ON CERTAIN HARDY SUMS AND THEIR $\mathbf{2 m}$-TH POWER MEAN

Liu HUANING and Zhang WENPENG

(Received April 4, 2003)

1. Introduction

For a positive integer k and an arbitrary integer h, the classical Dedekind sums $s(h, k)$ is defined by

$$
s(h, k)=\sum_{a=1}^{k}\left(\left(\frac{a}{k}\right)\right)\left(\left(\frac{a h}{k}\right)\right)
$$

where

$$
((x))= \begin{cases}x-[x]-\frac{1}{2}, & \text { if } x \text { is not an integer } ; \\ 0, & \text { if } x \text { is an integer }\end{cases}
$$

The sum $s(h, k)$ plays an important role in the transformation theory of the Dedekind η function; See the Chapter 3 of [1]. There is an extensive literature about the Dedekind sums. H. Rademacher [8] wrote an introductory book on the subject.

Perhaps the most famous property of the Dedekind sums is the reciprocity formula

$$
s(h, k)+s(k, h)=\frac{h^{2}+k^{2}+1}{12 h k}-\frac{1}{4}
$$

for positive coprime integers h and k. Some three term versions of this formula were discovered by H. Rademacher [8], R.R. Hall, M.N. Huxley [5] and J. Pommersheim [7].
J.B. Conrey, E. Fransen, R. Klein and C. Scott [4] studied the mean value of Dedekind sums and proved the following proposition.

Proposition 1. Suppose that m is a given positive integer and k is any sufficiently large integer. Then

$$
\sum_{h=1}^{k} s^{2 m}(h, k)=f_{m}(k)\left(\frac{k}{12}\right)^{2 m}+O\left(\left(k^{9 / 5}+k^{2 m-1+1 /(m+1)}\right) \log ^{3} k\right)
$$

where \sum_{h}^{\prime} denotes the summation over all h such that $(h, k)=1$, and $f_{m}(k)$ is defined

[^0]by the Dirichlet series
$$
\sum_{k=1}^{\infty} \frac{f_{m}(k)}{k^{s}}=2 \cdot \frac{\zeta^{2}(2 m)}{\zeta(4 m)} \cdot \frac{\zeta(s+4 m-1)}{\zeta^{2}(s+2 m)} \cdot \zeta(s),
$$
where $\zeta(s)$ is the Riemann zeta-function.
In [3], J. Chaohua improved the error terms in Proposition 1. H. Walum [10] showed that for prime k,
$$
\sum_{\substack{\chi \bmod k \\ \chi(-1)=-1}}|L(1, \chi)|^{4}=\frac{\pi^{4}(k-1)}{k^{2}} \sum_{h=1}^{k}|s(h, k)|^{2} .
$$

In the spirit of [4] and [10], the second author [11] used an estimate for character sums to prove the following:

Proposition 2. Suppose that p is any sufficiently large prime number and n is any positive integer. Then for $k=p^{n}$, we have

$$
\sum_{h=1}^{k}|s(h, k)|^{2}=\frac{5}{144} \cdot \frac{\left(p^{2}-1\right)^{2}}{p\left(p^{3}-1\right)} \cdot k^{2}+O\left(k \exp \left(\frac{3 \log k}{\log \log k}\right)\right),
$$

where $\exp (y)=e^{y}$ and the constant implied in the O-symbol is absolute.
Also some interesting relations between Dedekind sums and Hurwitz zeta-function were established (see references [12], [13], [14] and [16]).
B.C. Berndt [2] gave an analogous transformation formula for the logarithm of the classical theta function

$$
\theta(z)=\sum_{n=-\infty}^{+\infty} \exp \left(\pi i n^{2} z\right), \quad \operatorname{Im} z>0
$$

and showed that for $V=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in the theta group

$$
\log \theta(V z)=\log \theta(z)+\frac{1}{2} \log (c z+d)-\frac{1}{4} \pi i+\frac{1}{4} \pi i S(d, c)
$$

where

$$
S(d, c)=\sum_{j=1}^{c-1}(-1)^{j+1+[d j / c]}
$$

The sums $S(d, c)$ (and certain related ones) are sometimes called Hardy sums. They are closely connected with Dedekind sums [9]. Some arithmetical properties of $S(d, c)$
can be found in B.C. Berndt [2] and R. Sitaramachandra Rao [9]. In [15], the second author studied the $2 m$-th power mean of $S(d, c)$, and proved the following:

Proposition 3. Let p be an odd prime and m be a positive integer, then

$$
\sum_{h=1}^{p-1}|S(h, p)|^{2 m}=p^{2 m} \frac{\zeta^{2}(2 m)\left(1-1 / 4^{m}\right)}{\zeta(4 m)\left(1+1 / 4^{m}\right)}+O\left(p^{2 m-1} \exp \left(\frac{6 \ln p}{\ln \ln p}\right)\right)
$$

In this paper, we use the important works of J.B. Conrey et al. [4] and J. Chaohua [3] to study the $2 m$-th power mean of $S(h, k)$, and give a sharp asymptotic formula for $\sum_{h=1}^{k} S^{2 m}(h, k)$. That is, we shall prove the following theorem.

Theorem. For any fixed integer $m \geq 2$ and any sufficiently large integer k, we have the asymptotic formula

$$
\sum_{h=1}^{k} S^{2 m}(h, k)=g_{m}(k) k^{2 m}+O\left(k^{2 m-1}\right)
$$

where $g_{m}(k)$ is defined by the Dirichlet series

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{g_{m}(k)}{k^{s}}= & \frac{2^{s}\left(2^{s+4 m}-2\right)\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)^{2}\left(2^{2 m}+1\right)} \cdot \frac{\zeta^{2}(2 m)}{\zeta(4 m)} \frac{\zeta(s+4 m-1)}{\zeta^{2}(s+2 m)} \zeta(s) \\
& +\frac{2^{s}\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)} \cdot \frac{\zeta(s) \zeta(2 m)}{\zeta(s+2 m)}
\end{aligned}
$$

2. Some lemmas

To prove the Theorem, we need following lemmas. First we have
Lemma 1. For any given positive integer k and any integer h with $(h, k)=1$ and any $P>1$, there exist a positive integer $q \leq P$ and an integer a with $(a, q)=1$ such that

$$
\left|\frac{h}{k}-\frac{a}{q}\right|<\frac{1}{q P} .
$$

Proof. This is a well-known result; See Theorem 36 of [6].
Lemma 2. Let a, b, c, d, h and k be positive integers with $a d-b c=1$ and $(h, k)=1$. Let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{h}{k}=\binom{x}{y} .
$$

then we have

$$
s(a, c)+s(h, k)-s(x, y)=\frac{c^{2}+k^{2}+y^{2}}{12 c k y}-\frac{1}{4}
$$

Proof. This is equation (26) of [5].

Lemma 3. Let h and k denote relatively prime integers with $k>0$, then

$$
S(h, k)= \begin{cases}4 s(h, k)-8 s(h+k, 2 k), & \text { if } h+k \text { is odd } \\ 0, & \text { if } h+k \text { is even }\end{cases}
$$

Proof. This formula is an immediate consequence of (5.9) and (5.10) in [9].

Lemma 4. For any positive integer q, we have

$$
\sum_{a=1}^{q}|s(a, q)| \ll q \log ^{2} q
$$

Proof. This is Lemma 6 of [4].

Lemma 5. Let k, h, a and q be positive integers with $(h, k)=(a, q)=1$, and set $z=q h-a k$. If $h+k$ is odd and $1 \leq|z| \leq k / q$, then we have

$$
S(h, k)= \begin{cases}-\frac{k}{q z}+O\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right), & \text { if } a+q \text { is an even number } \\ O(q+|z|), & \text { if } a+q \text { is an odd number } .\end{cases}
$$

Proof. Suppose that $a+q$ is even. Since $(a, q)=1, a$ and q must be odd numbers.

First We consider the case that $z<0$. Since $(a, q)=1$, there exist positive integers b and d such that

$$
a d-b q=1, \quad 1 \leq d<q
$$

Let $f=2 d h-2 b k$. Then we have

$$
\left(\begin{array}{cc}
2 d & -2 b \\
-q & a
\end{array}\right)\binom{h}{k}=\binom{f}{-z}
$$

and

$$
\left(\begin{array}{cc}
\frac{a+q}{2} & b+d \\
q & 2 d
\end{array}\right)\binom{f}{-z}=\binom{h+k}{2 k} .
$$

The fact that $d<q$ and $z \geq-k / q$ yields

$$
f=2 k d\left(\frac{h}{k}-\frac{b}{d}\right)=2 k d\left(\frac{h}{k}-\frac{a}{q}+\frac{1}{q d}\right)=2 k d\left(\frac{z}{q k}+\frac{1}{q d}\right)=\frac{2 k d}{q}\left(\frac{z}{k}+\frac{1}{d}\right)>0 .
$$

