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1. Introduction

In classical knot theory, it is well-known that any knot diagn can be deformed
into a diagram of a trivial knot by some crossing changess Tact plays an impor-
tant role to compute various knot invariants defined by skelations. We consider a
similar problem on surface-knot theory and obtain a padr@wer to it.

A surface-knotF is a connected closed surface embedded locally flathiRin
Throughout this paper, we assume that surface-knots agated. Letr: R* — R® be
the natural projection. Apseudo-ribbon surface diagrans a projection imager(F)
whose singularity set consists of only double points anddmassing information with
respect to the natural projection. We denote a surface-kecbvered from a dia-
gram D by Fp . We prove the following theorem.

Theorem 1.1 (Theorem 3.3). Let D be a pseudo-ribbon surface diagram. We
can deformD intoD’ by some crossing changes én  so thafR* — Fp/) becomes
isomorphic toZ.

Remark 1.2. We can also consider a similar problem on higher dinomasgiknot
theory. We introduce two related consequences on this gmabl

Let p: R"™2 = R"™1 x R — R"*! be the natural projection. As"-knot K is
an n -dimensional sphere embedded locally flatlyRit{2. An $”-knot K is said to be
trivial if K bounds an £ + 1)-disk ifR"*2.

E. Ogasa [5] proved that there exists &h -k#bt n >(3) having the following
properties.
1. The singularity set ofp K ) consists of only double pointsl a8 homeomorphic
to a disjoint union of £ — 1)-dimensional tori.
2. The imagep K ) is not the projection image of any trividl -kno

K. Yoshida [9] proved the following result for af” -kn& n( = 2 ar> 5).
If the singularity set ofp K ) consists of only double pointsdais homeomorphic to
a disjoint union of ¢ — 1)-dimensional spheres, thgnK ( ) is the projection image of
some trivial S" -knot.
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a double point a triple point a branch point

Fig. 1. The singularity set of a projection

This paper is organized as follows. In Section 2, we reviemedasic notions of
surface-knots. In Section 3, we state the main theorem efghper (Theorem 3.3). In
Section 4, we introduc@seudo-ribbon graph and give a way to construct a pseudo-
ribbon graph from a pseudo-ribbon surface diagram. In sech, we prove the key
proposition (Proposition 5.5) for the proof of Theorem 313.Section 6, we give the
proof of the main theorem (Theorem 3.3).

2. Basic notations of surface-knots

In this section, we review some basic notions of surfacdskfimm the viewpoint
of the diagrammatic theory. See [1] for more details.

Two surface-knotsF and”’ are said to beequivalentif they are related by a
(smooth or piecewise-linear) ambient isotopyRsft. A surface-knot is said to baiv-
ial if it is equivalent to the boundary of a handlebody tf. F. Hosokawa and A.
Kawauchi [2] proved that the boundary of a handlebody is waigp to ambient iso-
topies of R%.

Let 7: R* — RS be the projection defined by(x1, x2, x3,7) = (x1, x2, x3). The
closure of the self-intersection set of the projection imagF) is called thesingular-
ity set The imager(F) is said to begenericif the singularity set ofr(F) consists of
double points, isolated triple points, and isolated brapeimts. See Fig. 1. By a slight
perturbation if necessary, we may assume th@) is generic.

The singularity set of the generic projection imagéF) is regarded as a dis-
joint union of graphs with 1-, 6-valent vertices (which @spond to isolated branch
points and isolated triple points, respectively) and esclwithout self-intersections
called hoops. An edgeof n(F) is an edge of their graphs.

We find in n(F) two sheets intersecting along each edge or hoop, one athwhi
is higher than the other with respect to the -coordinateyTdre called arover-sheet
and anunder-sheetalong the edge or the hoop, respectively.sArface diagramof
F is the generic projection image(F) with such crossing information, and is de-
noted by Dr . A method to indicate crossing information is toitsplong the edges
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Fig. 2. Crossing information on the singularity set

and hoops on under-sheets. See Fig. 2.
We give every surface diagram an orientation inherited fibiat of the original
surface-knot, and often use a normal direction of the shieeisdicate it. See Fig. 3.

