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1. Introduction

Suppose that we are given a locally compact metric space . Let( ) denote
the set of bounded continuous functions on , and0( ) its subset of continu-
ous functions vanishing at infinity. The subsets of non-negative elements of ( )
and 0( ) are denoted respectively by+( ) and +

0 ( ). Let ( )≥0 be a strongly
continuous conservative Feller semigroup on0( ) with generator ( D( )),
whereD0( ) ⊂ 0( ), and letD( ) = D0( ) ∪ {1}. Suppose in addition that (· ) ∈

( ) and (· ) ∈ +( ) have continuous extensions to, the one point compactifica-
tion of , and that (· ) is bounded away from zero.

Let ( ) be the space of finite Borel measures on equipped with the topol-
ogy of weak convergence. Let = ([0∞) ( )) be the space of all continuous
paths : [0∞) → ( ). Let τ0( ) = inf{ > 0: ( ) = 0} for ∈ and let 0

be the set of paths ∈ satisfying (0) = ( ) = 0 for all ≥ τ0( ). We fix
a metric on ( ) which is compatible with its topology and endowand 0 with
the topology of uniform convergence. Then for eachµ ∈ ( ) there is a unique Borel
probability measureQµ on such that for ∈ D( ),

(1.1) ( ) = ( )− µ( )−
∫

0
( − ) ≥ 0

underQµ is a martingale with quadratic variation process

(1.2) 〈 ( )〉 =
∫

0

(
2
)

≥ 0

whereµ( ) =
∫

µ. The system{Qµ : µ ∈ ( )} defines a measure-valued diffu-
sion, which is the well-known Dawson-Watanabe superprocess. In the sequel, we shall
simply refer to it as a ( )-superprocess. We refer the reader to Dawson [1] and
the references therein for the construction and basic properties of the process. A mod-
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ification of the above model is to replace (1.1) by

(1.3) ( ) = ( )− µ( )−
∫

0
( − ) −

∫

0
( ) ≥ 0

by using a kernel (µ ) from ( ) to , which can be regarded as a ( )-
superprocess with interactive immigration. Some interesting special cases of this modi-
fication have been studied in the literature. Using a Cameron-Martin-Girsanov formula,
Dawson [1, pp. 172–173] treated the special case where (· ) ≡ 0 and

(µ ) = (µ )µ( ) µ ∈ ( ) ∈

for a continuous function (· · ) on ( )× and obtained a superprocess with
non-linear birth-death rate. The conditioned superprocess constructed by Evans and
Perkins [5] and Roelly-Coppoletta and Rouault [16] corresponds to the case

(µ ) = µ(1)−1µ( ) µ ∈ ( ) \ {0} ∈

An interesting representation of the conditioned superprocess was given by Evans [4]
in terms of an “immortal particle” that moves around according to the underlying pro-
cess and throws off pieces of mass into the space.

Let be aσ-finite Borel measure on and let (· · ) be a non-negative Borel
function on ( )× . We have another particular form of (1.3) given by

(1.4) ( ) = ( )− µ( )−
∫

0
( − ) −

∫

0
( ( · ) ) ≥ 0

where (· · ) can be interpreted as an interactive immigration rate relative to the ref-
erence measure . The process defined by (1.4) and (1.2) is of interest since it in-
cludes as special cases (at least formally) the superprocess with non-linear birth-death
rate and the conditioned superprocess as they are a.s. absolutely continuous with re-
spect to the reference measure , both of which has arisen considerable research in-
terest. If (ν ) = ( ) only depends on ∈ , the martingale problem has a unique
solution and defines a superprocess with independent immigration; see e.g. Konno and
Shiga [8] and Li and Shiga [12]. In the general case, a solution of the martingale
problem could be constructed by an approximation by particle systems, but the unique-
ness of solution seems hard. This is similar to the superprocess with mean field
interaction studied by Méléard and Roelly [13, 14] for which the uniqueness still
remains open. Instead of the martingale problem, Shiga [17]suggested another ap-
proach to the interactive immigration superprocess, who gave the formulation of
a stochastic integral equation involving a superprocess and a system of independent
Poisson processes on the space of excursions of one-dimensional branching diffu-
sions. For the particular case where ≡ 0 and µ 7→ ( (µ · )) is bounded
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and Lipschitz relative to the total variation metric, Shiga[17] constructed a solu-
tion of the integral equation and showed that his solution also solves the martin-
gale problem (1.4) and (1.2). He proved that the pathwise uniqueness of solution
for the stochastic integral equation holds so his solution is a diffusion process. This
is a very interesting result since the uniqueness of solution of (1.4) and (1.2) is
not known. A generalization of his result was given in the recent work by Dawson
and Li [2], where some superprocesses with dependent spatial motion and interactive
immigration were constructed from one-dimensional excursions carried by stochastic
flows.

