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Abstract
Singular means here that the parabolic equation isnot in normal form neither

can it be reduced to such a form. For this class of problems, following the operator
approach used in [1], we prove global in time existence and uniqueness theorems
related to (spatial) -spaces. Various improvements to [2],[3] are given.

1. Introduction

In this paper we will consider the following boundary value problem

[ ( ) ( )] + ( ) ( ) = ( ) ( ) [0 ](1.1)

( ) = 0 ( ) [0 ](1.2)

( ) ( ) ( ) 0( ) for a.e. as 0+(1.3)

where R is a bounded domain with a boundary of class2, while ( ) is
the following second-order uniformly elliptic operator indivergence form

(1.4) ( ) =
=1

[ ( ) ] + 0( )

Moreover, 0 ( ) is a non-negative function which need not to bebounded
away from 0. Consequently, our parabolic equation is, in general, singular.

Particular cases of (1.1) are discussed in the monograph [3], pp.74–80. See also
[2]. Note that in [3], p.80, the restriction (2 + ) should be made.

Using the theoretical results in [3] and the fundamental approach in [4] we can
develop an -theory, (1 + ), also in the present degenerate case . The key-
stone in order to apply the results in [1] and [3], Theorem 3.28, p.69, to (1.1)–(1.4)
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We note that in this case the initial condition (1.3) should be more correctly meant as the fol-
lowing -limit: ( ) ( ) ( ) 0( ) ( ) 0 as 0+.
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consists in showing an operator estimate of the form

(1.5) ( + ) 1
L( ) (1 + )1

where = ( ), 0 1, + 1,

(1.6) = C : Re (1 + Im ) ( 0)

and

D( ) = D( ) = 2 ( ) 1
0 ( ) ( ) = ( ) ( ) D( )(1.7)

D( ) = ( ) ( ) = ( ) ( )(1.8)

We in fact show that (1.5) holds with =1, = 1 , (1 + ).
Moreover, when is -regular, i.e.

(1.9) 1( ) ( ) 1 ( ) for some (0 1]

1 being a positive constant, we can improve the index in estimate (1.5) from =
1 to

(1.10) =
(2 ) 1 if (1 2) (2 1]
2[ (2 )] 1 if [2 + ) (0 1]

The result proved in this paper will be applied, in a subsequent paper, to identify the
unknownkernel in the integro-differential singular equation of parabolic type

[ ( ) ( )] + ( ) ( ) =
0

( ) ( ) ( ) d + ( )

( ) [0 ](1.11)

( ) being a linear second-order differential operator.
We stress that the present paper was originated by a requirement of additional

smoothness of solution of (1.11) needed to recover the unknown kernel . This oc-
currence is in accordance with the well-known fact that inverse problems usually force
deeper, and sometimes, unexpected insights indirect problems.

2. Solving the spectral problem ( M + L)u = f

The basic aim of this section consists in showing that estimate (1.5) holds when
the linear operators and are defined by (1.7) and (1.8), respectively. To this aim
we assume that the coefficients and0 satisfy the properties

1( ) 0 ( ) = = 1(2.1)
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0
2

=1

( ) 1
2 R 0( )(2.2)

0, 1 and being three positive constants.
A remarkable result by Okazawa [4, p.702] provides, for any D( ),

Re(( 0) 2)

0
2 2 d 0 if [2 )

0( 1) ( 2 + )( 2) 2 2d 0 if (1 2)

(2.3)

Im( 2)
2

2 1
Re(( 0) 2)(2.4)

where the brackets denote

( ) = ( ) ( ) d ( ) ( )
1

+
1

= 1

2 is assumed to vanish whenever does, and 0 is arbitrary.

REMARK 2.1. It is important to observe that bound (2.4) holds even inthe degen-
erate elliptic case (cf. [4, p. 702] and the following Lemma 3.3).

