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1. Introduction

We study the semi-classical limitε → 0 of solutionsuε : ( ) ∈ R × R → C of
the equation

ε∂ uε +
1
2
ε2 uε = ( )uε + λ|uε|2σuε

whereλ > 0 (the nonlinearity is repulsive), with concentrating initial data

uε(0 ) =

( − 0

ε

)
( ·η0/ε)

Similar problems were studied for attractive nonlinearities (λ < 0), by Bronski and
Jerrard ([1]), and Keraani ([15]). In that case, if the poweris 2-subcritical (σ < 2/ )
and is the ground state solution of an associated scalar elliptic equation, then when

is smooth with ∈ 2∞, the following asymptotics holds in :=∞loc(R; 2(R )),

1
ε /2

∥∥∥∥uε( )−
( − ( ) + ε ε( )

ε

)
( ·η( )/ε)+ θε( )

∥∥∥∥ =
(√
ε
)

1
ε /2

∥∥∥∥ε∇
(

uε( )−
( − ( ) + ε ε( )

ε

)
( ·η( )/ε)+ θε( )

)∥∥∥∥ =
(√
ε
)(1.1)

where θε( ) ∈ [0 2π[, ε : R → R is locally uniformly bounded and ( ( )η( )) are
the integral curves associated to the classical Hamiltonian

(1.2) ( τ η) = τ +
1
2
|η|2 + ( )

with initial data ( 0 η0).
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In this paper, we address the case of a defocusing nonlinearity (λ > 0), when the
potential is a polynomial of degree at most two.

In the caseλ > 0, a different qualitative behaviour is expected. Intuitively, disper-
sive effects prevent the solution from keeping a concentrating aspect as in (1.1), for it
is well known (see e.g. [5]) that the solutions to the nonlinear Schrödinger equation

(1.3) ∂ ψ +
1
2

ψ = |ψ|2σψ

have the same dispersive properties as the solutions to the linear Schrödinger equation,
under suitable assumptions onσ andψ(0 ). In the case where the potential is the
harmonic potential, ( ) =ω2| |2, it was proved in [2] that when 0 = η0 = 0, the
nonlinear term is relevant so long as the dispersive effectsare not too strong. This is
so in a boundary layer of sizeε. Past this boundary layer, the nonlinear term becomes
negligible, and the potential imposes the dynamical behaviour of the solution. In the
case of anisotropic potential,

(1.4) ( ) =
1
2

∑

=1

ω2 2

where all theω ’s are equal, then focusing at the origin occurs at times =π, ∈ Z,
and each focus crossing is described in terms of the Maslov index (this phenomenon
is linear) and the nonlinear scattering operator associated to (1.3). The caseη0 = 0,

0 ∈ R , is also discussed, and we explain below how to infer the moregeneral case
( 0 η0) ∈ R ×R (see (1.19)).

The case where theω ’s are (all positive) not necessarily equal is also discussed
in [2]. The conclusion is that the nonlinear term is not relevant outside the initial
boundary layer if and only if two of theω ’s are rationally independent. In the present
paper, we consider the case of a generalized quadratic potential which excludes this
case.

More precisely, we assume that the potential is of the form

(1.5) ( ) =
∑

1≤ ≤
α +

∑

=1

β + γ

where the constantsα , β and γ are real. We first notice that up to changing the
origin and the basis, we can assume that the potential has a more rigid form.

Lemma 1.1. Let given by(1.5). There exist̂ ∈ R , and a family 1 . . . ∈
R of orthogonal unit vectors such that, with ̂ as a new origin, the potential
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writes, in the basis( 1 . . . ),

( ) =
1
2

∑

=1

δ ω2 2 +
∑

=1

+

whereω > 0, δ ∈ {−1 0 1}, , ∈ R and for every , δ = 0. The real numbers

1
2
δ ω2 = 1 . . .

are the eigenvalues of the quadratic part of .

Proof. Consider the quadratic part of the potential ,

( ) =
∑

1≤ ≤
α

It is well-known that there exists a family1 . . . ∈ R of orthogonal unit vectors
such that, in this new basis, writes

(˜) =
1
2

∑

=1

δ ω2˜2

whereω > 0, δ ∈ {−1 0 1}. In this basis, is of the form

(˜) =
1
2

∑

=1

δ ω2˜2 +
∑

=1

β̃ ˜ + γ

with β̃ ∈ R. If δ = 0, we take =β̃ , and if δ 6= 0, we use the one-dimensional
formula,

2 + 2 = ( + )2− 2

The lemma follows.

In these new coordinates, the Laplace operator is not changed, and the initial
value problem we are interested in becomes

(1.6)





ε∂ uε +
1
2
ε2 uε = ( )uε + λ|uε|2σuε

uε(0 ) =

( − 0

ε

)
·ξ0/ε κ/ε

for some 0, ξ0 ∈ R , κ ∈ R. Notice thatũε, defined byũε( ) := uε( ) ( +κ)/ε,
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solves

(1.7)





ε∂ ũε +
1
2
ε2 ũε = ( ( )− ) ũε + λ|ũε|2σũε

ũε(0 ) =

( − 0

ε

)
( ·ξ0/ε)

We can thus assume = 0. We make an additional assumption on thepotential.

ASSUMPTION 1.2. We suppose that the potential satisfies the following properties.
1. It is of the form

(1.8) ( ) =
1
2

∑

=1

δ ω2 2 +
∑

=1

whereω > 0, δ ∈ {−1 0 1}, , ∈ R and for every ,δ = 0.
2. Either there exists such thatδ 6= 1, or δ = 1 for all and theω ’s are not
pairwise rationally dependent:

∃ 6= ω

ω
6∈ Q

REMARK. We allow negative coefficients for the potential (caseδ = −1). In that
case, the energy ofuε which is formally independent of time,

(1.9) ε =
1
2
‖ε∇ uε( )‖2

2 +
1

σ + 1
‖uε( )‖2σ+2

2σ+2 +
∫

( )|uε( )|2

contains negative terms which are not controlled by the positive terms (in particular,
by the 1-norm). Therefore, even the issue of global existence in1 is not obvious.
We prove that for any > 0, uε cannot blow up for| | ≤ , provided thatε is
sufficiently small (0< ε ≤ ε( )). Notice that in the case of an isotropic negative
quadratic potential (δ = −1 andω = ω for all ), global existence for fixedε was
proved in [3].

Assumption 1.2 has a simple geometric consequence. Forget the nonlinear term for
a moment, and consider the classical Hamiltonian given by (1.2). Because is of
the form given by (1.8), the bicharacteristic curves starting from any point (0 ξ0) ∈
R ×R can be computed explicitly. They solve the differential equation





˙ = 1 ; ˙ ( ) = ξ( )

τ̇ = 0 ; ξ̇( ) = −∇ ( ( ))

(0) = 0 ; ξ(0) = ξ0
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Introduce the auxiliary functions,

(1.10) ( ) =





sin(ω )
ω

if δ = 1

if δ = 0

sinh(ω )
ω

if δ = −1

; ( ) =





cos(ω ) if δ = 1

1 if δ = 0

cosh(ω ) if δ = −1

Then the bicharacteristic curves are given by

(1.11) ( ) = ( ) 0 + ( )ξ0 −
1
2

2 ; ξ ( ) = ( )ξ0 − δ ω2 ( ) 0 −

As the analysis will prove later on, the second part of Assumption 1.2 implies that
except at time = 0, the energy is never concentrated at one point. Some new concen-
trations may happen for 6= 0 (if δ = 1 for at least one ), but on a vector space of
dimension at least one, for which the nonlinear term turns out to be subcritical in the
limit ε→ 0.

First, assume that0 = ξ0 = 0. Taking ε := ε− /2λ1/(2σ)ũε as a new unknown
turns (1.7) into

(1.12)





ε∂ ε +
1
2
ε2 ε = ( ) ε + ε σ| ε|2σ ε

ε
| =0 =

1
ε /2

ϕ
(
ε

)

whereϕ is given byϕ := λ1/(2σ) . As we mentioned already, we expect the caustic
crossing at time = 0 to be described by the scattering operator associated to (1.3).
For this operator to be well-defined, we make a second assumption, on the initial da-
tum and the nonlinearity.

