GRÖBNER BASES ASSOCIATED WITH POSITIVE ROOTS AND CATALAN NUMBERS

Tomonori KITAMURA

(Received July 8, 2003)

Abstract

Let $\mathbf{A}_{n-1}^{+} \subset \mathbb{Z}^{n}$ denote the set of positive roots of the root system \mathbf{A}_{n-1} and $I_{\mathbf{A}_{n-1}^{+}}$ its toric ideal. The purpose of the present paper is to study combinatorics and algebra on \mathbf{A}_{n-1}^{+}and $I_{\mathbf{A}_{n-1}^{+}}$. First, it will be proved that $I_{\mathrm{A}_{n-1}^{+}}$induces an initial ideal $i n_{<}\left(I_{\mathbf{A}_{n-1}^{+}}\right)$which is generated by quadratic squarefree monomials together with cubic squarefree monomials. Second, we will associate each maximal face σ of the unimodular triangulation Δ arising from $\operatorname{in}_{<}\left(I_{\mathbf{A}_{n-1}^{+}}\right)$with a certain subgraph G_{σ} on $[n]=\{1, \ldots, n\}$. Third, noting that the number of maximal faces of Δ is equal to that of anti-standard trees T on $[n]$ with $T \neq\{(1,2),(1,3), \ldots,(1, n)\}$, an explicit bijection between the set $\left\{G_{\sigma}: \sigma\right.$ is a maximal face of $\left.\Delta\right\}$ and that of anti-standard trees T on $[n]$ with $T \neq\{(1,2),(1,3), \ldots,(1, n)\}$ will be constructed. In particular, a new combinatorial expression of Catalan numbers arises.

Introduction

In their study of hypergeometric functions associated with root systems, Gel'fand, Graev and Postnikov [5] studied combinatorics on the convex hull conv ($\left.\widetilde{\mathbf{A}}_{n-1}^{+}\right)$of the configuration $\widetilde{\mathbf{A}}_{n-1}^{+}=\mathbf{A}_{n-1}^{+} \cup\{\mathbf{0}\} \subset \mathbb{Z}^{n}$, where \mathbf{A}_{n-1}^{+}is the set of positive roots of the root system \mathbf{A}_{n-1} and $\mathbf{0}$ is the origin of \mathbb{R}^{n}. It turned out that conv $\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$possesses a unimodular triangulation, i.e., a triangulation such that the normalized volume of each of its maximal faces is equal to 1 , and that there is an explicit bijection between the set of maximal faces of the unimodular triangulation and that of so-called "antistandard trees" on the vertex set $[n]=\{1, \ldots, n\}$. Since the number of anti-standard trees on $[n]$ is the famous Catalan number $(1 / n)\binom{2(n-1)}{n-1}$, it follows that the normalized volume of conv $\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$is equal to $(1 / n)\binom{2(n-1)}{n-1}$.

On the other hand, from the viewpoint of toric ideals, much more important results essentially appear in Gel'fand, Graev and Postnikov [5]. For example, it is proved that the toric ideal arising from the configuration $\widetilde{\mathbf{A}}_{n-1}^{+}$induces a squarefree quadratic initial ideal. (A monomial ideal is said to be squarefree (resp. quadratic) if it is generated by squarefree (resp. quadratic) monomials.) In general, it is known in [11] that if the toric ideal arising from a configuration induces a squarefree initial ideal, then the convex hull of the configuration possesses a unimodular triangulation. Moreover, if the
toric ideal arising from a configuration induces a quadratic initial ideal, then the toric ring of the configuration is a Koszul algebra (e.g., [1] and [2]).

In the recent paper [9], the existence of a squarefree quadratic initial ideal for each of the configurations $\widetilde{\mathbf{B}}_{n}^{+}=\mathbf{B}_{n}^{+} \cup\{\mathbf{0}\}, \widetilde{\mathbf{C}}_{n}^{+}=\mathbf{C}_{n}^{+} \cup\{\mathbf{0}\}$ and $\widetilde{\mathbf{D}}_{n}^{+}=\mathbf{D}_{n}^{+} \cup\{\mathbf{0}\}$ was proved, where $\mathbf{B}_{n}^{+}\left(\right.$resp. $\left.\mathbf{C}_{n}^{+}, \mathbf{D}_{n}^{+}\right)$is the set of positive roots of the root system \mathbf{B}_{n} (resp. \mathbf{C}_{n}, \mathbf{D}_{n}). Moreover, in [8], the problem on the existence of a squarefree initial ideal of the toric ideal of the configuration $\mathcal{A} \cup\{\mathbf{0}\}$, where \mathcal{A} is a subset of $\mathbf{B C}_{n}^{+}=\mathbf{B}_{n}^{+} \cup \mathbf{C}_{n}^{+}$, was mainly discussed.

Stanley [10, Exercise 6.31 (b)] computed the Ehrhart polynomial of the convex hull of $\widetilde{\mathbf{A}}_{n-1}^{+}$. In her dissertation [4], Fong constructed an explicit triangulation of the convex hull of each of the configurations $\widetilde{\mathbf{B}}_{n}^{+}, \widetilde{\mathbf{C}}_{n}^{+}$and $\widetilde{\mathbf{D}}_{n}^{+}$, and computed the normalized volume together with the Ehrhart polynomial of each of these convex hulls.

In the papers [4], [5], [8] and [9], the play of the origin is essential. For example, if $n \geq 6$, then the toric ideal of each of the configurations $\mathbf{A}_{n-1}^{+}, \mathbf{B}_{n}^{+}, \mathbf{C}_{n}^{+}$and \mathbf{D}_{n}^{+}can induce no quadratic initial ideal. However, it is reasonable to ask if the toric ideal of each of the configurations $\mathbf{A}_{n-1}^{+}, \mathbf{B}_{n}^{+}, \mathbf{C}_{n}^{+}$and \mathbf{D}_{n}^{+}induces a squarefree initial ideal.

The purpose of the present paper is to study combinatorics and algebra on the configuration \mathbf{A}_{n-1}^{+}and its toric ideal $I_{\mathbf{A}_{n-1}^{+}}$. First, it will be proved that $I_{\mathbf{A}_{n-1}^{+}}$induces an initial ideal $i n_{<}\left(I_{\mathbf{A}_{n-1}^{+}}\right)$which is generated by quadratic squarefree monomials together with cubic squarefree monomials (Theorem 1.1). Second, we will associate each maximal face σ of the unimodular triangulation Δ arising from $i n_{<}\left(I_{A_{n-1}^{+}}\right)$with a certain subgraph G_{σ} on $[n]$ (Theorem 2.3). On the other hand, it is easy to see that the normalized volume of $\operatorname{conv}\left(\mathbf{A}_{n-1}^{+}\right)$is one less than that of $\operatorname{conv}\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$. For the sake of the completeness, two proofs of this simple fact will be given in Proposition 3.3. Third, an explicit bijection between the set $\left\{G_{\sigma}: \sigma\right.$ is a maximal face of $\left.\Delta\right\}$ and that of anti-standard trees T on $[n]$ with $T \neq\{(1,2),(1,3), \ldots,(1, n)\}$ will be constructed (Theorem 3.5). In particular, a new combinatorial expression of Catalan numbers arises. Note that a list of 66 expressions of Catalan numbers is presented in [10, Exercise 6.19].

