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Abstract
Let be the coinvariant algebra of the symmetric group . The algebra has

a natural gradation. For a fixed (1 ), let ( ; ) (0 1) be the direct
sum of all the homogeneous components of whose degrees are congruent to
modulo . In this article, we will show that for each there exists a subgroup
of and a representation ( ; ) of such that each ( ; ) is induced by ( ; ).

1. Introduction

Throughout this article, we follow [5] for fundamental terminology on partitions,
Young tableaux and symmetric functions.

A partition of a positive integer is a weakly decreasing sequence = (1

2 ) of nonnegative integers with1 + 2+ + = . We also denote the parti-
tion by (1 12 2 ), where is the multiplicity of in for 1 . If is
a partition of , we simply write . TheYoung diagramof a partition is a set
of points

= ( ) Z2 1

in which we regard the coordinates increase from left to right, and from top to bottom.
Let [ ] denote the set of integers 1 2 . Astandard tableau of shape is
a bijection : [ ] with the condition that the assigned numbersstrictly increase
along both the rows and the columns in . We illustrate the Young diagram and
a standard tableau for = (3 2 2) 7 in the following:

= ,
1 3 4

= 2 5
6 7

We denote by STab( ) the set of all the standard tableaux of shape .
For a standard tableau of shape , define thedescent setDes( ) by

Des( ) := [ 1] + 1 is located in a lower row than in
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We call the sum of the elements of Des( ) themajor index of , and denote it by
maj( ). In the preceding example, Des( ) = 1 4 5 and maj( ) = 1 + 4 + 5= 10.

Let be the symmetric group of degree , and

= C[ 1 2 ]

denote the polynomial ring with variables overC. As customary, acts on from
the left as permutations of variables by setting

( )( 1 2 ) = ( (1) (2) ( )),

where and (1 2 ) . Let = 0 denote the graded
-stable ideal of generated by the elementary symmetric functions. Hence the quo-

tient algebra = is also a graded -module. We write its homogeneous de-
composition as

=
0

and call thecoinvariant algebraof It is well known that the coinvariant alge-
bra affords the left regular representation of .

Let us consider, for each integer = 0 1, the direct sum ( ; ) of ho-
mogeneous components of whose degrees are congruent to modulo , i.e.,

( ; ) =
mod

Since each homogeneous component is -invariant, these subspaces also afford
representations of , and the dimensions of these representations do not depend on ,
i.e.,

dim ( ; ) = ( 1)!

for all = 0 1.
In [4], W. Kraśkiewicz and J. Weyman consider these -modules, and prove that

each ( ; ) is induced from a corresponding irreducible representation of a cyclic
subgroup of (see also [2, Proposition 8.2] [6, Theorem 8.9]). Precisely, let
be the cyclic permutation (12 ), and the subgroup of generated by .
The cyclic subgroup of degree has inequivalent irreduciblerepresentations

( ) : C ,

where is the primitive root of unity, and the following equivalence of -modules
holds for each = 0 1:

( ; ) = ind ( ( ))
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REMARK. In fact, the number by which we take modulo is theCoxeter number
of , i.e., the order of the Coxeter elements of the Coxeter group of type 1. They
also obtain similar results for Coxeter groups of type and . Stembridge obtains
more general results [8]. He treats the Complex reflection groups and shows that
the coinvariant algebra of has the similar properties for the irreducible representa-
tion of the cyclic subgroup of generated by aSpringer’s regular element[7]. We
can easily see that the Coxeter elements are regular.