ASSUMPTION 1.3. The initial datumϕ and the powerσ are such that:
1. ϕ ∈ :=

{
∈ 1(R ) ; | | ∈ 2(R )

}
, where is equipped with the norm

‖ ‖ = ‖ ‖ 2 + ‖∇ ‖ 2 + ‖ ‖ 2

2. 1≤ ≤ 5 andσ > 1/2, so that the nonlinearity| |2σ is twice differentiable.
3. If = 1, we assume in additionσ > 1.
4. If 3 ≤ ≤ 5, we takeσ < 2/( − 2).
5. If ≤ 2, we assume
• Either σ > (2− +

√
2 + 12 + 4 )/(4 ),

• Or ‖ϕ‖ ≤ δ sufficiently small.

REMARK. i) The assumptionϕ ∈ makes the energy (1.9) well defined at time
= 0.
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ii) The assumptionσ < 2/( − 2) is needed for a complete 1 theory on (1.3) to be
available (see e.g. [5]). The assumptionσ > 1/2, used later on for the nonlinearity to
be twice differentiable, therefore imposes the restriction ≤ 5.
iii) The third and fifth points of the above assumption are here to insure the existence
of a complete scattering theory for (1.3). When≥ 3, this theory is available because
σ > 1/2. Denote 0( ) = ( /2) the free Schrödinger group. From [12] and [6], since
ϕ ∈ , there existψ± ∈ such that the unique solutionψ to (1.3) such thatψ| =0 = ϕ
satisfies

(1.13) lim
→±∞

‖ 0(− )ψ( )− ψ±‖ = 0

We can now state our main result in the case0 = ξ0 = 0.

Theorem 1.4. Suppose thatAssumptions 1.2and 1.3 are satisfied.
1. For any > 0, there existsε( ) > 0 such that for0 < ε ≤ ε( ), (1.12) has a
unique solution ε ∈ ([− ]; ).
2. This solution satisfies the following asymptotics.
• For any > 0,

lim sup
ε→0

sup
| |≤ ε

(
‖ ε( )− ε( )‖ 2 + ‖ε∇ ε( )− ε∇ ε( )‖ 2

+
∥∥∥
ε

ε( )−
ε

ε( )
∥∥∥

2

)
= 0

(1.14)

where

(1.15) ε( ) =
1
ε /2

ψ
(
ε ε

)

and ψ ∈ (R; ) is the solution to(1.3) such thatψ| =0 = ϕ.
• Beyond this boundary layer, we have

lim sup
ε→0

sup
ε≤± ≤

( ∥∥ ε( )− ε
±( )

∥∥
2 +
∥∥ε∇ ε( )− ε∇ ε

±( )
∥∥

2

+
∥∥ ε( )− ε

±( )
∥∥

2

)
−→
→+∞

0
(1.16)

where ε
± ∈ (R; ) are the solutions to

(1.17)





ε∂ ε
± +

1
2
ε2 ε

± = ( ) ε
±

ε
±| =0 =

1
ε /2

ψ±
(
ε

)

and ψ± are given by(1.13).
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REMARK. This result can be viewed as a nonlinear analog to a result due to Nier.
In [17] (see also [16]), the author studies the problem

(1.18)





ε∂ ε +
1
2
ε2 ε = ( ) ε +

(
ε

)
ε

ε
| =0 =

1
ε /2

ϕ
(
ε

)

where is a short range potential. The potential in that case is bounded as well as
all its derivatives. In that paper, the author proves that under suitable assumptions, the
influence of occurs near = 0 and is localized near the origin, while only the value

(0) of at the origin is relevant in this régime. For timesε≪ | | < ∗, the situation
is different: the potential becomes negligible, while dictates the propagation. As
in our paper, the transition between these two régimes is measured by the scattering
operator associated to .

Assumption 1.3 implies in particularσ > 1, which makes the nonlinear term
short range. With our scaling for the nonlinearity, this perturbation is relevant only
near the focus, where the potential is negligible, while theopposite occurs forε ≪
| | ≤ .

The case 0 = ξ0 = 0 turns out not to be so particular in the case of a potential
satisfying (1.8), when no linear term is present, that is = 0,∀ . Introduce the

change of variables

uε( ) = ε( − ( )) ( )/ε

with ( ) = · ξ( )− 1
2

(
( ) · ξ( )− 0 · ξ0

)(1.19)

where ( ) andξ( ) are given by (1.11). It is easy to check that ifε solves (1.12)
with 0 = ξ0 = 0, thenuε solves

(1.20)





ε∂ uε +
1
2
ε2 uε = ( )uε + ε σ|uε|2σuε

uε
| =0 =

1
ε /2

ϕ

( − 0

ε

)
·ξ0/ε

Corollary 1.5. Let ( 0 ξ0) ∈ R ×R . Under Assumptions 1.2and 1.3, with =
0, ∀ , we have:
1. For any > 0, there existsε( ) > 0 such that for0 < ε ≤ ε( ), (1.20) has a
unique solutionuε ∈ ([− ]; ).
2. This solution satisfies the following asymptotics.



700 R. CARLES AND L. M ILLER

• For any > 0,

lim sup
ε→0

sup
| |≤ ε

(
‖uε( )− vε( )‖ 2 + ‖ε∇ uε( )− ε∇ vε( )‖ 2

+

∥∥∥∥
− ( )
ε

uε( )− − ( )
ε

vε( )

∥∥∥∥
2

)
= 0

(1.21)

where

vε( ) =
1
ε /2

ψ

(

ε

− ( )
ε

)
( )/ε

ψ ∈ (R; ) is the solution to(1.3) such thatψ| =0 = ϕ and is given by(1.19).
• Beyond this boundary layer, we have

lim sup
ε→0

sup
ε≤± ≤

(∥∥uε( )− uε
±( )

∥∥
2 +
∥∥ε∇ uε( )− ε∇ uε

±( )
∥∥

2

+
∥∥( − ( ))

(
uε( )− uε

±( )
)∥∥

2

)
−→
→+∞

0

(1.22)

whereuε
± ∈ (R; ) are the solutions to





ε∂ uε
± +

1
2
ε2 uε

± = ( )uε
±

uε
±| =0 =

1
ε /2

ψ±

( − 0

ε

)
·ξ0/ε

and ψ± are given by(1.13).

REMARK. i) The functions uε
± are also given byuε

±( ) = ε
±( −

( )) ( )/ε.
ii) The change of variable (1.19) could also be used in the case of an isotropic (at-
tractive) harmonic potential to generalize the results of [2].
iii) The above corollary shows in particular that the results stated in Theorem 1.4 are
independent of the fact that the concentrating point is a critical point for the poten-
tial .
iv) After this article was written, it was noticed that we cango further into reducing
the assumptions. Denote = (1 . . . ), and define ε

♯ by

ε
♯( ) := ε

(
−

2

2

)
exp

{ (
· −

3

3
| |2
)/

ε

}

As noticed in [4], if ε solves (1.12), then ε
♯ solves the same initial value problem,

with replaced by

♯( ) = ( )− ·
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which satisfies Assumption 1.2 and has no linear part. Therefore, the conclusions of
Corollary 1.5 still hold without the assumption = 0.

This paper is organized as follows. In Section 2, we study thelinear equa-
tions (1.17). We introduce some tools which are relevant in the nonlinear setting, and
prove that under Assumption 1.2, possible refocusings occur with less intensity for
6= 0 than for = 0. In Section 3, we establish local existence results in for (1.12)

when ε is fixed, for general subquadratic potentials. In Section 4,we prove the first
asymptotics of Theorem 1.4, and the proof of Theorem 1.4 is completed in Section 5.
Finally, we examine in Section 6 the asymptotic behaviour ofε solution to (1.12)
when is a general subquadratic potential, not necessarily of the form (1.8).

2. The linear equation

In this section, we analyze some properties of solutions of the equation

(2.1) ε∂ ε +
1
2
ε2 ε = ( ) ε

Under Assumption 1.2, it turns out that some tools which are classical in a linear set-
ting (Heisenberg observables) are very helpful to study nonlinear problems. Introduce
the unitary group

(2.2) ε( ) := exp
ε

(
ε2

2
− ( )

)

This group is well-defined for subquadratic potentials (see[19], p. 199), and in partic-
ular under our assumptions.