1. Squarefree initial ideals

In the present paper, we consider the configuration

$$
\mathbf{A}_{n-1}^{+}=\left\{\mathbf{e}_{i}-\mathbf{e}_{j}: 1 \leq i<j \leq n\right\} \subset \mathbb{Z}^{n}
$$

where \mathbf{e}_{i} denotes the i-th unit coordinate vector of \mathbb{R}^{n}. The configuration \mathbf{A}_{n-1}^{+}is the set of positive roots of the root system \mathbf{A}_{n-1} (see [7]). Let $K[\mathbf{f}]=K\left[f_{i, j}: 1 \leq\right.$ $i<j \leq n]$ denote the polynomial ring over a field K, and $K\left[\mathbf{t}, \mathbf{t}^{-1}, s\right]=K\left[t_{1}\right.$, $\left.t_{1}^{-1}, \ldots, t_{n}, t_{n}^{-1}, s\right]$ the Laurent polynomial ring over K. The toric ideal $I_{\mathbf{A}_{n-1}^{+}}$of \mathbf{A}_{n-1}^{+} is the kernel of the homomorphism $\pi: K[\mathbf{f}] \longrightarrow K\left[\mathbf{t}, \mathbf{t}^{-1}, s\right]$ defined by setting $\pi\left(f_{i, j}\right)=t_{i} t_{j}^{-1} s$ for all $1 \leq i<j \leq n$.

We recall fundamental materials on Gröbner bases from, e.g., [3]. Let M denote the set of monomials of $K[\mathbf{f}]$. In particular, the element 1 belongs to M. A monomial order on M is a linear (total) order $<$ on M such that (i) $1<u$ for any $1 \neq u \in M$, and (ii) if $u, v \in M$ and $u<v$, then $u w<v w$ for any $w \in M$. Fix a monomial order $<$ on M. For $0 \neq g \in K[\mathbf{f}]$, the initial monomial in $_{<}(g)$ is the biggest monomial appearing in g with respect to $<$. The initial ideal of $I_{\mathbf{A}_{n-1}^{+}}$with respect to $<$is the ideal

$$
i n_{<}\left(I_{\mathbf{A}_{n-1}^{+}}\right)=\left\langle i n_{<}(g): 0 \neq g \in I_{\mathbf{A}_{n-1}^{+}}\right\rangle \subset K[\mathbf{f}] .
$$

For a finite subset $\mathcal{H} \subset K[\mathbf{f}]$, let $i n_{<}(\mathcal{H})=\left\langle i n_{<}(h): h \in \mathcal{H}\right\rangle \subset K[\mathbf{f}]$. A finite set $\mathcal{H} \subset$ $I_{\mathbf{A}_{n-1}^{+}}$is said to be a Gröbner basis of $I_{\mathbf{A}_{n-1}^{+}}$with respect to $<$if $i_{<}(\mathcal{H})=i n_{<}\left(I_{\mathbf{A}_{n-1}^{+}}\right)$. A Gröbner basis \mathcal{H} of $I_{\mathbf{A}_{n-1}^{+}}$with respect to $<$is called reduced if it has the additional properties that, for each $h \in \mathcal{H}$, the coefficient of $\operatorname{in}_{<}(h)$ is 1 and, for any two distinct elements $h, h^{\prime} \in \mathcal{H}$, no term of h^{\prime} is divisible by $i n_{<}(h)$. A reduced Gröbner basis uniquely exists.

Let $<_{\text {lex }}$ be the lexicographic order induced by the ordering of variables

$$
f_{n-1, n}>_{\operatorname{lex}} f_{n-2, n-1}>_{\operatorname{lex}} f_{n-2, n}>_{\operatorname{lex}} \cdots>_{\operatorname{lex}} f_{1,2}>_{\operatorname{lex}} f_{1,3}>_{\operatorname{lex}} \cdots>_{\operatorname{lex}} f_{1, n},
$$

and let $<_{\text {rev }}$ be the reverse lexicographic order induced by the ordering of variables
$f_{n-1, n}>_{\text {rev }} f_{n-2, n}>_{\text {rev }} f_{n-2, n-1}>_{\text {rev }} \cdots>_{\text {rev }} f_{2,3}>_{\text {rev }} f_{1, n}>_{\text {rev }} \cdots>_{\text {rev }} f_{1,3}>_{\text {rev }} f_{1,2}$.
First, we explicitly provide the Gröbner basis of $I_{\mathbf{A}_{n-1}^{+}}$with respect to both $<$lex and $<_{\text {rev }}$ whose initial monomials are squarefree monomials of degree ≤ 3.

Theorem 1.1. The set \mathcal{G} of the binomials

$$
\begin{array}{ll}
f_{i, l} f_{j, k}-f_{i, k} f_{j, l}, & i<j<k<l, \\
f_{i, j} f_{j, k}-f_{i, i+1} f_{i+1, k}, & i+1<j<k, \\
f_{i, j} f_{k, k+1} f_{k+1, l}-f_{i, i+1} f_{i+1, j} f_{k, l}, & i+1<j<k<l-1,
\end{array}
$$

is the reduced Gröbner basis of the toric ideal $I_{\mathbf{A}_{n-1}^{+}}$with respect to both $<_{\text {lex }}$ and $<_{\mathrm{rev}}$, where the initial monomial of each binomial is the first monomial.

Proof. Since $f_{i, l}<_{\text {lex }} f_{i, k}<_{\text {lex }} f_{j, l}<_{\text {lex }} f_{j, k}$ and $f_{i, k}<_{\text {rev }} f_{i, l}<_{\text {rev }} f_{j, k}<_{\text {rev }} f_{j, l}$ for $i<j<k<l$, the initial monomial of $f_{i, l} f_{j, k}-f_{i, k} f_{j, l}$ is $f_{i, l} f_{j, k}$ with respect to both $<_{\text {lex }}$ and $<_{\text {rev }}$. Similarly, it follows that the initial monomial of each binomial belonging to \mathcal{G} is the first monomial with respect to both $<_{\text {lex }}$ and $<_{\text {rev }}$. Hence it is enough to show that \mathcal{G} is a Gröbner basis of $I_{\mathrm{A}_{n-1}^{+}}$with respect to $<_{\text {lex }}$. (Once we know that \mathcal{G} is a Gröbner basis, it immediately follows that \mathcal{G} is reduced.) The effective technique discussed in [9] can be also applied in the present situation.