From (2.4) we immediately deduce the estimate

Im( 2) +
2

2 1
0( ) ( ) d

2

2 1
Re( 2)(2.5)

Consider now the spectral problem

(2.6) D( ) + = ( )

Taking the real and imaginary parts of the scalar product of both sides in (2.6) with
2, we get

Re d + Re( 2) = Re 2 d(2.7)

Im d + Im( 2) = Im 2 d(2.8)
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From (2.8) we deduce the inequalities

(2.9) Im d Im( 2) + Im 2 d

Multiply then both sides in (2.9) by a positive constant and add the obtained in-
equality to equation (2.7). From (2.5) we get

(Re + Im ) d + 1
2

2 1
Re( 2)

Re 2 d + Im 2 d (1 + ) 1(2.10)

Choose now = 1( ) so small as to satisfy

(2.11) 1( ) =: 1 1( )
2

2 1
0 (1 + )

Observe that

Re( 2) = Re(( 0) 2)

+
1

2
Re( 0

2) +
1

2
Re( 0

2)

Re(( 0) 2) +
2

+
2

d(2.12)

since ( ) implies

( ) 0( )

2
0( )

2

In view of (2.11), (2.12) and (2.3), we obtain from (2.10) that

Re + 1( ) Im + 1( )

2
d

+ 1( )

2
+ 1( ) Re(( 0) 2) [ 1( ) + 1] 1(2.13)

Introduce now the sector

1 = C : Re + 1( )

2
Im + 1( )

4
0

Then, for 1,

Re(( 0) 2) 1( ) + 1

1( )
1(2.14)
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2( 1( ) + 1)

1( )
(2.15)

Consequently,

Re + 1( ) Im + 1( )

2
d 1( )

We now need a simple proposition. For the proof see Section 6.

Proposition 2.1. Let 0 and 0 be two positive constants, and let be
a sectorial domain given by

= C : Re +
2

Im +
2

0

Then it holds that

+ 1
2

+
2

+ 1 (Re + Im + )

Since 1 =
1( ) 1( )(2 ) 1 , this proposition then yields

+ 1 d 2( ) 1
3( ) 1(2.16)

To show that ( + )1 is a bounded operator on ( ) for 1, it now
suffices to verify thatR( + ) = ( ). But this is verified by the usual techniques
without difficulty. In fact, for each 1, we already know thatR( + + ) =

( ) provided 0 is a sufficiently large number. Let 0 1 be a parameter,
and consider the family of closed linear operators ( ) = + + , 0 1.
Then the desired result is obtained by the following proposition the proof of which
will be given in the final section.

Proposition 2.2. Let ( ), 0 1, be a family of closed linear operators
acting on a Banach space with constant domainD( ( )) D. Assume that the
family satisfies the conditions

( ) D(2.17)

( ) ( ) D(2.18)

with some constants 0 and 0 independent of [0 1]. Then, R( (1)) =
impliesR( ( )) = for every [0 1).

We can now summarize the results proved in this section in Theorem 2.1.
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Theorem 2.1. Let and be the linear operators defined by(1.7) and (1.8),
the coefficients = 1 , 0 enjoying properties(2.1) and (2.2) and being
a non-negative function in ( ). Then the spectral equation + = , with

( ), admits, for any 1 = C : Re + ( 1( ) 2) Im + 1( ) (4 )
0 and (1 + ), a unique solution 2 ( ) 1

0 ( ) satisfying the estimates

4( ) 5( ) 1
1

6( )(1 + 1 ) 1

3. The case whenm is -regular and p [2 + )

We will show that when the multiplier is more regular, i.e. itsatisfies (1.9), our
can be chosen larger than 1 . We recall that all the previous estimates (2.6)–(2.16)

hold for any (1 + ).
First of all we need the following lemma concerning the computation of the gra-

dient of the function 2 when [2 + ). For this purpose we need some lem-
mata.