Remark 2.1. The generic projection image(F) cannot recover the original
surface-knotF , but the surface diagrainy- can. We denote acedkfzot recovered
from a surface diagran® byp

Theorem 2.2 (Wirtinger presentation of a knot group) ([3], [7])Let Dr be a
surface diagram of a surface-kndt . We label the connectedpooents obtained
from D by splitting along the edges and hoops on the undertsh®exo, x1, . . ., x5,
wheres + 1 is the number of the components. The knot grew(R* — F) has the fol-
lowing presentation

7T1(R4—F):<XO,...,XS | ri, oot ).

Here eachx; is regarded as a meridian element of the knot groupthe knot group

is generatedxy, x1, . .., x;. Each edge or hoop of the singularity set of the underlying
surface of Dy induces a relator. Precisely x;, is the label of the over-sheet ang
(resp. x;,) is of the under-sheet in badkesp. fronj of the over-sheet with respect to
the orientation ofDy, then a relator of the knot group is of the form

r = x,.glxlglx,-lxl-z 1<i<n),
wheren is the number of edges and hoops. Sege 3.

3. Main theorem

A surface-knot F is said to be pseudo-ribbon surface-kndf there exists a
surface-knotF’ such thatF’ is equivalent toF and the singularity set of the generic
projection imager(F’) consists of only hoops. A surface diagratn  is said to be a
pseudo-ribbon surface diagraiih the singularity set ofD consists of only hoops.
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A

the normal direction
of the over-sheet

1

e 11
relator: r; =X;, X, XiyXi,

Fig. 3. A relator of the knot group

Remark 3.1. A ribbon handlebodyis an immersed image of a handlebodty in
R* such that the singularity set consists of ribbon singuésjtwhere a ribbon singu-
larity means a singularity with the disjoint union of a prdgeembedded 2-disk irV
and an embedded disk in it as the preimagerilfbon surface-knotis a surface-
knot bounding a ribbon handlebody &*. T. Yajima [8] proved that ars?-knot K is
a ribbon S2-knot if and only if K is a pseudo-ribbos?-knot. On the other hand, a
higher genus pseudo-ribbon surface-knot is not necegsariibbon surface-knot (cf.
A. Kawauchi [4] and A. Shima [6]).

DeriniTion 3.2 (Crossing change). Ldd  be a pseudo-ribbon surface afiagh
crossing changen D is to assign opposite crossing information to some hoophef
singularity set ofD .

Theorem 3.3. Let D be a pseudo-ribbon surface diagram. We can defdm
into D’ by some crossing changes dn so tha{R* — Fp/) becomes isomorphic
to Z.

The proof is given in Section 6. In surface-knot theory, tb#ofving conjecture
is well-known as the (smooth)nknotting conjecturdor (orientable) surface-knots.

Conjecture 3.4 (Unknotting conjecture). For any (orientablg surface-knotF, F
is trivial if and only if 71 (R* — F) is isomorphic toZ.

Combining Theorem 3.3 with Conjecture 3.4, we have the Waillg conjecture.

Conjecture 3.5. Let D be a pseudo-ribbon surface diagram. We can deférm
into D’ by some crossing changes @  so ti&at is trivial.

Remark 3.6. Any ribbon surface-knot is presented byriabon surface dia-
gram which is a pseudo-ribbon surface diagram obtained fromh2igs by attaching
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Fig. 4. Examples of pseudo-ribbon graphs

1-handles. By definition, it is easy to see that Conjectukei8true for ribbon surface
diagrams.

4. Pseudo-ribbon graphs

Since it is difficult to treat a pseudo-ribbon surface diagrave give a way to
construct a graph, called@seudo-ribbon graphfrom a pseudo-ribbon surface diagram
in this section. A pseudo-ribbon graph has knot group infdrom of a pseudo-ribbon
surface diagram, and a relationship of a pseudo-ribbonhgtapa knot group is men-
tioned in Section 5.

DerinimioN 4.1 (Pseudo-ribbon graph). Lét be a finite connected graghsay
that L is apseudo-ribbon graplof degreen £ € N) if the edges ofL. are oriented
and L has just 2 edges labeled byl, 2, 2,...,7,n. We call the edge labeled by
(resp.i) the i-edge (respi-edge) for anyi (K i < n). See Fig. 4.

