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1. Introduction

For a positive integer and an arbitrary integer , the classical Dedekind sums
( ) is defined by

( ) =
∑

=1

(( ))(( ))

where

(( )) =





− [ ] − 1
2

if is not an integer;

0 if is an integer

The sum ( ) plays an important role in the transformation theory of the Dedekind
η function; See the Chapter 3 of [1]. There is an extensive literature about the Dedekind
sums. H. Rademacher [8] wrote an introductory book on the subject.

Perhaps the most famous property of the Dedekind sums is the reciprocity formula

( ) + ( ) =
2 + 2 + 1

12
− 1

4

for positive coprime integers and . Some three term versionsof this formula were
discovered by H. Rademacher [8], R.R. Hall, M.N. Huxley [5] and J. Pommersheim [7].

J.B. Conrey, E. Fransen, R. Klein and C. Scott [4] studied themean value of
Dedekind sums and proved the following proposition.

Proposition 1. Suppose that is a given positive integer and is any suffi-
ciently large integer. Then

∑′

=1

2 ( ) = ( )

(

12

)2

+
((

9/5 + 2 −1+1/( +1)
)

log3
)

where
∑′ denotes the summation over all such that( ) = 1, and ( ) is defined
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by the Dirichlet series

∞∑

=1

( )
= 2 · ζ

2(2 )
ζ(4 )

· ζ( + 4 − 1)
ζ2( + 2 )

· ζ( )

whereζ( ) is the Riemann zeta-function.

In [3], J. Chaohua improved the error terms in Proposition 1.H. Walum [10]
showed that for prime ,

∑

χ mod
χ(−1)=−1

| (1 χ)|4 =
π4( − 1)

2

∑

=1

| ( )|2

In the spirit of [4] and [10], the second author [11] used an estimate for character
sums to prove the following:

Proposition 2. Suppose that is any sufficiently large prime number and is
any positive integer. Then for = , we have

∑′

=1

| ( )|2 =
5

144
· ( 2 − 1)2

( 3 − 1)
· 2 +

(
exp

(
3 log

log log

))

whereexp( ) = and the constant implied in the -symbol is absolute.

Also some interesting relations between Dedekind sums and Hurwitz zeta-function
were established (see references [12], [13], [14] and [16]).

B.C. Berndt [2] gave an analogous transformation formula for the logarithm
of the classical theta function

θ( ) =
+∞∑

=−∞
exp(π 2 ) Im > 0

and showed that for =
( )

in the theta group

logθ( ) = logθ( ) +
1
2

log( + )− 1
4
π +

1
4
π ( )

where

( ) =
−1∑

=1

(−1) +1+[ / ]

The sums ( ) (and certain related ones) are sometimes called Hardy sums. They
are closely connected with Dedekind sums [9]. Some arithmetical properties of ( )
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can be found in B.C. Berndt [2] and R. Sitaramachandra Rao [9]. In [15], the second
author studied the 2 -th power mean of ( ), and proved the following:

Proposition 3. Let be an odd prime and be a positive integer, then

−1∑

=1

| ( )|2 = 2 ζ2(2 )
(
1− 1/4

)

ζ(4 )
(
1 + 1/4

) +

(
2 −1 exp

(
6 ln
ln ln

))

In this paper, we use the important works of J.B. Conrey et al.[4] and
J. Chaohua [3] to study the 2 -th power mean of ( ), and give a sharp asymp-

totic formula for
∑′

=1
2 ( ). That is, we shall prove the following theorem.

Theorem. For any fixed integer ≥ 2 and any sufficiently large integer, we
have the asymptotic formula

∑′

=1

2 ( ) = ( ) 2 +
(

2 −1
)

where ( ) is defined by the Dirichlet series

∞∑

=1

( )
=

2
(
2 +4 − 2

) (
22 − 1

)
(
2 +2 − 1

)2 (
22 + 1

) · ζ
2(2 )
ζ(4 )

ζ( + 4 − 1)
ζ2( + 2 )

ζ( )

+
2
(
22 − 1

)
(
2 +2 − 1

) · ζ( )ζ(2 )
ζ( + 2 )

2. Some lemmas

To prove the Theorem, we need following lemmas. First we have

Lemma 1. For any given positive integer and any integer with( ) = 1
and any > 1, there exist a positive integer ≤ and an integer with( ) = 1
such that

∣∣∣∣ −
∣∣∣∣ <

1

Proof. This is a well-known result; See Theorem 36 of [6].

Lemma 2. Let , , , , and be positive integers with − = 1 and
( ) = 1. Let

( )( )
=

( )
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then we have

( ) + ( ) − ( ) =
2 + 2 + 2

12
− 1

4

Proof. This is equation (26) of [5].