We consider the following Heisenberg observables (see e.g.[20]),

(2.3) ε
1( ) := ε( )

ε
ε(− ) ; ε

2( ) := ε( ) ε∇ ε(− )

They solve

∂ ε
1( ) = ε( ) ∇ ε(− ) =

1
ε

ε
2( ) ; ∂ ε

2( ) = − ε( )∇ ε(− )

Therefore,

∂2 ε
1 ( ) = −1

ε
ε( )∂ ε(− )

= −δ ω2 ε( )
ε

ε(− )−
ε

= −δ ω2 ε
1 ( )−

ε
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We thus have explicitly,

ε
1 ( ) :=

ε
( ) + ( )∂ −

2ε
2

ε
2 ( ) :=− δ ω2 ( ) + ( )ε∂ −

(2.4)

These operators inherit interesting properties which we list below.

Lemma 2.1. The operators ε satisfy the following properties.
• They commute with the linear part of(1.12),

(2.5)

[
ε ( ) ε∂ +

1
2
ε2 − ( )

]
= 0 ∀( ) ∈ {1 2} × {1 . . . }

• Denote

φ1( ) :=
1
2

∑

=1

(
( )
( )

2 − −
3

12
2

)

φ2( ) := −1
2

∑

=1

(
δ ω2 ( )

( )
2 + 2 +

3

3
2

)

Thenφ1 and φ2 are well-defined for almost every, and

ε
1 ( ) = ( ) φ1( )/ε∂

(
− φ1( )/ε ·

)

ε
2 ( ) = ε ( ) φ2( )/ε∂

(
− φ2( )/ε ·

)(2.6)

• For ≥ 2, and < 2 /( − 2) if ≥ 3 ( ≤ ∞ if = 1), defineδ( ) by

δ( ) ≡
(

1
2
− 1

)

Define ε( ) by

ε( ) :=
∏

=1

(
| ( )| + ε| ( )|

)1/

There exists such that, for any ∈ ,

(2.7) ‖ ‖ ≤
ε( )δ( )

‖ ‖1−δ( )
2 max‖ ε ( ) ‖δ( )

2

• For any function ∈ 1(C C) satisfying the gauge invariance condition

∃ ∈ (R+ R) ( ) = (| |2)
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one has, for any ( ) ∈ {1 2} × {1 . . . } and almost all ,

(2.8) ε ( ) ( ) = ∂ ( ) ε ( ) − ∂¯ ( ) ε ( )

Proof. The first point follows the definition of Heisenberg observables (Von Neu-
mann equation). The second is straightforward computation. The third point is a con-
sequence of the well-known Gagliardo-Nirenberg inequalities, and of (2.6). The last
point is also a consequence of (2.6).

REMARK. i) In the definition ofφ1 (resp.φ2), the factor 3 2/12 (resp. 3 2/3)
may seem artificial, for it plays no role in the formula (2.6).We introduced these
terms because their presence implies thatφ1 andφ2 solve the eikonal equation

∂ φ +
1
2
|∇ φ|2 + ( ) = 0

This point is discussed further in details in Section 6.1.
ii) As noticed in [3], the fact that our operators enjoy the properties to be Heisenberg
observablesand factorized as in (2.6) is due to Assumption 1.2. We prove in Section 6
that other potentials cannot meet these two properties.

To conclude this section, we explain why the second point of Assumption 1.2 im-
plies that there is no “strong” focusing outside = 0 for (1.12). As we will see in the
proof of Theorem 1.4, this is so because the solutions to (1.17) do not concentrate at
one single point for 6= 0.

Let ( ) ∈ {1 2} × {1 . . . }. Because of (2.5), ε ε
± solve (2.1), and

∥∥ ε ε
±( )

∥∥
2 =
∥∥ ε ε

±(0)
∥∥

2 = (1) asε→ 0

Thus, for any as in Lemma 2.1, there exists independent ofε and such that,

‖ ε
±( )‖ ≤

ε( )δ( )

Notice that the concentration ofε± is equivalent to the cancellation of the ’s. As-
sume that exactly functions ’s cancel at time0. For the corresponding ’s, we
have (0) = 1, and ε( 0) is of order exactly ε / as ε goes to zero. The functions

ε
± concentrate on a space of dimension− .

At time = 0, we have

(2.9) ‖ ε
±(0)‖ =

1
ε /2

∫ ∣∣∣ψ±
(
ε

)∣∣∣ =
(
ε− δ( )

)

From the second point of Assumption 1.2, if for0 6= 0, functions ’s cancel, then
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necessarily, < , and

(2.10) ‖ ε
±( 0)‖ =

(
ε−δ( ) /

)

Comparing (2.9) and (2.10) (recall that < ) shows that the amplification of the
-norms cannot be so strong as at time = 0. Since the scaling forthe nonlinear

term in (1.12) is critical for the concentration at one point, it is subcritical for any
other concentration, this is why the nonlinear term is relevant only near the origin in
the asymptotics stated in Theorem 1.4. This heuristic argument is made rigorous in
Section 5, and uses the following lemma.

Lemma 2.2. Let satisfyAssumption 1.2,and denoteω = minω . Let δ > 0
and > 1 such thatδ > 1. Then

lim sup
ε→0

ε−(1/ )+δ

(∫ π/(2ω)

ε
ε( )δ

)1/

−→
→+∞

0

Moreover, for any > 0, there exists > 0 independent ofε ∈]0 1], such that

(∫

π/(2ω)
ε( )δ

)1/

≤ ε(1/ )−δ+(δ/ )

Sketch of the proof. The functions ’s may cancel at timesπ/ω , for ∈ Z.
For ∈ [ ε π/(2ω)],

ε( ) ≥

and the first part of the lemma follows. For the second part, split the considered inte-
gral into a sum of the form

∫ π/ω−ε

π/(2ω)
+
∫ π/ω+ε

π/ω−ε

+
∫ π/ω −ε

π/ω+ε

+ · · · +
∫

π/ω +ε

We noticed that if at time π/ω , cancels, then at most−1 functions ’s cancel,
and

ε( ) ≥ ε−1+1/ ∀ ∈
[

π

ω
− ε π

ω
+ ε

]

This shows that integrals of the form

∫ π/ω +ε

π/ω −ε

yield the announced estimate. Other integrals are estimates in a similar fashion.
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3. Local existence results

In this section, we establish local existence results for nonlinear Schrödinger equa-
tions with a general subquadratic potential. This is a natural generalization of (1.12),
and will be needed in Section 6. Consider a potentialV satisfying the following prop-
erties.

ASSUMPTION 3.1. The potentialV : R×R 7→ R depends on and , and satisfies:
1. For fixed ,V( ) ∈ ∞(R R). We also assume thatV is a measurable function
of ( ) ∈ R× R .
2. For α ∈ N , define

α( ) = sup
∈R

|∂αV( )| + sup
≤1
|V( )|

We assume that for any multi-index satisfying|α| ≥ 2, α ∈ ∞
loc(R).

Notice that the first point of Assumption 1.2 implies Assumption 3.1. Denote

(3.1) Uε( ) := exp

(

ε

(
ε2

2
− V

))

From [7], [8], there existsδ > 0 independent ofε such that for| | ≤ δ,

(3.2) Uε( ) ( ) = − (π/4) sgn 1

|2πε | /2

∫

R

ε( ) ( )/ε ( )

where solves the eikonal equation

∂ +
1
2
|∇ |2 + V( ) = 0

and ε is bounded as well as all its ( )-derivatives, uniformly forε ∈]0 1] and | | ≤
δ.

The groupUε is unitary on 2(R ), and there existδ > 0 and > 0 independent
of ε ∈]0 1] such that for| | ≤ δ,

‖ ε( )‖ 1→ ∞ ≤ |ε | /2

As noticed in [5] (see also [14]), this yields Strichartz type inequalities forUε.

DEFINITION 3.2. A pair ( ) isadmissibleif 2 ≤ < 2 /( − 2) (resp. 2≤ ≤
∞ if = 1, 2 ≤ <∞ if = 2) and

2
= δ( ) ≡

(
1
2
− 1

)
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The following proposition is a consequence of (3.2) and [14].