Suppose that

$$
\begin{aligned}
& u=f_{i_{1}, j_{1}} \cdots f_{i_{q}, j_{q}}, \\
& u^{\prime}=f_{i_{1}^{\prime}, j_{1}^{\prime}} \cdots f_{i_{q^{\prime}}^{\prime}, j_{q^{\prime}}^{\prime}}^{\prime}
\end{aligned}
$$

are monomials of $K[\mathbf{f}]$ with $u \notin i n_{<\operatorname{lex}}(\mathcal{G})$ and $u^{\prime} \notin i n_{<\operatorname{lex}}(\mathcal{G})$, where

$$
\begin{aligned}
f_{i_{1}, j_{1}} & \leq \operatorname{lex} \cdots \leq \operatorname{lex} f_{i_{q}, j_{q}} \\
f_{i_{1}^{\prime}, j_{1}^{\prime}} & \leq \operatorname{lex} \cdots \leq \leq_{\operatorname{lex}} f_{i_{q^{\prime}}^{\prime}, j_{q_{1}^{\prime}}^{\prime}}
\end{aligned}
$$

What we have to show is that if $\pi(u)=\pi\left(u^{\prime}\right)$, then $q=q^{\prime}$ and $i_{1}=i_{1}^{\prime}, \ldots, i_{q}=i_{q}^{\prime}$, $j_{1}=j_{1}^{\prime}, \ldots, j_{q}=j_{q}^{\prime}$.

Suppose $\pi(u)=\pi\left(u^{\prime}\right)$. By comparing the exponent of s in $\pi(u)$ with that in $\pi\left(u^{\prime}\right)$, we have $q=q^{\prime}$. Using the induction on q, we will show that there exists a variable appearing in both u and u^{\prime}. Let m_{u} denote the set of all indices i such that both t_{i} and t_{i}^{-1} appear in the product $\pi(u)=\pi\left(f_{i_{1}, j_{1}}\right) \cdots \pi\left(f_{i_{q}, j_{q}}\right)$. Since $\pi(u)=\pi\left(u^{\prime}\right)$ and $q=q^{\prime}$, it follows that $m_{u}=\emptyset$ if and only if $m_{u^{\prime}}=\emptyset$.

CASE 1. $\quad m_{u} \neq \emptyset$ and $m_{u^{\prime}} \neq \emptyset$.
Let p (resp. p^{\prime}) be the smallest element in m_{u} (resp. $m_{u^{\prime}}$). We may assume that $p \leq p^{\prime}$. If u is devided by $f_{\mu, p} f_{p, v}$ for some μ and v with $\mu+1<p<\nu$, then we have $u \in \operatorname{in}_{<\text {lex }}(\mathcal{G})$ by the previous argument of this proof. This contradicts the assumption. Hence both $f_{p-1, p}$ and $f_{p, r}$ appear in u for some $r>p$. Similarly, both $f_{p^{\prime}-1, p^{\prime}}$ and $f_{p^{\prime}, r^{\prime}}$ appear in u^{\prime} for some $r^{\prime}>p^{\prime}$.

Suppose that $f_{p-1, p}$ does not appear in u^{\prime}. Then we have $p<p^{\prime}$. Since $\pi(u)=$ $\pi\left(u^{\prime}\right)$ and $p-1 \notin m_{u}$, there exists a variable $f_{p-1, s}$ appearing in u^{\prime} with $p<s$. Since

$$
\begin{array}{rlrl}
p<p^{\prime}<s & \Rightarrow & f_{p-1, s} f_{p^{\prime}-1, p^{\prime}} & \in \operatorname{in}_{<\operatorname{lex}}(\mathcal{G}), \\
p^{\prime}=s & \Rightarrow & f_{p-1, s} f_{p^{\prime}, r^{\prime}} & \in \operatorname{in}_{<\operatorname{lex}}(\mathcal{G}), \\
p^{\prime}=s+1 & \Rightarrow & f_{p-1, s} f_{p^{\prime}-1, p^{\prime}} & \in \operatorname{in}_{<_{\operatorname{lex}}}(\mathcal{G}), \\
s+1 & \Rightarrow f_{p-1, s} f_{p^{\prime}-1, p^{\prime}} p_{p^{\prime}, r^{\prime}} & \in \operatorname{in}_{<\operatorname{lex}}(\mathcal{G})
\end{array}
$$

hold, this contradicts $u^{\prime} \notin i n_{<\operatorname{lex}}(\mathcal{G})$. Thus $f_{p-1, p}$ appears in both u and u^{\prime}.
CASE 2. $m_{u}=m_{u^{\prime}}=\emptyset$.
Since $i_{1} \leq i_{2} \leq \cdots \leq i_{q}$ and $i_{1}^{\prime} \leq i_{2}^{\prime} \leq \cdots \leq i_{q}^{\prime}$, it follows that $i_{q}=i_{q}^{\prime}$. If $j_{q}<j_{q}^{\prime}$, then there exists h such that $1 \leq h<q$ with $j_{q}^{\prime}=j_{h}$. Hence we have $i_{h} \leq i_{q}<j_{q}<j_{h}$. Since $f_{i_{h}, j_{h}} f_{i_{q}}, j_{q} \notin \operatorname{in}_{<\operatorname{lex}}(\mathcal{G})$, we have $i_{h}=i_{q}$. Thus $f_{i_{q}^{\prime}, j_{q}^{\prime}}$ appears in both u and u^{\prime}, as desired.

2. Unimodular triangulations

Let $<_{\text {lex }}$ denote the lexicographic order discussed in the previous section. Let $\Delta=\Delta_{<_{\operatorname{lex}}}\left(I_{\mathrm{A}_{n-1}^{+}}\right)$denote the regular triangulation ([11, Chapter 8]) of the $n-1$ dimensional convex polytope conv $\left(\mathbf{A}_{n-1}^{+}\right)$associated with $\operatorname{in}_{<\operatorname{lex}}\left(I_{\mathbf{A}_{n-1}^{+}}\right)$. Thus Δ consists
of all subsets $\sigma \subset \mathbf{A}_{n-1}^{+}$such that

$$
\prod_{\mathbf{e}_{i}-\mathbf{e}_{j} \in \sigma} f_{i, j} \notin i n_{<_{\operatorname{lex}}}\left(I_{\mathbf{A}_{n-1}^{+}}\right) .
$$

Since $\operatorname{in}_{<\text {lex }}\left(I_{A_{n-1}^{+}}\right)$is generated by squarefree monomials by Theorem 1.1, it follows from [11, Corollary 8.9] that the triangulation Δ is unimodular, i.e., the normalized volume ($[11, \mathrm{p} .36]$) of σ is 1 for every maximal face σ of Δ.

In this section, we present a graph-theoretical characterization of the maximal faces of Δ. Let $[n]=\{1, \ldots, n\}$ be the vertex set and let $(i, j), 1 \leq i<j \leq n$, be the arrow from i to j. Given a subset σ of \mathbf{A}_{n-1}^{+}, we write G_{σ} for the graph on $[n]$ having the arrows (i, j) with $\mathbf{e}_{i}-\mathbf{e}_{j} \in \sigma$.

Lemma 2.1. Let σ be a maximal face of Δ. Then the graph G_{σ} associated with σ is a connected graph which has n vertices, n arrows and a cycle $\{(q, q+1)$, $(q, j),(q+1, j)\}$ for some $2 \leq q+1<j \leq n$.

Proof. Theorem 1.1 guarantees that a subset σ of \mathbf{A}_{n-1}^{+}is a face of Δ if and only if none of the following subgraphs appear in G_{σ} :
(I) $\{(i, l),(j, k)\}$ with $i<j<k<l$,
(II) $\{(i, j),(j, k)\}$ with $i+1<j<k$,
(III) $\{(i, j),(k, k+1),(k+1, l)\}$ with $i+1<j<k<l-1$.