On the other hand, since $(h, k)=1$ and z is odd, we get $(f,-z)=1$. Then by Lemma 2 ,

$$
s\left(\frac{a+q}{2}, q\right)+s(f,-z)-s(h+k, 2 k)=-\frac{4 k^{2}+q^{2}+z^{2}}{24 k q z}-\frac{1}{4} .
$$

That is,

$$
s(h+k, 2 k)=\frac{k}{6 q z}+O\left(\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right) .
$$

From Lemma 8 of [4] we also have

$$
s(h, k)=\frac{k}{12 q z}+O(|s(a, q)|+|z|) .
$$

Therefore by Lemma 3 we immediately have

$$
S(h, k)=-\frac{k}{q z}+O\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right), \quad \text { if } z<0 .
$$

For $z>0$, we can find positive integers b and d satisfying

$$
a d-b q=-1, \quad 1 \leq d<q .
$$

Let $f=2 b k-2 d h$. Then we have

$$
\left(\begin{array}{cc}
2 b & -2 d \\
-a & q
\end{array}\right)\binom{k}{h}=\binom{f}{z}
$$

and

$$
\left(\begin{array}{cc}
q & 2 d \\
\frac{a+q}{2} & b+d
\end{array}\right)\binom{f}{z}=\binom{2 k}{h+k} .
$$

Similarly we can get $(f, z)=1$ and

$$
f=2 k d\left(\frac{b}{d}-\frac{h}{k}\right)=2 k d\left(\frac{1}{q d}+\frac{a}{q}-\frac{h}{k}\right)=2 k d\left(\frac{1}{q d}-\frac{z}{q k}\right)=\frac{2 k d}{q}\left(\frac{1}{d}-\frac{z}{k}\right)>0 .
$$

Then by Lemma 2,

$$
s\left(q, \frac{a+q}{2}\right)+s(f, z)-s(2 k, h+k)=\frac{((a+q) / 2)^{2}+z^{2}+(h+k)^{2}}{12((a+q) / 2) \cdot z \cdot(h+k)}-\frac{1}{4}
$$

Noting that

$$
s\left(q, \frac{a+q}{2}\right)+s\left(\frac{a+q}{2}, q\right)=\frac{((a+q) / 2)^{2}+q^{2}+1}{12((a+q) / 2) \cdot q}-\frac{1}{4}
$$

and

$$
s(2 k, h+k)+s(h+k, 2 k)=\frac{(h+k)^{2}+(2 k)^{2}+1}{12(h+k) \cdot 2 k}-\frac{1}{4}
$$

we have

$$
s(h+k, 2 k)=\frac{k}{6 q z}+O\left(\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right)
$$

So from Lemma 8 of [4] and Lemma 3 we immediately have

$$
S(h, k)=-\frac{k}{q z}+O\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right), \quad \text { for } z>0
$$

This proves that

$$
\begin{array}{r}
S(h, k)=-\frac{k}{q z}+O\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right) \\
\text { if } a+q \text { is an even number. }
\end{array}
$$

On the other hand, if $a+q$ is an odd number, using the similar methods we can get

$$
s(h+k, 2 k)=\frac{k}{24 q z}+O(q+|z|)
$$

so we have

$$
S(h, k)=4 s(h, k)-8 s(h+k, 2 k)=O(q+|z|)
$$

This completes the proof of Lemma 5.

Lemma 6. For any real $s>1$, we have the identities

$$
\sum_{\substack{d=1 \\ 2 \mid d}}^{\infty} \frac{\mu(d)}{d^{s}}=\frac{1}{\left(1-2^{s}\right) \zeta(s)}, \sum_{\substack{d=1 \\ 2 \nmid d}}^{\infty} \frac{\mu(d)}{d^{s}}=\frac{2^{s}}{\left(2^{s}-1\right) \zeta(s)}
$$

$$
\sum_{\substack{d=1 \\ 2 \nmid d}}^{\infty} \sum_{e \mid d} \frac{\mu(e)(d / e)^{1-2 m}}{d^{s+2 m}}=\frac{2^{s+2 m}-2^{1-2 m}}{2^{s+2 m}-1} \cdot \frac{\zeta(s+4 m-1)}{\zeta(s+2 m)}
$$

and

$$
\sum_{\substack{d=1 \\ 2 \mid d}}^{\infty} \sum_{e \mid d} \frac{\mu(e)(d / e)^{1-2 m}}{d^{s+2 m}}=\frac{2^{1-2 m}-1}{2^{s+2 m}-1} \cdot \frac{\zeta(s+4 m-1)}{\zeta(s+2 m)}
$$

Proof. Using elementary methods we can easily deduce these identities.