Proposition 3.3 (Strichartz inequalities). The groupUε( ) satisfies:
1. For any admissible pair( ), any finite interval , there exists ( ) such that

(3.3) ε1/ ‖Uε( ) ‖ ( ; ) ≤ ( )‖ ‖ 2

2. For any admissible pairs( 1 1) and ( 2 2), and any finite interval , there exists

1 2( ) such that

(3.4) ε(1/ 1)+(1/ 2)

∥∥∥∥∥

∫

∩{ ≤ }
Uε( − ) ( )

∥∥∥∥∥
1 ( ; 1 )

≤ 1 2( ) ‖ ‖ ′

2 ( ;
′

2 )

The above constants are independent ofε.

For ( ) an admissible pair and a time interval, define

( ) :=
{
ψ ∈ ( ; ); ψ ∈ ( ; ) ∩ ∞( ; 2) ∀ ∈ {Id ∇ | |}

}

The main result of this section is the following.

Proposition 3.4. Let V satisfying Assumption 3.1,ϕ and σ satisfying Assump-
tion 1.3. There exist > 0 and a unique solutionψ ∈ 2σ+2(] − [) to the initial
value problem,

(3.5)





∂ ψ +
1
2

ψ = V( )ψ + |ψ|2σψ

ψ| =0 = ϕ

This solution actually belongs to (] − [), where

( ) :=
{
ψ ∈ ( ; ); ψ ∈ ( ; ) ∀ ∈ {Id ∇ | |} ∀( ) admissible

}

If the potentialV does not depend on time, we have the following conservation laws:
• Mass: ‖ψ( )‖ 2 = ‖ϕ‖ 2 , ∀| | < .
• Energy:

( ) :=
1
2
‖∇ ψ( )‖2

2 +
1

σ + 1
‖ψ( )‖2σ+2

2σ+2 +
∫
V( )|ψ( )|2 ≡ (0) ∀| | <

Proof. First, notice that Duhamel’s principle for (3.5) writes

(3.6) ψ( ) = U( )ϕ−
∫

0
U( − )

(
|ψ|2σψ

)
( )
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whereU( ) := U1( ). To estimate the nonlinear term, we use Gagliardo-Nirenberg in-
equalities, which demand estimates on∇ ψ. We have,

[
∂ +

1
2
− V( ) ∇

]
= ∇ V( ) ;

[
∂ +

1
2
− V( )

]
= ∇

Therefore, Duhamel’s principles for∇ ψ and ψ are, for ∈ {∇ },

ψ( ) =U( ) ϕ−
∫

0
U( − )

(
|ψ|2σψ

)
( ) +

∫

0
U( − ) ( )

with ∇( ) = ∇ V( )ψ( ) ( ) = ∇ ψ( )

(3.7)

Recall from Assumption 3.1, the potentialV is subquadratic,∇ V( ) = (〈 〉),
locally in time. We formally have to solve a closed system of three equations with
three unknowns. This is achieved thanks to Strichartz inequalities, provided by the case
ε = 1 in Proposition 3.3. The method is classical, and we refer to [5] for a complete
proof.

4. Inside the boundary layer

In this section, we prove that for any > 0, the solution ε to (1.12) is in
([− ε ε]; ) for ε sufficiently small, and satisfies the asymptotics (1.14).

Introduce the remainder ε := ε − ε. From Proposition 3.4, there existsε > 0
such that ε ∈ ([− ε ε]; ). Recall that ε is given by (1.15), whereψ is the
solution to

(4.1)





∂ ψ +
1
2

ψ = |ψ|2σψ

ψ| =0 = ϕ( )

It is well-known (see e.g. [5]) that ifϕ ∈ , then ψ ∈ (R ), therefore ε ∈
(R; ), and ε ∈ ([− ε ε]; ). This remainder solves





ε∂ ε +
1
2
ε2 ε = ( ) ε + ε σ

(
| ε|2σ ε − | ε|2σ ε

)

ε
| =0 = 0

We rewrite this problem as

(4.2)





ε∂ ε +
1
2
ε2 ε = ( ) ε + ( ) ε + ε σ

(
| ε|2σ ε − | ε|2σ ε

)

ε
| =0 = 0

We shall actually prove a more precise result than that stated in Theorem 1.4.
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Proposition 4.1. Suppose thatAssumptions 1.2and 1.3 are satisfied. Let > 0.
Then for0< ε ≤ ε( ), ε ∈ ([− ε ε]; ) and

lim sup
ε→0

sup
| |≤ ε

(
‖ ε( )‖ 2 +

∥∥ ε ( ) ε
∥∥

2

)
= 0 ∀( ) ∈ {1 2} × {1 . . . }

Recall that ε( ) is the group associated to the linear part of (1.12), given
by (2.2). It satisfies Strichartz inequalities stated in Proposition 3.3. Duhamel’s prin-
ciple for (4.2) is

ε( ) =− ε σ−1
∫

0

ε( − )
(
| ε|2σ ε − | ε|2σ ε

)
( )

− ε−1
∫

0

ε( − ) ( ) ε( )

(4.3)

To apply the results of Proposition 3.3, we introduce special indexes in the following
algebraic lemma, whose easy proof is left out.

Lemma 4.2. Let σ as in Assumption 1.3. There exist , , and satisfying

(4.4)





1
′ =

1
+

2σ

1
′ =

1
+

2σ

and the additional conditions:
• The pair ( ) is admissible,
• 0< 1/ < δ( ) < 1.

If = 1, we choose( ) = (∞ 2), =∞ and = 2σ.

From Proposition 3.3 applied with the above indexes, and Hölder inequality, (4.3)
yields, for ε ∋ 0 a time interval contained in [− ε ε],

‖ ε‖ ( ε; ) . ε σ−1−2/
(
‖ ε‖2σ

( ε; ) + ‖ ε‖2σ
( ε ; )

)
‖ ε‖ ( ε ; )

+ ε−1−1/ ‖ ε‖ 1( ε ; 2)

(4.5)

We now have two tasks:
• Estimate the source term‖ ε‖ 1( ε ; 2).
• Control the factor‖ ε‖2σ

( ε; ) + ‖ ε‖2σ
( ε ; ).

Recall that ε is given by (1.15), so

‖ (·) ε( ·)‖2 2 =
1
4

∑

=1

ω4ε4
∥∥ 2ψ(ε )

∥∥2
2 +
∑

=1

2ε2 ‖ ψ(ε )‖2
2
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If ϕ ∈ , thenψ ∈ (R ), and the above quantities are infinite in general.

4.1. Further regularity for when ∈ S(Rn). If we assume thatϕ belongs
to the Schwartz spaceS(R ), then we can prove additional regularity forψ.

Lemma 4.3. Let ϕ ∈ S(R ), and ψ be the solution of the initial value prob-
lem (4.1). Let σ satisfyingAssumption 1.3,and > 0. Then,

| | ψ ∈ ([− ] 2) ∀ ≤ 3

| | ∇ ψ ∈ ([− ] 2) ∀ ≤ 2

Proof. As mentioned above, it is well-known thatψ ∈ ([− ] ). Using the
simple remark,

[
∂ +

1
2

]
= ∇

the function ψ solves, for 1≤ ≤ ,

(4.6)

(
∂ +

1
2

)
ψ = ∂ ψ + |ψ|2σ ψ

For 1≤ ≤ , we have,

(4.7)

(
∂ +

1
2

)
ψ = ∂ ( ψ) + ∂ ψ + |ψ|2σ ψ

This shows that to know that ψ ∈ ([− ] 2), it is enough to prove that
∇ ψ ∈ ([− ] 2), for any . Differentiating (4.1) with respect to yields,

(4.8)

(
∂ +

1
2

)
∇ ψ = (σ + 1)|ψ|2σ∇ ψ + σ|ψ|2σ−2ψ2∇ ψ

Therefore,

(4.9)

(
∂ +

1
2

)
∇ ψ = ∂ ∇ ψ + (σ + 1)|ψ|2σ∇ ψ + σ|ψ|2σ−2ψ2∇ ψ

This shows that it is enough to know thatψ ∈ ([− ] 2). This is well-known,
from an idea due to Kato ([13], see also [5]). The idea consists in differentiating (4.1)
with respect to time and proving that∂ ψ ∈ ([− ] 2) whenϕ ∈ 2(R ). Then
from (4.1), we deduce that ψ ∈ ([− ] 2). Thus, | | ψ ∈ ([− ] 2) for
≤ 2 and | | ∇ ψ ∈ ([− ] 2) for ≤ 1.