Lemma 3. Let and denote relatively prime integers with> 0, then

( ) =

{
4 ( )− 8 ( + 2 ) if + is odd;

0 if + is even

Proof. This formula is an immediate consequence of (5.9) and(5.10) in [9].

Lemma 4. For any positive integer , we have

∑′

=1

| ( )| ≪ log2

Proof. This is Lemma 6 of [4].

Lemma 5. Let and be positive integers with( ) = ( ) = 1, and
set = − . If + is odd and1 ≤ | | ≤ / , then we have

( ) =




− +

(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

if + is an even number;
(

+ | |
)

if + is an odd number

Proof. Suppose that + is even. Since ( ) = 1, and must be odd num-
bers.

First We consider the case that< 0. Since ( ) = 1, there exist positive integers
and such that

− = 1 1≤ <

Let = 2 − 2 . Then we have

(
2 −2
−

)( )
=

(

−

)
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and



+
2

+

2



(

−

)
=

(
+
2

)

The fact that < and ≥ − / yields

= 2

(
−

)
= 2

(
− +

1
)

= 2

(
+

1
)

=
2

(
+

1
)
> 0

On the other hand, since ( ) = 1 and is odd, we get (− ) = 1. Then
by Lemma 2,

( +
2

)
+ ( − ) − ( + 2 ) =−4 2 + 2 + 2

24
− 1

4

That is,

( + 2 ) =
6

+
(∣∣∣
( +

2

)∣∣∣ + | |
)

From Lemma 8 of [4] we also have

( ) =
12

+
(
| ( )| + | |

)

Therefore by Lemma 3 we immediately have

( ) = − +
(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

if < 0

For > 0, we can find positive integers and satisfying

− = −1 1≤ <

Let = 2 − 2 . Then we have

(
2 −2
−

)( )
=

( )

and



2

+
2

+



( )

=

(
2
+

)

Similarly we can get ( ) = 1 and

= 2

(
−

)
= 2

(
1

+ −
)

= 2

(
1 −

)
=

2
(

1 −
)
> 0
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Then by Lemma 2,

( +
2

)
+ ( )− (2 + ) =

(
( + )/2

)2
+ 2 + ( + )2

12
(
( + )/2

)
· · ( + )

− 1
4

Noting that

( +
2

)
+
( +

2

)
=

(
( + )/2

)2
+ 2 + 1

12
(
( + )/2

)
· − 1

4

and

(2 + ) + ( + 2 ) =
( + )2 + (2 )2 + 1

12 ( + ) · 2
− 1

4

we have

( + 2 ) =
6

+
(∣∣∣
( +

2

)∣∣∣ + | |
)

So from Lemma 8 of [4] and Lemma 3 we immediately have

( ) = − +
(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

for > 0

This proves that

( ) = − +
(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

if + is an even number

On the other hand, if + is an odd number, using the similar methods we can
get

( + 2 ) =
24

+
(

+ | |
)

so we have

( ) = 4 ( )− 8 ( + 2 ) =
(

+ | |
)

This completes the proof of Lemma 5.

Lemma 6. For any real > 1, we have the identities

∞∑

=1
2|

µ( )
=

1
(1− 2 )ζ( )

∞∑

=1
2∤

µ( )
=

2
(2 − 1)ζ( )

;
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∞∑

=1
2∤

∑

|

µ( )( / )1−2

+2
=

2 +2 − 21−2

2 +2 − 1
· ζ( + 4 − 1)

ζ( + 2 )

and

∞∑

=1
2|

∑

|

µ( )
(
/
)1−2

+2
=

21−2 − 1
2 +2 − 1

· ζ( + 4 − 1)
ζ( + 2 )

Proof. Using elementary methods we can easily deduce these identities.

3. Proof of Theorem

We suppose that ≥ 2 and a sufficiently large number are given. We set

=
[

1/2
]

= 2

For integers and with 1≤ ≤ , let ( ) be an open interval given by

( ) =

(
− 1

+
1
)

When / 6= ´/ ´ and ´≤ , one has

∣∣∣∣ − ´
´

∣∣∣∣ ≥
1
´
≥
(

1
+

1
´

)

Thus the intervals ( ) are pairwise disjoint.
If 1 ≤ ≤ , ( ) = 1 and + is odd, then by Lemma 1,/ falls into

an interval ( ) with 1≤ ≤ , 0 ≤ ≤ and ( ) = 1.
Let = − . It is easy to see that 6= 0 and

| | =

∣∣∣∣ −
∣∣∣∣ ≤ ≤

If / falls into an interval ( ) with 1≤ ≤ , 0 ≤ ≤ , ( ) = 1
and + is an odd number, then by Lemma 5, we have

( ) =
(

+ | |
)
≪ + ≪ 1/2

Thus,
∑∗ 2 ( ) ≪ +1 ≪ 2 −1
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where the asterisk indicates summation over those integers, 1 ≤ ≤ , ( ) = 1
and + is odd, for which / falls into an interval ( ) with 1≤ ≤ ,
0 ≤ ≤ , ( ) = 1 and + is an odd number.