Let σ be a maximal face of Δ. Then σ is of dimension $n-1$. Thus G_{σ} is a graph with n vertices and n arrows. Hence G_{σ} has at least one cycle.

Let \mathcal{C} be a cycle of length $r(\geq 3)$ in G_{σ} and let $i_{0}=\min \{i:(i, j) \in \mathcal{C}\}$. Since \mathcal{C} is a cycle, there exist two vertices $i_{1,1}$ and $i_{2,1}$ of G_{σ} such that $\left\{\left(i_{0}, i_{1,1}\right),\left(i_{0}, i_{2,1}\right)\right\} \subset \mathcal{C}$ with $i_{0}<i_{1,1}<i_{2,1}$. Since none of the subgraphs of type (I) appear in \mathcal{C}, there exists no vertex j_{1} of G_{σ} such that $\left(j_{1}, i_{1,1}\right) \in \mathcal{C}$ with $i_{0}<j_{1}<i_{1,1}$. Thus, since \mathcal{C} is a cycle, there exists a vertex $i_{1,2}\left(>i_{1,1}\right)$ of G_{σ} such that $\left(i_{1,1}, i_{1,2}\right) \in \mathcal{C}$. Note that, since none of the subgraphs of type (II) appear in \mathcal{C}, we have $i_{1,1}=i_{0}+1$.

Since none of the subgraphs of type (I) appear in \mathcal{C}, we have $i_{2,1} \leq i_{1,2}$. Suppose that $i_{2,1}<i_{1,2}$. If $\left(i_{2,1}, i_{2,2}\right) \in \mathcal{C}$ with $i_{2,1}<i_{2,2}$, then we have $i_{2,1}=i_{0}+1$ since none of the subgraphs of type (II) appear in \mathcal{C}. This contradicts the assumption that ($i_{0}+1=$) $i_{1,1}<i_{2,1}$. Since \mathcal{C} is a cycle, there exists a vertex j_{2} of G_{σ} such that $\left(j_{2}, i_{2,1}\right) \in \mathcal{C}$ with $i_{1,1}=i_{0}+1<j_{2}<i_{2,1}$. Then the subgraph $\left\{\left(i_{1,1}, i_{1,2}\right),\left(j_{2}, i_{2,1}\right)\right\}$ of type (I) appears in \mathcal{C}. Thus we have $i_{1,2}=i_{2,1}$ and $\mathcal{C}=\left\{\left(i_{0}, i_{0}+1\right),\left(i_{0}, i_{1,2}\right),\left(i_{0}+1, i_{1,2}\right)\right\}$.

Suppose that two cycles $\{(p, p+1),(p, i),(p+1, i)\}$ and $\{(q, q+1),(q, j),(q+1, j)\}$ appear in G_{σ}. Then we have $0 \neq f_{p, p+1} f_{p+1, i} f_{q, j}-f_{p, i} f_{q, q+1} f_{q+1, j} \in I_{\mathbf{A}_{n-1}^{+}}$. Since either $f_{p, p+1} f_{p+1, i} f_{q, j}$ or $f_{p, i} f_{q, q+1} f_{q+1, j}$ belongs to $\operatorname{in}_{<\operatorname{lex}}\left(I_{\mathbf{A}_{n-1}^{+}}\right)$, it is impossible that both $\{(p, p+1),(p+1, i),(q, j)\}$ and $\{(p, i),(q, q+1),(q+1, j)\}$ appear in G_{σ}. Thus G_{σ} has exactly one cycle.

Moreover, since G_{σ} has n vertices, n arrows and exactly one cycle, it follows from the following lemma that G_{σ} is connected.

Lemma 2.2. Let G be a finite graph with neither loop nor multiple edge. If G has exactly one cycle, and the number of vertices of G is equal to that of edges of G, then G is connected.

Proof. Suppose that G is not connected. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ be connected components of G, where $s \geq 2$ and exactly one cycle of G appears in \mathcal{C}_{1} and, for $2 \leq i \leq s, \mathcal{C}_{i}$ is a tree. Let v_{i} (resp. e_{i}) denote the number of vertices (resp. edges) of \mathcal{C}_{i}. Then we have $\sum_{j=1}^{s} e_{j}=\sum_{i=1}^{s} v_{i}$ by assumption.

For any tree T, the number of edges of T is equal to that of vertices of T minus 1 (see [6, Theorem 1.3]). Hence, since $e_{1}=v_{1}$ and $e_{k}=v_{k}-1$ for $2 \leq k \leq s$, it follows that $\sum_{j=1}^{s} e_{j}<\sum_{i=1}^{s} v_{i}$. This contradicts $\sum_{j=1}^{s} e_{j}=\sum_{i=1}^{s} v_{i}$. Thus G is connected.

We now come to a graph-theoretical characterization of the maximal faces of Δ.
Theorem 2.3. A subset σ of \mathbf{A}_{n-1}^{+}is a maximal face of Δ if and only if the graph G_{σ} associated with σ is a connected graph with n vertices and n arrows satisfying the following condition: $G_{\sigma}=A \cup B \cup C$, where

$$
\begin{aligned}
& A=\{(1,2),(2,3), \ldots,(q-1, q),(q, q+1),(q, j),(q+1, j)\}, \\
& B=\left\{\left(q, i_{1}\right), \ldots,\left(q, i_{r}\right)\right\}
\end{aligned}
$$

with $q+1<i_{1}<\cdots<i_{r}<j$ (B may be an empty set), and none of the subgraphs
(1) $\{(x, w),(y, z)\}$ with $x<y<z<w$,
(2) $\{(x, y),(y, z)\}$ with $x<y<z$
appear in C, and C is either an empty set or one of the following graphs:
CASE 1. $C=\left\{\left(q+1, s_{1}\right), \ldots,\left(q+1, s_{m}\right),\left(x_{u_{1}}, y_{u_{1}}\right), \ldots,\left(x_{u_{p}}, y_{u_{p}}\right)\right\}$ with

$$
\begin{aligned}
& j<s_{1}<\cdots<s_{m} \leq n, \\
& q+1<x_{u_{k}}, j<y_{u_{k}} \leq n \quad(k=1,2, \ldots, p), \\
& x_{u_{k}} \notin\left\{j, i_{1}, \ldots, i_{r}\right\} \quad(k=1,2, \ldots, p) .
\end{aligned}
$$

Case 2. $C=\left\{\left(t_{1}, j\right), \ldots,\left(t_{e}, j\right),\left(x_{u_{1}}, y_{u_{1}}\right), \ldots,\left(x_{u_{p}}, y_{u_{p}}\right)\right\}$ with

$$
\begin{aligned}
& q+1<t_{1}<\cdots<t_{e}<j, \\
& q+1<x_{u_{k}}, j<y_{u_{k}} \leq n \quad(k=1,2, \ldots, p), \\
& x_{u_{k}} \notin\left\{j, i_{1}, \ldots, i_{r}\right\} \quad(k=1,2, \ldots, p) .
\end{aligned}
$$

Proof. [only if] Suppose that σ is a maximal face of Δ. Then, by Lemma 2.1, the graph G_{σ} associated with σ is a connected graph which has n vertices, n arrows
and a cycle $\{(q, q+1),(q, j),(q+1, j)\}$ of length 3 . Moreover, note that none of the subgraphs of type (I), type (II) and type (III) stated in the proof of Lemma 2.1 appear in G_{σ} since σ is a face of Δ.