Now, we can apply Kato’s method to (4.8), and prove that if thenonlinearity
( ) = | |2σ is twice differentiable (hence the assumptionσ > 1/2 in Assump-

tion 1.3), then∂ ∇ ψ ∈ ([− ] 2). When using this information in (4.6), Kato’s
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method proves that ∂ ψ ∈ ([− ] 2). Using the equation (4.6), we deduce
that ψ ∈ ([− ] 2). This information is enough to complete the proof of
Lemma 4.3. Multiplying (4.7) by yields,

(
∂ +

1
2

)
ψ = ∂ ( ∂ ψ) + ∂ ( ψ) + ∂ ψ + |ψ|2σ ψ

Reasoning as above, it is enough to know thatψ ∈ ([− ] 2) and α∇ ψ ∈
([− ] 2) for |α| ≤ 2. We saw how to prove the first point. We know that the

second holds for|α| ≤ 1, thus we just have to multiply (4.9) by ,

(
∂ +

1
2

)
∇ ψ =∂ ( ∇ ψ) + ∂ ∇ ψ

+ (σ + 1)|ψ|2σ ∇ ψ + σ|ψ|2σ−2ψ2 ∇ ψ

Since ψ ∈ ([− ] 2), we deduce that| |2∇ ψ ∈ ([− ] 2), which
completes the proof.

REMARK. The assumptionσ > 1/2 could be removed if we considered a
smoother nonlinearity. Indeed, if we replaced|ψ|2σψ by (|ψ|2)ψ, with smooth and

(|ψ|2) . |ψ|2σ when |ψ| → 0

we could prove Lemma 4.3 without the assumptionσ > 1/2, and even more regular-
ity for ψ (see for instance [10], [11]). This means, for (1.12), that we would replace
ε σ| ε|2σ ε by (ε | ε|2) ε.

We apply Lemma 4.3 to study (1.12) thanks to the following result, which can be
found for instance in [9], Proposition 3.5.

Proposition 4.4. Let ϕ and σ satisfying Assumption 1.3. Let δ > 0 and ϕδ ∈
S(R ) such that‖ϕ− ϕδ‖ ≤ δ. If ψδ denotes the solution to(1.3) with initial datum
ϕδ, then

‖ 0(− ) (ψ( )− ψδ( ))‖ ∞(R; )−→δ→0
0

and in particular, for every > 0,

‖ψ − ψδ‖ ∞([− ]; ) −→
δ→0

0

4.2. The coupling term. We want to estimate‖ ε‖2σ
( ε ; ) + ‖ ε‖2σ

( ε; ).
Gagliardo-Nirenberg inequalities and the propertyψ ∈ (R; ) yield

‖ ε( )‖ = ε−δ( )‖ψ(ε )‖ . ε−δ( )‖ψ(ε )‖1−δ( )
2 ‖∇ ψ(ε )‖δ( )

2 ≤ ε−δ( )
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for | | ≤ ε, where does not depend onε. We expect a similar estimate to hold
also for ε. From (2.7), it will be so if we know that ε is bounded in 2, as well as

ε ε for any and . The first point is easy: so long asε is defined and sufficiently
smooth, its 2-norm is constant (see Proposition 3.4). Showing the secondis part of
our proof. Sinceψ ∈ (R; ), it is easy to check that for any > 0, there exists

( ) independent ofε ∈]0 1], such that

‖ ε ( ) ε( ·)‖ 2 ≤ ( ) ∀( ) ∈ {1 2} × {1 . . . } ∀| | ≤ ε

Since ε = 0 at time = 0 and ε ∈ ([− ε ε]; ) for some ε > 0, there exists
ε > 0 such that for| | < ε,

(4.10) ‖ ε ( ) ε( ·)‖ 2 ≤ ( ) ∀( ) ∈ {1 2} × {1 . . . }

So long as (4.10) holds, we can estimate‖ ε( )‖ like ‖ ε( )‖ , up to doubling the
constants, but with the same power ofε.

Let η > 0 to be fixed later, andε ⊂ [−ηε ηε] such that (4.10) holds onε. If
ϕ ∈ S(R ), Lemma 4.3 and (4.5) yield

(4.11) ‖ ε‖ ( ε ; ) . ε σ−1−2/ −2σδ( )+2σ/ η2σ/ ‖ ε‖ ( ε ; ) + ε1−1/

From Lemma 4.2,

σ − 1− 2 − 2σδ( ) +
2σ

= 0

and for η > 0 sufficiently small, the first term of the right hand side of (4.11) is ab-
sorbed by the left hand side,

(4.12) ‖ ε‖ ( ε; ) . ε1−1/

Apply Strichartz inequality (3.4) again, with now1 = 2 and 2 = ,

(4.13) ‖ ε‖ ∞( ε; 2) . ε σ−1−1/ −2σδ( )+2σ/ η2σ/ ‖ ε‖ ( ε; ) + ε . ε

from (4.12).
Assuming for a moment that we know that (4.10) holds for| | ≤ ε, the above

computation, repeated a finite number of times, yields an estimate of the form

(4.14) ‖ ε‖ ∞([− ε ε]; 2) ≤ ε

To prove that indeed (4.10) holds for| | ≤ ε, we follow the same lines as above,
replacing ε by ε ε. Since ε commute with the linear part of (1.12) (see the
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first point of Lemma 2.1), the analog of (4.3) forε ε is

ε ( ) ε =− ε σ−1
∫

0

ε( − ) ε ( )
(
| ε|2σ ε − | ε|2σ ε

)
( )

− ε−1
∫

0

ε( − ) ε ( ) ( ( ) ε( ))

(4.15)

From Lemma 4.3, the source term (the last term in the above expression) is estimated
as before. From (2.8) and (2.7), we can estimate the first termof the right hand side
of (4.15) as above. This yields finally, so long as (4.10) holds and for| | ≤ ε,

(4.16) ‖ ε ε‖ ∞( ε ; 2) ≤ ( )ε ( )

4.3. Conclusion. Let δ > 0, andϕδ ∈ S(R ) such that‖ϕ − ϕδ‖ ≤ δ. Define
ψδ as the solution to (1.3) with initial datumϕδ, and ε

δ by

ε
δ ( ) =

1
ε /2

ψδ

(
ε ε

)

The remainder ε
δ := ε − ε

δ solves

(4.17)





ε∂ ε
δ +

1
2
ε2 ε

δ = ( ) ε
δ + ( ) ε

δ + ε σ
(
| ε|2σ ε − | ε

δ |2σ ε
δ

)

ε
δ(0 ) =

1
ε /2

(ϕ− ϕδ)
(
ε

)

which is the analog of (4.2), with an initial datum which is nonzero, but arbitrarily
small in (asδ goes to zero).

Our method proves both the existence ofε in up to time ε for ε sufficiently
small, and the asymptotics (1.14). This approach is classical in geometrical optics (see
e.g. [18]). From Proposition 3.4, it is well defined in on the time interval [− ε ε]
for some ε > 0. Since ε

δ ∈ (R; ), we want to prove that ε
δ exists in up to

time ε for ε sufficiently small, and is asymptotically small. By construction, we have

(4.18) ‖ ε
δ(0)‖ 2 +

∑

( )∈{1 2}×{1 ... }

∥∥ ε (0) ε
δ

∥∥
2 ≤ δ

From Proposition 3.4, either ε
δ (hence ε) exists in on the time interval [− ε ε],

or the maximal solution belongs to ([0ε[; ) with 0 < ε < ε and

lim inf
→ ε

‖ ε
δ( )‖ =∞

In the latter case, for any > 0, there is a first time, ε such that

(4.19) ‖˜ε( ε)‖ 2 +
∑

( )∈{1 2}×{1 ... }

∥∥ ε ( ε)˜ε
∥∥

2 = δ
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We prove that there is > 0 independent of andε, and a constant = ( )
independent ofε such that forε ≤ 1 and ε ≤ ε,

(4.20) sup
| |≤ ε


‖ ε

δ( )‖ 2 +
∑

( )∈{1 2}×{1 ... }

∥∥ ε ( ) ε
δ

∥∥
2


 ≤

2
δ + ε

Choosingε sufficiently small so that ε < /2 contradicts (4.19). This proves that we
can take ε = ε in (4.10).