If / falls into an interval ( ) with ≤ ≤ , 0 ≤ ≤ , ( ) = 1
and + is an even number, then by Lemma 5, we have

( ) = − +
(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

≪ + + ≪ + + ≪ 1/2

Thus,
∑∗ 2 ( ) ≪ +1 ≪ 2 −1

where the asterisk indicates summation over those integers1 ≤ ≤ ( ) = 1
and + is odd, for which / falls into an interval ( ) with ≤ ≤ 0 ≤
≤ , ( ) = 1 and + is an even number.

Therefore

∑′

=1

2 ( ) =
∑′

=1
2∤ +

2 ( ) =
∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

2 ( ) +
(

2 −1
)

where the asterisk means that 1≤ ≤ , ( ) = 1 and + is odd.
Lemma 5 produces

( ) = − +
(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

if and are odd numbers

Using the estimate

( + + )2 = 2 +
(
| |2 −1 (| | + | |

))
+

( 2 + 2 )

we obtain

2 ( ) =

( )2

+

((

| |

)2 −1 (
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
))

+

((
| ( )| +

∣∣∣
( +

2

)∣∣∣
)2

+ 2

)
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Therefore

∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

2 ( ) ≡ 1 + ( 2) + ( 3)

where

1 =
∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

( )2

2 =
∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

(

| |

)2 −1(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + | |
)

3 =
∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

((
| ( )| +

∣∣∣
( +

2

)∣∣∣
)2

+ 2

)

Noting that for the fixed , , and , the equation =− has at most one
solution . By Lemma 4, we have

2 ≪ 2 −1
∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

1
2 −1

· 1
2 −2

(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + 1
)

≪ 2 −1
∑

=1
2∤

1
2 −1

∑′

=1

(
| ( )| +

∣∣∣
( +

2

)∣∣∣ + 1
)∑

6= 0

1
2

≪ 2 −1
∑

=1
2∤

1
2 −1

· · log2( + 1) ≪ 2 −1
∑

=1
2∤

log2( + 1)
2

≪ 2 −1

Moreover,

3 ≪
∑

=1
2∤

∑′

=1
2∤

∑∗

/ ∈ ( )

(
2 +

( )2
)

≪
∑′

=1

1 ≪ +1 ≪ 2 −1

Combining these estimates, we obtain

∑′

=1

2 ( ) = 1 + ( 2 −1)
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where

1 = 2
∑

=1
2∤

1
2

∑′

=1
2∤

∑∗

/ ∈ ( )

1
2

It remains to obtain an asymptotic formula for1. Noting that if 1 ≤ ≤ ,
then / /∈ ( ) if and only if | | ≥ / . Hence

2
∑

=1
2∤

1
2

∑′

=1
2∤

∑∗

/ /∈ ( )

1
2

≤ 2
∑

=1
2∤

1
2

∑′

=1
2∤

∑

| |≥ /

1
2

≪ 2

( )2 −1∑

=1
2∤

1
2 −1

≪ 2 −1 ≪ +1/2 ≪ 2 −1

Thus

1 = 2
∑

=1
2∤

1
2

∑′

=1
2∤

∑′

=1
2∤ +

1
( − )2

+
( 2 −1)

Using the estimate

∑

≥ +1

1
( − )2

≤
∫ ∞

( − )2
=
∫ ∞

( − )
2

≪ 1
2 −1

we get

2
∑

=1
2∤

1
2

∑′

=1
2∤

∑

≥ +1

1
( − )2

≪ 2
∑

=1
2∤

1
2

∑′

=1
2∤

1
2 −1

≪

Since

∑

≤0

1
( − )2

≤ 1
2

+
∑

≥1

1
( + )2

≤ 1
2

+
∫ ∞

0 ( + )2

=
1
2 +

∫ ∞

2 ≪ 1
2 +

1
2 −1 ≪ 1

2 −1
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we have

2
∑

=1
2∤

1
2

∑′

=1
2∤

∑

≤0

1
( − )2

≪ 2
∑

=1
2∤

1
2

∑′

=1
2∤

1
2 −1

≪

Therefore

1 = 2
∑

=1
2∤

1
2

∑′

=1
2∤

∞∑

=−∞
( )=1
2∤ +

1
( − )2

+ ( 2 −1)

