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1. Introduction

For a polarized algebraic manifold ( ) with a Kähler metric of constant scalar
curvature in the class1( )R, we consider the Kodaira embedding

| | : → P( ) ≫ 1

where := 0( O( ))∗. Even when a linear algebraic group of positive di-
mension acts nontrivially and holomorphically on , we shallshow that the van-
ishing of an obstruction to asymptotic Chow-semistabilityallows us to generalize
Donaldson’s construction [3] of approximate solutions forequations of critical metrics1

of Zhang [20]. This generalization plays a crucial role in our forthcoming paper [14],
in which the asymptotic Chow-stability for ( ) above will be shown under the van-
ishing of the obstruction, even when admits a group action asabove.

2. Statement of results

Throughout this paper, we assume that is an ample holomorphic line bundle
over a connected projective algebraic manifold . Let and be respectively the di-
mension of and the degree of the image :=| |( ) in the projective space
P( ) with ≫ 1. Then to this image , we can associate a nonzero elementˆ

of := {Sym ( )}⊗ +1 such that its natural image [ˆ ] in P( ) is the Chow
point associated to the irreducible reduced algebraic cycle on P( ). For the nat-
ural action of := SL( ) on and also onP( ), the subvariety ofP( )
is said to beChow-stableor Chow-semistable, according as the orbit · ˆ is closed
in or the origin of is not in the closure of · ˆ in . Fix an increasing
sequence

(2.1) (1)< (2)< (3)< · · · < ( ) < · · ·

1In (2.6) below,ω = 1( ; ) is called acritical metric if ( ) is a constant function on . The
same concept was later re-discovered by Luo [12] (see [14]).
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of positive integers ( ). For this sequence, we say that ( ) isasymptotically
Chow-stableor asymptotically Chow-semistable, according as for some0 ≫ 1, the
subvariety ( ) of P( ( )) is Chow-stable or Chow-semistable for all≥ 0.

Let Aut0( ) denote the identity component of the group of all holomorphic au-
tomorphisms of . Then the maximal connected linear algebraic subgroup of
Aut0( ) is the identity component of the kernel of the Jacobi homomorphism

α : Aut0( )→ Aut0(Alb( )) (cf. [4]).

For the maximal algebraic torus in the center of , we considerthe Lie subal-
gebraz of 0( O( 1 0 )) associated to the Lie subgroup of Aut0( ). For the
isotropy subgroup, denoted bỹ , of at the point [ˆ ] ∈ P( ), we have a nat-
ural isogeny

ι : ˜ →

where is an algebraic subgroup of . For :=ι−1( ), we have a -action on
naturally induced by the -action on . Since the -action on is liftable to

a holomorphic bundle action on (see for instance [7]), the restriction of ι to
defines an isogeny of onto . The vector space is viewed as the line bun-
dle OP( )(−1) with the zero section blown-down to a point, while the linebundle
OP( )(−1) coincides with − when restricted to . Hence, the natural˜ -action
on induces a bundle action of on which covers the -action on . In-
finitesimally, each ∈ z induces a holomorphic vector field′ ∈ 0( O( 1 0 ))
on . Since theC∗-bundle \ {0} associated to is an -fold unramified covering
of the C∗-bundle \ {0}, the restriction of ′ to \ {0} naturally induces a holo-
morphic vector field ′′ on \ {0}. Since ′′ extends to a holomorphic vector field
on , the mapping 7→ ′′ defines inclusions

(2.2) ρ : z → 0( O( 1 0 )) = 1 2 . . .

inducing lifts, from to , of vector fields inz. For a sequence as in (2.1), we say
that the isotropy actions for( ) are stableif there exists an integer0 ≫ 1 such
that

(2.3) ρ ( ) = ρ ( 0) for all ≥ 0

For the maximal compact subgroup ( ) of , take a ( ) -invariant Hermitian
metric λ for . By the theory of equivariant cohomology ([1], [8]), we define
(see [15], [13]):

(2.4) C{ +1
1 ; }( ) :=

√
−1
2π

( + 1)
∫

λ−1( λ) 1( ;λ) ∈ z
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where λ is as in [13], (1.4.1). Then theC-linear mapC{ +1
1 ; } : z → C which

sends each ∈ z to C{ +1
1 ; }( ) ∈ C is independent of the choice of . The

following gives an obstruction to asymptotic Chow-semistability (see [5], [15], [16] for
related results):

Theorem A. For a sequence as in(2.1), assume that( ) is asymptotically
Chow-semistable. Then for some 0 ≫ 1, the equalityC{ +1

1 ; ( )} = 0 holds for all
≥ 0. In particular, for this sequence, the isotropy actions for( ) are stable.

The following modification of a result in [7] shows that, as anobstruction, the sta-
bility condition (2.3) is essential, since the vanishing of(2.4) is straightforward from
(2.3).

