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1. Introduction

For a polarized algebraic manifola(, L ) with a Kahler metrfcconstant scalar
curvature in the class;(L)g, we consider the Kodaira embedding

@pn): M — P(V,,), m> 1

where V,, = H°(M,O(L™))*. Even when a linear algebraic group of positive di-
mension acts nontrivially and holomorphically o, we shsilow that the van-
ishing of an obstruction to asymptotic Chow-semistabiléijows us to generalize
Donaldson’s construction [3] of approximate solutions éguations of critical metrids
of Zhang [20]. This generalization plays a crucial role irr dorthcoming paper [14],
in which the asymptotic Chow-stability fol{, L ) above will beavn under the van-
ishing of the obstruction, even whef  admits a group actioalas/e.

2. Statement of results

Throughout this paper, we assume thHat is an ample holonoipié bundle
over a connected projective algebraic manifatd . het a&@nd dspectively the di-
mension ofM and the degree of the imayg,  @f. (M) in the projective space
P(V,) with m > 1. Then to this imageV,, , we can associate a nonzero eleignt
of W,, := {Synf (v,,}®"*1 such that its natural image¥],] in P(W,,) is the Chow
point associated to the irreducible reduced algebraicecyf;, onP(V,,). For the nat-
ural action ofH,, :=SLV,, ) onW,, and also o&(W,), the subvarietyM,, ofP(V,)
is said to beChow-stableor Chow-semistableaccording as the orbit,, - # is closed
in W,, or the origin of W,, is not in the closure off,, - M in W,. Fix an increasing
sequence

(2.1) mL)<m2)<m@B)<---<mk) <---

1In (2.6) below,w = ¢1(L; k) is called acritical metric if K(¢, k) is a constant function o . The
same concept was later re-discovered by Luo [12] (see [14]).
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of positive integersm K ). For this sequence, we say thdt L pggmptotically
Chow-stableor asymptotically Chow-semistablaccording as for soméy > 1, the
subvarietyM,, ) of P(V,x)) is Chow-stable or Chow-semistable for al> ko.

Let Aut(M) denote the identity component of the group of all holonhicpau-
tomorphisms of M . Then the maximal connected linear algebsaibgroupG of
Aut®(M) is the identity component of the kernel of the Jacobi horogrhism

ay: Aut®(M) — Aut®(Alb(M)),  (cf. [4]).

For the maximal algebraic torug in the center @f , we consitier Lie subal-
gebraj of HO(M, O(T1°M)) associated to the Lie subgroup  of Ai). For the
isotropy subgroup, denoted Iy, of H, at the point J1,] € P(W,,), we have a nat-
ural isogeny

tm s Sm — Sms
where S,, is an algebraic subgroup 6f . Fgy, 7(Z), we have az, -action on
M naturally induced by thez -action o . Since tlle -actionmn iftalle to
a holomorphic bundle action oh  (see for instance [7]), th&riation of ., to Z,
defines an isogeny of,, ont@ . The vector spage is viewed as tiee bliin-
dle Opy,)(—1) with the zero section blown-down to a point, while the linendle
Op(v,)(—1) coincides withL~" when restricted toM . Hence, the naturg) -action
on V,, induces a bundle action &f,, ab™ which covers thg -actionddn n- . |
finitesimally, eachX € 3 induces a holomorphic vector field’ € Ho(L™, O(T+°L™))
on L™. Since theC*-bundle L \ {0} associated td. is am -fold unramified covering
of the C*-bundle L™ \ {0}, the restriction ofX’ to L™\ {0} naturally induces a holo-
morphic vector fieldX” on L \ {0}. Since X" extends to a holomorphic vector field
on L, the mappingX — X" defines inclusions

(2.2) pm: 3 — HOL,O(T*°L)), m=12...,

inducing lifts, fromM toL , of vector fields i3. For a sequence as in (2.1), we say
that the isotropy actions fo(M, L) are stableif there exists an integeky > 1 such
that

(2.3) Pm(k) = Prm(ko)» for all k > ko.

For the maximal compact subgroulZ,(. ) &, , take B,(. ) -invariamtrhitian
metric A for L. By the theory of equivariant cohomology ([1], [8]), weefihe
(see [15], [13]):

(2.4) C{c’lﬁl; L"}(X) = g(n + l)/ )\_1(X/\)c1(L’"; A, X €3,
T M
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where X\ is as in [13], (1.4.1). Then th&-linear mapC{ci*t; L"}: 3 — C which
sends eachX € 3 to C{c{*};L"}(X) € C is independent of the choice df . The
following gives an obstruction to asymptotic Chow-senhdity (see [5], [15], [16] for
related results):

Theorem A. For a sequence as iif2.1), assume thaf{M, L) is asymptotically
Chow-semistableThen for somekg > 1, the equalityC{c;**; L™®} = 0 holds for all
k > ko. In particular, for this sequencethe isotropy actions fo{M, L) are stable

The following modification of a result in [7] shows that, as @struction, the sta-
bility condition (2.3) is essential, since the vanishing (&f4) is straightforward from
(2.3).

