SOME HOMOTOPY OF THE UNITARY GROUPS DETECTED BY THE K-THEORY OF 2-CELL COMPLEXES

Michel MATTHEY

(Received May 2, 2002)

1. Introduction

Let $k \geqslant 1$ and $m \geqslant 2 k+1$. Consider the real Hopf-Whitehead J-homomorphism $J: \pi_{4 k-1}(\mathrm{SO}(2 m)) \longrightarrow \pi_{2 m+4 k-1}\left(S^{2 m}\right)$. Since the quotient $\mathrm{SO} / \mathrm{SO}(2 m)$ is $2 m$-connected, by real Bott periodicity, we have $\pi_{4 k-1}(\mathrm{SO}(2 m)) \cong \pi_{4 k-1}(\mathrm{SO}) \cong \mathbb{Z}$. For $s \geqslant m$, $B \mathrm{U}$ and $B \mathrm{U}(s)$ admit CW -complex structures with the same $(2 m+1)$-skeleton, so, we have isomorphisms $\left[S^{2 m}, B \mathrm{U}(s)\right] \cong\left[S^{2 m}, B \mathrm{U}\right] \cong \widetilde{K}^{0}\left(S^{2 m}\right) \cong \mathbb{Z}$, using complex Bott periodicity. By the Freudenthal Suspension Theorem, there is an isomorphism $\pi_{2 m+4 k-1}\left(S^{2 m}\right) \cong \pi_{4 k-1}^{S}$. (We refer to p. 480 in [12], p. 216 in [8], Theorem I in [2], and Theorem VI.2.10 in [4] for the details.) We prove the following result:

Theorem 1.1. For $k \geqslant 1, m \geqslant 2 k+1$ and $m \leqslant s<m+2 k$, let $j_{4 k-1} \in \pi_{4 k-1}^{S}$ denote the image of a generator of $\pi_{4 k-1}(\mathrm{SO})$ under the J-homomorphism, and let $x_{2 m}$ be the Bott generator of $\widetilde{K}^{0}\left(S^{2 m}\right)$. Then, the composition $x_{2 m} \circ j_{4 k-1}$ represents a nonzero element in $\pi_{2 m+4 k-1}(B \mathrm{U}(s))$, whose order is given by

$$
\begin{cases}\operatorname{denom}\left(\frac{B_{k}}{4 k}\right), & \text { if } k \text { is even } \\ \operatorname{denom}\left(\frac{B_{k}}{4 k}\right) \text { or } \frac{1}{2} \operatorname{denom}\left(\frac{B_{k}}{4 k}\right), & \text { if } k \text { is odd }\end{cases}
$$

where B_{k} is the k-th Bernoulli number. When k is odd and s is equal to $m+2 k-1$, the order of $x_{2 m} \circ j_{4 k-1}$ is $(1 / 2)$ denom $\left(B_{k} /(4 k)\right)$.

Unfortunately, we were unable to determine in full generality the precise order when k is odd. Notice that for given k and m, the order might depend on s (neither could we settle this question.)

We single out that the element $x_{2 m} \circ j_{4 k-1}$ of $\pi_{2 m+4 k-1}(B \mathrm{U}(s))$ can be written down explicitly by means of the J-homomorphism and of the real and the complex Bott periodicity isomorphisms. Let us now give some numerical examples, where the indicated homotopy groups of the Grassmannians $B \mathrm{U}(n)$ can for instance be found either

[^0]in Mimura's survey article [9] or in Lundell's tables [6].
Examples 1.2. i) For $k=1$ and $m=3$, denom $\left(B_{1} / 4\right)=24$ holds and we can take $s=3$ or 4 ; the corresponding groups are $\pi_{9}(B \mathrm{U}(3)) \cong \mathbb{Z} / 12$ and $\pi_{9}(B \mathrm{U}(4)) \cong$ $\mathbb{Z} / 24$. We see that $x_{6} \circ j_{3}$ is a generator of the former, but only generates a subgroup of index 2 in the latter. Changing m yields in each case an element of order 12 or 24 in the first indicated group and of order 12 in the second one:
\[

