NOTE ON A 2-DIMENSIONAL VERSAL \boldsymbol{D}_{8}-COVER

Dedicated to Professor Makoto Namba on his sixtieth birthday

Hiro-o TOKUNAGA

(Received April 9, 2003)

Introduction

Let G be a finite group. Let X and Y be normal projective varieties. X is called a G-cover of Y if there exists a finite surjective morphism $\pi: X \rightarrow Y$ such that the induced morphism $\pi^{*}: \mathbb{C}(Y) \rightarrow \mathbb{C}(X)$ gives a Galois extension with $\operatorname{Gal}(\mathbb{C}(X) / \mathbb{C}(Y)) \cong$ G, where $\mathbb{C}(X)$ and $\mathbb{C}(Y)$ denote the rational function fields of X and Y, respectively.

Definition 0.1 . A G-cover $\varpi: X \rightarrow M$ is said to be versal if it satisfies the following property:

For any G-cover $\pi: Y \rightarrow Z$, there exist a rational map $\nu: Z \cdots \rightarrow M$ and a Zariski open set U in Z such that
(i) $\left.\nu\right|_{U}: U \rightarrow M$ is a morphism, and
(ii) $\pi^{-1}(U)$ is birational to $U \times_{M} X$ over U.

One could say the investigation of versal G-covers is a geometric study of generic or versal G-polynomials (see [2] and [4]). The notion of versal G-covers implicitly appeared in [7], [8], and is defined explicitly in [12], [13]. It is known that there exists a versal G-cover for any finite group G ($[8$, Theorem 2.4$]$). The dimension of the versal G-cover given by Namba, however, is equal to $\sharp(G)$. Hence it does not seem to be tractable in practical use. We need to find a tractable model for G. So far it has been done for some cases by ad-hoc methods in ([12], [13]).

In this note, we consider versal D_{8}-covers, where D_{8} is the dihedral group of order 8, i.e., $D_{8}=\left\langle\sigma, \tau \mid \sigma^{2}=\tau^{4}=(\sigma \tau)^{2}=1\right\rangle$. It is known that any versal D_{8}-cover has dimension at least 2 (see [2]), and one of such models was given in [12]. The purpose of this article is to give another new model, which is described as follows:

Let $\varphi_{141}: X_{141} \rightarrow \mathbb{P}^{1}$ be the rational elliptic surface obtained by blowing-up base

[^0]points of the $(2,2)$-pencil on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ given by
$$
\left\{\lambda_{0}\left(s_{0}-s_{1}\right)^{2}\left(t_{0}-t_{1}\right)^{2}+\lambda_{1}\left(s_{0} s_{1} t_{0} t_{1}\right)=0\right\}_{\left[\lambda_{0}: \lambda_{1}\right] \in \mathbb{P}^{1}}
$$

As for X_{141}, the following facts are well-known:
(i) X_{141} is so-called the elliptic modular surface attached to

$$
\Gamma_{1}(4):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod 4\right.\right\}
$$

and φ_{141} has three singular fibers and their types are of I_{1}^{*}, I_{4} and I_{1} (see [3, p.350]). (ii) The group of sections, $M W\left(X_{141}\right)$, is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ (see [6] or [9]).

Let $\sigma_{\varphi_{141}}$ be the involution on X_{141} induced by the inversion with respect to the group law and let τ_{s} be the translation by a 4-torsion section $s . \sigma_{\varphi_{141}}$ and τ_{s} generate a finite fiber preserving automorphism group isomorphic to D_{8}. Let $\Sigma_{141}:=X_{141} /\left\langle\sigma_{\varphi_{141}}, \tau_{s}\right\rangle$ be the quotient surface and we denote its quotient morphism by $\pi_{141}: X_{141} \rightarrow \Sigma_{141}$. Now we are in position to state our result:

Theorem 0.2. $\quad \pi_{141}: X_{141} \rightarrow \Sigma_{141}$ is a versal D_{8}-cover.

In comparison with the model in [12], this model has a nice description with respect to the action of the Galois group.