3. Proof of Theorem

We suppose that $m \geq 2$ and a sufficiently large number k are given. We set

$$
Q=\left[k^{1 / 2}\right], \quad P=2 Q
$$

For integers a and q with $1 \leq q \leq Q$, let $I(a, q)$ be an open interval given by

$$
I(a, q)=\left(\frac{a}{q}-\frac{1}{q P}, \frac{a}{q}+\frac{1}{q P}\right) .
$$

When $a / q \neq \dot{a} / \dot{q}$ and $q, \dot{q} \leq Q$, one has

$$
\left|\frac{a}{q}-\frac{a}{\dot{q}}\right| \geq \frac{1}{q \dot{q}} \geq\left(\frac{1}{q P}+\frac{1}{\dot{q} P}\right) .
$$

Thus the intervals $I(a, q)$ are pairwise disjoint.
If $1 \leq h \leq k,(h, k)=1$ and $h+k$ is odd, then by Lemma $1, h / k$ falls into an interval $I(a, q)$ with $1 \leq q \leq P, 0 \leq a \leq q$ and $(a, q)=1$.

Let $z=q h-a k$. It is easy to see that $z \neq 0$ and

$$
|z|=q k\left|\frac{h}{k}-\frac{a}{q}\right| \leq \frac{k}{P} \leq \frac{k}{q} .
$$

If h / k falls into an interval $I(a, q)$ with $1 \leq q \leq P, 0 \leq a \leq q,(a, q)=1$ and $a+q$ is an odd number, then by Lemma 5 , we have

$$
S(h, k)=O(q+|z|) \ll P+\frac{k}{P} \ll k^{1 / 2}
$$

Thus,

$$
\sum^{*} S^{2 m}(h, k) \ll k^{m+1} \ll k^{2 m-1}
$$

where the asterisk indicates summation over those integers $h, 1 \leq h \leq k,(h, k)=1$ and $h+k$ is odd, for which h / k falls into an interval $I(a, q)$ with $1 \leq q \leq P$, $0 \leq a \leq q,(a, q)=1$ and $a+q$ is an odd number.

If h / k falls into an interval $I(a, q)$ with $Q \leq q \leq P, 0 \leq a \leq q,(a, q)=1$ and $a+q$ is an even number, then by Lemma 5, we have

$$
\begin{aligned}
S(h, k)= & -\frac{k}{q z}+O\left(|s(a, q)|+\left|S\left(\frac{a+q}{2}, q\right)\right|+|z|\right) \\
& \ll \frac{k}{q}+q+\frac{k}{P} \ll \frac{k}{Q}+P+\frac{k}{P} \ll k^{1 / 2} .
\end{aligned}
$$

Thus,

$$
\sum^{*} S^{2 m}(h, k) \ll k^{m+1} \ll k^{2 m-1}
$$

where the asterisk indicates summation over those integers $h, 1 \leq h \leq k,(h, k)=1$ and $h+k$ is odd, for which h / k falls into an interval $I(a, q)$ with $Q \leq q \leq P, 0 \leq$ $a \leq q,(a, q)=1$ and $a+q$ is an even number.

Therefore

$$
\sum_{h=1}^{k} S^{2 m}(h, k)=\sum_{\substack{h=1 \\ 2 \nmid h+k}}^{k} S^{2 m}(h, k)=\sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{\substack{ \\\hline}}^{*} S^{2 m}\left(h,(a, q)<O\left(k^{2 m-1}\right),\right.
$$

where the asterisk means that $1 \leq h \leq k,(h, k)=1$ and $h+k$ is odd.
Lemma 5 produces

$$
S(h, k)=-\frac{k}{q z}+O\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right)
$$

if a and q are odd numbers.
Using the estimate

$$
(A+B+C)^{2 m}=A^{2 m}+O\left(|A|^{2 m-1}(|B|+|C|)\right)+O\left(B^{2 m}+C^{2 m}\right)
$$

we obtain

$$
\begin{aligned}
S^{2 m}(h, k)= & \left(\frac{k}{q z}\right)^{2 m}+O\left(\left(\frac{k}{q|z|}\right)^{2 m-1}\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right)\right) \\
& +O\left(\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|\right)^{2 m}+z^{2 m}\right)
\end{aligned}
$$