Lemma 3.1. Let 1
0 ( ) with [2 + ). Then the function 2 be-

longs to 1
0 ( ) and the following formulae hold

2 = 2 + ( 2) ( ) Re( ( ) )

a.e. in = 1(3.1)

where

( )( ) =
( ) ( ) ( 4) 2 if ( ) = 0

0 if ( ) = 0
(3.2)

Proof. Let be any function in 0 ( ). Then the following equalities hold:

2 = lim
0+

( 2 + )( 2) 2

= lim
0+

( 2 + )( 2) 2 +
2

2
( 2 + )( 4) 2( + )

= lim
0+

( 2 + )( 2) 2 + ( 2) ( 2 + )( 4) 2 Re( )

= lim
0+

( 2 + )( 2) 2 + ( 2) ( 2 + )( 4) 4 Re( ( 2 + )( 4) 4 )

= 2 + ( 2) ( ) Re( ( ) )

(3.3)

We have used here the relation lim0+ ( )( ( ) 2 + )( 4) 4 = ( )( ), which takes
advantage of the assumption [2 + ).
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REMARK 3.1. From definition (3.2) we easily deduce the identity

(3.4) ( )( ) = ( ) ( 2) 2

We can now prove the following Lemma 3.2.

Lemma 3.2. Let ( ) =1 be a matrix of functions in 1( ; R) such that

= = 1(3.5)

0
2 ( )

=1

( ) 1
2 ( ) R(3.6)

where ( ) is a non-negative function and0, 1 are two positive constants. Then
for any [2 + ), the linear operator = =1 [ ( ) ] with D( ) =
D( ) (cf. (1.7)) satisfies the relations

0
2 2 d +

=1

[Re( ( ) )]2 d

Re( 2) 1
2 2 d +

=1

[Re( ( ) )]2 d(3.7)

Im( 2) = ( 2)
=1

[Re( ( ) )][Im( ( ) )] d(3.8)

Proof. From Lemma 3.1 and an integration by parts we easily deduce the iden-
tity

( 2) =
=1

( 2) d

=
=1

2 d

+ ( 2)
=1

( ) Re( ( ) ) d(3.9)

Relations (3.7) and (3.8) follow immediately from (3.9) taking the real and the imagi-
nary parts.

Lemma 3.3. Under the assumptions in the statement ofLemma 3.2operator
satisfies inequalities(2.3) and (2.4) with in the place of .
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Proof. This lemma has essentially been proved in [4], although a slight modifica-
tion is needed in its proof. For any 0 define = + , = 1 and
set = . Since the matrix ( )=1 is uniformly positive definite, from
(2.3) and (2.4), with D( 0), we obtain the inequalities

0 Re( 2) = Re( 2) + Re( 2)(3.10)

Im( 2) = Im( 2) + Im( 2)
2

2 1
[Re( 2) + Re( 2)](3.11)

Taking the limit as 0+ in (3.10) and (3.11), we easily deduce that satisfies
(2.3) and (2.4).

We shall use also the following identity

( 1 2) = ( 1 2)

= ( 0
2) + ( 1) 2

=1

2 D( )(3.12)

where

0 =
=1

[ ( ) 1 ( ) ] + ( ) 1
0( )

Let now be a solution to equation (2.6). Taking the scalar product of both sides
in (2.6) with 1 2 and using (3.12), we easily get the equalities

( 1 2) = ( + 1 2)

= + ( 0
2) + ( 1) 2

=1

2(3.13)

Taking the real and imaginary parts in (3.13) and using (2.4)with 0 replaced by
= 0

1
0, we easily deduce the inequalities

Re + 1 d + Re(( 0
1

0) 2)

( 1 2) + ( 1) 2

=1

2(3.14)

Im Im(( 0
1

0) 2)

+ ( 1 2) + ( 1) 2

=1

2
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2

2 1
Re(( 0

1
0) 2) + ( 1 2)

+ ( 1) 2

=1

2(3.15)

Multiply now by 1( ) (cf. (2.11)) the first and last sides in (3.15) and add to thefirst
and last sides in (3.14). We get the estimate

[Re + 1( ) Im + 1]

+ 1 1( )
2

2 1
Re(( 0

1
0) 2)

