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Abstract
We construct derived equivalences between group graded symmetric algebras,

starting from equivalences between their1-components obtained via a construction
of J. Rickard. This applies to the verification of various cases of Broué’s abelian
defect group conjecture.

1. Introduction

This paper is a sequel of [5], and we are concerned with the problem of construct-
ing derived equivalences between two algebras and graded bythe finite group .
This is especially motivated by Broué’s abelian defect group conjecture. If is a nor-
mal subgroup of the finite group , with = , and is a -invariant block
with defect group of the group algebra , then the Brauer correspondent of
in ( ) is a -invariant block of ( ); under the assumption that isabelian,
the conjecture predicts that there is a derived equivalencebetween the block alge-
bras and ( ) ; moreover, such an equivalence should be compatible with

-extensions, that is, if does not divide the order of , then the equivalence can
be lifted to a derived equivalence between the -graded -algebras = and

= ( ) induced by a bounded complex of -graded ( )-bimodules.
The main result of [5] is a graded version of Rickard’s characterization of derived

equivalences, which is then applied to find conditions implying that the tilting com-
plexes constructed by T. Okuyama are compatible with -extensions as above.

In this paper we do a similar investigation on another methodaimed to lift sta-
ble equivalences to Rickard equivalences, due to J. Rickard[6]. This method starts by
constructing a tilting complex not by characterizing the objects that correspond to free
modules under the derived equivalence, but by characterizing the objects that corre-
spond to simple modules. Rickard’s method applies to symmetric algebras over a field,
preferably algebraically closed, and it has been successful in verifying Broué’s conjec-
ture in several cases by J. Chuang [1] (principal -block of SL2( 2)), M. Holloway [2]
(5-blocks of 2 2, 3(4) and Sp4(4), all having elementary abelian defect group of or-
der 25), and Y. Usami and N. Yoshida (principal 5-blocks of2(2 ), where 5 2 + 1
but 25∤ 2 + 1, again with defect group 5 5).

We shall freeely use the notations and definitions introduced in [5]. We recall here
the main result of [5] combined with [4, Theorem 4.7], characterizing graded derived
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equivalences, as we rely on them.

Theorem 1.1. Let be a commutative ring, a finite group and , two
-graded -algebras. The following statements are equivalent.

(i) There is a -graded tilting complex D( -Gr) and an isomorphism
EndD( )( )op of -graded algebras.
(ii) There is a complex of -graded( )-bimodules such that the functor

L
: D( ) D( )

is an equivalence.
(iii) There are equivalences : D( ) D( ) and gr : D( -Gr) D( -Gr) of trian-
gulated categories such thatgr is a -graded functor and the diagram

D( ) D( )

U U

D( -Gr)
gr

D( -Gr)

is commutative, whereU is the ungrading(grade-forgetting) functor.
(iv) (provided that and are strongly graded) There are(bounded) complexes 1 of

( op) modules and 1 of ( op) modules, and isomorphisms 1
L

1 1 1

in D ( ( op)) and 1
L

1 1 1 in D ( ( op)).

The first three statements above are from [5, Theorem 2.4]. Concerning the last
statement, we refer to [3, Chapter 8, written by B. Keller] for the connection between
bounded and unbounded derived equivalences.

2. G-graded tilting complexes

Throughout the paper, = denotes a -graded crossed product over the
algebraically closed field , such that :=1 is a finite-dimensional algebra.

The first statement of the next result is an analogue of the equivalence between
(ii) and (iv) in Theorem 1.1.

Proposition 2.1. Let be a -invariant object ofH ( ), and denote =
and = EndH( )( )op.

a) is a tilting complex for if and only if is a -graded tilting complex for .
b) If is a tilting complex for and is a symmetric crossed product, then is
a symmetric crossed product of := 1 EndH( )( )op and .
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Proof. a) Since the functor : -Mod -Gr is an equivalence, and a
-graded -module is projective in -Gr if and only if it is projective in -Mod, it

is clear that is a bounded complex of finitely generated projective -modules if and
only if is a bounded complex of finitely generated projective-modules.