Therefore

$$
\sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{h / k \in I(a, q)}^{*} S^{2 m}(h, k) \equiv \Omega_{1}+O\left(\Omega_{2}\right)+O\left(\Omega_{3}\right)
$$

where

$$
\begin{aligned}
& \Omega_{1}=\sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{h / k \in I(a, q)}^{*}\left(\frac{k}{q z}\right)^{2 m}, \\
& \Omega_{2}=\sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{h / k \in I(a, q)}^{*}\left(\frac{k}{q|z|}\right)^{2 m-1}\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+|z|\right), \\
& \Omega_{3}=\sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{h / k \in I(a, q)}^{*}\left(\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|\right)^{2 m}+z^{2 m}\right) .
\end{aligned}
$$

Noting that for the fixed a, q, k and z, the equation $z=q h-a k$ has at most one solution h. By Lemma 4, we have

$$
\begin{aligned}
\Omega_{2} & \ll k^{2 m-1} \sum_{\substack{q=1 \\
2 \nmid c}}^{Q} \sum_{a=1}^{q} \sum_{h \nmid k \in I(a, q)}^{\prime} \sum_{h}^{*} \frac{1}{2^{2 m-1}} \cdot \frac{1}{z^{2 m-2}}\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+1\right) \\
& \ll k^{2 m-1} \sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \frac{1}{q^{2 m-1}} \sum_{a=1}^{q}\left(|s(a, q)|+\left|s\left(\frac{a+q}{2}, q\right)\right|+1\right) \sum_{z \neq 0} \frac{1}{z^{2}} \\
& \ll k^{2 m-1} \sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \frac{1}{q^{2 m-1}} \cdot q \cdot \log ^{2}(q+1) \ll k^{2 m-1} \sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \frac{\log ^{2}(q+1)}{q^{2}} \ll k^{2 m-1} .
\end{aligned}
$$

Moreover,

$$
\Omega_{3} \ll \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{\substack{ \\\prime}}^{*}\left(q^{2 m}+\left(\frac{k}{P}\right)^{2 m}\right) \ll k^{m} \sum_{h=1}^{k} 1 \ll k^{m+1} \ll k^{2 m-1}
$$

Combining these estimates, we obtain

$$
\sum_{h=1}^{k} S^{2 m}(h, k)=\Omega_{1}+O\left(k^{2 m-1}\right)
$$

where

$$
\Omega_{1}=k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{h / k \in I(a, q)}^{*} \frac{1}{z^{2 m}}
$$

It remains to obtain an asymptotic formula for Ω_{1}. Noting that if $1 \leq h \leq k$, then $h / k \notin I(a, q)$ if and only if $|z| \geq k / P$. Hence

$$
\begin{aligned}
k^{2 m} \sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{ \\
\prime}}^{*} \frac{1}{z^{2 m} \neq(a, q)} & \leq k^{2 m} \sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{|z| \geq k / P} \frac{1}{z^{2 m}} \\
& \ll k^{2 m}\left(\frac{P}{k}\right)^{2 m-1} \sum_{\substack{q=1 \\
2 \nmid q}}^{Q} \frac{1}{q^{2 m-1}} \\
& \ll k P^{2 m-1} \ll k^{m+1 / 2} \ll k^{2 m-1} .
\end{aligned}
$$

Thus

$$
\Omega_{1}=k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{\substack{h=1 \\ 2 \nmid h+k}}^{k} \frac{1}{(q h-a k)^{2 m}}+O\left(k^{2 m-1}\right) .
$$

Using the estimate

$$
\sum_{h \geq k+1} \frac{1}{(q h-a k)^{2 m}} \leq \int_{k}^{\infty} \frac{d x}{(q x-a k)^{2 m}}=\int_{(q-a) k}^{\infty} \frac{d y}{q y^{2 m}} \ll \frac{1}{q k^{2 m-1}}
$$

we get

$$
k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{h \geq k+1} \frac{1}{(q h-a k)^{2 m}} \ll k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \frac{1}{q k^{2 m-1}} \ll k .
$$