$$
\begin{aligned}
& \underline{m=4}: \\
& \quad \pi_{11}(B \mathrm{U}(4)) \cong \frac{\mathbb{Z}}{2} \oplus \frac{\mathbb{Z}}{24} \oplus \frac{\mathbb{Z}}{5} \quad \pi_{11}(B \mathrm{U}(5)) \cong \frac{\mathbb{Z}}{24} \oplus \frac{\mathbb{Z}}{5} \\
& \underline{\pi_{13}(B \mathrm{U}(5))}: \\
& \cong \frac{\mathbb{Z}}{72} \oplus \frac{\mathbb{Z}}{5}
\end{aligned}
$$ \quad \pi_{13}(B \mathrm{U}(6)) \cong \frac{\mathbb{Z}}{144} \oplus \frac{\mathbb{Z}}{5} .
\]

ii) Since denom $\left(B_{2} / 8\right)=24$, for $k=2$ and $m=5$, we get an element of order 24 in the groups

$$
\begin{aligned}
\pi_{17}(B U(5)) & \cong \frac{\mathbb{Z}}{2} \oplus \frac{\mathbb{Z}}{48} \oplus \frac{\mathbb{Z}}{5} \oplus \frac{\mathbb{Z}}{7} \\
\pi_{17}(B U(6)) & \cong \frac{\mathbb{Z}}{144} \oplus \frac{\mathbb{Z}}{5} \oplus \frac{\mathbb{Z}}{7} \\
\pi_{17}(B U(7)) & \cong \frac{\mathbb{Z}}{576} \oplus \frac{\mathbb{Z}}{5} \oplus \frac{\mathbb{Z}}{7} \\
\pi_{17}(B U(8)) & \cong \frac{\mathbb{Z}}{1152} \oplus \frac{\mathbb{Z}}{5} \oplus \frac{\mathbb{Z}}{7}
\end{aligned}
$$

We observe that even for k even, the element $x_{4 k+2} \circ j_{4 k-1}$ does generally not generate a direct summand in $\pi_{8 k+1}(B \mathrm{U}(2 k+1))$.
iii) In Theorem 1.1, the case of most interest for $k \geqslant 1$ fixed is when m and s are as small as possible, namely $m=s=2 k+1$: it predicts that $x_{4 k+2} \circ j_{4 k-1}$ is of order denom $\left(B_{k} / 4 k\right)$ (or possibly half of it for k odd) in the group $\pi_{8 k+1}(B \mathrm{U}(2 k+1))$. As an illustration, for $k=6$, we get the element $x_{26} \circ j_{23}$ of order 65520 in $\pi_{49}(B \mathrm{U}(13))$.

Here is a brief outline of the content of the paper. In Section 2, we study the K-theory of 2-cell complexes with even dimensional cells, say $X=S^{2 m} \cup_{f} e^{2 m+2 l}$. In particular, we determine the Chern classes of the elements of $K^{0}(X)$ in terms of the Adams e-invariant of the attaching map f. The connection with the homotopy of $B \mathrm{U}(n)$ is obtained by studying the set of bundles over X that restrict to a given multiple of the Bott generator $x_{2 m}$ over the sphere $S^{2 m}$. Section 3 contains the proof of Theorem 1.1.

Acknowledgements. The author expresses his deep gratitude to Ulrich Suter for several fruitful discussions, and to the referee for a careful reading and for suggesting
some improvements.

2. On the K-theory of 2-cell complexes

In this section, we recall some basic and well-known properties of the K-theory of 2-cell complexes, in order to establish a key ingredient (Proposition 2.2 below) for the proof of Theorem 1.1.