Resuming the computations of Section 4.2 yields the same estimates as (4.11),
plus a term estimated byδε−1/ , due to the initial datum. This means that in (4.13),
(4.14) and (4.16), we have to replaceε by ε + δ in the right hand sides; this
yields (4.20). We infer,

lim sup
ε→0

sup
| |≤ ε


‖ ε

δ( )‖ 2 +
∑

( )∈{1 2}×{1 ... }

∥∥ ε ( ) ε
δ

∥∥
2


 ≤

2
δ

where does not depend onδ. Choosingδ arbitrarily small, the above estimate and
Proposition 4.4 yield Proposition 4.1.

Finally, Proposition 4.1 implies the asymptotics (1.14). Rewrite the definition
of ε ,

(
ε
1
ε
2

)
=

(
/ε

−εδ ω2

)(
/ε

ε∂

)
−

(
2/(2ε)

)

The determinant of the above matrix is

2 + δ ω2 2 ≡ 1

and we have

ε
= ( ) ε

1 ( )− ( )
ε

ε
2 ( ) +

( 2

2ε
( )−

ε
( )

)

ε∂ = εδ ω2 ( ) ε
1 ( ) + ( ) ε

2 ( ) +

(
δ ω2

2

2
( ) + ( )

)(4.21)

Since ( ) = ( ) as goes to zero, it is clear that Proposition 4.1 implies the asymp-
totics (1.14).

5. Beyond the boundary layer

In this section, we complete the proof of Theorem 1.4. The endof the proof is
divided into two parts; we first study the transition betweenthe two régimes (1.14)
and (1.16), then prove the existence ofε along with the asymptotics (1.16). Since
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the proofs are similar for positive or negative times, we restrict to the case of positive
times.

5.1. Matching the two régimes. In Proposition 4.1, was a fixed parameter;
in any boundary layer of size ε around the origin, the asymptotic behaviour ofε

is given by ε. For ≫ ε, the behaviour of ε is asymptotically the same as that of
ε
+. We now prove that the transition between these two régimesoccurs in a boundary

layer of size ε, when goes to infinity.

Proposition 5.1. The function ε
+ becomes an approximate solution ofε when

reaches ε, for large .

lim sup
ε→0

(
‖ ε( ε)− ε

+( ε)‖ 2 +
∥∥ ε ( ε)

(
ε − ε

+

)∥∥
2

)
−→
→+∞

0

∀( ) ∈ {1 2} × {1 . . . }

Proof. From Proposition 4.1, we only have to prove the above limit when ε is
replaced by ε. We proceed to another reduction of the problem, by noticingthat for
| | ≤ ε, the role of the potential is negligible not only forε, but also for ε

+.
Define ε

+ by

(5.1)





ε∂ ε
+ +

1
2
ε2 ε

+ = 0

ε
+| =0 =

1
ε /2

ψ+

(
ε

)

By scaling, we have

ε
+( ) =

1
ε /2

ψ0
+

(
ε ε

)

whereψ0
+( ) = exp( /2)ψ+( ).

Lemma 5.2. Let ≥ 1. The potential is negligible for0≤ ≤ ε in (1.17),

lim sup
ε→0

sup
0≤ ≤ ε

(
‖ ε

+( )− ε
+( )‖ 2 +

∥∥ ε ( )
(

ε
+ − ε

+

)∥∥
2

)
= 0

∀( ) ∈ {1 2} × {1 . . . }

Proof of Lemma 5.2. Denote ε
+ = ε

+ − ε
+. We have,





ε∂ ε
+ +

1
2
ε2 ε

+ = ( ) ε
+ + ( ) ε

+

ε
+| =0 = 0



SEMICLASSICAL NLS WITH POTENTIAL 715

From the classical energy estimates (which are also a consequence of Strichartz in-
equalities),

sup
0≤ ≤ ε

‖ ε
+( )‖ 2 . ε−1

∫ ε

0
‖ (·) ε

+app( ·)‖ 2

.

∫

0
‖ (ε·)ψ0

+( ·)‖ 2

By density (for ψ+), we can assume thatψ0
+ has the same smoothness as in

Lemma 4.3 (the proof is even easier since we now considerlinear problems). In that
case we have

sup
0≤ ≤ ε

‖ ε
+( )‖ 2 = (ε)

The proof that ε ( ) ε
+ satisfies the same property is straightforward. Finally, without

the smoothness assumption of Lemma 4.3, (ε) is replaced by (1), and the proof of
Lemma 5.2 is complete.

Recall that we have

ε
+( ε ) =

1
ε /2 0( )ψ+

(
ε

)
ε( ε ) =

1
ε /2

ψ
(

ε

)

lim
→+∞

∥∥∥ 0(− )ψ( )− ψ+

∥∥∥ = 0

where the last line is nothing but (1.13). This implies in particular, since 0 is unitary
on 2,

lim sup
ε→0

‖ ε( ε)− ε
+( ε)‖ 2 −→

→+∞
0

which is the first asymptotics in Proposition 5.1.
To conclude the proof, the idea is that the operator appearing in (1.13) are close

to the operators ε ( ) for | | ≤ ε. Using the identity

0( ) 0(− ) = + ∇

and the fact that the group0 is unitary on 2, we can rewrite (1.13) as

‖ψ( )− 0( )ψ+‖ 2 + ‖∇ ψ( )− 0( )∇ ψ+‖ 2

+ ‖( + ∇ ) (ψ( )− 0( )ψ+)‖ 2 −→→+∞
0

From the definition of the function ’s and ’s, we have, as→ 0,

( ) = 1 + ( ) ; ( ) = + ( 2)
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Therefore, we have, in the case of ,
∥∥∥
(

ε
1 ( ε)−

ε
− ( ε)∂

)
( ε ·)

∥∥∥
2

=

∥∥∥∥
(

ε
( ( ε)− 1) + ( ( ε)− ε)∂ −

2
2ε

)
( ε ·)

∥∥∥∥
2

=

∥∥∥∥
(

( ( ε)− 1) +
( ε)− ε

ε
∂ −

2
2ε

)
ψ( ·)

∥∥∥∥
2

= (ε)

for any fixed ≥ 1, sinceψ ∈ (R; ). Similar computations hold with ε
2 , and

when ε is replaced by ε
+. The proof of Proposition 5.1 is complete.

5.2. The linear régime. We now complete the proof of Theorem 1.4. Fix>
0. From (4.21), it is enough to prove thatε( ), as well as ε ( ) ε for any , , re-
mains bounded in 2, up to time , provided thatε is sufficiently small. The rela-
tion (4.21) shows in addition that we can prove the asymptotics (1.16) when the oper-
atorsε∇ and are replaced by theε ( )’s.

Our method is the same as in Section 4. Introduce the remainder

˜ε
+ = ε − ε

+

From Proposition 4.1, it is well defined in up to timeε for any > 0, provided
that ε is sufficiently small. It solves

ε∂ ˜ε +
1
2
ε2 ˜ε = ( )˜ε + ε σ| ε|2σ ε

Since ε
+ ∈ (R; ) (see in particular (2.5) and (4.21)), we want to prove that˜ε

exists in up to time forε sufficiently small, and is asymptotically small in the
sense of (1.16). From Proposition 5.1,

lim sup
ε→0

(
‖˜ε( ε)‖ 2 +

∥∥ ε ( ε)˜ε
∥∥

2

)
−→
→+∞

0 ∀( ) ∈ {1 2} × {1 . . . }

Let δ > 0. From Proposition 5.1, there existε0 > 0 and 0 such that for 0< ε ≤ ε0

and ≥ 0,

(5.2) ‖˜ε( ε)‖ 2 +
∑

( )∈{1 2}×{1 ... }

∥∥ ε ( ε)˜ε
∥∥

2 ≤ δ

From Proposition 5.1 again, there existsε > ε such that

(5.3) sup
ε≤ ≤ ε


‖˜ε( )‖ 2 +

∑

( )∈{1 2}×{1 ... }

∥∥ ε ( )˜ε
∥∥

2


 ≤ 2δ
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Let 0 < ε ≤ ε0 and ≥ 0. From Proposition 3.4, either̃ ε (hence ε) exists in
on the time interval [0 ], or the maximal solution belongs to ([0 ε[; ) with

0< ε < and

lim inf
→ ε

‖˜ε( )‖ =∞

From (4.21), in the latter case, there is a first time,ε
0 such that

(5.4) ‖˜ε( ε
0 )‖ 2 +

∑

( )∈{1 2}×{1 ... }

∥∥ ε ( ε
0 )˜ε

∥∥
2 = 4δ

We prove that, up to choosing even larger, there is a constant= ( ) independent
of ε and such that forε ≤ 1 and ε ≤ ε

0 ,

(5.5) sup
ε≤ ≤ ε


‖˜ε( )‖ 2 +

∑

( )∈{1 2}×{1 ... }

∥∥ ε ( )˜ε
∥∥

2


 ≤ 3δ + ε2σδ( )/

Choosingε sufficiently small so that ε2σδ( )/ < δ contradicts (5.4). This proves that
we can take ε = in (5.3), hence the first point of Theorem 1.4, along with the
asymptotics (1.16), sinceδ > 0 is arbitrary (recall that for any fixedδ > 0, we have
to chooseε small and large, so that (5.2) holds).