Theorem B. For sufficiently large(n +2) distinct integersmy, k =0, 1 ...,n+1,
suppose thap,, = ppuy =+ = Pumyur. ThENC{c}*; L™} = 0 for all k.

If dim Z =0, by settingm k£ ) =k in (2.1) for alk > 0, we see thap,, are trivial
for all m > 1, and consequently (2.3) holds. Note also that Donaldswessilt [3]
treating the case di@ = 0 depends on his construction of appade solutions for
equations of critical metrics of Zhang [20]. In Theorem C dolelow, assuming (2.3),
we generalize Donaldson’s construction to the case@imO.

Put N, =dimV,, — 1. Leth be a Hermitian metric fot. such that= c1(L; k)
is a Kahler metric onM . By the inner product

(2.5) @, ) ::/ (o, 0" )", o, 0 eV},
M

on Vi = H%M,O(L™), we choose a unitary basigry", o, ..., 0%} for v;:.
Here, (o, ¢'), denotes the function o obtained as the the pointwise innedugt
of the sectionsy, ¢’ by the Hermitian metrid2” orl.™ . Put

Nm

n! m
(2.6) K. h) S E o2,
—

where ||o||? := (o, o), for all o € V¥, and we sefy :=Am. We then have the asymp-

totic expansion of Tian-Zelditch (cf. [18], [19]) fan > 1:
(2.7) K@,h)=1+a1(w)g + az(w)qz + ag(w)q3 +oen,

wheregq; @), i =1, 2 ..., are smooth functions o . Then(w) = o,,/2 (cf. [11])
for the scalar curvature,, of w. PutC, ={m"ci(L)"[M]/n'}~1(N,, + 1). Then
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Theorem C. For a Kahler metricwp in the classci(L)r of constant scalar cur-
vature choose a Hermitian metriéo for L such thatwg = c1(L; ho). For a sequence
as in (2.1), assume that the isotropy actions fG#, L) are stable i.e., (2.3) holds.
Put ¢ = 1/m(k). Then there exists a sequence of real-valued smooth fuscig,
k=12...,0on M such thath(l) := hoexp- Eizlchpk) satisfiesK (g, h(l)) — C, =
0(¢'*?) for each nonnegative integér

The last equalityk 4, h I( )} C, = O(¢q"*?) means that there exist a positive real
constantA =A; independent ¢f such tHek (¢, h(l)) — Cqllcopny < Aig'*? for all
0<g <1onM. By [19], for every nonnegative integgr , a choice of gdarcon-
stantA =A;;, > 0 keeps Theorem C still valid even &°(M)-norm is replaced by
C/(M)-norm.

3. An obstruction to asymptotic semistability

The purpose of this section is to prove Theorems A and B. Fixguence as
in (2.1), and in this section, any kind of stability is coreied with respect to this
sequence.

Proof of Theorem A. Assume thatM(, L ) is asymptotically Chowntable,
i.e., for someko > 1, the subvarietyM,,q) of P(V.u) is Chow-semistable for all
k > ko. Then the isotropy representation Bf, on the IineC-Mn,(k) is trivial (cf. [5],
[15]) for k > ko, and hence by [15], (3.5) (cf. [16]; [20], (1.5)), we obtahetrequired
equality

3.1) e L"O(x)=0,  Xey,

for all k > ko. For \ in (2.4), by settingh : =5\, we have a Hermitian metrig  for
L. Puty,, :=C{ci*t, L™} /m™*! for positive integersn . Then by the Leibniz rule,

v—-1
27

(3.2) )= Y+ 1) /M WY XRY (LY, X €3,

where the complexified actionX¢ ,,) of X on i as in [13], (1.4.1), is taken via the
lifting p,, in (2.2). Then by (3.1),

Xmko) = Xmko+1l) = = Xm(k) =" »

and since lifts in (2.2), fromM td. , of holomorphic vector figlth 3 are completely
characterized by, (cf. [7]), we obtain (2.3), as required. ]

Proof of Theorem B. Foy :=lcHfm;k=0,1...,n+1}, we take ag -fold
unramified cover: Z — Z between algebraic tori. Then tl#& -action dh naturally
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induces aZ-action onM via this covering. Since factors throughZ,,, , the lift, from
M to L™, of the Z,, -action naturally induces a lift, from{  @©" , of tl#¥-action.
The assumption

(33) Pmg = Pmy = " = Pmyny

shows that the lifts, from td.™ k =,0,1..,n+ 1, of the Z-action come from
the same infinitesimal action gf as vector fields or. . For brevity, the commpp,
in (3.3) will be denoted just by. Then the proof of [6], Theorem 5.1, is valid also
in our case, and the formula in the theorem holds. By C SL(V,, ) and by its con-
tragredient representation, th&-action on Ve = HO(M, O(L™)) comes from an al-
gebraic group homomorphisnZ — SL(V,, ). Hence, by the notation in (3.2) above,
Sy B HXh)pea(L; byt =0 for all X € 3, i.e., C{ci™; L™} =0 for all k, as required.
O

4. Proof of Theorem C

Throughout this section, we assume that the first Chern alg@s)x admits a
Kahler metric of constant scalar curvature. Then a restiltLiohnérowicz [10] (see
also [9]) shows thatG is a reductive algebraic group, and egusntly the identity
component of the center &  coincides with  in the introduttibet K be a max-
imal compact subgroup off . Then the maximal compact subgtqupf Z satisfies

(4.1) Z.C K.