STEP 1. If an arrow $(u, q+1)$ with $u \neq q$ appears in G_{σ}, then the subgraph $\{(u, q+1),(q+1, j)\}$ of type (II) appears in G_{σ} since $q+1>u+1$. Hence no arrow $(u, q+1)$ with $u \neq q$ appears in G_{σ}.

STEP 2. If an arrow $(q+1, s)$ with $s<j$ appears in G_{σ}, then the subgraph $\{(q, j),(q+1, s)\}$ of type (I) appears in G_{σ}. Hence if $(q+1, s)$ appears in G_{σ}, then we have $j \leq s$.

Step 3. If an arrow (j, t) appears in G_{σ}, then the subgraph $\{(q, j),(j, t)\}$ of type (II) appears in G_{σ}. Hence no arrow (j, t) appears in G_{σ}.

STEP 4. If an arrow (t, j) with $t<q$ appears in G_{σ}, then the subgraph $\{(t, j),(q, q+1)\}$ of type (I) appears in G_{σ}. Hence no arrow (t, j) with $t<q$ appears in G_{σ}.

STEP 5. Suppose that both an arrow $(q+1, s)$ with $s \neq j$ and an arrow (t, j) with $t \neq q, q+1$ appear in G_{σ}. Note that $s>j$ and $t>q+1$ by STEP 2 and STEP 4. Then the subgraph $\{(q+1, s),(t, j)\}$ of type (I) appears in G_{σ}. Hence no subgraph $\{(q+1, s),(t, j)\}$ with $s \neq j$ and $t \neq q, q+1$ appears in G_{σ}.

STEP 6. If an arrow (q, i) with $i>j$ appears in G_{σ}, then the subgraph $\{(q, i),(q+1, j)\}$ of type (I) appears in G_{σ}. Hence if (q, i) appears in G_{σ}, then we have $i \leq j$.

STEP 7. If an arrow (k, i) with $k \neq q$ and $q+1<i<j$ appears in G_{σ}, then either $k<q$ or $q+1<k<i<j$, and either the subgraph $\{(k, i),(q, q+1)\}$ with $k<q$ of type (I) or the subgraph $\{(q+1, j),(k, i)\}$ with $q+1<k<i<j$ of type (I) appears in G_{σ}. Hence no arrow (k, i) with $k \neq q$ and $q+1<i<j$ appears in G_{σ}.

STEP 8. Since none of the subgraphs of type (II) appear in G_{σ}, no subgraph $\{(q, i),(i, l)\}$ with $q+1<i<j$ and $i<l$ appears in G_{σ}.

Step 9. Suppose that an arrow $\left(z_{1}, z_{2}\right)$ with $z_{1}<q$ appears in G_{σ}. If $z_{2}>q+1$, then the subgraph $\left\{\left(z_{1}, z_{2}\right),(q, q+1)\right\}$ of type (I) appears in G_{σ}. This contradicts the assumption that $\sigma \in \Delta$. If $z_{2}=q+1$, then the subgraph $\left\{\left(z_{1}, q+1\right),(q+1, j)\right\}$ of type (II) appears in G_{σ}. This contradicts the assumption that $\sigma \in \Delta$. If $z_{2}=q$, then we have $z_{1}=q-1$ since none of the subgraphs of type (II) appear in G_{σ}. If $z_{2}<q$, then we have $z_{1}=z_{2}-1$ since none of the subgraphs of type (III) appear in G_{σ}. Thus if an arrow (z_{1}, z_{2}) with $z_{1}<q$ appears in G_{σ}, then we have $z_{2}=z_{1}+1 \leq q$. It follows from the connectedness of G_{σ} that $\{(1,2),(2,3), \ldots,(q-1, q)\}$ is a subgraph of G_{σ}.

Thus, from the above nine steps, we have $G_{\sigma}=A \cup B \cup C$, where

$$
\begin{aligned}
& A=\{(1,2),(2,3), \ldots,(q-1, q),(q, q+1),(q, j),(q+1, j)\}, \\
& B=\left\{\left(q, i_{1}\right), \ldots,\left(q, i_{r}\right)\right\}
\end{aligned}
$$

with $q+1<i_{1}<\cdots<i_{r}<j$ (B may be an empty set), and C is either an empty set or one of the following graphs:

CASE 1. $C=\left\{\left(q+1, s_{1}\right), \ldots,\left(q+1, s_{m}\right),\left(x_{u_{1}}, y_{u_{1}}\right), \ldots,\left(x_{u_{p}}, y_{u_{p}}\right)\right\}$ with

$$
\begin{aligned}
& j<s_{1}<\cdots<s_{m} \leq n, \\
& q+1<x_{u_{k}}, j<y_{u_{k}} \leq n \quad(k=1,2, \ldots, p), \\
& x_{u_{k}} \notin\left\{j, i_{1}, \ldots, i_{r}\right\} \quad(k=1,2, \ldots, p) .
\end{aligned}
$$

Case 2. $C=\left\{\left(t_{1}, j\right), \ldots,\left(t_{e}, j\right),\left(x_{u_{1}}, y_{u_{1}}\right), \ldots,\left(x_{u_{p}}, y_{u_{p}}\right)\right\}$ with

$$
\begin{aligned}
& q+1<t_{1}<\cdots<t_{e}<j \\
& q+1<x_{u_{k}}, j<y_{u_{k}} \leq n \quad(k=1,2, \ldots, p), \\
& x_{u_{k}} \notin\left\{j, i_{1}, \ldots, i_{r}\right\} \quad(k=1,2, \ldots, p) .
\end{aligned}
$$

Finally, we prove that none of the subgraphs $\{(x, w),(y, z)\}$ with $x<y<z<w$ and $\{(x, y),(y, z)\}$ with $x<y<z$ appear in C. First, since none of the subgraphs of type (I) and type (II) appear in G_{σ}, none of the subgraphs $\{(x, w),(y, z)\}$ with $x<$ $y<z<w$ and $\{(x, y),(y, z)\}$ with $x+1<y<z$ appear in C. Now, suppose that the subgraph $\{(x, x+1),(x+1, z)\}$ with $x+1<z$ appears in C. Note that, in both CASE 1 and Case 2, if $\left(z_{1}, z_{2}\right)$ appears in C, then we have $q+1 \leq z_{1} \neq j$. Hence $q+1 \leq x$ and $x \neq j-1, j$. If $x>j$, then the subgraph $\{(q, j),(x, x+1),(x+1, z)\}$ of type (III) appears in G_{σ}. This contradicts the assumption that $\sigma \in \Delta$. If $q+1 \leq x \leq j-2$, then the subgraph $\{(q, j),(x, x+1)\}$ of type (I) appears in G_{σ}. This contradicts the assumption that $\sigma \in \Delta$. Hence no subgraph $\{(x, x+1),(x+1, z)\}$ with $x+1<z$ appears in C.
[if] Let σ be a subset of \mathbf{A}_{n-1}^{+}and suppose that the graph G_{σ} associated with σ satisfies the condition stated as above. In order to prove that σ is a maximal face of Δ, it suffices to show that σ is a face of Δ since G_{σ} is a connected graph with n vertices and n arrows and the dimension of maximal faces of Δ is $n-1$. In other words, we need only prove that none of the subgraphs of type (I), type (II) and type (III) stated in the proof of Lemma 2.1 appear in G_{σ}.