The main purpose of this paper is to establish the results of Shiga [17] when
the spatial migration mechanism is non-trivial. Since in this case the mass is mixed,
it is not clear how to construct the process from one-dimensional excursions as in [17].
Fortunately, the techniques developed by Li and Shiga [12] can be combined with
those of Shiga [17] to solve the difficulty. The main idea of our approach is to for-
mulate a stochastic equation with a Poisson process on the space of measure-valued
excursions. Let{ : ≥ 0} be an ( )-superprocess with deterministic initial
state 0 = µ and ( ) a Poisson random measure on [0∞) × ×
[0 ∞) × 0 with intensity ( ) Q ( ), where Q is an excursion law of
the ( )-superprocess carried by excursions growing up at∈ . We assume
{ : ≥ 0} and ( ) are defined on a standard probability space and
are independent of each other. We shall prove that the stochastic equation

(1.5) = +
∫

0

∫ ∫ ( )

0

∫

0

( − ) ( ) ≥ 0

has a pathwise unique continuous solution{ : ≥ 0} and its distribution on
solves the martingale problem given by (1.2) and (1.4); see Theorem 4.1. The path-
wise uniqueness implies the strong Markov property of{ : ≥ 0}, so our result
gives a partial solution of the open problem on the Markov property of the superpro-
cess with mean field interaction; see Méléard and Roelly [14, p. 103].

In particular, when ={ } is a singleton, equation (1.5) gives a decomposition
of the one-dimensional diffusion process{ ( ) : ≥ 0} defined by

(1.6) ( ) =
√

( ) ( ) + β( ( )) ( ) + γ( ( )) ≥ 0

where > 0 is a constant,β( · ) is a bounded Lipschitz function on [0∞) andγ( · ) is
a non-negative locally Lipschitz function on [0∞) satisfying the linear growth condi-
tion. In the special case whereβ( · ) and γ( · ) are constant, Pitman and Yor [15] gave
a construction of{ ( ) : ≥ 0} by picking up excursions by a Poisson point process,
which served as a preliminary to their well-known results ondecomposition of Bessel
bridges. See also Le Gall and Yor [9].

In Section 2 we recall some basic facts on the ( )-superprocess and its immi-
gration processes with deterministic immigration rates. In Section 3, we discuss con-



730 Z. FU AND Z. LI

struction of immigration processes with predictable immigration rates. The stochastic
equation with a Poisson process of excursions is studied in Section 4.

2. Deterministic immigration rate

In this section, we summarize some basic facts on the ( )-superprocess and
its immigration processes with deterministic immigrationrates. Let ( )≥0 denote
the transition semigroup of the ( )-superprocess, which is determined by

(2.1)
∫

( )

−ν( ) (µ ν) = exp{−µ( )} ∈ +( ) µ ∈ ( )

where is the unique positive solution of the evolution equation

(2.2) ( ) +
1
2

∫

0

∫
( ) ( )2

− ( ) = ( ) ≥ 0 ∈

where ( )≥0 denotes the semigroup of kernels on generated by :=− .
By [1, pp. 195–196], there is a family of finite measures (ν) on ( )◦ :=

( ) \ {0} such that

(2.3)
∫

( )◦

(
1− −ν( )

)
( ν) = ( ) > 0 ∈ ∈ +( )

Let ( ◦) ≥0 be the restriction of ( )≥0 to ( )◦. It is easy to check that
( ( · )) >0 is an entrance lawfor ( ◦) ≥0, that is ( · ) ◦ = + ( · ) for > 0
and > 0. Then there is a uniqueσ-finite Borel measureQ on ( 0 B( 0)) such that

Q ( ( 1) ∈ ν1 . . . ( ) ∈ ν )

= 1( ν1) ◦
2− 1

(ν1 ν2) · · · ◦
− −1

(ν −1 ν )
(2.4)

for 0 < 1 < 2 < · · · < and ν1 ν2 . . . ν ∈ ( )◦. Indeed,Q is carried by
the paths ∈ 0 such that (1)−1 → δ as → 0; see [11] and [12]. Moreover,
it is easy to obtain that

(2.5) Q { ( )( )} = ( ) > 0 ∈ ∈ +( )

Let B ( 0) be theσ-algebra on 0 generated by{ ( ) : 0 ≤ ≤ }. Roughly speak-
ing, ( 0 B ( 0) ( )) under Q is a Markov process with semigroup (◦) >0 and
one-dimensional distributions ( ( · )) >0. The measureQ is known as anexcursion
law of ( ) ≥0.