[1 + 1( )] ( 1 2) + ( 1) 2

=1

2

(3.16)

where we have made use of the elementary inequality

( ) ( ) 1

We now estimate the last term in (3.16) with the aid of (1.9). Using twice Hölder’s
inequality, we get

2

=1

2 2 1

=1

d

2 1

=1

1 2

=1

1 2

d

7
2+ 1 d = 7

2 2 ( 2)(2 ) 2 1+ 2 d

7
(1 ) d

1 2
( 2)(2 ) 2 2d

1 2

7
2 (1 ) 2 ( 2)(2 ) 2 2 2d

1 2

(3.17)

On account of (2.3), (2.14) and (2.15), we easily observe theestimate

(3.18) 2 2d 8( )
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From (2.15), (3.17) and (3.18) we finally deduce the estimates

(3.19) 2

=1

2
9( ) (2 ) 2 2

Moreover, we have

( 1 2) 1(3.20)

Finally, from (3.16), (3.19), (3.20) and Lemma 3.2 with =0
1

0 (which
makes use of the assumption [2 + )) we deduce the inequality

[Re + 1( ) Im + 1]

+ 1 1( )
2

2 1
Re(( 0

1
0) 2)

10( )[ 1 + (2 ) 2 2] 1(3.21)

We now introduce the sector

2 = C : Re + 1( )

2
Im +

2
0

Since 1( ) (0 1), (cf. (2.11)), we immediately deduce the inclusion2 1 (see
the definition of 2).

Then, recalling that Re((0 1
0) 2) is non-negative (cf. Lemma 3.2)

and applying Proposition 2.1, we obtain

( + 1) 1 d + Re(( 0
1

0) 2)

11( )[ 1 + (2 ) 2 2] 2(3.22)

Consequently, since 12( ) (cf. (2.15)), (3.15) and (3.22) imply

( + 1) (2 ) 2

13( )[ 1 2 + (2 ) 2] 2(3.23)

By Proposition 2.2, it is verified that + is surjective on ( ). Hence, esti-
mate (1.5) holds with = 1 and = 2[ (2 )]1.

We can summarize the results in this section in Theorem 3.1.

Theorem 3.1. Let and be the linear operators defined by(1.7) and (1.8),
the coefficients = 1 , 0 enjoying properties(2.1) and (2.2) and being
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a non-negative function satisfying(1.9). Then the spectral equation + = , with
( ), admits, for any 2 = C : Re + ( 1( ) 2) Im + ( 2 )

0 and [2 + ), a unique solution 2 ( ) 1
0 ( ) satisfying the estimates

14( ) 15( ) 2 [ (2 )]
2

16( )(1 + [ (2 ) 2] [ (2 )] ) 2

EXAMPLE 3.1. Let be a bounded domain and let0 be a fixed point in .
Define then = max 0 and choose

( ) = [( 0 ( 0 1)] (1 + )

An elementary computation shows that

( ) = [ 0 ( 0 )] 1 2 0 ( )( 1)

Consequently, function satisfies condition (1.9).

We notice that forany open interval R we have = length( ).

4. The case whenp (1 2)

In this section we are going to considering the case (1 2). From (2.4) we
immediately deduce that the estimate

Im( 2) + Im( 2) + 0( ) ( ) d

2

2 1
Re( 2) D( )(4.1)

holds true for any (1 + ).
Consider again the spectral problem

(4.2) D( ) + = ( )

Multiplying both sides in (4.2) by 2 and integrating over , we get

(4.3) 1 + ( 2) = ( 2)

Taking the real and imaginary parts, from (4.3) we deduce

Re 1 + Re( 0
2) + ( 0

2) = Re( 2)(4.4)

Im 1 + Im( 0
2) = Im( 2)(4.5)
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where we have set