Next, for each Z, we have

HomH( )( [ ]) = HomH( -Gr)( [ ]( ))

where, by the equivalence , for each ,

HomH( -Gr)( [ ]( )) HomH( )( [ ])

Since is -invariant, we see that for = 0, HomH( )( [ ]) = 0 if and
only if HomH( )( [ ]) = 0.

If belongs to the triangulated subcategory generated by add( ), then using
again the equivalence , we obtain that belongs to the triangulated subcate-
gory of D( -Gr) generated by add( ). Hence, by forgetting the gradings, belongs
to the triangulated subcategory ofD( ) generated by add( ). Conversely, assume that

belongs to the triangulated subcategory ofD( ) generated by add( ). Then, by re-
striction of scalars, belongs to the triangulated subcategory of D( ) generated by
add( ). But is a finite direct sum of copies of , and is a finite direct sum
of copies of , hence belongs to the subcategory generated by add( ).

b) Since is -invariant, by [5, Lemma 1.7] is a -graded crossedproduct,
with

1 = EndH( -Gr)( )op EndH( )( )op

again since is an equivalence. The symmetry of means that :=
Hom ( ) as -graded ( )-bimodules. There is a derived equivalence be-
tween op and op, sending to and to . (This is due to Rickard,
but we refer to [9] for a proof in a more general situation.) This derived equivalence
is actually -graded (see [4, Corollary 4.9 c)]), so we conclude that as

-graded ( )-bimodules.

REMARK 2.2. The first implication in Proposition 2.1 a) is in fact true under more
general assumptions. Assume that is strongly graded, that is, for each , is
a direct summand of a finite direct sum of copies of . Then it is not difficult to show
that if is a tilting complex for , then is also weakly -invariant, or equivalently,

is strongly graded too, and is a graded tilting complex for .
On the other hand, if is an arbitrary -graded algebra, and is a-graded

tilting complex for with endomorphism ring , without assuming that and are
strongly graded, we cannot conclude in general that1 and 1 are derived equivalent.
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2.3. Next we come to Rickard’s construction [6]. Under a derived equivalence
between the -algebras and , the objects D ( -mod), , corresponding
to simple modules must satisfy the following conditions.
(2.3.a) Hom( [ ]) = 0 for 0.
(2.3.b) Hom( ) = if = and 0 otherwise.
(2.3.c) , generateD ( -mod) as a triangulated category.

In order to obtain a graded derived equivalence, we also needto consider the ac-
tion of .

Theorem 2.4. Let be a symmetric crossed product of and, let be a
finite -set, and let D ( -mod), , be objects satisfying(2.3.a), (2.3.b)and
(2.3.c). Assume that the objects satisfy the additional condition
(2.4.a) in D ( -mod), for all and .

Then there is another symmetric crossed product of and, and a -graded
derived equivalence between and, whose restriction to sends , , to the
simple -modules.

Proof. By the proof of [6, Theorem 5.1], there is a tilting complex =
for satisfying
(2.4.b) Hom( [ ]) = if = and = 0, and 0 otherwise.

By Proposition 2.1, it is enough to show that also satisfies
(2.4.c) inD ( -mod), for all and .

Let and . The construction of the summands go by induction as
follows. Set (0) := , so (0) (0). Assuming that ( 1) and ( 1) are
constructed such that ( 1) ( 1), we shall construct ( ) and ( ) and
maps such that the diagram

(2.4.d)

( 1) ( 1)

( 1) ( 1)

( ) ( )

is commutative.
For each and 0, let ( 1)( ) := [ ] Hom( [ ] ( 1)).

There is a map ( 1)( ) : ( 1)( ) ( 1) obtained by choosing a basis ( )
of Hom( [ ] ( 1)), and the restriction of ( 1)( ) to the direct summand [ ]
of ( 1)( ) corresponding to is, by definition, ; that is,( 1)( ) = . If
we choose another basis ( ), then the transition matrix from () to ( ) induces an
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automorphism of ( 1)( ) such that the diagram

( 1)( ) ( 1)

( 1)( ) ( 1)

is commutative. By assumption, and by the fact that is an equivalence with
inverse 1 , we obtain the isomorphisms

( 1)( ) [ ] Hom( [ ] ( 1))

[ ] Hom( [ ] ( 1))

[ ] Hom( 1 [ ] ( 1))

[ ] Hom( [ ] ( 1))
( 1)( )

Consequently, by the above observation, we obtain the commutative diagram.