They also prove that the multiplicity of a irreducible representation of in
( 0) is described by the major index of standard tableaux. It is well known that
the irreducible representations of are in one to one correspondence with the parti-
tions of . For let denote the corresponding irreducible representation of .
They showed that the multiplicity [ : ] of in equals the numberof stan-
dard tableaux whose major indices are :

[ : ] = STab( ) maj( ) =

(see also [2, Theorem 8.6] [6, Theorem 8.8].) Combining these results, the multiplic-
ities of the irreducible representation in the induced representations ( ) =

( ; ) are easily obtained:

[ ( ; ) : ] = STab( ) maj( ) mod

It should be mentioned here that a more refined result is obtained by R. Adin,
F. Brenti and Y. Roichman [1] recently. For each subset [ 1], they construct
an -module satisfying

= ,

where the direct sum is taken over the subsets [ 1] such that = ,and
describe the multiplicities of irreducible constituents on as follows:

[ : ] = STab( ) Des( ) =

They also consider an analogue of the theorem of Kraśkiewicz and Weyman for
the Weyl groups of type , and obtain a result on the irreducible decompositions
of the coinvariant algebras of type finer than one already obtained by Stembridge
in [8].

The aim of the present article is to achieve a generalizationof these results in
the following sense. Fix an integer [ ] and consider subspaces of obtained by
gathering homogeneous components whose degrees are congruent modulo . Precisely,
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for each = 0 1 we will consider

( ; ) =
mod

We can see that the dimension of the space ( ; ) is independent of , i.e.,

dim ( ; ) =
!

for all = 0 1 (Proposition 4). In this article we will seek out asystematic
realization of each submodule ( ; ) as a -module induced from asubgroup of
that is determined by . First we settle a subgroup of for each [], then
construct a representation ( ; ) of for each = 0 1. When we write=

+ with 0 1, the subgroup turns out to be isomorphic to a direct
product of the cyclic group of order and the symmetric group of degree , i.e.,

=

The representation ( ; ) of is not necessarily irreducible incontrast to the case
= (Section 4). Finally, we verify that

( ; ) = ind ( ( ; ))

for each and by comparing the graded characters of and1
=0 ind ( ( ; )) as

polynomials in modulo 1 (Theorem 8).

2. Coinvariant algebra and its graded character

Let = 0 be the coinvariant algebra of and its homogeneous decom-
position. Let be an indeterminate overC. Define the graded character of by

( ) =
0

where is the character of the representation of . We denote by( ) and
the value of ( ) and at elements of cycle-type , respectively.Pre-

cisely, ( ) is a polynomial in whose coefficient in is . This polynomial
( ) is also known as aGreen polynomial (1 )( ) of type [3] [5, III.7].
The graded character of has a well-known product formula ([3, Appendix]. see

also [2, Proposition 8.1]), that plays an essential role in the present article.

Proposition 1. For any partition = (1 12 2 ) of , we have

( ) =
(1 )(1 2) (1 )

(1 ) 1(1 2) 2 (1 )
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From the Proposition above, we can prove the following auxiliary result.

Proposition 2. Fix a integer [ ] . Let be a divisor of , = + (0
1), and a primitive -th root of unity. If satisfies

( ) = 0

then = (1 1 ), where 1 + 2 2 + + = .

Proof. We apply Stembridge’s argument for the case = (see [2,Section 8]) to
our situation. By Proposition 1, we have

( ) =
(1 )(1 2) (1 )

(1 ) 1(1 2) 2 (1 ) =

,

for = (1 12 2 ) . Thus ( ) = 0 implies that all the vanishing factors in
the numerator are canceled by corresponding factors in the denominator. There are
vanishing factors: 1 , 1 2 , 1 in the numerator, and +2 + +
vanishing factors: (1 ) , (1 2 ) 2 , (1 ) in the denominator. Since

+ 2 2 + + 1 + 2 2 + + = (= + ),

we have

+ 2 2 + +

Therefore,

= + 2 + + + 2 2 + +

Hence, we have = . We also obtain = 0 for + 1 ( = ) since
= = . Thus, we have

1 + 2 2 + + =

Let [ ] be a fixed integer. For each = 0 1 1, we define

( ; ) :=
mod

,

i.e.,

=
1

=0

( ; )
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We prove that the dimensions of the spaces ( ; ) are independent of the choice
of . We first show the following lemma.

Lemma 3. Let be an indeterminate and ( ) = 0 C[ ] a polyno-
mial in . Let 2 be an integer and a primitive -th root of unity. Then the
following conditions are equivalent:
(1) ( ) = 0 for each = 1 1,
(2) The partial sums = mod ( = 0 1 1) of coefficients of the poly-
nomial ( ) are independent of the choice of .