First, we show that none of the subgraphs of type (I) appear in G_{σ}. If a subgraph G^{\prime} of type (I) appears in G_{σ}, then G^{\prime} must be one of the following subgraphs:
(a) $\left\{\left(l_{1}, l_{4}\right),\left(l_{2}, l_{3}\right)\right\}$ with $l_{1}<l_{2}<l_{3}<l_{4}$ and $\left(l_{1}, l_{4}\right),\left(l_{2}, l_{3}\right) \in A \cup B$,
(b) $\left\{\left(l_{1}, l_{4}\right),\left(l_{2}, l_{3}\right)\right\}$ with $l_{1}<l_{2}<l_{3}<l_{4}$ and $\left(l_{1}, l_{4}\right) \in A \cup B,\left(l_{2}, l_{3}\right) \in C$,
(c) $\left\{\left(l_{1}, l_{4}\right),\left(l_{2}, l_{3}\right)\right\}$ with $l_{1}<l_{2}<l_{3}<l_{4}$ and $\left(l_{1}, l_{4}\right) \in C,\left(l_{2}, l_{3}\right) \in A \cup B$,
(d) $\left\{\left(l_{1}, l_{4}\right),\left(l_{2}, l_{3}\right)\right\}$ with $l_{1}<l_{2}<l_{3}<l_{4}$ and $\left(l_{1}, l_{4}\right),\left(l_{2}, l_{3}\right) \in C$.

However, since none of the subgraphs of type (I) appear in C, none of the subgraphs of type (d) appear in G_{σ}. Moreover, since

$$
\begin{aligned}
A \cup B= & \{(1,2),(2,3), \ldots,(q-1, q),(q, q+1),(q, j),(q+1, j)\} \\
& \cup\left\{\left(q, i_{1}\right), \ldots,\left(q, i_{r}\right)\right\}
\end{aligned}
$$

with $q+1<i_{1}<\cdots<i_{r}<j$, none of the subgraphs of type (a) appear in G_{σ}. Note that, if $\left(y_{1}, y_{2}\right)$ appears in $A \cup B$ and $\left(z_{1}, z_{2}\right)$ appears in C, then we have $y_{1} \leq q+1 \leq z_{1}$

Fig. 1.
and $y_{2} \leq j \leq z_{2}$. Hence none of the subgraphs of type (b) and type (c) appear in G_{σ}. Thus none of the subgraphs of type (I) appear in G_{σ}.

Second, we show that none of the subgraphs of type (II) appear in G_{σ}. Suppose that the subgraph $\left\{\left(l_{1}, l_{2}\right),\left(l_{2}, l_{3}\right)\right\}$ with $l_{1}+1<l_{2}<l_{3}$ appears in G_{σ}. If $\left(l_{1}, l_{2}\right) \in$ $A \cup B$, then $l_{2} \in\left\{j, i_{1}, \ldots, i_{r}\right\}$ since $l_{1}+1<l_{2}$. This implies that $\left(l_{2}, l_{3}\right) \notin G_{\sigma}$. Hence $\left(l_{1}, l_{2}\right) \in C$. Moreover, since $q+1<j \leq l_{2}<l_{3}$, it follows that $\left(l_{2}, l_{3}\right) \notin A \cup B$, i.e., $\left(l_{2}, l_{3}\right) \in C$. However, none of the subgraphs of type (II) appear in C. Hence none of the subgraphs of type (II) appear in G_{σ}.

Finally, we show that none of the subgraphs of type (III) appear in G_{σ}. Suppose that the subgraph $\left\{\left(l_{1}, l_{2}\right),\left(l_{3}, l_{3}+1\right),\left(l_{3}+1, l_{4}\right)\right\}$ with $l_{1}+1<l_{2}<l_{3}<l_{4}-1$ appears in G_{σ}. If $\left(l_{1}, l_{2}\right) \in A \cup B$, then $l_{2} \in\left\{j, i_{1}, \ldots, i_{r}\right\}$ since $l_{1}+1<l_{2}$. Hence, since $q+1<$ $l_{2}<l_{3}<l_{4}-1$, it follows that $\left(l_{3}, l_{3}+1\right),\left(l_{3}+1, l_{4}\right) \notin A \cup B$, i.e., $\left(l_{3}, l_{3}+1\right),\left(l_{3}+1, l_{4}\right) \in C$. Moreover, if $\left(l_{1}, l_{2}\right) \in C$, then $\left(l_{3}, l_{3}+1\right),\left(l_{3}+1, l_{4}\right) \notin A \cup B$, i.e., $\left(l_{3}, l_{3}+1\right),\left(l_{3}+1, l_{4}\right) \in C$ since $q+1<j \leq l_{2}<l_{3}<l_{4}-1$. However, no subgraph of the form $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)\right\}$ with $v_{1}<v_{2}<v_{3}$ appears in C. Hence none of the subgraphs of type (III) appear in G_{σ}.

Example 2.4. Let $n=4$. Then the maximal faces of Δ are

$$
\begin{aligned}
& \sigma_{1}=\{(1,2),(1,3),(2,3),(2,4)\}, \\
& \sigma_{2}=\{(1,2),(1,3),(1,4),(2,4)\}, \\
& \sigma_{3}=\{(1,2),(1,4),(2,4),(3,4)\}, \\
& \sigma_{4}=\{(1,2),(2,3),(2,4),(3,4)\},
\end{aligned}
$$

and, for $i=1,2,3,4$, the graph $G_{\sigma_{i}}$ associated with σ_{i} is illustrated in Fig. 1.

Fig. 2.

3. Catalan numbers

We now discuss the relation between the set of maximal faces of Δ and that of anti-standard trees.

A tree T on the set $[n]=\{1, \ldots, n\}$ (i.e., a connected graph T on the set $[n]$ without cycle) is called anti-standard if none of the following subgraphs appear in T :
(1) $\{(i, l),(j, k)\}$ with $i<j<k<l$,
(2) $\{(i, j),(j, k)\}$ with $i<j<k$.

Example 3.1. All anti-standard trees for $n=4$ are illustrated in Fig. 2.
Let $\mathcal{M}=\left\{G_{\sigma}: \sigma\right.$ is a maximal face of $\left.\Delta\right\}$ and let \mathcal{T} denote the set of antistandard trees on $[n]$. Recall the following result on the cadinality of \mathcal{T}.