Let $f: S^{2 m+2 l-1} \longrightarrow S^{2 m}$ be a pointed map with $m, l \geqslant 1$, and let X be the mapping cone of f, i.e. the 2-cell complex $S^{2 m} \cup_{f} e^{2 m+2 l}$. Denote by ι the inclusion of $S^{2 m}$ in X, and let $p: X \rightarrow X / S^{2 m} \simeq S^{2 m+2 l}$ be the collapsing map; they fit in the cofibre sequence $S^{2 m} \hookrightarrow X \rightarrow S^{2 m+2 l}$. For a sphere $S^{2 q}$, we designate the Bott generator of $\widetilde{K}\left(S^{2 q}\right)$ by $x_{2 q}$. Taking $\xi \in\left(\iota^{*}\right)^{-1}\left(x_{2 m}\right)$ and $\eta:=p^{*}\left(x_{2 m+2 l}\right)$, we get

$$
K^{0}(X) \cong \mathbb{Z} \oplus \mathbb{Z} \cdot \xi \oplus \mathbb{Z} \cdot \eta \cong \mathbb{Z}^{3}
$$

Notice that ξ is uniquely determined up to addition of an integral multiple of η. Similarly, the integral cohomology of X is given by

$$
H^{*}(X ; \mathbb{Z})=\mathbb{Z} \oplus \mathbb{Z} \cdot y \oplus \mathbb{Z} \cdot z \cong \mathbb{Z}^{3}
$$

with y corresponding via ι^{*} to a generator of $H^{2 m}\left(S^{2 m} ; \mathbb{Z}\right)$, and z corresponding via p^{*} to a generator of $H^{2 m+2 l}\left(S^{2 m+2 l} ; \mathbb{Z}\right)$; we use the same notation for the rational cohomology of X. The ring structure is given by $x y=0, z^{2}=0$ and $y^{2}=H(f) \cdot z$, where $H(f)$ denotes the Hopf invariant of $[f] \in \pi_{4 m-1}\left(S^{2 m}\right)$ when $m=l$, and $H(f):=0$ when $m \neq l$. The Chern character is given by $\operatorname{ch}(\xi)=y+\lambda \cdot z$ and $\operatorname{ch}(\eta)=z$, for some rational number λ. Because of the different possible choices for ξ, the rational number λ is only determined modulo 1 , i.e. it represents a unique element $e(f)$ in the group \mathbb{Q} / \mathbb{Z}, called the Adams e-invariant of f (also denoted by $e_{\mathbb{C}}(f)$). It only depends on the homotopy class of f. Without loss of generality, we can consider $e(f)$ as a uniquely determined element of $\mathbb{Q} \cap$] $-1 / 2,1 / 2$]. (See [1], pp. 321-323 for some more details on the e-invariant.) Since $c h$ is an injective ring homomorphism (X being torsion-free), the product in $\widetilde{K}(X)$ is given by $\xi^{2}=H(f) \cdot \eta, \xi \eta=0$ and $\eta^{2}=0$. We would like to compute the Chern classes of ξ and η. They are closely related to the Chern character, as we now recall. For a connected finite CW-complex Y, we denote by $c h_{2 k}$ the component of $c h$ in $H^{2 k}(Y ; \mathbb{Q})$. One has $c h_{2 k}=(1 / k!) s_{k}\left(c_{1}, \ldots, c_{k}\right)$ (for $k \geqslant 1$), where the s_{k} 's are the Newton polynomials. They are defined by the relation $s_{k}\left(\sigma_{1}, \ldots, \sigma_{k}\right)=t_{1}^{k}+\cdots+t_{k}^{k}$, with σ_{j} the j-th elementary symmetric polynomial in t_{1}, \ldots, t_{k} (see for example [5], p. 92). Newton's formula reads

$$
s_{k}-c_{1} s_{k-1}+c_{2} s_{k-2}-\cdots+(-1)^{k-1} c_{k-1} s_{1}+(-1)^{k} k \cdot c_{k}=0
$$

(see loc. cit.). Coming back to X, it is straightforward to check that

$$
c_{m}(\xi)=(-1)^{m-1}(m-1)!\cdot y \text { and } c(\eta)=1+(-1)^{m+l-1}(m+l-1)!\cdot z .
$$

Clearly, for $j \notin\{m, m+l\}$ and $1 \leqslant k \leqslant m-1$, one has the equalities $s_{m}(\xi)=m!\cdot y$ and $c_{j}(\xi)=s_{k}(\xi)=0$. In Newton's formula for s_{m+l}, the only possible nonzero contributions are $(-1)^{m+l}(m+l) c_{m+l}$ and, if $m=l$, the product $(-1)^{m} c_{m} s_{m}$. After a short computation, we get

$$
\begin{aligned}
& c(\xi)=1+(-1)^{m-1}(m-1)!\cdot y \\
&+\left(\frac{((m-1)!)^{2}}{2} \cdot H(f)+(-1)^{m+l-1}(m+l-1)!\cdot e(f)\right) \cdot z .
\end{aligned}
$$