Proof. If the condition (b) holds, then ( ) is divisible by

1 + + 2 + + 1 =
1

1

and hence we have (a).
We shall prove the converse. From (a) we have

( ) = 0 + 1 + 2( )2 + = 0 ( = 0 1 1)

By the definition of , it reduces to the linear equation systemin 0 1:

0 + 1 + 2
2 + + 1

1 = 0,

0 + 1
2 + 2( 2)2 + + 1( 2) 1 = 0,

...

0 + 1
1 + 2( 1)2 + + 1( 1) 1 = 0

Since the rank of the coefficient matrix of the equation system is 1, it has an
one dimensional solution space. It is clear that (0 1 1) = (1 1 1) satis-
fies the equation system, hence we have0 = 1 = = 1.

By using the above lemma, we easily reach our aim.

Proposition 4. Let [ ] be a fixed integer. Then the dimension of( ; ) is
independent of the choice of= 0 1 1, i.e., we have

dim ( ; ) =
!

for all = 0 1 .

Proof. If = 1, then the assertion is trivial. Suppose that 2. Let be a prim-
itive -th root of unity. If we evaluate the formula in Proposition 1 at the identity ele-
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ment , then we have

[ ( )]( ) = (1 )( )

=
(1 )(1 2) (1 )

(1 )

= (1 + )(1 + + 2) (1 + + + 1)

It follows immediately that, for each = 0 1,

(1 )( ) =
0

(dim ) = = 0

By Lemma 3, we obtain that dim ( ; ) = mod dim is independent of 0
1 and is equal to ! .

If , the cycle type ( ) of is the partition ( ) = (112 2 ). For
a partition of , let be the conjugacy class in containing suchthat

( ) = . For any partition = (112 2 ), define

=
!

= 1 1
1!2 2

2! !

Let and be arbitrary class functions on . There is a natural scalar product
of and defined by

:=
1

!
( ) ( ).

(For a general finite group G, the scalar product is defined by := (1 )
( ) ( ), where ( ) denotes the complex conjugate of ( ). However, we

can use ( ) instead of( ) here since all characters of are rational.) Note that if
( ) is the class function defined by

( ) =
1 if ( ) =

0 otherwise

then = 1 ( ).
If = + (0 1), then we can embed in by

= ( ) = for all = + 1 ,

= ( ) = for all = 1
(2.1)

We see that, if and , the element has cycle-type ( ) =
( ) ( ).
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Let and be characters of the representations of and of , respec-
tively. Then defined by

( )( ) = ( ) ( ) ( )

is the character of the tensor product representation of . Wedefine

= ind ( )

which is a character of the induced representation ind ( ) of .
The following is a key proposition to the main result.

Proposition 5. Let be a positive integer, and choose an integer (1 ).
If = + (0 ), then we have

( ) ( ( ) ( )) mod 1

Proof. We show that

(2.2) ( ) ( ( ) ( )) mod 1

for each , where ( ( ) ( )) is the value of ( ( ) ( )) at elements of
cycle-type . By the Lagrange interpolation and Proposition2, in order to verify (2.2),
it is sufficient to show that

( ( ) ( )) =
( ) if = (1 1 )

0 otherwise.

for each = ( = 0 1), where is the multiplicative order of . Note that
divides . Using the property of the class function , we then have

1( ( ) ( ))

= ( ( ) ( ))

= ( ( ) ( )) res ( ) (by Frobenius reciprocity)

=
1

( )! !
( ) ( ) ( ) ( )

=
1

( )! !
1 2

( )( ) ( )( ) 1( ) 2( )

=
1 2

1
1

1
2 1( ) 2( ),
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where 1 and 2 are partitions such that1 2 = . Now let = + and
= + (0 ). Then = . By Proposition 2, 1 2 = 0 unless
1 = ( ) and 2 = (1 1 ). Hence, if is not of the form (11 )

for some (1 1 ) , we have ( ( ) ( )) = 0. On the other hand, we pick
1 = ( ) and 2 = (1 1 ) so that = (1 1 ), and finally we have