1. Preliminaries

Let S be a smooth minimal projective surface, and let Λ be a pencil of curves on S such that a general member is irreducible. Let $\bar{\varphi}_{\Lambda}: S \cdots \rightarrow \mathbb{P}^{1}$ be the rational map determined by Λ, and let $q: S_{\Lambda} \rightarrow S$ be the resolution of the indeterminacy of $\bar{\varphi}_{\Lambda}$. We denote the induced morphism from S_{Λ} to \mathbb{P}^{1} by φ_{Λ}. We may assume that φ_{Λ} is relatively minimal. Let us begin with the following lemma.

Lemma 1.1. Let σ be an automorphism of S. Suppose that $\bar{\varphi}_{\Lambda}^{\sigma}=\bar{\varphi}_{\Lambda}$ (we regard $\bar{\varphi}_{\Lambda}$ as an element of $\left.\mathbb{C}\left(S_{\Lambda}\right)\right)$. Then σ gives rise to a fiber preserving automorphism of S_{Λ} (By abuse of notation, we also denote it by σ).

Proof. Since $\mathbb{C}(S) \cong \mathbb{C}\left(S_{\Lambda}\right), \bar{\varphi}_{\Lambda}^{\sigma}=\bar{\varphi}_{\Lambda}$ implies $\varphi_{\Lambda}^{\sigma}=\varphi_{\Lambda}$. Hence a general fiber of φ_{Λ} goes to that of φ_{Λ} under σ. Let $\bar{\sigma}$ be the induced birational map from S_{Λ} to itself induced by σ. Let $\mu: \hat{S}_{\Lambda} \rightarrow S_{\Lambda}$ be a succession of blowing-ups so that (i) $\hat{\sigma}:=\bar{\sigma} \circ \mu$ becomes a birational morphism and (ii) the number of the blowing-ups is minimal. It is well-known that $\hat{\sigma}$ is a composition of blowing-downs. Let E_{1}, \ldots, E_{r} be the exceptional divisors for μ, and let F_{1}, \ldots, F_{S} be those for $\hat{\sigma}$. We may assume that F_{1} is the (-1) curve for the first blow-down. Since F_{1} can not be any of E_{i}
$(i=1, \ldots, r), F_{1} E_{i} \geq 0(i=1, \ldots, r)$. Since

$$
-1=F_{1} K_{\hat{S}_{\Lambda}}=F_{1}\left(\mu^{*} K_{S_{\Lambda}}+\sum_{j=1}^{r} m_{j} E_{j}\right)=F_{1} \mu^{*} K_{S_{\Lambda}}+F_{1}\left(\sum_{j=1}^{r} m_{j} E j\right)
$$

we have $F_{1} \mu^{*} K_{S_{\Lambda}} \leq-1$. Hence $\mu\left(F_{1}\right)$ is not any irreducible component in a fiber of φ_{Λ}. Since the image of $\mu\left(F_{1}\right)$ by σ is a point, this implies that a general fiber of φ_{Λ} does not go to that of φ_{Λ} under $\hat{\sigma}$, which leads us to a contradiction.

Example 1.2. Let (x, y) be an inhomogeneous coordinate of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. The pencil on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in Introduction is given by

$$
\Lambda:\left\{\lambda_{0}(x-1)^{2}(y-1)^{2}+\lambda_{1} x y=0\right\}_{\left[\lambda_{0}, \lambda_{1}\right] \in \mathbb{P}^{1}}
$$

Let σ and τ be the automorphisms of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ given by

$$
\left(x^{\sigma}, y^{\sigma}\right)=(y, x),\left(x^{\tau}, y^{\tau}\right)=\left(y, \frac{1}{x}\right)
$$