Now, for $a, b \in \mathbb{Z}$, we find

$$
\begin{aligned}
& c(a \xi+b \eta)=c(\xi)^{a} \cdot c(\eta)^{b} \\
& =1+(-1)^{m-1}(m-1)!a \cdot y \\
& \quad+\left(\frac{((m-1)!)^{2}}{2} a^{2} \cdot H(f)+(-1)^{m+l-1}(m+l-1)!(a \cdot e(f)+b)\right) \cdot z
\end{aligned}
$$

Recall that for a connected finite CW-complex Y, the geometric dimension of a stable bundle $\vartheta \in \widetilde{K}(Y)=[Y, B \mathrm{U}]$ is the smallest integer $n \geqslant 0$ such that ϑ lifts, up to homotopy, to a map $Y \longrightarrow B \mathrm{U}(n)$, in other words, such that $n+y \in \mathbb{Z} \oplus \widetilde{K}(Y)$ can be represented by a complex n-bundle over Y; we denote it by $n=g$ - $\operatorname{dim}(\vartheta)$. We also define $\mathrm{c}-\operatorname{dim}(\vartheta)$ as the smallest positive integer i such that $c_{j}(\vartheta)=0$ in $H^{2 j}(Y ; \mathbb{Z})$ for all $j>i$. Clearly, $\mathrm{c}-\operatorname{dim}(\vartheta) \leqslant \mathrm{g}-\operatorname{dim}(\vartheta)$. (The reader may refer to [7] for details on the functions g - dim and c - dim.)

Now, suppose that $l<m$ (as a consequence of which $H(f)=0$ holds). Fix an integer a and let $a \xi+b \eta \in \widetilde{K}(X)$, where b is considered as an unknown integral parameter; let s satisfy $m \leqslant s \leqslant m+l-1$. Denote by i_{s} the inclusion of $\mathrm{U}(s)$ in U , and consider the following diagram representing a lifting and extension problem:

Clearly, there exists, up to homotopy, an extension of $a x_{2 m}$ to X if and only if the composition $\left(a x_{2 m}\right) \circ f$ is zero in $\pi_{2 m+2 l-1}(B U(s))$. In this case, the composition $B i_{s} \circ \alpha \in \widetilde{K}(X)$ is a stable vector bundle ζ over X such that $\iota^{*}(\zeta)=a x_{2 m}$ and with $\mathrm{g}-\operatorname{dim}(\zeta) \leqslant s$. It follows that there exists an integer b (our parameter!) such that $\zeta=a \xi+b \eta$ and $\mathrm{c}-\operatorname{dim}(\zeta) \leqslant s \leqslant m+l-1$, and therefore $c_{m+l}(\zeta)=0$. We have thus proved that

$$
\left(a x_{2 m}\right) \circ f=0 \in \pi_{2 m+2 l-1}(B \mathrm{U}(s)) \Longrightarrow \exists b \in \mathbb{Z} \text { s.t. } c_{m+l}(a \xi+b \eta)=0 .
$$

We call this condition ($\boldsymbol{\oplus}$). Since $H(f)=0$, the above computation of the Chern classes for X shows that

$$
c_{m+l}(a \xi+b \eta)=0 \Longleftrightarrow a \cdot e(f)+b=0 .
$$

This means that the denominator of $e(f) \in \mathbb{Q} \cap]-1 / 2,1 / 2]$, expressed in lowest terms, must divide a. By Theorem 41.5 in Steenrod [11], we have

$$
\mathrm{g}-\operatorname{dim}(a \xi+b \eta)<m+l \Longleftrightarrow c_{m+l}(a \xi+b \eta)=0 .
$$

So, for $s=m+l-1$, condition ($\boldsymbol{\oplus}$) is an equivalence. Now, the following lemma provides the necessary control, with respect to a, of the element $\left(a x_{2 m}\right) \circ f$.