Proposition 3.2 ([5, Theorem 2.3, Corollary 6.7]). (a) The number of antistandard trees on the set $[n]$ is equal to the Catalan number

$$
C_{n-1}=\frac{1}{n}\binom{2(n-1)}{n-1} .
$$

(b) The normalized volume of $\operatorname{conv}\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$is equal to C_{n-1}.

Even though the following result is easy to prove, we give two proofs for the sake of the completeness.

Proposition 3.3. The normalized volume of $\operatorname{conv}\left(\mathbf{A}_{n-1}^{+}\right)$is equal to $C_{n-1}-1$.
First proof. First, we show that the set of vertices of conv $\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$is $\widetilde{\mathbf{A}}_{n-1}^{+}$. Let ${\underset{\mathbf{A}}{n-1}}_{+}^{+}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$, where $\mathbf{v}_{i}=\mathbf{e}_{p_{i}}-\mathbf{e}_{q_{i}}\left(1 \leq p_{i}<q_{i} \leq n\right)$ for $1 \leq i \leq m$. Then $\widetilde{\mathbf{A}}_{n-1}^{+}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \cup\{\mathbf{0}\}$. If $\mathbf{0} \in \operatorname{conv}\left(\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}\right)$, then we have $\mathbf{0}=\sum_{i=1}^{m} a_{i} \mathbf{v}_{i}$, where $0 \leq a_{i} \in \mathbb{R}$ for $1 \leq i \leq m$ and $\sum_{i=1}^{m} a_{i}=1$. We set $p=\min \left\{p_{i}: a_{i} \neq 0\right\}$. Then, the p-th component in the right-hand side is positive. However, the p-th component in the left-hand side is zero. Hence we have $\mathbf{0} \notin \operatorname{conv}\left(\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}\right)$. Moreover, if $\mathbf{v}_{1} \in \operatorname{conv}\left(\left\{\mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} \cup\{\mathbf{0}\}\right)$, then we have $\mathbf{v}_{1}=b \mathbf{0}+\sum_{j=2}^{m} b_{j} \mathbf{v}_{j}$, where $0 \leq b \in$ $\mathbb{R}, 0 \leq b_{j} \in \mathbb{R}$ for $2 \leq j \leq m$ and $b+\sum_{j=2}^{m} b_{j}=1$. Note that the first component of \mathbf{v}_{j} is 0 or 1 for $1 \leq j \leq m$. If $p_{1}>1$, then the first component in the right-hand side is $\sum_{2 \leq j \leq m ; p_{j}=1} b_{j}$ and the first component in the left-hand side is 0 . Thus we have $b_{j}=0$ for every j with $p_{j}=1$. Hence we have $\mathbf{v}_{1}=b \mathbf{0}+\sum_{2 \leq j \leq m ; p_{j} \neq 1} b_{j} \mathbf{v}_{j}$. Similarly, if $p_{1}>2$, then we have $b_{j}=0$ for every j with $p_{j}=2$. By this argument, we may assume that $p_{1}=1$. Then, since the first component in the right-hand side is $\sum_{2 \leq j \leq m ; p_{j}=1} b_{j}$ and the first component in the left-hand side is 1 , we have $b_{j}=0$ for every j with $p_{j} \neq 1$. Moreover, we have $q_{j} \neq q_{1}$ for every j with $j \neq 1$ and $p_{j}=1$. Thus the q_{1}-th component in the right-hand side is 0 . However, the q_{1}-th component in the left-hand side is -1 . Hence we have $\mathbf{v}_{1} \notin \operatorname{conv}\left(\left\{\mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} \cup\{\mathbf{0}\}\right)$. By the same argument, it follows that $\mathbf{v}_{i} \notin \operatorname{conv}\left(\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{m}\right\} \cup\{\mathbf{0}\}\right)$ for $1 \leq i \leq m$. Thus the set of vertices of $\operatorname{conv}\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$is $\widetilde{\mathbf{A}}_{n-1}^{+}$.

Now, let $\omega=(1,2, \ldots, n) \in \mathbb{Z}^{n}$ and $\sigma_{0}=\operatorname{conv}\left(\left\{\mathbf{e}_{i}-\mathbf{e}_{i+1}: 1 \leq i \leq n-1\right\} \cup\{\mathbf{0}\}\right)$. Then σ_{0} is a simplex of normalized volume 1 and $\operatorname{dim} \sigma_{0}=n-1$. Since $\omega \cdot \mathbf{0}=0$ and $\omega \cdot\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=i-j \leq-1$, it follows that conv $\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$is separated into conv $\left(\mathbf{A}_{n-1}^{+}\right)$ and σ_{0} by the hyperplane $\left\{\mathbf{x} \in \mathbb{R}^{n}: \underset{\sim}{\omega} \cdot \mathbf{x}=-1\right\}$. Hence the normalized volume of $\operatorname{conv}\left(\mathbf{A}_{n-1}^{+}\right)$is equal to that of $\operatorname{conv}\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$minus 1.

Second proof. Let $<$ be a lexicographic order with the largest variable x, where x is the variable corresponding to the origin. Then, for all $1 \leq i<j-1 \leq n-1$, the binomial $x f_{i, j}-f_{i, i+1} f_{i+1, j}$, whose initial monomial is $x f_{i, j}$, belongs to $I_{\tilde{\mathbf{A}}_{n-1}}$. Suppose that σ is a maximal face of $\Delta_{<}\left(I_{\widetilde{\mathbf{A}}_{n-1}^{+}}\right)$with the origin as a vertex. If $\mathbf{e}_{i}-\mathbf{e}_{j}$ is a vertex of σ for $1 \leq i<j-1 \leq n-1$, then $x \prod_{\mathbf{e}_{i}-\mathbf{e}_{j} \in \sigma \backslash\{0\}} f_{i, j} \in \operatorname{in}_{<}\left(I_{\tilde{\mathbf{A}}_{n-1}^{+}}\right)$. This contradicts the assumption that $\sigma \in \Delta_{<}\left(I_{\tilde{\mathbf{A}}_{n-1}^{+}}\right)$. Thus $\mathbf{e}_{i}-\mathbf{e}_{j}$ is not a vertex of σ if $1 \leq i<j-1 \leq n-1$. Hence the vertex set of σ is $\left\{\mathbf{e}_{i}-\mathbf{e}_{i+1}: 1 \leq i \leq n-1\right\} \cup\{\mathbf{0}\}$. Hence $\operatorname{conv}\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$is separated into conv $\left(\mathbf{A}_{n-1}^{+}\right)$and σ_{0}. Since the normalized volume of σ_{0} is equal to 1 , the normalized volume of $\operatorname{conv}\left(\mathbf{A}_{n-1}^{+}\right)$is equal to that of $\operatorname{conv}\left(\widetilde{\mathbf{A}}_{n-1}^{+}\right)$ minus 1.

Since Δ is a unimodular triangulation, we have the following.

Corollary 3.4. The number of graphs belonging to \mathcal{M} is equal to $C_{n-1}-1$.
We set $\mathcal{T}^{*}=\mathcal{T} \backslash\{\{(1,2),(1,3), \ldots,(1, n)\}\}$. Since the cardinality of \mathcal{M} is equal to that of \mathcal{T}^{*}, it seems of interest to find an explicit bijection between \mathcal{M} and \mathcal{T}^{*}.