Theorem B. For sufficiently large( + 2) distinct integers , = 0 1 . . . + 1,
suppose thatρ 0 = ρ 1 = · · · = ρ +1. ThenC{ +1

1 ; } = 0 for all .

If dim = 0, by setting ( ) = in (2.1) for all > 0, we see thatρ are trivial
for all ≫ 1, and consequently (2.3) holds. Note also that Donaldson’sresult [3]
treating the case dim = 0 depends on his construction of approximate solutions for
equations of critical metrics of Zhang [20]. In Theorem C down below, assuming (2.3),
we generalize Donaldson’s construction to the case dim> 0.

Put := dimC − 1. Let be a Hermitian metric for such thatω = 1( ; )
is a Kähler metric on . By the inner product

(2.5) (σ σ′) :=
∫
〈σ σ′〉 ω σ σ′ ∈ ∗

on ∗ = 0( O( )), we choose a unitary basis{σ( )
0 σ( )

1 . . . σ( )} for ∗.
Here, 〈σ σ′〉 denotes the function on obtained as the the pointwise inner product
of the sectionsσ, σ′ by the Hermitian metric on . Put

(2.6) ( ) :=
! ∑

=0

‖σ( )‖2

where‖σ‖2 := 〈σ σ〉 for all σ ∈ ∗, and we set := 1/ . We then have the asymp-
totic expansion of Tian-Zelditch (cf. [18], [19]) for ≫ 1:

(2.7) ( ) = 1 + 1(ω) + 2(ω) 2 + 3(ω) 3 + · · ·

where (ω), = 1 2 . . ., are smooth functions on . Then1(ω) = σω/2 (cf. [11])
for the scalar curvatureσω of ω. Put :={ 1( ) [ ]/ !}−1( + 1). Then
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Theorem C. For a Kähler metricω0 in the class 1( )R of constant scalar cur-
vature, choose a Hermitian metric 0 for such thatω0 = 1( ; 0). For a sequence
as in (2.1), assume that the isotropy actions for( ) are stable, i.e., (2.3) holds.
Put = 1/ ( ). Then there exists a sequence of real-valued smooth functions ϕ ,

= 1 2 . . ., on such that ( ) := 0 exp(−∑ =1 ϕ ) satisfies ( ( )) − =
( +2) for each nonnegative integer.

The last equality ( ( ))− = ( +2) means that there exist a positive real
constant = independent of such that‖ ( ( )) − ‖ 0( ) ≤ +2 for all
0 ≤ ≤ 1 on . By [19], for every nonnegative integer , a choice of a larger con-
stant = > 0 keeps Theorem C still valid even if 0( )-norm is replaced by

( )-norm.

3. An obstruction to asymptotic semistability

The purpose of this section is to prove Theorems A and B. Fix a sequence as
in (2.1), and in this section, any kind of stability is considered with respect to this
sequence.

Proof of Theorem A. Assume that ( ) is asymptotically Chow-semistable,
i.e., for some 0 ≫ 1, the subvariety ( ) of P( ( )) is Chow-semistable for all
≥ 0. Then the isotropy representation of ( ) on the lineC· ˆ ( ) is trivial (cf. [5],

[15]) for ≥ 0, and hence by [15], (3.5) (cf. [16]; [20], (1.5)), we obtain the required
equality

(3.1) C{ +1
1 ; ( )}( ) = 0 ∈ z

for all ≥ 0. For λ in (2.4), by setting :=λ1/ , we have a Hermitian metric for
. Put χ := C{ +1

1 }/ +1 for positive integers . Then by the Leibniz rule,

(3.2) χ ( ) =

√
−1
2π

( + 1)
∫

−1( )ρ 1( ; ) ∈ z

where the complexified action ( )ρ of on as in [13], (1.4.1), is taken via the
lifting ρ in (2.2). Then by (3.1),

χ ( 0) = χ ( 0+1) = · · · = χ ( ) = · · ·

and since lifts in (2.2), from to , of holomorphic vector fields in z are completely
characterized byχ (cf. [7]), we obtain (2.3), as required.

Proof of Theorem B. For := l c m{ ; = 0 1 . . . + 1}, we take a -fold
unramified coverν : ˜ → between algebraic tori. Then the -action on naturally
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induces a˜ -action on via this covering. Sinceν factors through , the lift, from
to , of the -action naturally induces a lift, from to , of thẽ-action.

The assumption

(3.3) ρ 0 = ρ 1 = · · · = ρ +1

shows that the lifts, from to , = 0 1. . . + 1, of the ˜ -action come from
the same infinitesimal action ofz as vector fields on . For brevity, the commonρ
in (3.3) will be denoted just byρ. Then the proof of [6], Theorem 5.1, is valid also
in our case, and the formula in the theorem holds. By ⊂ SL( ) and by its con-
tragredient representation, thẽ-action on ∗ = 0( O( )) comes from an al-
gebraic group homomorphism:̃ → SL( ∗ ). Hence, by the notation in (3.2) above,∫

−1( )ρ 1( ; ) = 0 for all ∈ z, i.e., C{ +1
1 ; } = 0 for all , as required.