Now we fix a σ-finite reference measure on and suppose that (· · ) is
a non-negative Borel function on [0∞)× such that ( ( · )) is a locally bounded



MEASURE-VALUED DIFFUSIONS AND STOCHASTIC EQUATIONS 731

function of ≥ 0. Then

(2.6)
∫ ∞

0

−ν( ) (µ ν) = exp

{
−µ( − )−

∫
( ( · ) − )

}

defines an inhomogeneous transition semigroup
( )

≥ . A diffusion process with

transition semigroup
( )

≥ can be constructed as follows. Let{ : ≥ 0} be
an ( )-superprocess with deterministic initial state0 = µ and ( )
a Poisson random measure on [0∞) × × [0 ∞) × 0 with intensity

( ) Q ( ). We assume{ : ≥ 0} and ( ) are defined on
a standard probability space (A P) and are independent of each other. For≥ 0,
let G be theσ-algebra generated by theP-null sets inA and the random variables

(2.7) { ( × ) : ∈ B([0 ] × × [0 ∞)) ∈ B − ( 0) 0≤ ≤ }

We define the ( )-valued process{ : ≥ 0} by

(2.8) = +
∫

0

∫ ∫ ( )

0

∫

0

( − ) ( ) ≥ 0

where the integration area refers to

{( ) : 0< ≤ ∈ 0< ≤ ( ) ∈ 0}

(We shall make the same convention in the sequel.)

Theorem 2.1. The process{ : ≥ 0} defined by(2.8) is an inhomogeneous
diffusion process relative to(G ) ≥0 with transition semigroup

( )
≥ . Moreover, for

each ∈ D( ),

(2.9) ( ) = ( )− 0( )−
∫

0
( − ) −

∫

0
( ( · ) ) ≥ 0

is a martingale relative to the filtration(G ) ≥0 with quadratic variation process

(2.10) 〈 ( )〉 =
∫

0

( 2) ≥ 0

Proof. Let 1( ) denote the restriction of ( ) to

{( ) : > 0 ∈ 0< ≤ ( ) ∈ 0}

and let 1( ) be the image of 1( ) under the map ( )7→
( ). Then 1( ) is a Poisson random measure on [0∞) × 0 with intensity
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Qκ( ), where

Qκ( ) =
∫

( )Q ( ) ( ) ∈ 0

Then the first assertion follows by an obvious modification ofthe arguments
of [12, Theorem 1.3] and [17, Theorem 3.6]; see also [10, Theorem 3.2]. The martin-
gale characterization (2.9) and (2.10) can be proved by a calculation of the generator
of
( )

≥ .

The construction (2.8) gives clear interpretations for reference measure and im-
migration rate (· · ) in the phenomenon. Since (2.9) is linear in∈ D( ), it de-
fines a martingale measure ( ) with quadratic variation measure ( ) ( )
in the sense of Walsh [18]. By a standard argument one gets thefollowing

Theorem 2.2. For each ≥ 0 and ∈ ( ) we have a.s.

(2.11) ( ) = 0
( )

+
∫

0

∫
− ( ) ( ) +

∫

0

(
( · ) −

)

3. Predictable immigration rate

In this section, we fix aσ-finite reference measure on . Let (A P) be
a standard probability space and ( ) and{ : ≥ 0} be as in the last
section. LetG be theσ-algebra on generated by theP-null sets inA and the ran-
dom variables in (2.7). LetP be theσ-algebra on [0∞)× × generated by func-
tions of the form

(3.1) ( ω) = η0( ω)1{ 0}( ) +
∞∑

=0

η ( ω)1( +1]( )

where 0 = 0 < 1 < 2 < · · · andη ( · · ) is B( )×G -measurable. We say a function
on [0 ∞)× × is predictableif it is P-measurable.

Theorem 3.1. Suppose that ( · · · ) is a non-negative predictable function
on [0 ∞) × × such that E{ ( ( · ))2} is locally bounded in ≥ 0. Then
the ( )-valued process

(3.2) = +
∫

0

∫ ∫ ( )

0

∫

0

( − ) ( ) ≥ 0

has a continuous modification. Moreover, for this modification and each ∈ D( ),

(3.3) ( ) = ( )− 0( )−
∫

0
( − ) −

∫

0
( ( · ) ) ≥ 0
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is a martingale relative to the filtration(G ) ≥0 with quadratic variation process

(3.4) 〈 ( )〉 =
∫

0

(
2
)

≥ 0

Let ( ) denote the stochastic integral with respect to the martingale mea-
sure with quadratic variation measure ( ) ( ) defined by (3.3) and (3.4). Then
we have

Theorem 3.2. For each ≥ 0 and ∈ ( ) we have a.s.

(3.5) ( ) = 0
( )

+
∫

0

∫
− ( ) ( ) +

∫

0

(
( · ) −

)

The process{ : ≥ 0} constructed by (3.2) can be regarded as an ( )-
superprocess allowing immigration with immigration rate given by the predictable
function (· · · ). To give the proof of the above theorems we need a set of lem-
mas.

Lemma 3.1. The results ofTheorems 3.1and 3.2 hold if ( · · · ) is of
the form (3.1).