(4.6) 0 = 0

Then from Okazawa [4, p.703] we get

(4.7) ( 0
2) = lim

0+
( )

where 0 and

(4.8) ( ) = ( ) 2 +
( 2) 2

( )
=1

( ) ( ) d

As mentioned at the beginning of Section 2, we have

Re( 0
2) 0 ( ) 2 ( ) 2 d if [2 + )(4.9)

Re( 0
2) 0( 1) ( ) 2 +

( 2) 2
( ) 2 d if (1 2)(4.10)

From (4.1) and (4.5) we deduce the inequalities

Im 1 Im( 2) + 1

2

2 1
Re( 2) + 1(4.11)

Multiply then both sides in (4.11) by a positive constant andadd the obtained in-
equality to equation (4.4) to get (cf. (2.2))

(Re + Im ) 1 + 1
2

2 1
Re( 0

2) +
2

+
2

(Re + Im ) 1 + 1
2

2 1
Re( 0

2) + ( 0
2)

Re( 2) + 1 (1 + ) 1

(4.12)

Choose now = ( ) so small as to satisfy

(4.13) 1( ) =: 1 ( )
2

2 1
0 (1 + )

On the other hand, since ( ), 1 1 . Then (4.12)
and (4.13) imply

2
+ Re + Im 1 + 1( ) Re( 0

2) +
2
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[1 + ( )] 1(4.14)

In other words, there exist two positive constants18 and 19 such that

2
+ Re + Im 1 + 18 Re( 0

2) +
2

19
1(4.15)

the sector being defined by

= C : Re + Im +
2

0 0

Notice that (4.7), (4.8), (4.10), (4.15) yield, in particular, the basic bounds

(4.16)
2

19 Re( 0
2) 20

and

( 1) 0 lim
0+

( ) 2 +
( 2) 2

( ) 2 d

lim
0+

Re ( ) 20
1(4.17)

From (4.3) we deduce the estimates

1 ( 2) + 1

1 +
2

2 1
Re( 2) + 1

21
1

22(4.18)

Consequently, (4.18) immediately yields

(4.19) 1
23

This, in turn, implies that (1.5) holds with = 1 and = 1 and provides a different
proof to (1.5).

Now we focus our attention to the case when 1( ) satisfies inequality (1.9)
with

(4.20) (2 1]

Multiplying both sides in (4.2) by ( ) 1 ( ) ( ) 2 and integrating over , we
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easily get

lim
0+

( ) 1 ( )( ( ) 2 + )( 2) 2

=1

[ ( ) ( )] d

+ 0( ) ( ) 1 ( ) d = ( ) ( ) 1 ( ) ( ) 2 d(4.21)

An integration by parts in the integral appearing in the limit, which takes into ac-
count (4.20) and (4.21), easily yields

( ) 1 ( )( ( ) 2 + )( 2) 2

=1

[ ( ) ( )] d

= ( ( ) 2 + )( 2) 2 ( ) 1

=1

( ) ( ) ( ) d

+ ( 1) ( )( ( ) 2 + )( 2) 2

=1

( ) 2 ( ) ( ) ( ) d

+ ( 2) ( ) 1( ( ) 2 + )( 4) 2

=1

( ) Re ( ) ( ) ( ) ( ) d

=: 1( ) + ( 1) 2( ) (2 ) 3( )

(4.22)

We have made use here of the following Proposition 4.1 whose proof is postponed to
Section 6.

Proposition 4.1. Let satisfy property(1.9). Then for any (1 1), the
function ( ) belongs to 1( ) and [ ( ) ]( ) = 1( ) for any , where

(4.23) 1( ) =
0 ( )

( ) 1 ( ) ( )

and ( ) denotes the zero-set of . Moreover,

[ ( ) ]( ) ( ) 1+

Since the matrix ( ( )) =1 is real-valued and positive definite, from (4.22) we
immediately deduce that

1( ) and Re 3( ) are positive for any R+(4.24)
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Then we observe that2( ) has a limit as 0+ and

(4.25) lim
0+

2( ) = ( ) ( ) 2

=1

( ) 2 ( ) ( ) ( ) d

Note that the integral in the right-hand side is well-definedon the whole of 1 ( )
since 2 ( ), 2 ( ) and ( ).