1( ( ) ( ))

= 1
( )

1
(1 1 ) ( )( ) (1 1 )( )

= 1
( )

1
(1 1 )

(1 ) (1 )

(1 )

(1 ) (1 )

(1 ) 1 (1 ) (1 ) =

= 1
( )

1
(1 1 )

1 (1 ) (1 )(1 +1) (1 + )

(1 ) 1 (1 ) (1 ) =

= 1 (1 )(1 2) (1 )

(1 ) 1 (1 ) (1 ) =

= 1 ( )

Translating Proposition 2 and Proposition 5 into the language of the Green poly-
nomials, we obtain the following formula.

Corollary 6. Let be positive integers, a divisor of , and a primitive
-th root of unity. If we write = + = + (0 1, 0 1),then

(1) (1 )( ) = 0 unless = (1 1 ) and 1 + 2 2 + + = .
(2) If = (1 1 ),

(1 )( ) (1 )
1 ( ) (1 )

2 ( ) mod 1

where 1 = ( ) and 2 = (1 1 ) .

3. l n case

In this section, we consider the case where divides , and showthat each
( ; ) is induced from a representation of a cyclic subgroup of .

Suppose that divides , and say = . Let be the cyclic group of order ,
and we embed into as follows:

= 1 2 ,

where 1 = (1 2 ) 2 = ( + 1 + 1 2 ) = (( 1) + 1 ).
The cyclic group has inequivalent irreducible representations (0) ( 1), i.e.,

( ) : C 1 2 ,
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where denotes a primitive -th root of unity. Let

( ) :=
1

1

=0

( 1 ) ( = 0 1 1)

We can easily check that each( ) is an idempotent by a direct calculation.
Let C[ ] be the group algebra of . Consider the representation of af-

forded by the left idealC[ ] ( ), which is equivalent to the induced representation
ind ( ( )). Its character [C[ ] ( )] is given by ( ), where is an operator de-
fined by

: C[ ] C[ ] 1

(see e.g., [2, Proposition 5.2] [6, Lemma 8.4]). Here we regard an element =
C[ ] as the function on that maps to the coefficient :

ind ( [ ( )]) = ( )

where [ ( )] stands for the -character of ( ).
We have shown in Proposition 4 that the dimension of the space

( ; ) =
mod

is constant with respect to = 0 1. This fact suggests that every ( ; )
( = 0 1) are induced from the same dimensional representations of a cer-
tain subgroup of . In fact, we can verify that, for each = 0 1, there exists
an irreducible representation of that yields ( ; ).

Proposition 7. Let be a positive integer and a divisor of . Write= .
For = 1 2 , let be the cyclic permutation(( 1) +1 ( 1) +2 ). Let

be the cyclic subgroup of generated by1 and ( ) = 0 1 1
the set of its inequivalent irreducible representations. Then, we have an isomorphism
of -modules

( ; ) = ind ( ( )) ( = 0 1 1)

Proof. We prove that

(3.1) ( )
1

=0

ind ( [ ( )]) mod 1

Using the Lagrange interpolation again, we only have to showthat the both sides
of (3.1) coincide when = ( = 0 1 1).
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Recall that

ind ( [ ( )]) = ( )

for each = 0 1. Substituting = in the right hand side of (3.1), we obtain

1

=0

( ) ind ( [ ( )]) =
1

=0

( ) = ( 1 )
1

=0

( )

= ( 1 )
1

=0

1
1

=0

( 1 )

= ( 1 )
1 1

=0

(1 + + 2 + + ( 1) )( 1 )

= ( 1 )

for each = 0 1 1. Since the cycle-type of (1 ) can be written as ( )
( = ), where is the multiplicative order of ( ) = 1, we have

1

=0

( ) ind ( [ ( )]) =
( ) if = ( )

0 otherwise

for a partition . Hence the congruence (3.1) immediately follows from Proposition 1
and Proposition 2.

