction hypothesis,

d(Bf) < max{d(A]" ") +1,d(B} ?)}
= max{2(n - 2)— 1+ 1 d(B)?)}.
Now since 55—2 has a diagram with 2¢ + a;) — 5 Seifert circles and 4{ + a;) — 9

crossings, we have (B} ?) < 2n—3 by Morton’s inequality, and thusi(BJ) < 2n—3.
This completes the proof of Claim 11. O

By the above claims and inequality (3), we ha¥@.,,) = 2n — 1. The proof of
Lemma 10 is completed. L]
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4. Proof of Theorem 1

In this section, we prove our main theorem, Theorem 1. Far phirpose, first we
prove Proposition 5 by induction on the lexicographic ordém, k.

Proof of Proposition 5. Assume that Proposition 5 holds faaa of positive in-
tegers less thamt, k) as the lexicographic order amd > 2, k > 2, since the initial
cases have been proved in [14, Proposition 1], Lemmas 6 andlHe are two cases
to be considered such & = 2 anda > 2. For both cases, we construct a par-
tial resolution tree forLn,, as in the proofs of Lemmas 6 and 10. We also obtain
Al A%, ..., A7 and B], ..., B]. Note that Claim 7 holds for thesd’, ..., Al and
Claim 8 holds forAf}, A§ and A7. Hence we have the following inequality.

(4) d(Lmn) < maxd(A7) + 2, d(Ag) + 2. d(A7). d(B") + 1}.

Case 1. Supposey = 2. In this case, we see that] is equivalent to the mirror
image of Lim—_1n-1, A is equivalent to the mirror image dfm_1n-2 (Or t0 Lyy_2n-2
if a = 1) and A7 is equivalent toLm_2n—(2+a,) (Or to the mirror image ofLm_gzn_2
if a3 = 1) except the number of twists. By induction hypothesis, eae d(A}) =
2h—1)—1, d(Af) = 2(n — 2) — 1 andd(A?) = 2(n — 2 — &) — 1. For the evaluation
of d(B"), we apply the argument parallel to that in the proof of Clénif a, = 1,
or to that in the proof of Case 1 in Claim 11d > 1. Then we see thaB cannot
contribute anything tal(L ).

CASE 2. Supposen; > 2. We see that\] is equivalent toLy, 1, Af iS equiva-
lent to the mirror image oLm_1n-a (OF 10 Lm 214 if @ =1) and Aj is equivalent
to L2 (or to the mirror image ol 1,2 if @ = 3) except the number of twists.
By induction hypothesis, we hawé(A]) = 2(n — 1) — 1,d(A}) = 2(h — &) — 1 and
d(A?) = 2(n—2)— 1. By applying the argument similar to that in Case 2 in Claiip 1
we see thatB" cannot contribute anything td(Lm ).

For both cases, we obtaim(L, ) = 2n — 1 by inequality (4). This completes the
proof of Proposition 5. ]

Proof of Theorem 1. LeK be a Whitehead double of a 2-bridge ki®ay, ...,
am) with & > 0 for anyi anda; +--- +a, = n. We see that the genus of a canon-
ical Seifert surface obtained from the diagram Kfas in Fig. 11 (a) is equal to.
(Although the diagram as in Fig. 11 (a) is a diagram of a WIiteh double of
C@3,1, 1,2 2), we can easily see the general case. We note that this Kidéhgram
was appeared in [3] for the trefoil knot and also observed bgprfor the other torus
knots of (2 n) in [14].)

At the crossing in the Whitehead clasp as indicated in Fig(k)1 we perform a
crossing change and a smoothing. Then by a skein relatiorhave

P« (v, 2) = v?Po(v, 2) + vz R,
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Fig. 11.
where O is the trivial knot andL is a doubled link ofC(ay, ..., ayn). Then we see

thatd(L) = d(Lmn) = 2n — 1 by applying the argument similar to that in the proof of
Claim 8 to the twists in the dotted rectangle in Fig. 11 (a)nétewe obtain that the
maximal degree irz of Px (v, 2) is equal to & by Proposition 5. Therefore the canon-
ical genus ofK is equal ton by Morton’s inequality. The proof is now completed.]

5. Concluding remark

Let K be a knot of crossings numbe(K) = n (< 10) andD(K) a twisted (pos-
sibly untwisted) Whitehead double df. In order to consider Tripp’'s conjecture in
general case, we calculate the maximal degree, isay d(D(K)), of HOMFLY poly-
nomial for D(K) by a computer software. Then we see tldgD(K)) = 2n if K is
alternating. Hence Tripp’s conjecture is true for alteimgtknots of ten crossings or
less. Then we propose the following conjecture.

Conjecture 12. For any alternating knot K of crossing number, me have
d(D(K)) = 2n. Therefore g(D(K)) =c(K) =n.

If K is not alternating, this conjecture is false. For examméeKl be a torus knot
of type (4 3). It is known that the crossing number Kf is equal to 8 (cf. [10]). How-
ever a computer calculation show$D(K)) = 14.
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