Further, (4.25) implies that there exists also lim0+ [ 1( ) (2 ) 3( )].
From (4.24) we deduce that there exist the limits

lim
0+

Im 3( ) and lim
0+

[ 1( ) (2 ) Re 3( )]

We can now prove the following Lemma 4.1.

Lemma 4.1. The following estimates hold for any R+, (1 2) and
(0 2( 1)(2 ) 1):

1( ) (2 ) Re 3( ) (2 ) Im 3( ) 0(4.26)

1( ) + ( 1) Re 2( ) (2 ) Re 3( )

( 1) Im 2( ) (2 ) Im 3( ) ( 1)(1 + 2)1 2
2( )(4.27)

lim
0+

1( ) + ( 1) Re 2( ) (2 ) Re 3( )

lim
0+

( 1) Im 2( ) (2 ) Im 3( )

24
2 2+ 2 2(4.28)

24 being a suitable positive constant.

Proof. Since the matrix ( ( )) =1 is real-valued and positive definite, we
immediately deduce the equality

=1

( ) =
=1

( )[Re( ) Re( ) + Im( ) Im( )] C

Consider now the formulae

1( ) = ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) ( ) ( ) ( ) ( ) d

+ ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) ( ) ( ) d

= ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) Re ( ) ( ) Re ( ) ( )
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+
=1

( ) Im ( ) ( ) Im ( ) ( ) d

+ ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) ( ) ( ) d R+(4.29)

1( ) (2 ) Re 3( ) = ( ( ) 2 + )( 4) 2 ( ) 1

( 1)
=1

( ) Re ( ) ( ) Re ( ) ( )

+
=1

( ) Im ( ) ( ) Im ( ) ( ) d

+ ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) ( ) ( ) d R+(4.30)

Im 3( )

= ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) Re ( ) ( ) Im ( ) ( ) d

1

2
( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) Re ( ) ( ) Re ( ) ( )

+ Im ( ) ( ) Im ( ) ( ) d R+(4.31)

We have here used the Cauchy–Schwarz inequality and the geometric-arithmetic mean,
i.e.

=1

( )
=1

( )

1 2

=1

( )

1 2

1

2
=1

( ) +
=1

( ) =
1

2
=1

( ) + R

From (4.24) and (4.31) we deduce the following inequality, where we take advantage
of the membership (0 2( 1)(2 )1):

1( ) (2 ) Re 3( ) (2 ) Im 3( ) = ( ( ) 2 + )( 4) 2 ( ) 1

1
1

2
(2 )

=1

( ) Re ( ) ( ) Re ( ) ( )
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+ 1
1

2
(2 )

=1

( ) Im ( ) ( ) Im ( ) ( ) d

+ ( ( ) 2 + )( 4) 2 ( ) 1

=1

( ) ( ) ( ) d 0 R+(4.32)

We have thus proved (4.26).
Then we note that (4.27) is a consequence of (4.26):

1( ) + ( 1) Re 2( ) (2 ) Re 3( ) ( 1) Im 2( ) (2 ) Im 3( )

1( ) (2 ) Re 3( ) (2 ) Im 3( ) + ( 1)[Re 2( ) Im 2( ) ]

( 1)(1 + 2)1 2
2( ) R+

(4.33)

To conclude the proof of the lemma we take into account the relations

lim
0+

1( ) + ( 1) Re 2( ) (2 ) Re 3( )

lim
0+

( 1) Im 2( ) (2 ) Im 3( )

lim
0+

Re 1( ) + ( 1) Re 2( ) (2 ) Re 3( )

( 1) Im 2( ) (2 ) Im 3( )

( 1)(1 + 2)1 2 lim
0+

2( ) R+(4.34)