4. Main result

Let be a positive integer, and choose an integer = 1 2 . Supposethat
= + , where 0 1. Let be the coinvariant algebra of , and =

0 its homogeneous decomposition. For each = 0 1 1, define

( ; ) :=
mod

Now, for each = 1 2 , we define a subgroup of by

= 1 2

= ,

where is the cyclic permutation (( 1) + 1 ( 1) + 2 ), and the symmetric
group of degree is identified as the subgroup ( ) = for all =
1 2 of .
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For each = 0 1 1, we construct a representation ( ; ) of as follows:

( ; ) :=
STab( )

( maj( )) ,

where maj( )= maj( ) mod , ( ) = 0 1 is the set of inequivalent
irreducible representation of , and ( ) is the irreducible representation of
corresponding to the partition of . Then it can be seen that the dimension of ( ; )
does not depend on and hence so does deg ind ( ( ; )). Actually, since deg =

STab( ) and STab( )2 = !, we have

deg ( ; ) =
STab( )

deg ( maj( ))

=
STab( )

STab( )

= STab( )2

= !,

and deg ind ( ( ; )) = ! ! ! = ! , which coincides with the dimension
of ( ; ). Moreover, we prove that these two representations are equivalent.

Theorem 8 (Main result). Let be a positive integer. Fix an integer [ ] and
write = + (0 1). Let = be the subgroup of defined above
and ( ; ) ( = 0 1 1) representations of it defined by

( ; ) :=
STab( )

( maj( )) ,

where ( ) and stand for the irreducible representations of and, respectively.
Then, for each = 0 1 1, there is an isomorphism

( ; ) = ind ( ( ; ))

as an -module.

Proof. By the definition of ( ; ), it suffices to show

(4.1) ( )
1

=0 STab( )

ind ( maj( )) mod 1

Let and be the subgroup of defined in (2.1). Since is a subgroup
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of , we have

ind ( maj( )) = ind ind ( maj( ))

for any . Therefore, the right hand side of (4.1) equals

1

=0 STab( )

ind ind ( maj( ))

= ind ind ( maj( )) [ ]

= ind maj( ) ind ( maj( )) maj( ) [ ]

ind ( ) maj( ) [ ] mod 1 by (3.1).(4.2)

By the theorem of Kraśkiewicz-Weyman, the multiplicity [ : ] of irreducible com-
ponents isomorphic to ( ) is the number of standard Young tableaux of shape

whose major index equals , that is,

[ : ] = STab( ) : maj( ) =

Hence we have

(4.3) ( ) =
STab( )

maj( ) [ ]

Applying (4.3) and Proposition 5, we see that (4.2) equals

ind ( )
STab( )

maj( ) [ ]

= ind ( ) ( )

= ( ( ) ( ))

( ) mod 1

and complete the proof.

When = 0 or 1, is a cyclic group and ( ; ) is irreducible. In this case,
the generator of coincides with a regular element of defined by Springer [7].

It is obvious that the multiplicity of in ( ; ) is obtained by counting
the number of standard Young tableaux of shape with the majorindex congruent
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to modulo , that is,

[ ( ; ) : ] = STab( ) maj( ) mod

EXAMPLE . In the case of = 5 and = 3, the subgroup3 is (123) (45) , which
is isomorphic to 3 2. Then we have

5( ; 3) = 5 ind 5

3

( ) (2) ( 1) (1 1)

for each = 0 1 2.
If we consider the case = 11 and = 4 (thus = 3), then the subgroup4 is

(1234)(5678) (9 10) (10 11) isomorphic to4 3. Hence, for each 11( ; 4)
( = 0 1 2 3) is isomorphic to the representation induced by

(0; 4) = ( (0) (3)) ( (3) (2 1)) ( (2) (2 1)) ( (1) (1 1 1)),

(1; 4) = ( (1) (3)) ( (0) (2 1)) ( (3) (2 1)) ( (2) (1 1 1)),

(2; 4) = ( (2) (3)) ( (1) (2 1)) ( (0) (2 1)) ( (3) (1 1 1)),

(3; 4) = ( (3) (3)) ( (2) (2 1)) ( (1) (2 1)) ( (0) (1 1 1))
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