Since

$$
\begin{aligned}
\sum_{h \leq 0} \frac{1}{(q h-a k)^{2 m}} & \leq \frac{1}{k^{2 m}}+\sum_{r \geq 1} \frac{1}{(q r+a k)^{2 m}} \leq \frac{1}{k^{2 m}}+\int_{0}^{\infty} \frac{d x}{(q x+a k)^{2 m}} \\
& =\frac{1}{k^{2 m}}+\int_{a k}^{\infty} \frac{d y}{q y^{2 m}} \ll \frac{1}{k^{2 m}}+\frac{1}{q k^{2 m-1}} \ll \frac{1}{k^{2 m-1}}
\end{aligned}
$$

we have

$$
k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 ł a}}^{q} \sum_{h \leq 0}^{\prime} \frac{1}{(q h-a k)^{2 m}} \ll k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \frac{1}{k^{2 m-1}} \ll k .
$$

Therefore

$$
\Omega_{1}=k^{2 m} \sum_{\substack{q=1 \\ 2 \nmid q}}^{Q} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{\substack{h=-\infty \\ h(k)=1 \\ 2 \nmid h+k}}^{\infty} \frac{1}{(q h-a k)^{2 m}}+O\left(k^{2 m-1}\right) .
$$

Since

$$
\begin{aligned}
k^{2 m} \sum_{\substack{q>Q \\
2 \nmid q}} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{h=-\infty \\
h, k)=1 \\
2 \nmid h+k}}^{\infty} \frac{1}{(q h-a k)^{2 m}} & \ll k^{2 m} \sum_{\substack{q>Q \\
2 \nmid q}} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{z=-\infty}^{\infty} \frac{1}{z^{2 m}} \\
& \ll k^{2 m} \sum_{\substack{q>Q}} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} 1 \ll k^{2 m} \sum_{\substack{q>Q \\
2 \nmid q}} \frac{1}{q^{2 m-1}} \\
& \ll \frac{k^{2 m}}{Q^{2 m-2}} \ll k^{m+1} \ll k^{2 m-1},
\end{aligned}
$$

we have

$$
\Omega_{1}=k^{2 m} \sum_{\substack{q=1 \\
2 \nmid q}}^{\infty} \frac{1}{q^{2 m}} \sum_{\substack { a=1 \\
2 \nmid a \\
\begin{subarray}{c}{h=-\infty \\
(h, k)=1 \\
2 \nmid h+k{ a = 1 \\
2 \nmid a \\
\begin{subarray} { c } { h = - \infty \\
(h , k) = 1 \\
2 \nmid h + k } }\end{subarray}}^{q} \frac{1}{(q h-a k)^{2 m}}+O\left(k^{2 m-1}\right) .
$$

Therefore

$$
\sum_{h=1}^{k} S^{2 m}(h, k)=g_{m}(k) k^{2 m}+O\left(k^{2 m-1}\right),
$$

where

$$
g_{m}(k)=\sum_{\substack{q=1 \\ 2 \nmid q}}^{\infty} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{\substack{h=-\infty \\ h(k)=1 \\ 2 \nmid h+k}}^{\infty} \frac{1}{(q h-a k)^{2 m}} .
$$

Let

$$
\begin{aligned}
U(s) & =\sum_{k=1}^{\infty} \frac{g_{m}(k)}{k^{s}}=\sum_{\substack{q=1 \\
2 \nmid q}}^{\infty} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{k=1}^{\infty} \frac{1}{k^{s}} \sum_{\substack{h=-\infty \\
(h, k)=1 \\
2 \nmid h+k}}^{\infty} \frac{1}{(q h-a k)^{2 m}} \\
& =\sum_{\substack{q=1 \\
2 \nmid q}}^{\infty} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{k=1 \\
2 \mid k}}^{\infty} \frac{1}{k^{s}} \sum_{\substack{h=-\infty \\
(h, k=1 \\
2 \nmid h}}^{\infty} \frac{1}{(q h-a k)^{2 m}}+\sum_{\substack{q=1 \\
2 \nmid q}}^{\infty} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{k=1 \\
2 \nmid k}}^{\infty} \frac{1}{k^{s}} \sum_{\substack{h=-\infty \\
(h, k)=1 \\
2 \mid h}}^{\infty} \frac{1}{(q h-a k)^{2 m}} \\
& \equiv U_{1}(s)+U_{2}(s) .
\end{aligned}
$$

We proceed to find an expression for $U_{1}(s)$. We remove the coprimality conditions by use of the Möbius relation

$$
\sum_{d \mid n} \mu(n)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n \neq 1\end{cases}
$$