σ and τ generate a finite automorphism group isomorphic to D_{8}. Since the rational function on $\mathbb{P}^{1} \times \mathbb{P}^{1}$,

$$
\frac{(x-1)^{2}(y-1)^{2}}{x y}
$$

is invariant under σ and τ, one can apply Lemma 1.1 to this case. In fact, it follows that $\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)_{\Lambda}=X_{141}, \varphi_{\Lambda}=\varphi_{141}$, and σ, τ fiber preserving automorphisms of X_{141}. By Example 4.7, Chapter III in [11], both σ and τ are the compositions of isogenies and translations. In particular, the corresponding isogenies should be isomorphisms as an elliptic curve. By Theorem 10.1, Chapter III in [11], the automorphisms of X_{141} as an elliptic curve are only the identity and $\sigma_{\varphi_{141}}$. Since $\sigma \circ \tau$ has a fixed point (1,0), the induced fiber preserving automorphism on X_{141} is non-trivial and fixes a section, O. Hence we may assume that $\sigma \circ \tau=\sigma_{\varphi_{141}}$ on X_{141}, by regarding O as the zero. Also if τ is the composition of $\sigma_{\varphi_{141}}$ and a translation, then $\tau^{2}=\mathrm{id}$ on X_{141}. This implies that we may assume that τ is a translation by a 4-torsion section s.

Example 1.3. Let $N=\mathbb{Z}^{\oplus 2}$ and let $\Delta_{i}(i=1, \ldots, 6)$ be 2 -dimensional cones in $N \otimes \mathbb{R}$ given by

$$
\begin{array}{ll}
\Delta_{1}=\mathbb{R}_{\geq 0} \boldsymbol{e}_{1}+\mathbb{R}_{\geq 0}\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right) & \Delta_{2}=\mathbb{R}_{\geq 0}\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right)+\mathbb{R}_{\geq 0} \boldsymbol{e}_{2} \\
\Delta_{3}=\mathbb{R}_{\geq 0}\left(-\boldsymbol{e}_{1}\right)+\mathbb{R}_{\geq 0} \boldsymbol{e}_{2} & \Delta_{4}=\mathbb{R}_{\geq 0}\left(-\boldsymbol{e}_{1}\right)+\mathbb{R}_{\geq 0}\left(-\boldsymbol{e}_{1}-\boldsymbol{e}_{2}\right) \\
\Delta_{5}=\mathbb{R}_{\geq 0}\left(-\boldsymbol{e}_{1}-\boldsymbol{e}_{2}\right)+\mathbb{R}_{\geq 0}\left(-\boldsymbol{e}_{2}\right) & \Delta_{6}=\mathbb{R}_{\geq 0}\left(-\boldsymbol{e}_{2}\right)+\mathbb{R}_{\geq 0} \boldsymbol{e}_{1}
\end{array}
$$

where $\boldsymbol{e}_{1}={ }^{t}(1,0), \boldsymbol{e}_{2}={ }^{t}(0,1)$. Let $\Sigma=\bigcup_{i=1}^{6} \Delta_{i}$ and $X_{D_{12}}=T_{N} \operatorname{emb}(\Sigma)$ (see [10, $\S 1.2])$. The subgroup, G, of $\operatorname{GL}(2, \mathbb{Z})$ generated by

$$
\sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)
$$

is isomorphic to D_{12}. Since G preserves Σ as above, D_{12} acts on $X_{D_{12}}$. An explicit description is as follows:

Let $\left\{f_{1}, f_{2}\right\}$ be the basis of $\operatorname{Hom}(N, \mathbb{Z})$ dual to $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right\}$ and let $x=\boldsymbol{e}\left(f_{1}\right)$ and $y=\boldsymbol{e}\left(f_{2}\right) .(x, y)$ gives an affine coordinate of the affine open set, $U_{\Delta_{1}}$, determined by Δ_{1}. Then

$$
\left(x^{\sigma}, y^{\sigma}\right)=(y, x),\left(x^{\tau}, y^{\tau}\right)=\left(\frac{1}{y}, x y\right) .
$$