Let D be a pseudo-ribbon surface diagraiy be its recovereddpsibbon
surface-knot,7(Fp) be its underlying generic projection image, ang be thegusin
larity set of 7(Fp). There exists a connected closed oriented surfage andadlylo
flat embeddingf X, — R* such thatf £, ) =Fp . The singularity sét,  consists
of the disjoint union of circlesy, vz, ..., v., Wheren is the number of hoops. For any
i (1<i<n), f () consists of the two disjoint circles, then we assigr(resp.c;)
to the one of them belonging to the over-sheet (resp. urftets The complement
Yp — f~XI'p) is separated into some connected compon@ntRky, ..., R;, where!
is the number of the connected components. We construct ed@sébon graph of
degreen fromD as follows and denote it By, . See Example 4.2.

e Vertices of Lp correspond t®q, Ry, ..., R;.

e Edges ofLp correspond to pairs of regions adjacent:tandc; for everyi (1<
i <n).

e A label of an edge corresponding te (resp.c;) is i (resp.i) for everyi (1<
i <n).
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the normal direction the normal direction
of the over-sheet of the under-sheet

X
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Fig. 5. Constructions of graphs from diagrams

the normal direction of the diagram

V1
<O

Fig. 6. An example of a pseudo-ribbon surface diagram

e The orientation of the-edge (respi-edge) corresponds to the orientation of the
under-sheet (resp. over-sheet) for every <(1 < n). See Fig. 5.

ExampLE 4.2. We try to construct a pseudo-ribbon graph from the pseildbon
surface diagramD in Fig. 6, then the preimagei»f Xig in Fig. 7 #nedconse-
quence of the construction is the pseudo-ribbon graph in &ig

Remark 4.3. We introduce a way to construct a pseudo-ribbon grapm fa
pseudo-ribbon surface diagram above. On the other hand,aweot always construct
a pseudo-ribbon surface diagram from a pseudo-ribbon graph

5. The groups of pseudo-ribbon graphs

In this section, we define the group of a pseudo-ribbon graph @ove the key
proposition (Proposition 5.5) for the proof of Theorem 3.3.
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Fig. 7. The preimage of the diagram in Fig. 6
Lp
1
4
Z

Fig. 8. The pseudo-ribbon graph constructed from  in Fig. 6

Ll

wl

7
N

Derinimion 5.1 (Group of a pseudo-ribbon graph). Lét be a pseudo-ribbon
graph of degree: n( € N). If we eliminate thei-edges (1< i < n) from L, then
the graph is separated into some connected compodentsy, ..., Ly, Wheres +1 is
the number of connected components. We assjgn  to all theegelonging ta;
for everyi (0< i < s). The group of the pseudo-ribbon graph is defined by the
following presentation and denoted loy L ( ).

GL)=( X0y -y Xy | F1yeeeytn)

Here the relator; is defined as follows: if two end verticestuf t-edge are assigned
x;, and an initial (resp. a terminal) vertex of thieedge is assigned,;, (resp.x;,), then
we have the formy; =, 'x; 'x;x;,. See Fig. 9.

Remark 5.2. Let D be a pseudo-ribbon surface diagram. By Theorem 2R a
Definition 5.1,G p ) is isomorphic tory(R* — Fp).
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Xiy x,-3

relator:r; =x;*

-1
xl-z Xii Xiy
Xiyp Xiy

Fig. 9. A relator of the group of a pseudo-ribbon graph

Let C, be the se{1,1,2,2 ...,7 n}, andC, the set of pseudo-ribbon graphs of
degreen . Now we consider two kinds of mapg: C, — C, andy.: C, — C,.
For any subsett C {1, 2,...,n}, ¢ is a bijective map defined by

n (7 — i ifieA° R if i € A°
¢A(’)'{z ificA ‘M)‘{z it ic A

For any element € S, (the symmetric group of degree ¥’ is a bijective map
defined by

Up(@) = 0(@), ¥ =o() (1<i < n).
The mapg); induces a bijective map/;: C, — C,. In the same wayy/’; induces a
bijective mapy: C, — C,. We note thatG (¢ (L)) is isomorphic toG L ) for any
pseudo-ribbon graplh. and any element S, by definition.