Recall that ε
+ solves the linear equation (1.17); its2-norm is independent of

time, and from (2.5), the same holds forε ε
+, for any and . So long as (5.3)

holds, we thus have an2 bound for ε and ε ε,

(5.6) sup
ε≤ ≤ ε


‖ ε( )‖ 2 +

∑

( )∈{1 2}×{1 ... }

∥∥ ε ( ) ε
∥∥

2


 ≤ ∗

Denote ε := [ ε ε]. From Strichartz inequalities and Lemma 4.2,

‖˜ε‖ ∞( ε ; 2) ≤ ‖˜ε( ε)‖ 2 + ε σ−1−1/ ‖ ε‖2σ
( ε ; )‖ ε‖ ( ε; )

From (5.6), (2.7) and Lemma 2.2, we infer that ifε ≤ π/(2ω),

‖˜ε‖ ∞( ε ; 2) ≤ ‖˜ε( ε)‖ 2 + ρ( )ε1/ ‖ ε‖ ( ε ; )

where ρ( ) is a function independent ofε that goes to zero as goes to infinity.
Using (5.6) and (2.7) again, we have

ε1/ ‖ ε‖ ( ε; ) ≤ | ε|1/ ≤ 1/

Therefore,

‖˜ε‖ ∞( ε ; 2) ≤ ‖˜ε( ε)‖ 2 + 1/ ρ( )
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Taking even larger if necessary, (5.2) implies that ifε ≤ π/(2ω), then

‖˜ε‖ ∞( ε ; 2) ≤ ‖˜ε( ε)‖ 2 + δ

For ε ≥ π/(2ω), the second part of Lemma 2.2 implies

‖˜ε‖ ∞( ε; 2) ≤ ‖˜ε( ε)‖ 2+ ε σ−1−1/ ‖ ε‖2σ
( ε ; )‖ ε‖ ( ε ; )

≤ ‖˜ε( ε)‖ 2+ 1/ ε σ−1−2/ ‖ ε‖2σ
( ε; )

≤ ‖˜ε( ε)‖ 2+ 1/ ε σ−1−2/ ‖ ε‖2σ
([ ε π/(2ω)]; )

+ 1/ ε σ−1−2/ ‖ ε‖2σ
([π/(2ω) ε ]; )

≤ ‖˜ε( ε)‖ 2+δ + ( )ε2σδ( )/

(5.7)

Computations for ε ( )˜ε are similar. Since ε acts like a derivative on the nonlin-
ear term (Lemma 2.1), we have

‖ ε ˜ε‖ ∞( ε ; 2) ≤ ‖ ε ( ε)˜ε‖ 2 + ε σ−1−1/ ‖ ε‖2σ
( ε ; )‖ ε ε‖ ( ε; )

Estimate (5.6), along with Proposition 3.4, implies that there exists ( ) such that for
ε ≤ ,

ε1/ ‖ ε ε‖ ( ε ; ) ≤ ( )

We thus have the same estimate as above, for sufficiently large,

(5.8) ‖ ε ˜ε‖ ∞( ε ; 2) ≤ ‖ ε ( ε)˜ε‖ 2 +
δ

2
+ ( )ε2σδ( )/

Summing (5.7) and (5.8) yields (5.5), which completes the proof of Theorem 1.4.

6. Partial results for general subquadratic potentials

Intuitively, there is no reason why Theorem 1.4 should not betrue for more gen-
eral potentials than (1.5), in particular for potentials satisfying Assumption 3.1. We
prove in particular that (1.14) still holds for this class ofpotentials. However, we can-
not prove (1.16). From the technical point of view, this is due to the lack of operators
such as ε . For the linear régime, these operators have three major advantages:
• They commute with the linear part of the equation, includingthe potential,

see (2.5).
• They yield modified Gagliardo-Nirenberg inequalities, (2.7).
• They act on the nonlinear term like derivatives, (2.8).

As we mentioned in the proof of Lemma 2.1, the last two points follow from the for-
mula (2.6). We first prove that there exists an operator satisfying a similar formulaand
commuting with the linear part of the equation, (2.5), if andonly if the potential is of
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the form we consider, (1.5). We then prove (1.14) for generalpotentials satisfying As-
sumption 3.1.

6.1. Lemma 2.1 holds only for potentials of the form (1.5). Let V satisfying
Assumption 3.1,independent of time(V = V( )), and define an operatorε( ) by

(6.1) ε( ) = ( ) φ( )/ε∂
(
− φ( )/ε·

)
=

( )
ε

∂ φ( ) + ( )∂

where andφ are real-valued functions, to be determined. The operatorε is de-
fined as ε = ( ε)1≤ ≤ . Note that the weight may depend on the index
(anisotropy), but notφ. This is the generalization of (2.6). Such an operator formally
satisfies (2.8) and an analog to (2.7). Notice that in (2.6), the phasesφ ( = 1 or 2)
solve the eikonal equation

(6.2) ∂ φ +
1
2
|∇ φ|2 + V( ) = 0

Proposition 6.1. Let φ ∈ 4(]0 ]×R ; R) and ∈ 1(]0 ]) for some > 0.
Assume that for any1 ≤ ≤ , does not cancel on the interval]0 ]. Then ε,
defined by(6.1), satisfies(2.5) if and only if V is of the form(1.5).

REMARK. i) We do not assume thatφ solves the eikonal equation (6.2). How-
ever, we will see in the proof that it is essentially necessary.
ii) Since from Von Neumann equation, Heisenberg observables always satisfy (2.5),
the above proposition implies that such an observable can bewritten under the
form (6.1), for some functions andφ, if and only if the potentialV is of the
form (1.5).

Proof. We now only have to prove the “only if” part. Computations yield
[
ε∂ +

1
2
ε2 − V( ) ε( )

]
= ′( )∂ φ + ( )∂2 φ + ( )∂ V

+ ε
(
− ′( )∂ + ( )∇ (∂ φ) · ∇ +

1
2

( ) (∂ φ)
)(6.3)

This bracket is zero if and only if the terms inε0 and ε1 are zero. The term inε is
the sum of an operator of order one and of an operator of order zero. It is zero if and
only if both operators are zero. The operator of order one is zero if and only if

( )∂2 φ = ′( ) ∂2 φ ≡ 0 if 6=

In particular,∂2 φ is a function of time only, independent of , and we have

1
2

( ) (∂ φ) ≡ 0
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From the above computations, the first two terms inε0 also write

′( )∂ φ + ( )∂2 φ =
∑

=1

( )∂ φ∂2 φ + ( )∂2 φ = ( )∂

(
∂ φ +

1
2
|∇ φ|2

)

Canceling the term inε0 in (6.3) therefore yields, since is never zero on ]0 ],

(6.4) ∂

(
∂ φ +

1
2
|∇ φ|2 + V( )

)
= 0

Differentiating the above equation with respect to and , allthe terms withφ van-
ish, since we noticed that the derivatives of order at least three ofφ are zero. We de-
duce that for any triplet ( ),∂3 V ≡ 0 that is,V is of the form (1.5).