Next, consider the following chain of inequalities, which holds for any R+:

lim
0+

2( )

lim sup
0+

( ( ) 2 + )( 1) 2

=1

( ) 2 ( ) ( ) ( ) d

lim sup
0+

( ( ) 2 + ) 4

( ( ) 2 + )( 2) 4

=1

( ) 2 ( ) ( ) ( ) d

1 lim sup
0+

( )2( 2+ )( ( ) 2 + ) 2 d
1 2

lim sup
0+ =1

( ) ( ) 2( ( ) 2 + )( 2) 2 d

1 2

(cf. (4.16), (4.17))
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25 lim
0+

( )2( 2+ )( ( ) 2 + ) 2 d
1 2

( ( ) 2 + )( 2) 2 ( ) 2 d
1 2

26 ( )2( 2+ ) ( ) d
1 2

2

27
2 2+ 2 2(4.35)

To derive the last inequality we have applied Hölder’s inequality with index =
[2( 2 + )] 1 to the integral

[ ( ) ( ) ]2( 2+ ) ( ) +4 2 d

From (4.34) and (4.35) we immediately conclude (4.28).

Taking now the real part and the modulus of the imaginary partin (4.21) and us-
ing (4.22), we easily derive the relations

Re + lim
0+

[ 1( ) + ( 1) Re 2( ) (2 ) Re 3( )]

+ 0( ) ( ) 1 ( ) d = Re ( ) 1 ( ) ( ) ( ) 2 d(4.36)

Im lim
0+

[( 1) Im 2( ) (2 ) Im 3( )]

+ Im ( ) 1 ( ) ( ) ( ) 2 d C(4.37)

Add now member by member (4.36) and (4.37) multiplied by (0 2 1(2
) 1) and use (4.28) and (2.2). We easily deduce the following estimate for any
=: C : Re + Im 0 :

Re + Im +

lim
0+

[ 1( ) + ( 1) Re 2( ) (2 ) Re 3( )]

lim
0+

[( 1) Im 2( ) (2 ) Im 3( )]

+ Re ( ) ( ) 1 ( ) ( ) 2 d + Im ( ) ( ) 1 ( ) ( ) 2 d

lim
0+

[ 1( ) + ( 1) Re 2( ) (2 ) Re 3( )]

[( 1) Im 2( ) (2 ) Im 3( )]
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+ Re ( ) ( ) 1 ( ) ( ) 2 d + Im ( ) ( ) 1 ( ) ( ) 2 d

28
2 2+ 2 2+ (1 + 2)1 2 1

(4.38)

Take in the sector

(4.39) 3 = C : Re +
2

Im +
2

0

Then, since 19 (cf. (2.11), (2.12) and our definition of ) and 2
2 0 (cf. (4.20)), by Proposition 2.1 we immediately derive the inequality

(4.40) ( + 1) 2
24

2 + 1 if 3

Finally, 19 implies

(4.41) ( + 1) 2
30

2 if 3

We can now collect the result in this section in the followingTheorem 4.1.

Theorem 4.1. Let and be the linear operators defined by(1.7) and (1.8),
the coefficients = 1 , 0 enjoying properties(2.1) and (2.2) and being
a non-negative function satisfying(1.9). Then the spectral equation + = ,
with ( ), admits, for any 3 and (1 2), [2 1], a unique
solution 2 ( ) 1

0 ( ) satisfying the estimates

30 31( ) (2 ) 1

3

32(1 + (1 )(2 ) 1
) 3(4.42)

EXAMPLE 4.1. Let = 1, ( ) = (1 ) , (1 + ), = (0 1). Then

( ) = (1 2 ) ( )( 1) (0 1)

Hence (4.25) holds true for any (1 + ). If we have to deal with (01) with
(1 2), to satisfy (4.20) we are forced to assume ( 1)1.

5. Solving problem (1.1)–(1.3)

Taking the spectral Theorems 2.1, 3.1, 4.1 into account, from Theorem 3.26 in [3]
we can easily derive our existence and uniqueness result. For this purpose we need to
introduce the following interpolation space

(5.1) = ( ) : sup
1

( + ) 1
( ) +
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In particular, any = belongs to , whenever ( ) and 2 ( )
1
0 ( ). Notice that ( ; ( 1)) .