Theorem 3.5. The map $\varphi: \mathcal{M} \longrightarrow \mathcal{T}^{*}$ defined as follows is bijective: for each element $G_{\sigma}=A \cup B \cup C \in \mathcal{M}$, where

$$
\begin{aligned}
& A=\{(1,2),(2,3), \ldots,(q-1, q),(q, q+1),(q, j),(q+1, j)\}, \\
& B=\left\{\left(q, i_{1}\right), \ldots,\left(q, i_{r}\right)\right\}
\end{aligned}
$$

with $q+1<i_{1}<\cdots<i_{r}<j$, we define $\varphi\left(G_{\sigma}\right)=\widetilde{A} \cup \widetilde{B} \cup C$, where

$$
\begin{aligned}
\widetilde{A} & =\{(1,2),(1,3), \ldots,(1, q),(1, j),(q+1, j)\} \\
\widetilde{B} & =\left\{\left(1, i_{1}\right), \ldots,\left(1, i_{r}\right)\right\} .
\end{aligned}
$$

Proof. We take any $G_{\sigma}=A \cup B \cup C \in \mathcal{M}$. Since no subgraph $\{(x, w),(y, z)\}$ with $x<y<z<w$ appears in G_{σ} and no subgraph $\{(x, y),(y, z)\}$ with $x<y<$ z appears in C, it follows that $\varphi\left(G_{\sigma}\right)$ is an anti-standard tree by the definition of φ. Moreover, since the arrow $(1, q+1)$ does not appear in the graph $\varphi\left(G_{\sigma}\right)$, we have $\varphi\left(G_{\sigma}\right) \neq\{(1,2),(1,3), \ldots,(1, n)\}$. Hence we have $\varphi\left(G_{\sigma}\right) \in \mathcal{T}^{*}$.

We now show that φ is injective, which implies that φ is bijective since $|\mathcal{M}|=$ $\left|\mathcal{T}^{*}\right|=C_{n-1}-1$. Suppose that $\varphi\left(G_{\sigma}\right)=\varphi\left(G_{\sigma^{\prime}}\right)$ for $G_{\sigma}, G_{\sigma^{\prime}} \in \mathcal{M}$. We can express $G_{\sigma}, G_{\sigma^{\prime}}$ as

$$
\begin{aligned}
& G_{\sigma}=A \cup B \cup C, \\
& G_{\sigma^{\prime}}=A^{\prime} \cup B^{\prime} \cup C^{\prime},
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\{(1,2),(2,3), \ldots,(q-1, q),(q, q+1),(q, j),(q+1, j)\}, \\
& B=\left\{\left(q, i_{1}\right), \ldots,\left(q, i_{r}\right)\right\}, \\
& A^{\prime}=\left\{(1,2),(2,3), \ldots,\left(q^{\prime}-1, q^{\prime}\right),\left(q^{\prime}, q^{\prime}+1\right),\left(q^{\prime}, j^{\prime}\right),\left(q^{\prime}+1, j^{\prime}\right)\right\}, \\
& B^{\prime}=\left\{\left(q^{\prime}, i_{1}^{\prime}\right), \ldots,\left(q^{\prime}, i_{r^{\prime}}^{\prime}\right)\right\}
\end{aligned}
$$

with $q+1<i_{1}<\cdots<i_{r}<j$ and $q^{\prime}+1<i_{1}^{\prime}<\cdots<i_{r^{\prime}}^{\prime}<j^{\prime}$. Comparing the arrows in $\varphi\left(G_{\sigma}\right)$ of the form $(1, k)$ with the arrows in $\varphi\left(G_{\sigma^{\prime}}\right)$ of the form $\left(1, k^{\prime}\right)$, it follows from $\varphi\left(G_{\sigma}\right)=\varphi\left(G_{\sigma^{\prime}}\right)$ that $q=q^{\prime}, j=j^{\prime}, r=r^{\prime}$ and $i_{m}=i_{m}^{\prime}$ for $1 \leq m \leq r$. Hence we have $A \cup B=A^{\prime} \cup B^{\prime}$. Moreover, since C and C^{\prime} are invariant under the map φ, $\varphi\left(G_{\sigma}\right)=\varphi\left(G_{\sigma^{\prime}}\right)$ implies that $C=C^{\prime}$. Thus $G_{\sigma}=G_{\sigma^{\prime}}$. Hence φ is injective.

Example 3.6. Let $n=4$. Then $G=\left\{G_{\sigma_{1}}, G_{\sigma_{2}}, G_{\sigma_{3}}, G_{\sigma_{4}}\right\}$ and $\mathcal{T}=\left\{T_{1}, T_{2}, T_{3}, T_{4}\right.$, $\left.T_{5}\right\}$ are described in Example 2.4 and Example 3.1. We have $\varphi\left(G_{\sigma_{i}}\right)=T_{i}$ for $i=$ $1,2,3,4$.

References

[1] J. Backelin and R. Fröberg: Koszul algebras, Veronese subrings, and rings with linear resolutions, Rev. Roumaine Math. Pures Appl. 30 (1985), 85-97.
[2] W. Bruns, J. Herzog and U. Vetter: Syzygies and walks; in Commutative algebra (eds. A. Simis, N.V. Trung and G. Valla), World Scientific, 1994, 36-57.
[3] D. Cox, J. Little and D. O'Shea: Ideals, Varieties and Algorithms, Second edition, SpringerVerlag, New York, 1997.
[4] W. Fong: Triangulations and combinatorial properties of convex polytopes, Dissertation, M.I.T., June, 2000.
[5] I.M. Gel'fand, M.I. Graev and A. Postnikov: Combinatorics of hypergeometric functions associated with positive roots; in The Arnold-Gel'fand mathematics seminars (eds. V.I. Arnold, I.M. Gel'fand, M. Smirnov and V.S. Retakh), Birkhäuser, Boston, 1997, 205-221.
[6] J.M. Harris, J.L. Hirst and M.J. Mossinghoff: Combinatorics and Graph Theory, SpringerVerlag, New York, 2000.
[7] J.E. Humphreys: Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York-Berlin, 1972.
[8] H. Ohsugi and T. Hibi: Unimodular triangulations and coverings of configurations arising from root systems, J. Algebraic Combin. 14 (2001), 199-219.
[9] H. Ohsugi and T. Hibi: Quadratic initial ideals of root systems, Proc. Amer. Math. Soc. 130 (2002), 1913-1922.
[10] R.P. Stanley: Enumerative Combinatorics, II, Cambridge University Press, Cambridge, 1999.
[11] B. Sturmfels: Gröbner Bases and Convex Polytopes, Amer. Math. Soc. Providence, RI, 1995.

Department of Mathematics
Graduate School of Science Osaka University
Toyonaka, Osaka 560-0043, Japan
e-mail: sm5013kt@ecs.cmc.osaka-u.ac.jp
Current address:
Department of General Education
Kobe City College of Technology
Kobe, 651-2194, Japan
e-mail: tomonori@kobe-kosen.ac.jp