Notice that since (6.4) holds for any∈ {1 . . . }, there exists a function of
time only such that

∂ φ +
1
2
|∇ φ|2 + V( ) = ( )

This means thatφ is almost a solution to the eikonal equation (6.2). Replacing φ by
φ̃( ) := φ( )−

∫
0 ( ) does not affect (6.1), and̃φ solves (6.2).

6.2. Heisenberg observables for general subquadratic potentials. We now
suppose thatV = V( ) satisfies Assumption 3.1. Define the Heisenberg observable

Aε( ) = Uε( )
ε
Uε(− )

where the groupUε is defined by (3.1). The latter is in general not a differential oper-
ator, but a pseudo-differential operator (Egorov theorem,see e.g. [20]). We saw that if
V satisfies Assumption 1.2 however, then it is explicit. The drawback of this approach
is that we cannot assess the action of this operator on nonlinear terms in general. The
operatorAε satisfies two of the three properties we use to study the nonlinear problem:

Lemma 6.2. The operatorAε( ) satisfies the following properties.
• The commutation,

[
Aε( ) ε∂ +

1
2
ε2 − V( )

]
= 0

• The modified Sobolev inequality. If ∈ , then for 2 ≤ ≤ 2 /( − 2), there
exists such that, for | | ≤ δ,

‖ ‖ ≤ | |δ( )
‖ ‖1−δ( )

2 ‖Aε( ) ‖δ( )
2
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Proof. The first point stems from the definition ofAε( ). For the second, let
ε( ) = Uε(− ) ( ). We know that for any ∈ 2 ∩ 1,

‖ ‖ 2 = ‖Uε( ) ‖ 2

and for | | ≤ δ, from (3.2),

‖Uε( ) ‖ ∞ . |ε |− /2‖ ‖ 1

Interpolating these two estimates yields,

‖Uε( ) ‖ . |ε |−δ( )‖ ‖ ′

therefore,

‖Uε( ) ε( )‖ . |ε |−δ( )‖ ε( )‖ ′

Let λ > 0, and write,

‖ ε( )‖ ′

′ =
∫

| |≤λ

| ε( )| ′

+
∫

| |>λ

| ε( )| ′

Estimate the first term by Hölder’s inequality,

∫

| |≤λ

| ε( )| ′

. λ / ′

(∫

| |≤λ

| ε( )| ′

)1/

and choose = 2/ ′ (≥ 1). Estimate the second term by the same Hölder’s inequality,
after inserting the factor as follows,

∫

| |>λ

| ε( )| ′

=
∫

| |>λ

| |− ′ | | ′ | ε( )| ′

≤
(∫

| |>λ

| |− ′ ′

)1/ ′ (∫

| |>λ

| ε( )|2
)1/

. λ / ′− ′‖ ε( )‖2/
2

In summary, we have the following estimate, for anyλ > 0,

(6.5) ‖ ε( )‖ ′ . λ /( ′ ′)‖ ε( )‖ 2 + λ /( ′ ′)−1‖ ε( )‖ 2

Notice that /( ′ ′) = δ( ), and equalize both terms of the right hand side of (6.5),

λ =
‖ ε( )‖ 2

‖ ε( )‖ 2
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This yields,

‖ ε( )‖ ′ . ‖ ε( )‖1−δ( )
2 ‖ ε( )‖δ( )

2

Therefore,

‖Uε( ) ε( )‖ . |ε |−δ( )‖ ε( )‖1−δ( )
2 ‖ ε( )‖δ( )

2

. | |−δ( )‖ ε( )‖1−δ( )
2

∥∥∥
ε

ε( )
∥∥∥

δ( )

2

Back to , this completes the proof of the lemma, sinceUε( ) is unitary on 2.

6.3. A partial result for general subquadratic potentials. To conclude, we
prove that the asymptotics (1.14) still holds ifV satisfies Assumption 3.1.

Proposition 6.3. Let V satisfyingAssumption 3.1,such thatV is continuous at
( ) = (0 0), with V(0 0) = 0. Suppose thatAssumption 1.3is satisfied. Then for any
> 0, the following holds:

1. There existsε( ) > 0 such that for0< ε ≤ ε( ), the initial value problem

(6.6)





ε∂ ε +
1
2
ε2 ε = V( ) ε + ε σ| ε|2σ ε

ε
| =0 =

1
ε /2

ϕ
(
ε

)

has a unique solution ε ∈ ([− ε ε]; ).
2. This solution satisfies the following asymptotics,

lim sup
ε→0

sup
| |≤ ε

(
‖ ε( )− ε( )‖ 2 + ‖ε∇ ε( )− ε∇ ε( )‖ 2

+
∥∥∥
ε

ε( )−
ε

ε( )
∥∥∥

2

)
= 0

(6.7)

where ε is given by(1.15).

Proof. The proof mimics the approach used in Section 4, except that we do not
use intermediary operators such asε . Denote ε = ε − ε. It solves

(6.8)





ε∂ ε +
1
2

ε = V( ) ε + V( ) ε + ε σ
(
| ε|2σ ε − | ε|2σ ε

)

ε
| =0 = 0

Obviously,

(6.9)
∣∣| ε|2σ ε − | ε|2σ ε

∣∣ .
(
| ε|2σ + | ε|2σ

)
| ε|
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We know that there exists 0 such that for any ,

‖ε∇ ε( )‖ 2 ≤ 0

Since ε
| =0 = 0 and ε ∈ (0 ε; ) for some ε > 0 (Proposition 3.4), we have

(6.10) ‖ε∇ ε( )‖ 2 ≤ 0

for in some interval [0 ε
1 ]. So long as (6.10) holds, we can get energy estimates

from (6.8), proceeding as in Section 4 and using the Gagliardo-Nirenberg inequality

‖ ‖ ≤ ε−δ( )‖ ‖1−δ( )
2 ‖ε∇ ‖δ( )

2

Notice that we have,

[
ε∂ +

1
2
ε2 − V( ) ε∇

]
= ε∇ V( ) ;

[
ε∂ +

1
2
ε2 − V( )

ε

]
= ε∇

Proceeding as in Section 4 yields,

(6.11) ‖ ε‖ ∞(0 ; 2) ≤ ( )ε−1‖V( ) ε‖ 1(0 ; 2)

along with

‖ε∇ ε‖ ∞(0 ; 2) ≤ ( )
(
‖∇ V( ) ε‖ 1(0 ; 2) + ‖∇ (V( ) ε)‖ 1(0 ; 2)

)

∥∥∥
ε

ε
∥∥∥

∞(0 ; 2)
≤ ( )

(
‖∇ ε‖ 1(0 ; 2) + ε−2‖ V( ) ε‖ 1(0 ; 2)

)

In particular, so long as (6.10) holds, with| | ≤ ε,

‖ ε‖ ∞(0 ; 2) + ‖ε∇ ε‖ ∞(0 ; 2) +
∥∥∥
ε

ε
∥∥∥

∞(0 ; 2)

≤ ( )
(
ε−1‖V( ) ε‖ 1(0 ; 2) + ‖∇ (V( ) ε)‖ 1(0 ; 2)

+ ε−2‖ V( ) ε‖ 1(0 ; 2)

)

Now,

ε−1‖V( ) ε‖ 1(0 ; 2) = ε−1

∥∥∥∥V( )
1
ε /2

ψ
(
ε ε

)∥∥∥∥
1(0 ; 2)

= ε−1
∥∥∥V( ε )ψ

(
ε

)∥∥∥
1(0 ; 2)

= ‖V(ε ε )ψ( )‖ 1(0 /ε; 2)

≤ ‖V(ε ε )ψ( )‖ 1(0 ; 2)
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Notice that for| | ≤ δ,

|V( )| . 1 + 2

From Lebesgue’s dominated convergence theorem (V is continuous at the origin and
V(0 0) = 0) and Lemma 4.3, it follows, up to approximatingϕ in S(R ) as in Sec-
tion 4,

‖V(ε ε )ψ( )‖ 1(0 ; 2)−→ε→0
0

Similarly,

‖∇ (V( ) ε)‖ 1(0 ε; 2) + ε−2‖ V( ) ε‖ 1(0 ε; 2)−→
ε→0

0

Therefore (6.10) remains valid up to time =ε, provided thatε is sufficiently small
(0< ε ≤ ε( )). This completes the proof of the proposition.
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Boston Inc., Boston, MA, 1987.

R. Carles
MAB, UMR CNRS 5466
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