( 1)( )
( 1)( ) ( 1)

( 1)( )
( 1)( ) ( 1)

Let ( 1) := 0
( 1)( ) and let

( 1) =
0

( 1)( ): ( 1) ( 1)

It follows that we have the commutative diagram.

( 1)
( 1)

( 1)

( 1)
( 1)

( 1)

Since the map ( 1) : ( 1) ( ) is defined by forming the distinguished triangle

( 1)
( 1)

( 1) ( ) ( 1)[1]

we deduce the existence of the commutative diagram (2.4.d).
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Finally, let := hocolim( ). By the definition of the homotopy colimit (see [6,
(4.1)]) it follows that (2.4.c) also holds.

In order to lift a stable equivalence to a graded derived equivalence by using
Okuyama’s strategy, in our general setting we need to assumethat does not divide
the order of .

Corollary 2.5. Let and be two -graded symmetric crossed products, and
denote = 1 and = 1. Assume that is a -group and is a -set. Let be
a -graded ( )-bimodule inducing a Morita stable equivalence between and,
and let be a set of representatives for the simple -modules.

If there are objects D ( -mod), , satisfying the conditions(2.3.a),
(2.3.b), (2.3.c)and (2.4.a), and such that is stably isomorphic to 1 , for
all , then there is a -graded derived equivalence between and.

Proof. By Theorem 2.4 there is a symmetric crossed product and a -graded
derived equivalence between and , and hence a -graded stableMorita equiva-
lence between and (see [5, Remark 3.4]). Consequently, we have a stable Morita
equivalence between and induced by a -graded ( )-bimodule . Since sim-
ple 1-modules are sent to simple1-modules, by a theorem of Linckelmann, a di-
rect ( 1

op
1 )-summand of 1 induces a Morita equivalence between1 and 1.

Since is a -group, by the argument used in [4, Example 5.8], wehave that is
in fact a ( op)-summand of 1, hence ( op) ( op) induces
a -graded Morita equivalence between and . Finally, composethis equivalence
with the graded derived equivalence between and to obtain a graded derived
equivalence between and .

3. Splendid stable and derived equivalences

3.1. Let and be symmetric -graded crossed products over the alge-
braically closed field . Denote =1, = 1 and = ( op) = op.

By definition, the (cochain) complex of -graded exact ( )-bimodules in-
duces a -graded stable equivalence between and if

in the bounded homotopy category of finitely generated -graded ( )-bimodules,
and

in the bounded homotopy category of finitely generated -graded ( )-bimodules,
where and are bounded complexes of projective bimodules. Note that by [4,
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Lemma 2.6], the above isomorphisms are equivalent to

1 1 1 in H ( ( op)-mod)

1 1 1 in H ( ( op)-mod)

where 1 and 1 are bounded complexes of projective ( op)-modules, respec-
tively projective ( op)-modules.

By using arguments as in [5, 2.6 and Remark 3.4], one can easily adapt the proof
of [2, Proposition 4.3] in order to deal with graded equivalences. We include the full
proof for convenience.

Proposition 3.2. Assume that is a -group, and let and be bounded
complexes of -graded( )-bimodules such that induces a stable equivalence be-
tween and , induces a derived equivalence between and, and the stable
equivalence between and induced by1 agrees on each simple module, up to
isomorphism, with that induced by 1.

Then there is a bounded complex of finitely generated -graded( )-
bimodules such that
1) = , where is a complex of -graded projective bimodules;
2) induces a -graded homotopy equivalence between and;
3) In the derived category of -graded( )-bimodules, is isomorphic to the
composition between and a -graded Morita autoequivalence of .

Proof. By using well-known results of Rickard and [5, Remark3.4], we may as-
sume that

1 = ( 0 +1
1

+2
1 )

where , and 1 are projective, and ( ) (which is again a -module) in-
duces a stable Morita equivalence between and .