Lemma 2.1. For $l<m$ and for $a \in \mathbb{Z}$, we have

$$
\left(a x_{2 m}\right) \circ f=a \cdot\left(x_{2 m} \circ f\right) \in \pi_{2 m+2 l-1}(B \mathrm{U}(s))
$$

Proof. For $l<m$, the Freudenthal Suspension Theorem (see [4], Theorem VI.2.10) implies that f is a suspension and the lemma follows directly from Theorem VI. 2.3 in [4].

The group $\pi_{2 m+2 l-1}(B \mathrm{U}(s))$ is finite for $1 \leqslant s \leqslant m+l-1$, as is well-known (see for example Lemma 4.2 in [7] for a proof). We now collect the results obtained so far in a proposition.

Proposition 2.2. For $1 \leqslant l \leqslant m-1$, let $f: S^{2 m+2 l-1} \longrightarrow S^{2 m}$ be a pointed map; let $x_{2 m}$ be the Bott generator of $\widetilde{K}\left(S^{2 m}\right) \cong\left[S^{2 m}, B U(s)\right], m \leqslant s \leqslant m+l-1$. Then, the composition $x_{2 m} \circ f$ represents a class in $\pi_{2 m+2 l-1}(B \mathrm{U}(s))$, whose order is a multiple of $\operatorname{denom}(e(f))$, the denominator of the Adams e-invariant $e(f)$ expressed in lowest terms. For $s=m+l-1$, the order of $x_{2 m} \circ f$ is precisely $\operatorname{denom}(e(f))$.

3. The proof of Theorem 1.1

We apply Proposition 2.2 with $f=j_{4 k-1}: S^{2 m+4 k-1} \longrightarrow S^{2 m}$ and with $l=2 k$. By Adams [1] and Quillen [10], the image of J is a direct summand in $\pi_{2 m+4 k-1}\left(S^{2 m}\right)$ and is of order exactly $M_{k}:=\operatorname{denom}\left(B_{k} / 4 k\right)$ (see also Switzer [12], p. 488). This means that $j_{4 k-1}$ is of order M_{k} and generates a direct summand. On the other hand, by Theorem 1 of Dyer [3], the Adams e-invariant $e\left(j_{4 k-1}\right)$ (expressed in lowest terms) has denominator M_{k} / b_{k}, where b_{k} is equal to 1 (resp. 2) for k even (resp. odd). (This result is also a consequence of Adams [1], Proposition 7.14 and Theorem 7.16.) The proof is complete.

References

[1] J.F. Adams: On the groups $J(X) I V$, Topology 5 (1966), 21-71.
[2] R. Bott: The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
[3] E. Dyer: Chern characters of certain complexes, Math. Z. 80 (1962) 363-373.
[4] P.J. Hilton: An introduction to homotopy theory, Cambridge, at the University Press, 1953.
[5] F. Hirzebruch: Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1995.
[6] A.T. Lundell: Concise tables of James numbers and some homotopy of classical Lie groups and associated homogeneous spaces, In Algebraic topology (San Feliu de Guíxols, 1990), 250-272. Springer, Berlin, 1992.
[7] M. Matthey and U. Suter: The positive cone of spheres and some products of spheres, Enseign. Math. 47 (2001), 131-160.
[8] M. Mimura and H. Toda: Topology of Lie groups I, II, American Mathematical Society, Providence, RI, 1991.
[9] M. Mimura: Homotopy theory of Lie groups, In Handbook of algebraic topology, 951-991. North-Holland, Amsterdam, 1995.
[10] D. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
[11] N. Steenrod: The topology of fibre bundles, Princeton University Press, Princeton, NJ, 1999.
[12] R.M. Switzer: Algebraic topology-homotopy and homology, Springer-Verlag, New York, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 212.

University of Lausanne
IGAT (Institute for Geometry, Algebra and Topology) BCH, EPFL, CH-1015 Lausanne, Switzerland e-mail: michel.matthey@ima.unil.ch

[^0]: Research partially supported by Swiss National Fund for Scientific Research.