Proof. Observe thatη ( ) is a deterministic function on under the regular con-
ditional probability P{ · | G }. Since G and the restriction of ( )
to ( ∞)× × [0 ∞)× 0 are independent, this restriction underP{ · | G } is still
a Poisson random measure with intensity ( )Q ( ). Note that{ : ≥ 0}
is also an a.s. continuous ( )-superprocess underP{ · | G0}. Then we conclude
by Theorem 2.1 that{ : 0≤ ≤ 1} under P{ · | G0} is an a.s. continuous ( )-
superprocess allowing immigration with immigration rateη0( · ). Let

(0) = +
∫

1

0

∫ ∫ η0( )

0

∫

0

( − ) ( ) ≥ 1

By Theorem 2.1,{ (0) : ≥ 1} under P{ · | G0} is an a.s. continuous ( )-
superprocess. Of course,{ (0) : ≥ 1} is still an a.s. continuous ( )-superprocess
underP{ · | G 1}. It is not difficult to see that

= (0) +
∫

1

∫ ∫ η1( )

0

∫

0

( − ) ( ) 1 ≤ ≤ 2

By Theorem 2.1 again,{ : 1 ≤ ≤ 2} under P{ · | G 1} is an a.s. contin-
uous ( )-superprocess allowing immigration with immigration rateη1( · ). Using
the above argument inductively we can see that{ : ≤ ≤ +1} under P{ · | G }
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is an a.s. continuous ( )-superprocess allowing immigration with immigration
rate η ( · ). By Theorem 2.1,{ : ≥ 0} has a continuous modification. The martin-
gale characterizations of Theorems 3.1 and 3.2 follow from those of the immigration
process with deterministic immigration rate.

Lemma 3.2. Suppose that there is a non-negative deterministic function 1( · ) ∈
1( ) such that ( ω) ≤ 1( ) for all ( ω) ∈ [0 ∞) × × . Let { }

be a sequence of non-negative predictable functions of the form (3.1) such that
( ω) ≤ 1( ) and ( ω) → ( ω) for almost all ( ω) ∈ [0 ∞) ×
× . Let { ( ) : ≥ 0} be defined by(3.2) in terms of ( · · · ). Then there is

an ( )-valued process{ : ≥ 0} such thatlim →∞ E{‖ ( ) − ‖} = 0 uniformly
on each finite interval of ≥ 0, where‖ · ‖ denotes the total variation metric.

Proof. Since the result of Theorem 3.2 holds for{ ( ) : ≥ 0}, we have

(3.6) E{ ( )( )} = µ
( )

+
∫

0
E{

(
( · ) −

)
} ∈ ( )

Observe that for any ≥ ≥ 1, both ∨ and ∧ are predictable functions of
the form (3.1). Let

( ) = +
∫

0

∫ ∫ ( )∨ ( )

0

∫

0

( − ) ( )

and

( ) = +
∫

0

∫ ∫ ( )∧ ( )

0

∫

0

( − ) ( )

Since ‖ ( ) − ( )‖ ≤ ( )(1) − ( )(1), we may apply (3.6) to{ ( ) : ≥ 0}
and { ( ) : ≥ 0} so that

E{‖ ( ) − ( )‖} ≤
∫

0

‖ ‖( − )E{ (| ( · )− ( · )|)}

By dominated convergence, the right hand side goes to zero uniformly on each finite
interval of ≥ 0 as → ∞. Then there is an ( )-valued process{ : ≥ 0} such
that

(3.7) E{ ( )} = µ
( )

+
∫

0
E
{ (

( · ) −
)}

∈ ( )

and lim→∞ E{‖ ( ) − ‖} = 0 uniformly on each finite interval of ≥ 0.

Lemma 3.3. Suppose that the condition ofLemma 3.2holds. Then the process
{ : ≥ 0} obtained there is independent of the choice of{ } in the sense that
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if { : ≥ 0} obtained from another sequence with the same properties, then =
a.s. for each ≥ 0. Moreover, (3.2) holds a.s. for each ≥ 0.

Proof. Let { } be another sequence having the properties of{ }. Then
{ ∨ } and{ ∧ } have the same properties. Let{ ′ : ≥ 0} and{ ′′ : ≥ 0} be
the processes obtained respectively from{ ∨ } and{ ∧ }. Clearly, ′′ ≤ ≤ ′

a.s. for each ≥ 0. But, E{ ′(1)} = E{ ′′(1)} = E{ (1)} by (3.7), so we have
′′ = ′ = a.s. for each ≥ 0. Thus { : ≥ 0} is independent of the choice

of { }. To show (3.2), let denote the value of its right hand side. Wefirst assume
in addition there is a strictly positive deterministic functions 2( · ) ∈ 1( ) such
that 2( ) ≤ ( ω) for all ( ω) ∈ [0 ∞)× × . For ≥ 1, let { : ≥ 0}
and { : ≥ 0} be the process obtained by Lemma 3.2 from the non-negative pre-
dictable functions ( ω) + 2( )/ and ( ω)− 2( )/ , respectively. Since

( ω)− 2( )
< ( ω) < ( ω) + 2( )

we have ≤ , ≤ a.s. for each ≥ 0. But, by (3.7) it is easy to show that

E{ (1)− (1)} ≤ 2 ‖ ‖ ( 2)

so we must have = a.s. for each≥ 0. In the general case, we may apply
the above reasoning to ( ω) + 2( )/ and { : ≥ 0} to get

= +
∫

0

∫ ∫ ( )+ 2( )/

0

∫

0

( − ) ( )

and

E{ ( )} = µ
( )

+
∫

0
E
{ ([

( · ) + 2
]
−

)}

Clearly, decreases to as→ ∞. As in the proof of Lemma 3.2, it is easy to
show that lim→∞ E{‖ − ‖} = 0 uniformly on each finite interval of ≥ 0, so
the desired results hold.