Consider the pencil on X which is given on $U_{\Delta_{1}}$ by

$$
\left\{\lambda_{0}(x y)+\lambda_{1}(x y+1)(x+1)(y+1)=0\right\}_{\left[\lambda_{0}, \lambda_{1}\right] \in \mathbb{P}^{1}}
$$

on $U_{\sigma_{1}}$. Since

$$
\frac{x y}{(x y+1)(x+1)(y+1)}
$$

is D_{12}-invariant, one can apply Lemma 1.1 to this case. In this case, X_{Λ} coincides with the rational elliptic surface $\varphi_{6321}: X_{6321} \rightarrow \mathbb{P}^{1}$ (the notation is due to [6]). The following facts on X_{6321} are well-known:
(i) X_{6321} is so-called the elliptic modular surface attached to

$$
\Gamma_{1}(6):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right) \bmod 6\right.\right\}
$$

and has four singular fibers and their types are of I_{6}, I_{3}, I_{2} and I_{1} (see [1] and [6]).
(ii) The group of sections, $M W\left(X_{6321}\right)$, is isomorphic to $\mathbb{Z} / 6 \mathbb{Z}$ (see [6]).

In our case, $\varphi_{\Lambda}=\varphi_{6321}$, and σ and τ generate a fiber preserving automorphism group of X_{6321} isomorphic to D_{12}. By the same argument to that in Example 1.2, we may assume that it coincides with one given by the inversion with respect to the group law and the translation by a 6 -torsion section.

We here raise a question concerning Example 1.3.
Question 1.4. Let $M_{D_{12}}$ be the quotient of $X_{D_{12}}$ with respect to the D_{12}-action in Example 1.3. Is the D_{12}-cover $X_{D_{12}} \rightarrow M_{D_{12}}$ versal? In other words, is $X_{6321} \rightarrow$ Σ_{6321} a versal D_{12}-cover, where Σ_{6321} is the quotient by the inversion with respect to the group law and the translation by 6 -torsion?

2. Proof of Theorem $\mathbf{0 . 2}$

Let σ and τ be the automorphisms of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ as in Example 1.2. They give rise to a finite automorphism group isomorphic to D_{8}. Put $\Sigma_{D_{8}}:=\mathbb{P}^{1} \times \mathbb{P}^{1} /\langle\sigma, \tau\rangle$, and we denote the quotient morphism by $\varpi_{D_{8}}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \Sigma_{D_{8}}$. Theorem 0.2 follows from Example 1.2 and the proposition below.

Proposition 2.1. $\varpi_{D_{8}}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \Sigma_{D_{8}}$ is versal.
We need two lemmas to prove Proposition 2.1.
Lemma 2.2. Let $\pi: Y \rightarrow Z$ be a D_{8}-cover. Then there exist non-constant rational functions ψ_{1} and ψ_{2} such that
(i) $\left(\psi_{1}^{\sigma}, \psi_{2}^{\sigma}\right)=\left(\psi_{2}, \psi_{1}\right)$,
(ii) $\left(\psi_{1}^{\tau}, \psi_{2}^{\tau}\right)=\left(\psi_{2}, 1 / \psi_{1}\right)$,
(iii) $\psi_{1} / \psi_{2} \notin \mathbb{C}$ and
(iv) $\psi_{1} \psi_{2} \neq 1$.

Proof. By the normal basis theorem (see [5, p.229]), there exists $\theta \in \mathbb{C}(Y)$ such that $\left\{\theta^{\tau^{i}}, \theta^{\sigma \tau^{i}}\right\}(i=0,1,2,3)$ form a basis of $\mathbb{C}(Y)$ as a vector $\mathbb{C}(Z)$-space. Put

$$
\psi_{1}=\frac{\theta+\theta^{\sigma}+\theta^{\tau^{3}}+\theta^{\sigma \tau^{3}}}{\theta^{\tau^{2}}+\theta^{\sigma \tau^{2}}+\theta^{\tau}+\theta^{\sigma \tau}}, \psi_{2}=\frac{\theta+\theta^{\sigma}+\theta^{\tau}+\theta^{\sigma \tau}}{\theta^{\tau^{2}}+\theta^{\sigma \tau^{2}}+\theta^{\tau^{3}}+\theta^{\sigma \tau^{3}}} .
$$

Both ψ_{1} and ψ_{2} are non-constant rational functions since $\left\{\theta^{g} \mid g \in D_{8}\right\}$ is a basis over $\mathbb{C}(Z)$, and the statements (i) and (ii) are straightforward. If $\psi_{1}=c \psi_{2}$ for some $c \in \mathbb{C}$, we have $\psi_{1}= \pm \psi_{2}$ by (i). If this happens, then we infer that $\psi_{2}^{2}= \pm 1$ by (ii), but this is impossible as ψ_{2} is non-constant. Suppose that $\psi_{1} \psi_{2}=1$. Then $\psi_{2} / \psi_{1}=1$ by (i). This contradicits to (iii).