Lemma 5.3. Let L be a pseudo-ribbon graph of degree  which is a tree as a
1-dimensional complex. There exists a sub$gtC {1, 2, ...,n} such thatG (¢ (L))
is isomorphic toZ.

Proof.

STep 1. We assign a sequence of nonnegative integersc, ..., k) to a ver-
tex, denoted by ki, ko, ..., k), and an edge, denoted lkyki(ko, ..., k), of L in-
ductively as follows (see Fig. 10):

1. We choose any one vertex af and assign (0) to this. We as)g@), . .., (m)

to the edges connecting to (0).

2. For any integek; with 1 < k; < m, e(k1) has two end vertices. We assigh)(to

the vertex which is distinct from (0). There are some edgemecting tov k). We

assign ka1, 1), (k1, 2), ..., (k1, my,) to them except fore ).

3. Forki, ko with 1 < k1 < m and 1< k» < my,, the edgee K1, k2) has two
end vertices. We assigrki( k2) to the vertex which is distinct from k(). There are
some edges connecting toki(k2). We assign Ki, k2, 1), (k1, k2, 2), .. ., (k1, k2, mi, x,)

to them except foe A, k2).
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e(kl, kz, ey k/)

e(ky, k2, ... ki, 1)
N ek, ko, ... ki, Miy ks, 1)

4

e(kl; ko, ..., ki, 2)

Fig. 10. The way to assign sequences of nonnegative integers

4. In this way, we assign a sequence of nonnegative integeesdry vertex and ev-
ery edge ofL inductively.

Since L is a tree, the sequences of nonnegative integers casdigned to ver-
tices and edges without duplication. We note that the sempsenf nonnegative inte-
gers assigned edges are independent of labels of them andathéo assign the se-
guences of nonnegative integersio is not unique.

STeEP 2. We give a total order to the edges with respect to the segseof non-
negative integers. Precisely, we say thaty, k2, ..., k;) is smallerthan e &1, k5, . . .,
k;,) if either of the following conditions is satisfied

o s <min{l,I'} st ki=ki ko=Kh ... ke1=kl_j k <kl
ol <l ki=klky=kh ... .kj=kl

and denote
e(ke, ko, ... k) < e(ky, kb, ... k}\).
In the same way, we can give a total order to vertices. Whén, k{, ..., k) is
smallerthanv &7, &5, ..., k;,), we denote
v(kes ko, .. ki) < v(kL kb oL kD).
Step 3. We define a set of positive integerd; , by using the aboveroofl

edges as follows:
Ap={ie{1,2...,n}| (i-edge)< (i-edge} .
For the pseudo-ribbon grapﬁ;:(L), there exist an element € S, such that

(o(1)-edge)< (c(2)-edge)< - - - < (o(n)-edge)
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irfeﬂgi/l does not change the groups of pseudo-ribbon graphs, we aasideo
Yr_io¢f, (L) instead of¢) (L). We note that the order of theedges (1< i < n) of
ol (L) is

(1-edge)< (2-edge)< - - - < (rn-edge)
Refer to Example 5.4.

STEP 4. We prove thatG(J’;i/1 o g’Z(L)) is isomorphic toZ by an actual cal-

culation. Hereafter, as long as there is no confusion, weteei (¢ _, o ¢ (L)) by
G.
In Definition 5.1, we have assigned the generators to thdcesrtof L . Further,
we may have the following additional conditions:
o All vertices which belong to the component containing (03 assignedo.
¢ All vertices which belong to the component containing theager vertex in the
two end vertices of thez-edge are assigned, & m < n).
The generators assigned to the vertices satisfy the fallgpwionditions by the or-
der of vertices and edges (see Fig. 12).
e The generator assigned to the greater vertex in the two enite® of them-edge
isx, (L<m<n).
e There exists a positive integéy,  such that< m and the generators assigned to
the two end vertices of thei-edge arey;, (XK m < n).
e There exists a positive integgy,  such that< m and the generator assigned to
the smaller vertex in the two end vertices of theedge isx;, (1< m <n).
Then the group presentation 6f is

€1 —1 e . _—€ -1l €&, ,—€
s Xg XXX P X, XXX ),

(1 S m S n, ima jm < m, €y S {17 _1})

1.« _
(X0, X1, -+, Xn | Xq XXX

and we calculates as follows:

~ — —1_ e —€2 —1. € —€n
G ¥ (x0,X1,...,%: | X0 = X1, X, XZX X P, X, XXX )
(2 S m S n, inu jm < m, €py S {15 _1})
— —_ —1 €3 —€3 -1 & —€n
> (X0, X1, -+, Xy | Xo = X1 = X2, Xz XXX, X, XXX )

(3 S m S n, ima jm < m, €y S {17 _1})

1R

1R

(X0, X1, ..., Xy [ X0=X1 = X2 = -+~ =X, )

Z . [

1R

ExampLE 5.4. We observe the proof of Lemma 5.3 for  in Fig. 11. If we gissi
the sequences of nonnegative integers to edges and vertisesh a way as shown in
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(sequences of nonnegative integers)

v(1, 1 1) v(1 12 v(211) v(212)

Fig. 11.

the middle part of Fig. 11, then the set of positive integets, is
L4 (c{1234),
the order ofi-edges (1< i < 4) of E(L) is
(1-edge)< (2-edge)< (4-edge)< (3-edge),

and the element € S, is

1234
1243)°
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Vi o (L)

X0 X3 Xa

Fig. 13. An operation for pseudo-ribbon graphs

So the group presentation of (= G (¢?_, o ¢4 (L))) is
— -1 - -1 — -1 — -1
(X0, X1, X2, X3, Xa| X1 = XoXoXg ~, X2 =X X1Xo, X3 = XoX2Xg , X4 = XoX2Xg ),

and we calculate&s as follows (see Fig. 12):

1%

— —,—1 — -1 — -1
G = (xo0,X1, X2, X3 X4| Xo = X1, X2 =Xy X1Xo, X3=XoXaXy , X4 = XoX2Xy )

1R

— — — -1 — -1
X0, X1, X2, X3, X 4| X0 = X1 = X2, X3 = X0X2Xy , X4 = XoX2Xg )

1%

1R

(
(
{ x0, X1, X2, X3, X 4| X0 = X1 = X2 = X3, x4:x0x2xo_l>
( X0, X1, X2, X3 X 4| Xo = X1 = X2 = X3 = X4 )

Z

1%

Proposition 5.5. Let L be a pseudo-ribbon graph of degree(n € N). There
exists a subsefi, C {1,2,...,n} such thatG (¢ (L)) is isomorphic toZ.

Proof. We can deforml. to a pseudo-ribbon graph which is a tse@dplying
finitely many operations such as Fig. 13 and denote itZby(see Fig. 14). We note
that L’ is not uniquely determined by

By Lemma 5.3, there exist a subsét, C {1,2,...,n} such thatG(r’;TL,(L’)) is
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applying the operations such as Fig. 13

LI

lw

Fig. 14. An example of a graph which is not tree

isomorphic toZ and the group presentation ﬁ( Wy (L’)) is

-1 e . —e -1 e . —€ —1.€n . . —€
(X0, X1, .y Xn | Xg XXX Xy XXX P X XX, X )
@A<m<n, in,Jjmw<m, e, €{1, —1})
2 (X0, X1, w5 Xy | X0 = X1 = X2 - =X, ).

Since the group presentation Gf(f’;,vU(L)) is obtained from that oG(f’/ng(L’))

by adding some relators such as x37 i, j(€ {0,1...,n}), G(”};(L)) is also
isomorphic toZ. ]

6. The proof of Main theorem

In this section, we give the proof of Theorem 3.3 by using tbastruction of a
pseudo-ribbon grapli., from a pseudo-ribbon surface diagbam Setction 4.

By the construction, for any subset C {1,2 ...,n}, there exists a pseudo-
ribbon surface diagranD A( ) such that A () is deformed frém by es@rossing
changes and.p) = ¢4(Lp). By Remark 5.2, it holds that

m1(R* — Fp(a)) ¥ G(Lpwy) = G @Z(LD)) .
By Proposition 5.5, there exists a set of positive integérs uchshat
G (/'j;(LD)) ~7.
When we substituted;,, to the above , it holds that

7T1(R4 _ FD(ALD)) > G(LD(ALD)) ~G ( ZLD (LD)) ~7.
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Thus the proof of Theorem 3.3 is completed. O
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