Similarly, by truncating a projective -module resolution of 1, we obtain a com-
plex

1 = ( 0 +1
1

+2
1 )

of -modules, with , and 1 projective, and ( ) induces a stable Morita
equivalence between and isomorphic to that induced by1.

We choose = sufficiently large such that ( ) ( ) is a ( op)-
module inducing a stable autoequivalence of sending simple-modules to iso-
morphic copies of themselves. Linckelmann’s theorem implies that this is in fact a
Morita autoequivalence. Composing its indecomposable non-projective -module sum-
mand with 1, we obtain the complex

1 = ( 0 +1
1

+2
1 )
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of -modules, with 1 projective. Denote

1 = ( 0 +1
1

+2
1 )

so we have maps of complexes :1 1 and : 1 1, and a map of triangles

1 1 [ ] 1[1]

1 1 1 1[1]

where 1 is the cone of . Denote

1 = ( 0 +1
1

+2
1 )

The id lifts to a map : 1[ 1] 1 in H ( ). We obtain a triangle

1[ 1] 1 1 1

in H ( ). Then 1 1 in D ( ), and the required complex of -graded ( )-
bimodules is := ( op) 1.

3.3. For the remaining part of the paper, let = , = , =
( ) and = ( ), where , , , and are as in the introduction. Denote

also = ( ) and = ( ), and assume that = is a -group.
Recall that the bounded complex of ( )-bimodules issplendid, if the in-

decomposable summands of its terms are relatively ( )-projective -permutation
( )-modules. Note that the truncation of a projective resolution of as in the

proof of Proposition 3.2 does not lead in general to a splendid complex.
By Proposition 3.2 and Corollary 2.5 we immediately get:

Corollary 3.4. Assume that is a -group, is a -set, and that is a
splendid complex of -graded( )-bimodules inducing a stable equivalence and

. Let be a set of representatives for the simple -modules, and let
D ( -mod), , be objects satisfying the conditions(2.3.a), (2.3.b), (2.3.c)

and (2.4.a),such that is stably isomorphic to1 for all .
Then there is a complex of -graded( )-bimodules such that:

1) the image of 1 in -stmod D ( -mod) H ( -proj) is isomorphic to 1;
2) induces a splendid derived equivalence between and;
3) 1 in D ( -mod), for all .

EXAMPLE 3.5. a) A case in which Corollary 3.4 applies is the so called T.I. sit-
uation, that is, when = 1 for all ( ). Then the bimodule1 =
induces a stable Morita equivalence between and , and1 is clearly a -module.
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This is the situation which occurs in [1] and [6]. An inspection of the examples
discussed in [6, Section 7] and of the proof of the main resultof [1] shows that the
objects satisfy the condition (2.4.a). Note that here becomes a -set by letting

for , .
b) Assume that is elementary abelian of order2, and that is the principal block
of O . Then, by [7, Theorem 6.3], there is a splendid complex of ( )-bimodules
inducing a stable equivalence between and . We show here thatthere is even a
complex of -modules.

Let be a subgroup of order of , and let be the principal block of( )
and the principal block of ( ). Denote = ( ) ( ). Then is
a -group, and ( ) ( ). Furthermore, denote

( ) = ( ) 1

and

( ) = ( ) ( ) ( ) 1 ( )

The principal blocks of ( ) and ( ) have cyclic defect group .
By [7, Theorem 6.2], there is a complex

= 0 ( ) 0

of ( )-modules (with ( ) in degree 0) inducing a splendid derived equiv-
alence between ( ) and ( ); here is a projective ( ( ) ( ))-
module regarded also as a ( )-module via inflation. Denote = Ind ( )

( ) .
We have that is a ( )-module, and the obvious map ( )
Res( )

( ) induces by adjunction the ( )-linear map

: Ind ( )
( ) ( )

We obtain the map = Ind( )
( ) : and the complex

1 := 0 0

of -modules, where runs over the subgroups of order of up to -conjugacy.
It follows by [7, 4.1.2] that Br( ) 1 , hence by [7, Theorem 5.6],1 induces a
splendid stable equivalence between and .

This construction applies to the examples considered in [2]. It is not difficult to
verify that in those cases condition (2.4.a) also holds.
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