Lemma 2.3. Let ψ_{1} and ψ_{2} be the rational functions as in Lemma 2.2. Then $\mathbb{C}(Y)=\mathbb{C}(Z)\left(\psi_{1}, \psi_{2}\right)$.

Proof. Choose a rational number c not equal to ± 1 and we put $\psi=\psi_{1}+c \psi_{2}$. It is enough to see that $\psi \neq \psi^{g}$ for all $g(\neq 1) \in D_{8}$.
(i) $\psi \neq \psi^{\tau}$. If $\psi=\psi^{\tau}$, we have

$$
\psi_{1}-\psi_{2}=c\left(\frac{1-\psi_{1} \psi_{2}}{\psi_{1}}\right)
$$

By Lemma 2.2, $1-\psi_{1} \psi_{2} \neq 0, \psi_{1}-\psi_{2} \neq 0$. So

$$
c=\frac{\psi_{1}-\psi_{2}}{1-\psi_{1} \psi_{2}} \psi_{1} \neq 0 .
$$

On the other hand, we have

$$
\left(\frac{\psi_{1}-\psi_{2}}{1-\psi_{1} \psi_{2}} \psi_{1}\right)^{\sigma}=\frac{\psi_{2}-\psi_{1}}{1-\psi_{1} \psi_{2}} \psi_{2}=-\frac{\psi_{1}-\psi_{2}}{1-\psi_{1} \psi_{2}} \psi_{2} .
$$

As $c^{\sigma}=c$, we have $\psi_{1}=-\psi_{2}$, but this contradicts to Lemma 2.2, (iii).
(ii) $\psi \neq \psi^{\tau^{2}}$. If $\psi=\psi^{\tau^{2}}$, we have

$$
c=\frac{\left(\psi_{1}^{2}-1\right) \psi_{2}}{\left(1-\psi_{2}^{2}\right) \psi_{1}} .
$$

By Lemma 2.2, $c \neq 0$. On the other hand, we have

$$
\left(\frac{\left(\psi_{1}^{2}-1\right) \psi_{2}}{\left(1-\psi_{2}^{2}\right) \psi_{1}}\right)^{\sigma}=\frac{\left(1-\psi_{2}^{2}\right) \psi_{1}}{\left(\psi_{1}^{2}-1\right) \psi_{2}}=\frac{1}{c}
$$

As $c^{\sigma}=c$, we have $c^{2}=1$. This contradicts to our choice of c.
(iii) $\psi \neq \psi^{\tau^{3}}$. If $\psi=\psi^{\tau^{3}}$, we have

$$
c=\frac{\psi_{1} \psi_{2}-1}{\psi_{1}-\psi_{2}} \frac{1}{\psi_{2}} .
$$

By the similar argument to the first case, we infer $\psi_{1}=-\psi_{2}$, but this is impossible.
(iv) $\psi \neq \psi^{\sigma}$. If $\psi=\psi^{\sigma}$, we have $c=1$, but this contradicts to our choice of c.
(v) $\psi \neq \psi^{\sigma \tau}$. If $\psi=\psi^{\sigma \tau}, \psi_{1}^{2}=1$. This contradicts to Lemma 2.2.
(vi) $\psi \neq \psi^{\sigma \tau^{2}}$. If $\psi=\psi^{\sigma \tau^{2}}$, we have $c=-\psi_{1} / \psi_{2}$. As $c=c^{\sigma}$, we have $\psi_{1} / \psi_{2}=\psi_{2} / \psi_{1}$.

This implies that $\psi_{1}= \pm \psi_{2}$, but this contradicts to Lemma 2.2 (iii).
(vii) $\psi \neq \psi^{\sigma \tau^{3}}$. If $\psi=\psi^{\sigma \tau^{3}}$, we have $\psi_{2}^{2}=1$, but this is impossible.