After rearranging the sums, we have

$$
U_{1}(s)=\sum_{\substack{d=1 \\ 2 \nmid d}}^{\infty} \sum_{\substack{e=1 \\ 2 \nmid e}}^{\infty} \frac{\mu(d)}{d^{s+2 m}} \frac{\mu(e)}{e^{4 m}} \sum_{\substack{k=1 \\ 2 \mid k}}^{\infty} \frac{1}{k^{s}} \sum_{\substack{q=1 \\ 2 \nmid q}}^{\infty} \frac{1}{q^{2 m}} \sum_{\substack{a=1 \\ 2 \nmid a}}^{q} \sum_{\substack{h=-\infty \\ 2 \nmid h}}^{\infty} \frac{1}{(q h-a k)^{2 m}} .
$$

Let $g=(k, q)$, then the inner double sum is

$$
\begin{aligned}
& =\frac{1}{g^{2 m}} \sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{n=-\infty \\
n \neq-a(k / g) \bmod q / g}}^{\infty} \frac{1}{n^{2 m}} \\
& =\frac{1}{g^{2 m}}\left[\sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{n=1 \\
2 \nmid n \\
n \equiv-a(k / g) \bmod q / g}}^{\infty} \frac{1}{n^{2 m}}+\sum_{\substack{a=1 \\
2 \nmid a}}^{q} \sum_{\substack{n=1 \\
2 \nmid n \\
n \equiv-(q-a)(k / g) \bmod q / g}}^{\infty} \frac{1}{n^{2 m}}\right] \\
& =\frac{1}{g^{2 m}} \sum_{a=0}^{q} \sum_{\substack{n=1 \\
2 \nmid n \\
n \equiv-a(k / g) \bmod q / g}}^{\infty} \frac{1}{n^{2 m}}=\frac{1}{g^{2 m}}\left[\sum_{\substack{a=1}}^{q} \sum_{\substack{n=1 \\
2 \nmid n \\
n \equiv-a(k / g) \bmod q / g}}^{\infty} \frac{1}{n^{2 m}}+\sum_{\substack{n=1 \\
2 \nmid n \\
n \equiv 0 \bmod q / g}}^{\infty} \frac{1}{n^{2 m}}\right] \\
& =\frac{1}{g^{2 m}}\left[g \frac{\left(2^{2 m}-1\right) \zeta(2 m)}{2^{2 m}}+\frac{g^{2 m}}{q^{2 m}} \frac{\left(2^{2 m}-1\right) \zeta(2 m)}{2^{2 m}}\right] \\
& =\frac{\left(2^{2 m}-1\right) \zeta(2 m)}{2^{2 m}}\left[g^{1-2 m}+\frac{1}{q^{2 m}}\right] \text {. }
\end{aligned}
$$

Thus by Lemma 6,

$$
U_{1}(s)=\frac{2^{s+4 m}}{\left(2^{s+2 m}-1\right)\left(2^{2 m}+1\right)} \frac{\zeta(2 m)}{\zeta(s+2 m) \zeta(4 m)}\left[\sum_{\substack{k=1 \\ 2 \mid k}}^{\infty} \sum_{\substack{q=1 \\ 2 \nmid q}}^{\infty} \frac{g^{1-2 m}}{k^{s} q^{2 m}}+\sum_{\substack{k=1 \\ 2 \mid k}}^{\infty} \sum_{\substack{q=1 \\ 2 \nmid q}}^{\infty} \frac{1}{k^{s} q^{4 m}}\right] .
$$

By Lemma 6 we have

$$
\begin{aligned}
\sum_{\substack{k=1 \\
2 \mid k}}^{\infty} \sum_{\substack{q=1 \\
2 \nmid q}}^{\infty} \frac{g^{1-2 m}}{k^{s} q^{2 m}} & =\sum_{\substack{k=1 \\
2 \mid k}}^{\infty} \sum_{\substack{q=1 \\
2 \nmid q}}^{\infty} \frac{1}{k^{s} q^{2 m}} \sum_{d \mid(k, q)} \sum_{e \mid d} \mu(e)\left(\frac{d}{e}\right)^{1-2 m} \\
& =\sum_{\substack{d=1 \\
2 \nmid d}}^{\infty} \sum_{e \mid d} \frac{\mu(e)(d / e)^{1-2 m}}{d^{s+2 m}} \sum_{\substack{k=1 \\
2 \mid k}}^{\infty} \sum_{\substack{c=1 \\
2 \nmid q}}^{\infty} \frac{1}{k^{s} q^{2 m}} \\
& =\frac{\left(2^{s+2 m}-2^{1-2 m}\right)\left(2^{2 m}-1\right)}{2^{s+2 m}\left(2^{s+2 m}-1\right)} \cdot \frac{\zeta(s+4 m-1) \zeta(s) \zeta(2 m)}{\zeta(s+2 m)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
U_{1}(s)= & \frac{\left(2^{s+4 m}-2\right)\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)^{2}\left(2^{2 m}+1\right)} \cdot \frac{\zeta^{2}(2 m)}{\zeta(4 m)} \frac{\zeta(s+4 m-1)}{\zeta^{2}(s+2 m)} \zeta(s) \\
& +\frac{\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)} \cdot \frac{\zeta(s) \zeta(2 m)}{\zeta(s+2 m)} .
\end{aligned}
$$