Since

2
∑

>
2∤

1
2

∑′

=1
2∤

∞∑

=−∞
( )=1
2∤ +

1
( − )2

≪ 2
∑

>
2∤

1
2

∑′

=1
2∤

∞∑

=−∞

1
2

≪ 2
∑

>
2∤

1
2

∑′

=1
2∤

1 ≪ 2
∑

>
2∤

1
2 −1

≪
2

2 −2
≪ +1 ≪ 2 −1

we have

1 = 2
∞∑

=1
2∤

1
2

∑′

=1
2∤

∞∑

=−∞
( )=1
2∤ +

1
( − )2 +

( 2 −1)

Therefore

∑′

=1

2 ( ) = ( ) 2 +
(

2 −1
)

where

( ) =
∞∑

=1
2∤

1
2

∑′

=1
2∤

∞∑

=−∞
( )=1
2∤ +

1
( − )2
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Let

( ) =
∞∑

=1

( )
=

∞∑

=1
2∤

1
2

∑′

=1
2∤

∞∑

=1

1
∞∑

=−∞
( )=1
2∤ +

1
( − )2

=
∞∑

=1
2∤

1
2

∑′

=1
2∤

∞∑

=1
2|

1
∞∑

=−∞
( )=1

2∤

1
( − )2 +

∞∑

=1
2∤

1
2

∑′

=1
2∤

∞∑

=1
2∤

1
∞∑

=−∞
( )=1

2|

1
( − )2

≡ 1( ) + 2( )

We proceed to find an expression for1( ). We remove the coprimality conditions by
use of the Möbius relation

∑

|
µ( ) =

{
1 if = 1;

0 if 6= 1

After rearranging the sums, we have

1( ) =
∞∑

=1
2∤

∞∑

=1
2∤

µ( )
+2

µ( )
4

∞∑

=1
2|

1
∞∑

=1
2∤

1
2

∑

=1
2∤

∞∑

=−∞
2∤

1
( − )2

Let = ( ), then the inner double sum is

=
1
2

∑

=1
2∤

∞∑

=−∞
2∤

≡− ( / ) mod /

1
2

=
1
2




∑

=1
2∤

∞∑

=1
2∤

≡− ( / ) mod /

1
2

+
∑

=1
2∤

∞∑

=1
2∤

≡−( − )( / ) mod /

1
2




=
1
2

∑

=0

∞∑

=1
2∤

≡− ( / ) mod /

1
2 =

1
2




∑

=1

∞∑

=1
2∤

≡− ( / ) mod /

1
2 +

∞∑

=1
2∤

≡0 mod /

1
2




=
1
2

[ (
22 − 1

)
ζ(2 )

22
+

2

2

(
22 − 1

)
ζ(2 )

22

]

=

(
22 − 1

)
ζ(2 )

22

[
1−2 +

1
2

]
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Thus by Lemma 6,

1( ) =
2 +4

(
2 +2 − 1

) (
22 + 1

) ζ(2 )
ζ( + 2 )ζ(4 )




∞∑

=1
2|

∞∑

=1
2∤

1−2

2
+

∞∑

=1
2|

∞∑

=1
2∤

1
4




By Lemma 6 we have

∞∑

=1
2|

∞∑

=1
2∤

1−2

2
=

∞∑

=1
2|

∞∑

=1
2∤

1
2

∑

|( )

∑

|
µ( )

( )1−2

=
∞∑

=1
2∤

∑

|

µ( )( / )1−2

+2

∞∑

=1
2|

∞∑

=1
2∤

1
2

=

(
2 +2 − 21−2

) (
22 − 1

)

2 +2
(
2 +2 − 1

) · ζ( + 4 − 1)ζ( )ζ(2 )
ζ( + 2 )

Therefore

1( ) =

(
2 +4 − 2

) (
22 − 1

)
(
2 +2 − 1

)2 (
22 + 1

) ·
ζ2(2 )
ζ(4 )

ζ( + 4 − 1)
ζ2( + 2 )

ζ( )

+

(
22 − 1

)
(
2 +2 − 1

) · ζ( )ζ(2 )
ζ( + 2 )

Using the same methods we can prove

2( ) =
(2 − 1)

(
2 +4 − 2

) (
22 − 1

)
(
2 +2 − 1

)2 (
22 + 1

) · ζ
2(2 )
ζ(4 )

ζ( + 4 − 1)
ζ2( + 2 )

ζ( )

+
(2 − 1)

(
22 − 1

)
(
2 +2 − 1

) · ζ( )ζ(2 )
ζ( + 2 )

So we have

( ) =
2
(
2 +4 − 2

) (
22 − 1

)
(
2 +2 − 1

)2 (
22 + 1

) · ζ
2(2 )
ζ(4 )

ζ( + 4 − 1)
ζ2( + 2 )

ζ( )

+
2
(
22 − 1

)
(
2 +2 − 1

) · ζ( )ζ(2 )
ζ( + 2 )

This completes the proof of Theorem.
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