Proof of Proposition 2.1. Let $\pi: Y \rightarrow Z$ be an arbitrary D_{8}-cover. By Lemmas 2.2 and 2.3, there exist non-constant rational functions ψ_{1} and ψ_{2} such that (i) $\mathbb{C}(Y)=\mathbb{C}(Z)\left(\psi_{1}, \psi_{2}\right)$ and (ii) $\left(\psi_{1}^{\sigma}, \psi_{2}^{\sigma}\right)=\left(\psi_{2}, \psi_{1}\right)$ and $\left(\psi_{1}^{\tau}, \psi_{2}^{\tau}\right)=\left(\psi_{2}, 1 / \psi_{1}\right)$. Define the D_{8}-equivalent rational map $\Psi: Y \cdots \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ by

$$
p \in Y \mapsto\left(\psi_{1}(p), \psi_{2}(p)\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

This shows Proposition 2.1.
Now Theorem 0.2 follows from Proposition 2.1 and Example 1.2. We end this section with the following example.

Example 2.4. Let

$$
\rho: D_{8} \rightarrow \mathrm{GL}(2, \mathbb{C})
$$

be the representation given by

$$
\rho(\sigma)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \rho(\tau)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Let $\tilde{\rho}=1_{D_{8}} \oplus \rho$, and define the D_{8}-action on \mathbb{P}^{2} by

$$
g\left(\left[z_{0}, z_{1}, z_{2}\right]\right)=\left[z_{0}, z_{1}, z_{2}\right](\tilde{\rho}(g))^{-1}, \quad\left[z_{0}, z_{1}, z_{2}\right] \in \mathbb{P}^{2} .
$$

Put $X_{1}=\mathbb{P}^{2}$ and $M_{1}=\mathbb{P}^{2} / D_{8}$ (note that $X_{1} \rightarrow M_{1}$ is the versal D_{8}-cover by [12, Proposition 4.1]). Let u and v be the rational functions of \mathbb{P}^{2} given by z_{1} / z_{0} and z_{2} / z_{0}, respectively. Then one can check

$$
\left\{\theta^{g}\right\}_{g \in D_{8}}, \quad \theta=\frac{1}{1-u-2 v}
$$

form a basis over $\mathbb{C}\left(M_{1}\right)=\mathbb{C}(u, v)^{D_{8}}$. To see this, let

$$
A:=\left(\begin{array}{cccccccc}
\theta & \theta^{\tau} & \theta^{\tau^{2}} & \theta^{\tau^{3}} & \theta^{\sigma} & \theta^{\sigma \tau} & \theta^{\sigma \tau^{2}} & \theta^{\sigma \tau^{3}} \\
\theta^{\tau} & \theta^{\tau^{2}} & \theta^{\tau^{3}} & \theta & \theta^{\sigma \tau^{3}} & \theta^{\sigma} & \theta^{\sigma \tau} & \theta^{\sigma \tau^{2}} \\
\theta^{\tau^{2}} & \theta^{\tau^{3}} & \theta & \theta^{\tau} & \theta^{\sigma \tau^{2}} & \theta^{\sigma \tau^{3}} & \theta^{\sigma} & \theta^{\sigma \tau} \\
\theta^{\tau^{3}} & \theta & \theta^{\tau} & \theta^{\tau^{2}} & \theta^{\sigma \tau} & \theta^{\sigma \tau^{2}} & \theta^{\sigma \tau^{3}} & \theta^{\sigma} \\
\theta^{\sigma} & \theta^{\sigma \tau} & \theta^{\sigma \tau^{2}} & \theta^{\sigma \tau^{3}} & \theta & \theta^{\tau} & \theta^{\tau^{2}} & \theta^{\tau^{3}} \\
\theta^{\sigma \tau} & \theta^{\sigma \tau^{2}} & \theta^{\sigma \tau^{3}} & \theta^{\sigma} & \theta & \theta^{\tau} & \theta^{\tau^{2}} & \theta^{\tau^{3}} \\
\theta^{\sigma \tau^{2}} & \theta^{\sigma \tau^{3}} & \theta^{\sigma} & \theta^{\sigma \tau} & \theta^{\tau^{2}} & \theta^{\tau^{3}} & \theta & \theta^{\tau} \\
\theta^{\sigma \tau^{3}} & \theta^{\sigma} & \theta^{\sigma \tau} & \theta^{\sigma \tau^{2}} & \theta^{\tau} & \theta^{\tau^{2}} & \theta^{\tau^{3}} & \theta
\end{array}\right),
$$