4. Proof of Theorem C

Throughout this section, we assume that the first Chern class1( )R admits a
Kähler metric of constant scalar curvature. Then a result of Lichnérowicz [10] (see
also [9]) shows that is a reductive algebraic group, and consequently the identity
component of the center of coincides with in the introduction. Let be a max-
imal compact subgroup of . Then the maximal compact subgroupof satisfies

(4.1) ⊂

For an arbitrary -invariant Kähler metricω on in the class 1( )R, we writeω as
the Chern form 1( ; ) for some Hermitian metric for . Let ( ω) denote the
power series in given by the right-hand side of (2.7). Then

(4.2)
∫
{ ( ω) − }ω =

∫ {
− +

! ∑

=0

‖σ( )‖2

}
ω = 0

Let 0 be a Hermitian metric for such thatω0 := 1( ; 0) is a Kähler metric of
constant scalar curvature on . We write

ω0 =

√
−1
2π

∑

α β

αβ̄
α ∧ β̄

for a system (1 2 . . . ) of holomorphic local coordinates on . In view of [10]
(see also [9]), replacingω0 by ∗ω0 for some ∈ if necessary, we may assume
that ω0 is -invariant. Let 0 be the Lichnérowicz operator, as defined in [2], (2.1),
for the Kähler manifold ( ω0). Since ω0 has a constant scalar curvature,0 is a
real operator. LetF denote the space of all real-valued smooth -invariant functions
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ϕ such that
∫

ϕω0 = 0. Since the operator 0 preserves the spaceF , we write 0

as an operator 0 : F → F , and the kernel inF of this operator will be denoted by
Ker 0. Let z denote the Lie subalgebra ofz corresponding to the maximal compact
subgroup of . Then

(4.3) γ : Ker 0
∼= z η ↔ γ(η) := gradCω0

η

where gradCω0
η := (1/

√
−1 )

∑
β̄αηβ̄∂/∂

α denotes the complex gradient ofη with
respect toω0. We then consider the orthogonal projection

: F(= Ker 0 ⊕ Ker ⊥
0 )→ Ker 0

Starting from (0) = 0 andω(0) := ω0, we inductively define a Hermitian metric ( )
for , and a Kähler metricω( ) := 1( ; ( )), called the -approximate solution, by

( ) = ( − 1) exp(− ϕ ) = 1 2 . . .

ω( ) = ω( − 1) +

√
−1
2π

∂∂̄ϕ = 1 2 . . .

for a suitable functionϕ ∈ Ker ⊥
0 , where we require ( ) to satisfy ( ( ))− =

( +2). In other words, by (4.2), eachω( ) is required to satisfy the following con-
ditions:

(1− ){ ( ω( ))− } ≡ 0 modulo +2(4.4)

{ ( ω( )) − } ≡ 0 modulo +2(4.5)

If = 0, then ω(0) = ω0, and by [11], both (4.4) and (4.5) hold for = 0. Hence,
let ≥ 1 and assume (4.4) and (4.5) for =−1. It then suffices to findϕ ∈ Ker ⊥

0

satisfying both (4.4) and (4.5) for = . Put

( ϕ) := (1− )

{ (
ω( − 1) +

√
−1
2π

∂∂̄ϕ

)
−

}
ϕ ∈ Ker ⊥

0

Then by (4.4) applied to = − 1, we have ( 0)≡ +1 modulo +2, where
is a function in Ker ⊥

0 . Since 2πω( − 1) = 2πω0 +
√
−1

∑ −1
=1 ∂∂̄ϕ , we have

ω( − 1) = ω0 at = 0. Since the scalar curvature ofω0 is constant, the variation
formula for the scalar curvature (see for instance [2], (2.5); [3]) shows that

( ϕ ) ≡ ( 0)− +1 0ϕ

2
≡ (2 − 0ϕ )

+1

2

modulo +2. Since is in Ker ⊥
0 , there exists a uniqueϕ ∈ Ker ⊥

0 such that 2 =

0ϕ on . Fixing suchϕ , we obtain ( ) andω( ). Thus (4.4) is true for = .
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Now, we have only to show that (4.5) is true for = . Before checking this, we
give some preliminary remarks. Note that = 1+ ( ). Moreover, by (2.7), ( ω) =
1 + { 1(ω) + 2(ω) + · · · }, and hence