Lemma 3.4. Under the assumptions ofTheorem 3.1,choose a strictly positive
function 1( · ) ∈ 1( ) and let ( ω) = ( ω) ∧ ( 1( )). Let { ( ) : ≥ 0}
be defined by(3.2) in terms of ( · · · ). Then we haveE{‖ ( )− ‖} = 0 uniformly
on each finite interval of ≥ 0, where{ : ≥ 0} is defined by(3.2).

Proof. As in the proof of Lemma 3.2 one can show that there is an( )-valued
process{ : ≥ 0} such that lim→∞ E{‖ ( ) − ‖} = 0 uniformly on each finite
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interval of ≥ 0. As in the proof of Lemma 3.3 we have = a.s. for each≥ 0.

Lemma 3.5. The results ofTheorems 3.1and 3.2 hold if is compact.

Proof. We first assume the condition of Lemma 3.2 holds. Let{ ( ) : ≥ 0} be
the approximating sequence given by Lemma 3.2 and define{ ( ) : ≥ 0} by (3.3) in
terms of{ ( ) : ≥ 0} and (· · · ). By (3.6) we have

∫

0
E
{

( )(1)
}

≤
∫

0

‖ ‖ [µ(1) + ( 2)]

Then for > 0 andε > 0, there isη > 0 such that

P

{∫

0

( )(| |) >
η

2

}
≤ 2η−1‖ ‖

∫

0

‖ ‖ [µ(1) + ( 2)] ≤ ε

Moreover,

(3.8) E{ ( )(1)2} =
∫

0
E{ ( )( )} ≤ ‖ ‖

∫

0

‖ ‖ [µ(1) + ( 2)]

In view of the martingale characterization (3.3) and (3.4) for { ( ) : ≥ 0}, choosing
η > 2(µ(1) + ( 2)) we have

P

{
sup

0≤ ≤

( )(1)> η

}

≤ ε + P

{
sup

0≤ ≤

( )(1)> η

∫

0

( )(| |) ≤ η

2

}

≤ ε + P

{
sup

0≤ ≤

[
µ(1) + ( )(1) +

∫

0
( ( · ))

]
>
η

2

}

≤ ε + P

{
sup

0≤ ≤

( )(1)>
η

2
− µ(1)− ( 2)

}

≤ 4
(η

2
− µ(1)− ( 2)

)−2
E
{

( )(1)2
}

≤ 4
(η

2
− µ(1)− ( 2)

)−2
‖ ‖

∫

0

‖ ‖ [µ(1) + ( 2)]

by a martingale inequality; see e.g. [6, p. 34]. Consequently,

lim
η→∞

sup
≥1

P
{

sup
0≤ ≤

( )(1)> η

}
= 0
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Thus { ( ) : ≥ 0} viewed as processes in ([0∞) ( )) satisfy the compact con-
tainment condition of [3, p. 142]. (Note that ([0∞) ( )) is a closed subspace
of ([0 ∞) ( )).) By Itô’s formula, for ∈ 2(R ) and { 1 . . . } ⊂ D( ),

( ( )( 1) . . . ( )( )
)
−

( ( )
0 ( 1) . . . ( )

0 ( )
)

−
∑

=1

∫

0

′ ( ( )( 1) . . . ( )( )
) [

( ( · ) ) + ( )( − )
]

− 1
2

∑

=1

∫

0

′′ ( ( )( 1) . . . ( )( )
)

( )
(

2
)

is a continuous martingale. From (3.8) and the martingale characterizations of Lem-
ma 3.1 we see thatE{ ( )(1)2} is dominated by a locally bounded positive func-
tion independent of ≥ 1. By [3, pp. 142–145] we conclude that{ ( ) : ≥ 0}
is a tight sequence in ([0∞) ( )). Consequently,{ : ≥ 0} has a continu-
ous modification and{ ( ) : ≥ 0} converges a.s. to this modification in the topology
of ([0 ∞) ( )). Note also that

∫

0
( ( · ) ) →

∫

0
( ( · ) ) ≥ 0

in the topology of ([0∞) R). Then the martingale characterization (3.3) and (3.4)
for { : ≥ 0} follows from Lemma 3.1 and [7, p. 342]. If the condition of
Lemma 3.2 does not hold, we may consider the additional approximating sequence
{ ( ) : ≥ 0} given by Lemma 3.4. Then a modification of the above argumentsshows
that { ( ) : ≥ 0} is a tight sequence, so we also have (3.3) and (3.4). The equal-
ity (3.5) follows in the same way as in the proof of Theorem 2.2.