Using the same methods we can prove

$$
\begin{aligned}
U_{2}(s)= & \frac{\left(2^{s}-1\right)\left(2^{s+4 m}-2\right)\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)^{2}\left(2^{2 m}+1\right)} \cdot \frac{\zeta^{2}(2 m)}{\zeta(4 m)} \frac{\zeta(s+4 m-1)}{\zeta^{2}(s+2 m)} \zeta(s) \\
& +\frac{\left(2^{s}-1\right)\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)} \cdot \frac{\zeta(s) \zeta(2 m)}{\zeta(s+2 m)} .
\end{aligned}
$$

So we have

$$
\begin{aligned}
U(s)= & \frac{2^{s}\left(2^{s+4 m}-2\right)\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)^{2}\left(2^{2 m}+1\right)} \cdot \frac{\zeta^{2}(2 m)}{\zeta(4 m)} \frac{\zeta(s+4 m-1)}{\zeta^{2}(s+2 m)} \zeta(s) \\
& +\frac{2^{s}\left(2^{2 m}-1\right)}{\left(2^{s+2 m}-1\right)} \cdot \frac{\zeta(s) \zeta(2 m)}{\zeta(s+2 m)} .
\end{aligned}
$$

This completes the proof of Theorem.

Acknowledgements. The authors express their gratitude to the referee for his very helpful and detailed comments in improving this paper.

References

[1] T.M. Apostol: Modular functions and Dirichlet, Series in Number Theory, Springer-Verlag, New York, 1976.
[2] B.C. Berndt: Analytic eisentein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332-365.
[3] Jia Chaohua: On the mean values of Dedekind sums, J. Number Theory 87 (2001), 173-188.
[4] J.B. Conrey, E. Fransen, R. Klein and C. Scott: Mean values of Dedekind sums J. Number Theory 56 (1996), 214-226.
[5] R.R. Hall and M.N. Huxley: Dedekind sums and continued fractions, Acta Arith. 63 (1993), 79-90.
[6] G.H. Hardy and E.M. Wright: An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979.
[7] J. Pommersheim: Toric varieties, lattice points, and Dedekind sums, Math. Ann. 295 (1993), 1-24.
[8] H. Rademacher: Dedekind Sums, Carus Mathematical Monographs, Mathematical Association of America, Washington, D.C., 1972.
[9] R. Sitaramachandra Rao: Dedekind and Hardy sums, Acta Arith. 48 (1987), 325-340.
[10] H. Walum: An exact formula for an average of L-series, Illinois J. Math. 26 (1982), 1-3.
[11] Z. Wenpeng: On the mean values of Dedekind sums, J. The'or. Nombres Bordeaux 8 (1996), 429-442.
[12] Z. Wenpeng: On the hybrid mean value of Dedekind sums and Hurwitz zeta-function, Acta Arith. 92 (2000), 141-152.
[13] Z. Wenpeng: A hybrid mean value formula of Dedekind sums and Hurwitz zeta-functions, Analytic Number Theory, Kluwer, (2002) 395-408.
[14] Z. Wenpeng and Y. Yuan: On the Dedekind sums and the Fibonacci numbers, The Fibonacci Quarterly, 38 (2000), 223-226.
[15] Z. Wenpeng and Y. Yuan: On the $2 m$-th power mean of certain Hardy sums, Soochow J. Math. 26 (2000), 73-84.
[16] H. Xiali and Z. Wenpeng: On the mean value of the Dedekind sums with the weight of Hurwitz zeta-function, J. Math. Anal. Appl. 240 (1999), 505-517.

Liu Huaning
Department of Mathematics
Northwest University
Xi'an, Shaanxi, P. R. China
e-mail: hnliu@etang.com
Zhang Wenpeng Department of Mathematics Northwest University Xi'an, Shaanxi, P. R. China e-mail: wpzhang@nwu.edu.cn

[^0]: This work is supported by N.S.F. (10271093) and P.N.S.F. of P. R. China