( ω( ))− =

(
ω( − 1) +

√
−1
2π

∂∂̄ϕ

)
−

≡ ( ω( − 1))− ≡ 0 modulo +1

By [17], p. 35, the -action on is liftable to a bundle action ofon the real line
bundle ( · ¯)1/2 = ( · ¯ )1/2 . Then the induced -action on (· ¯)1/2 is unique,
because liftings, from to , of the -action differ only by scalar multiplications
of by characters of . In this sense, ( ) is -invariant. Put := dimC . Then we
can write =G = { = ( 1 2 . . . ) ∈ (C∗) }. By the natural inclusion

ψ : → = SL( )

we can choose a unitary basis{τ0 τ1 . . . τ } for ( ∗ ( ) ( )) (cf. (2.5)) such that,
for some integersα with

∑
α = 0, the contragredient representationψ∗ of ψ is

given by

ψ∗ ( )τ =



∏

=1

α


 τ = 0 1 . . .

for all ∈ (C∗) = . Now by (2.3), for someρ : z → 0( O( 1 0 )), we can
write ρ ( ) = ρ for all ≥ 0. Consider the Kähler metricω := 1( ; ) on
in the clasas 1( )R, where := (|τ0|2 + |τ1|2 + · · · + |τ |2)−1/ . From now on, let

= ( ), where is running through all integers≥ 0. Put := ∂/∂ . Then
{ 1 2 . . . } forms a C-basis for the Lie algebraz such that, using the notation
as in (3.2), we have

(4.6) −1( )ρ = −
∑

α |τ |2∑ |τ |2 1≤ ≤ for = ( ) with ≥ 0

where in the numerator and the denominator, the sum is taken over all integers such
that 0≤ ≤ . From (2.3) and Theorem B, using the notation as in (3.2), we obtain

(4.7)
∫

( )−1( ( ))ρω( ) = 0 1≤ ≤

By
∫

−1
0 ( 0)ρω0/

∫
ω0 = 0, we haveη := −1

0 ( 0)ρ ∈ Ker 0. Then γ(η ) =√
−1 . Hence{η1 η2 . . . η } is an R-basis for Ker 0. Since ( ω( )) ≡
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modulo +1, it follows that

(4.8) − +
! ∑

=0

‖τ ‖2
( ) ≡ +1

modulo +2 for some ∈ Ker 0, because (4.4) is true for = . In view of (4.2),
(4.6), − 0 = ( ) andω( )− ω0 = ( ), we see from (4.8) that, modulo+2,

+1
∫

η ω0 ≡
∫

η

(
− +

! ∑

=0

‖τ ‖2
( )

)
{ω( )}

≡
∫

−1
0 ( 0)ρ

(
− +

! ∑

=0

‖τ ‖2
( )

)
{ω( )}

≡
∫

−1( )ρ

(
− +

! ∑

=0

‖τ ‖2
( )

)
{ω( )}

≡
∫ ∑

α ‖τ ‖2
( )∑ ‖τ ‖2
( )

(
− ! ∑

=0

‖τ ‖2
( )

)
{ω( )}

Since
∑

α = 0 for all , we obtain, modulo +2,

+1
∫

η ω0 ≡
∫ ∑

α ‖τ ‖2
( )∑ ‖τ ‖2
( )

{ω( )} ≡
∫

−1( )ρ{ω( )}

≡
∫ {

−1( )ρ − ( )−1( ( ))ρ
}
{ω( )}

where the equivalence just above follows from (4.7). The last integrand is rewritten as

−1( )ρ − ( )−1( ( ))ρ = log

(

( )

)
= − 1

log

(
! ∑

=0

‖τ ‖2
( )

)

≡ − log( + +1) ≡ − −1( ) +2 ≡ 0 mod +2

Therefore,
∫

η ω0 = 0 for all . From ∈ Ker 0, it now follows that = 0. This
shows that (4.5) is true for = , as required.

5. Concludung remarks

As in Donaldson’s work [3], the construction of approximatesolutions in Threo-
rem C is a crucial step to the approach of the stability problem for a polarized alge-
braic manifold with a Kähler metric of constant scalar curvature. Actually, in a forth-
coming paper [14], this construction allows us to prove the following:
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Theorem. For a sequence as in(2.1), assume that the isotropy actions for
( ) are stable. Assume further that 1( )R admits a K̈ahler metric of constant
scalar curvature. Then for this sequence, ( ) is asymptotically Chow-stable.

Moreover, if a sequence (2.1) exists in such a way that (2.3) holds, then the same
argument as in the case dim = 0 (cf. [3]) is applied, and we can also show the
uniquness, modulo the action of , of the Kähler metrics of constant scalar curva-
ture in the polarization class1( )R. We finally remark that, if dim = 0, the asymp-
totic Chow-stability implies the asymptotic stability in the sense of Hilbert schemes
(cf. [17], p.215). Hence the result of Donaldson [3] followsfrom the theorem just
above.
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