Theorem 5.1. Let (1 + ), let ( ) be a non-negative function and
let the coefficients = 1 , 0 enjoy properties(2.1) and (2.2). Then for
any

(5.2) 0
2 ( ) 1

0 ( ) ([0 ]; ( )) (1 1)

with = 1 and

(5.3) ( ) 0 + (0 ) = 0 0

problem (1.1)–(1.3) admits a unique solution

(5.4) + ([0 ]; ( )) + 1([0 ]; 2 ( ) 1
0 ( ))

Moreover, if is a non-negative function satisfying(1.9) and is defined by(1.10),
the same result holds under assumptions(5.1) and (5.2) on ( 0 ).

6. Proofs of the propositions

Proof of Proposition 2.1. Let and Re 0. Then it is clear that
Re Re + Im + . On the other hand, if and Re 0, then
Re = Re ( 2) Im + ( 2) Re + Im + . Therefore, Re

Re + Im + for any . In the meantime it is obvious that Im + 1
2 (1 )+(1 ) ( 2) Im +( 2) 2(1 +(1 ))(Re + Im + ) for any .
Hence we conclude that + 1 Re + Im + 1 2 + (2 ) + 1 (Re + Im +
) .

Proof of Proposition 2.2. We consider the set = [0 1];R( ( )) = and
shall prove that this set is an open and closed subset of the interval [0 1] under (2.17)
and (2.18). In fact, let ; then, it follows from (2.17) that ( )1 L( ) with

( ) 1 1. Moreover, for any [0 1], we have

( ) = [1 + ( ) ( ) ( ) 1] ( )

Since ( ) ( ) ( ) 1 1 , the operator 1+ ( ) ( ) ( )1 is a
linear isomorphism of provided 1 . This then shows that for any

such that 1 ; hence, is an open set. Consider now a sequence
and assume that as + . Let be any vector; then, there exists a
sequence D such that ( ) = . From (2.17) it follows that 1 .
Furthermore we observe that () ( ) ( ) 1 ;
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therefore, ( ) as + . In the meantime, ()( )
( ) + ( ) 0 as + . So, has a limit as

+ . Since ( ) is a closed operator, D and ( ) = ; hence, . That
is, is a closed set. As 1 = , we conclude that = [0 1].

Proof of Proposition 4.1. According to (1.9), we have the inclusion ( )
( ). Moreover, formula (4.23) is trivial if ( ). This therefore shows that we

have to deal with the case ( ) only.
First we will consider the one-dimensional case ( = 1). For this purpose assume

0 ( ). Our starting point is the following formula:

lim
0

( ) ( 0)

0
= lim

0

lim
0+

[ ( ) + ]

0

= lim
0

lim
0+ 0 0

[ ( ) + ] 1 ( ) d(6.1)

We next notice that lim 0+ [ ( ) + ] 1 ( ) = 1( ) for any and that

[ ( ) + ] 1 ( ) [ ( ) + ] 1 ( )

=
( )

( ) +

1

( ) 1+ ( ) 1+

By virtue of the dominated convergence theorem and by the bound 1( )
( ) 1+ for any , we deduce the following relations:

lim
0+

( ) ( 0)

0
= lim

0+

1

0 0

1( ) d

lim
0+

1

0 0

1( ) d lim
0+ 0 0

( ) 1+ d = 0(6.2)

Note here that ( ) 1+ is continuous in and 0 ( ). An analogous argument
holds for lim 0 ( ) ( 0) ( 0) also.

We have thus shown that there exists [ ( ) ](0) and coincides with 0 =

1( 0). Therefore the formula [ ( ) ]( ) = 1( ) holds for any . Since
(1 1), bound (1.9) and (4.23) immediately imply that1 ( ). Conse-

quently, ( ) ( ).
Finally, the multi-dimensional case is an immediate consequence of the case = 1.
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