Proof of Theorems 3.1 and 3.2. Note that ( )≥0 can be extended to a Feller
transition semigroup

( )
≥0

on , the one point compactification of . Since can

be viewed as aσ-finite measure on and since (· ) and (· ) have continuous exten-
sions ( · ) and ( · ) on , we can also regard{ : ≥ 0} and { : ≥ 0} as objects
associated with

( )
≥0

. Applying Lemma 3.5 in this way we see that{ : ≥ 0} has

a
( )

-valued continuous modification{ : ≥ 0} which satisfies the corresponding
martingale characterization (3.3) and (3.4). Then the two theorems will follow from
Lemma 3.5 once it is proved that

(3.9) P
{

({∂}) = 0 for all ∈ [0 ]
}

= 1 > 0

Observe that for any ∈
( )

,

( )
:=

(
−

)
− 0

( )
−
∫

0

(
− ( · )

)
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=
∫

0

∫
− ( ) ( )

is a continuous martingale in∈ [0 ] with quadratic variation process

〈 ( )〉
=
∫

0

( (
−

)2
)

where ( ) ≥0 is defined from ( )≥0 and . By a martingale inequality we have

P

{
sup

0≤ ≤

∣∣∣∣
(

−

)
− 0

( )
−
∫

0

(
− ( · )

) ∣∣∣∣
2
}

≤ 4
∫

0
E
{ ( (

−

)2
)}

Choose a sequence{ } ⊂
( )

such that → 1{∂} boundedly as → ∞. Since
each is a.s. supported by , replacing by in the above and letting → ∞
we obtain (3.9).

4. A stochastic equation with Poisson process

We fix a σ-finite reference measure on . Let (A P) be a standard proba-
bility space on which ( ) and{ : ≥ 0} are given as in Section 2.
Let G be theσ-algebra on generated by theP-null sets inA and the random vari-
ables in (2.7). Suppose that (· · ) is a Borel function on ( )× such that there
is a constant such that

(4.1) ( (ν · )) ≤ (1 +‖ν‖) ν ∈ ( )

and for each > 0 there is a constant > 0 such that

(4.2) (| (ν · )− (γ · )|) ≤ ‖ν − γ‖

for ν and γ ∈ ( ) satisfying ν(1) ≤ and γ(1) ≤ . We consider the stochastic
integral equation:

(4.3) = +
∫

0

∫ ∫ ( )

0

∫

0

( − ) ( ) ≥ 0

By a (strong)solutionof (4.3) we mean a continuous ( )-valued process{ : ≥ 0}
which is adapted to the filtration (G ) ≥0 and satisfies (4.3) with probability one. A so-
lution of this equation can be regarded as an immigration ( )-superprocess with
interactive immigration rate given by (· · ).
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Lemma 4.1. Let ≥ 0 and let 1( · · ) and 2( · · ) be Borel functions
on ( ) × satisfying 1(ν · ) ≡ 2(ν · ) ≡ (ν · ) for ν(1) ≤ . Suppose
that { (1) : ≥ 0} and { (2) : ≥ 0} are solution of (4.3) with ( · · ) replaced
by 1( · · ) and 2( · · ) respectively. Let τ = inf{ ≥ 0: (1)(1)≥ or (2)(1)≥ }.
Then{ (1)

∧τ : ≥ 0} and { (2)
∧τ : ≥ 0} are indistinguishable.

Proof. Since each{ ( ) : ≥ 0} is continuous,
( ( ) )

{ ≤τ} is predictable.

Note also that
( ( ( ) ·

)
{ ≤τ}

)
is bounded. Let

∗ =
∫ ∧τ

0

∫ ∫ ( (1) )∨ ( (2) )

0

∫

0

( − ) ( )

and

∗ =
∫ ∧τ

0

∫ ∫ ( (1) )∧ ( (2) )

0

∫

0

( − ) ( )

Applying Theorem 3.1 to the predictable function

( ω) 7→
(

(1)
)
∨

(
(2)

)
{ ≤τ}

we see that

∗(1) = ∗(1) +
∫

0

∗( ) −
∫

0

( (
(1) ·

)
∨

(
(2) ·

))
{ ≤τ}

is a continuous martingale. By Doob’s stopping theorem,

E { ∗∧τ (1)} =
∫

0
E
{ ( (

(1) ·
)
∨

(
(2) ·

))
{ ≤τ}

}
−
∫

0
E
{ ∗( ) { ≤τ}

}

Similarly, we have

E { ∗∧τ (1)} =
∫

0
E
{ ( (

(1) ·
)
∧

(
(2) ·

))
{ ≤τ}

}
−
∫

0
E
{ ∗( ) { ≤τ}

}

By (4.2) and the fact‖ (1)
∧τ − (2)