and check that $\operatorname{det} A \neq 0$. The explicit forms of ψ_{1} and ψ_{2} with respect to the normal basis $\left\{\theta^{g}\right\}_{g \in D_{8}}$ are as follows:

$$
\begin{aligned}
\psi_{1}= & -\frac{\left(-2+6 u^{3}+9 u-9 u v^{2}-13 u^{2}+5 v^{2}\right)}{\left(2+6 u^{3}+9 u-9 u v^{2}+13 u^{2}-5 v^{2}\right)} \\
& \times \frac{(1+u+2 v)(1+2 u+v)(1+2 u-v)(1+u-2 v)}{(-1+u+2 v)(-1+2 u+v)(-1-v+2 u)(-1+u-2 v)} \\
\psi_{2}= & -\frac{\left(2+9 u^{2} v-5 u^{2}-6 v^{3}+13 v^{2}-9 v\right)}{\left(-2+9 u^{2} v+5 u^{2}-6 v^{3}-13 v^{2}-9 v\right)} \\
& \times \frac{(1+u+2 v)(1+2 u+v)(-1-v+2 u)(-1+u-2 v)}{(-1+u+2 v)(-1+2 u+v)(1+2 u-v)(1+u-2 v)}
\end{aligned}
$$

Hence we have a D_{8}-equivalent rational map from $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$. Note that the existence of this rational map gives another proof for Proposition 2.1.

Acknowledgement. The author thanks for the referee for his/her comments on the first version of this article.

References

[1] A. Beauville: Les familles stables de courbes elliptiques sur \mathbb{P}^{1} ademettant quatre fibres singularities, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 657-660.
[2] J. Buhler and Z. Reichstein: On the essential dimesion of a finite group, Compositio Math. 106 (1997), 159-179.
[3] D.A. Cox and W.R. Parry: Torsion in elliptic curves over $k(t)$, Compositio Math. 41 (1980), 337-354.
[4] C.U. Jensen, A. Ledet and N. Yui: Generic polynomials, Mathematical Sciences Research Institute Publications, Cambridge University Press, 2002.
[5] S. Lang: Algebra, Addison-Wesley, (1965).
[6] R. Miranda and U. Persson: On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537-558.
[7] M. Namba: On finite Galois coverings of projective manifolds, J. Math. Soc. Japan, 41 (1989), 391-403.
[8] M. Namba: Finite branched coverings of complex manifold, Sugaku Expositions 5 (1992), 193-211.
[9] I. Naruki: Configurations related to maximal rational elliptic surface; Complex analytic singularities, Adv. Studies in Pure Math. 8, Kinokuniya, Tokyo, 1986, 315-347
[10] T. Oda: Convex bodies and algebraic geometry, Egebnisse der Math. 15, Springer-Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo, 1988.
[11] J.H. Silverman: The arithmetic of elliptic curves, Springer-Verlag, 1986.
[12] H. Tokunaga: 2-dimensional versal S_{4}-covers and rational elliptic surfaces, to appear in Séminaire et Congrés, Société Mathematique de France.
[13] H. Tsuchihashi: Galois coverings of projective varieties for the dihedral groups and the symmetric groups, Kyusyu J. Math. 57 (2003), 411-427.

Department of Mathematics
Tokyo Metropolitan University
1-1 Minami-Ohsawa Hachioji
Tokyo 192-0397, Japan
e-mail: tokunaga@comp.metro-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : 14E20, 14J27.
 Research partly supported by the research grant 14340015 from JSPS.