∧τ‖ ≤ ∗
∧τ (1)− ∗

∧τ (1), we obtain

E
{[ ∗

∧τ (1)− ∗
∧τ (1)

]}

=
∫

0
E
{ (∣∣ ( (1) ·

)
−

(
(2) ·

)∣∣ { ≤τ}
)}

+
∫

0
E
{[ ∗( )− ∗( )

]
{ ≤τ}

}

≤
∫

0
E
{∥∥ (1) − (2)

∥∥ { ≤τ}
}

+ ‖ ‖
∫

0
E
{[ ∗(1)− ∗(1)

]
{ ≤τ}

}

≤
∫

0
E
{∥∥∥ (1)

∧τ − (2)
∧τ

∥∥∥
}

+ ‖ ‖
∫

0
E
{[ ∗

∧τ (1)− ∗
∧τ (1)

]}
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≤ ( + ‖ ‖)
∫

0
E
{[ ∗

∧τ (1)− ∗
∧τ (1)

]}

Then Gronwall’s inequality yields that

E
{∥∥∥ (1)

∧τ − (2)
∧τ

∥∥∥
}
≤ E

{[ ∗
∧τ (1)− ∗

∧τ (1)
]}

= 0

for all ≥ 0. Since{ (1)
∧τ : ≥ 0} and { (2)

∧τ : ≥ 0} are continuous, they are indis-
tinguishable.

Lemma 4.2. There is at most one solution of(4.3).

Proof. Suppose{ : ≥ 0} and { ′ : ≥ 0} are two solutions of (4.3). Letτ =
inf{ ≥ 0: (1)≥ or ′(1)≥ }. By Lemma 4.1,{ ∧τ : ≥ 0} and{ ′∧τ : ≥ 0}
are indistinguishable for each≥ 1. Thus

τ = inf{ ≥ 0: (1)≥ } = inf{ ≥ 0: ′(1)≥ }

By continuity of paths,τ ↑ ∞ a.s. as →∞ and hence{ : ≥ 0} and { ′ : ≥ 0}
are indistinguishable, that is, (4.3) has a unique solution.

Lemma 4.3. Suppose there is a constant ≥ 0 such that ( (ν · )) ≤ for
all ν ∈ ( ) and (4.2) holds for all ν and γ ∈ ( ) with replaced by . Then
there is a solution{ : ≥ 0} of (4.3). Moreover, for this solution and each ∈
D( ),

( ) = ( )− 0( )−
∫

0
( − ) −

∫

0
( ( · ) ) ≥ 0

is a continuous martingale relative to the filtration(G ) ≥0 with quadratic variation
process

〈 ( )〉 =
∫

0

(
2
)

≥ 0

Proof. Since{ : ≥ 0} is a.s. continuous, the function ( ω) 7→ ( (ω) )
is predictable. We define an approximating sequence{ ( ) : ≥ 0} inductively
by (0) = and

( ) = +
∫

0

∫ ∫ ( ( −1) )

0

∫

0

( − ) ( )

for ≥ 1. A similar argument as in the proof of Lemma 4.1 gives

E
{∥∥∥ ( )(1)− ( −1)(1)

∥∥∥
}
≤
∫

0

‖ ‖( − )E
{ (∣∣ ( ( −1) ·

)
−

(
( −2) ·

)∣∣)}
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≤ ‖ ‖
∫

0
E
{∥∥ ( −1)− ( −2)

∥∥}

and

E
{∥∥∥ (1) − (0)

∥∥∥
}

=
∫

0

‖ ‖( − )E { ( ( · ))} ≤ ‖ ‖

Thus there is an ( )-valued process{ : ≥ 0} such that lim→∞ E{‖ ( )− ‖} =
0 uniformly on each finite interval of ≥ 0. Let

′ = +
∫

0

∫ ∫ ( )

0

∫

0

( − ) ( )

As the above,

E
{∥∥∥ ( ) − ′

∥∥∥
}
≤

∫

0
E
{∥∥ ( −1)− ′∥∥}

Then we also have lim→∞ E{‖ ( ) − ′‖} = 0 uniformly on each finite interval
of ≥ 0, so that a.s. ′ = and (4.3) is satisfied. By Theorem 3.1,{ : ≥ 0}
has a continuous modification and we have the martingale characterization.

Lemma 4.4. For each ≥ 1 define a smooth function ( · ) on [0 ∞) such that

( ) =





1 if ≤ − 1

if ≥ + 1

and 0≥ ′ ( ) ≥ −1/ for all ≥ 0. Then (ν ) := ( (ν(1))ν ) satisfies the con-
ditions of Lemma 4.3.

Proof. By (4.1) and the definition of (· · ) we have

( (ν · )) ≤ (1 + (ν(1))ν(1))≤ (1 + )

On the other hand, forν and γ ∈ ( ) let η = ν + γ and let ν and γ denote
respectively the densities ofν and γ with respect toη. Without loss of generality, we
may assumeν(1)≤ γ(1). By the mean-value theorem we have that

ν(1) | (ν(1))− (γ(1))| ≤ ν(1) | ′ ( )| |ν(1)− γ(1)| ≤ ‖ν − γ‖

whereν(1)≤ ≤ γ(1). It follows that

| ( (ν · )− (γ · ))| = | ( ( (ν(1))ν · )− ( (γ(1))γ · ))|
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≤ ‖ (ν(1))ν − (γ(1))γ‖
≤ η(| (ν(1)) ν − (γ(1)) γ |)
≤ [| (ν(1))− (γ(1))| η( ν) + (γ(1))η(| ν − γ |)]
≤ [| (ν(1))− (γ(1))|ν(1) +‖ν − γ‖]
≤ 2 ‖ν − γ‖

That is, (· · ) satisfies the conditions of Lemma 4.3.

The following theorem generalizes the result of [17, Corollary 5.5]:

Theorem 4.1. Under the conditions(4.1) and (4.2), there is a unique solution
{ : ≥ 0} of (4.3). Moreover, { : ≥ 0} is a measure-valued diffusion and for
each ∈ D( ),

(4.4) ( ) = ( )− 0( )−
∫

0
( − ) −

∫

0
( ( · ) ) ≥ 0

is a continuous martingale relative to the filtration(G ) ≥0 with quadratic variation
process

(4.5) 〈 ( )〉 =
∫

0

(
2
)

≥ 0

Proof. The uniqueness of (4.3) holds by Lemma 4.2. For the proof of existence,
we first construct an approximating sequence. For each integer ≥ 1 let ( · · )
be defined as in Lemma 4.4. By Lemma 4.3 there is an unique continuous solution
{ ( ) : ≥ 0} of (4.3) with (· · ) replaced by (· · ). Then, by Lemma 4.1,
for ≥ , we have a.s. ( )

∧τ = ( )
∧τ for each ≥ 0, where

τ = inf
{
≥ 0: ( )(1)≥

}
= inf

{
≥ 0: ( )(1)≥

}

Since{ ( )
∧τ : ≥ 0} and { ( )

∧τ : ≥ 0} have continuous paths, they are indistinguish-
able. Using Theorem 3.2, condition (4.1) and noticing that

( ( ) ·
)

=
( ( ) ·

)

for ∈ [0 ∧ τ ] we get

E
{

( )
∧τ (1))

}
≤ ‖ ‖ µ(1) +

∫

0

‖ ‖( − )E
{ ( (

( )
∧τ ·

))}

≤ ‖ ‖ (µ(1) + ) + ‖ ‖
∫

0
E
{

( )
∧τ (1)

}

By Gronwall’s inequality there is a locally bounded function ( · ) on [0 ∞) indepen-
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dent of ≥ 1 such that

(4.6) E
{

( )
∧τ (1)

}
≤ ( )

By the definition ofτ we have P{0< τ < } ≤ ( ), and so

P{τ ≤ } = P(τ = 0) +P(0< τ < ) ≤ 1[ ∞)(µ(1)) + −1 ( )

which goes to zero as → ∞. But {τ } is an increasing sequence, so we conclude
that a.s.τ ↑ ∞ as → ∞. Thus there is a continuous process{ : ≥ 0} such
that a.s. ( ) = for all ∈ [0 τ ]. Clearly, { : ≥ 0} satisfies (4.3) with proba-
bility one. By (4.6) and Fatou’s lemma,E{ (1)} ≤ ( ). The martingale characteriza-
tion (4.4) and (4.5) follows by Lemma 4.3. The strong Markov property can be proved
as [17, Theorem 4.4].

Suppose that > 0 is a constant,β( · ) is a bounded Lipschitz function on [0∞)
and γ( · ) is a non-negative locally Lipschitz function on [0∞) satisfying the linear
growth condition. The stochastic differential equation

(4.7) ( ) =
√

( ) ( ) + β( ( )) ( ) + γ( ( )) ≥ 0

defines diffusion process{ ( ) : ≥ 0}, which may be called a continuous state
branching diffusion with interactive growth and immigration. Setting

= − inf β( ) and ( ) =β( ) + + γ( ) ≥ 0

we can rewrite (4.7) as

(4.8) ( ) =
√

( ) ( ) − ( ) + ( ( )) ≥ 0

The last equation may be regarded as the special case of the martingale problem (4.4)
and (4.5) with ={ } being a singleton. Thus equation (4.3) gives a decomposition
of the paths of{ ( ) : ≥ 0} into excursions of the diffusion process{ ( ) : ≥ 0}
defined by

(4.9) ( ) =
√

( ) ( ) − ( ) ≥ 0

This generalizes a result of [15], who considered the case where β( · ) and γ( · ) are
constants and hence the right hand side of (4.3) is independent of { ( ) : ≥ 0}. See
also [9].
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