For an arbitraryK -invariant Kahler metric on M in the class1(L)g, we writew as
the Chern formcy(L; k) for some Hermitian metric: fol. . LeW ¢(w) denote the
power series iy given by the right-hand side of (2.7). Then

N,
n' . m n
(4.2) /M{‘I’(q,w) — G = /M {—Cq * o 2 o ’||,2,} W' =0,
i=0

Let hp be a Hermitian metric for.  such thaty := ¢1(L; ho) is a Kahler metric of
constant scalar curvature af . We write

— V_l g E
wo—ﬁzﬁgaﬁdz ANdz7,

for a system £, z2, ..., z") of holomorphic local coordinates o# . In view of [10]
(see also [9]), replacingyy by g*wo for someg € G if necessary, we may assume
that wp is K-invariant. LetDg be the Lichnérowicz operator, as defined in [2], (2.1),
for the Kahler manifold #, wp). Since wp has a constant scalar curvatu®y is a
real operator. LetF denote the space of all real-valued smodth -invariant fanst
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¢ such thath pwg = 0. Since the operatoDy preserves the spacg, we write Do
as an operatoDy: F — F, and the kernel inF of this operator will be denoted by
Ker Dg. Let 3. denote the Lie subalgebra gfcorresponding to the maximal compact
subgroupZ. ofZ . Then

(4.3) v: KerDo® 3., 1« ()= grad, n,

where graﬁon =(1/v-1 )Zgﬁanga/aza denotes the complex gradient gfwith
respect towg. We then consider the orthogonal projection

P: F(= Ker Do @ Ker D) — Ker D,

Starting from# (0) =hp and w(0) :=wp, we inductively define a Hermitian metrick ( )
for L, and a Kahler metrieu(k) := c1(L; h(k)), called thek approximate solutionby

h(k) = h(k — 1) exp(—q"sak) k=1,2...,

"35%

wk) =wk — 1)+ = k=12...,

for a suitable functiony, € Ker Dg-, where we require: k() to satisfit q(h k())C, =
0(¢"*?). In other words, by (4.2), each(k) is required to satisfy the following con-
ditions:

(4.4) (1 - P){¥(q,w(k)) — C,} =0, modulog**?
(4.5) P{¥(q,w(k)) — C,} =0, modulog"2.

If k=0, thenw(0) =wp, and by [11], both (4.4) and (4.5) hold fa&r = 0. Hence,
let/ > 1 and assume (4.4) and (4.5) for /= 1. It then suffices to findy, € Ker Dg-
satisfying both (4.4) and (4.5) for E . Put

\/_ !

D(g, ) =(1—P) {‘-IJ (q, w(l —1)+ 88(,0) } , ¢ € KerDy-.
Then by (4.4) applied t& % — 1, we have® 4, 0)= u;q'** modulo ¢'*?, where
u; is a function in KemDg. Since Zrw(l — 1) = 2rwo + V—1 Y ieq ¢*09r, we have
w(l — 1) = wp at g = 0. Since the scalar curvature @f is constant, the variation
formula for the scalar curvature (see for instance [2], )23]) shows that

DO ql+1
(g, 1) = @(g,0) — ¢ 7 = @u1 — Do) 5

modulo ¢'*2. Sincew; is in KeDy-, there exists a unique; € Ker Dy such that 2, =
Dow; on M . Fixing suchy;, we obtainz { ) andv(l). Thus (4.4) is true fok % .
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Now, we have only to show that (4.5) is true for [= . Before cliwegkhis, we
give some preliminary remarks. Note thgf  =Q+4 ( ). Moreover,(B.7), ¥ (g, w) =
1 +g{ai(w) +az(w)g +---}, and hence

Y(g,w(l)—Cy =¥ (q, w(l—1)+ %ql&?—tp[) -C,

=V(q,w(l —1)-C, =0, modulog'*t.

By [17], p. 35, theG -action orM is liftable to a bundle action@fon the real line
bundle ¢ - L)Y/2 = (L™ - L™)Y/2" Then the inducedk -action orL( L)Y/2 is unique,
because liftings, fromV td.™ , of th& -action differ only by smamultiplications
of L™ by characters oZ . In this senske, ()& -invariant. Put md¥Z. Then we
can write Z,, =G/, ={t = (1,12, ..., 1) € (C*)"}. By the natural inclusion

wm: Zm — I'Im = SL(Vm ),

we can choose a unitary basiso, 71, ..., 7w, } for (V,i, (, Jag) (cf. (2.5)) such that,
for some integersy; with >, a;; = 0, the contragredient representatigf) of v, is
given by

,
dnm= (T[4 |7 i=0.1... Ny,
=1

for all + € (C*)" = Z,. Now by (2.3), for somep: 3 — HO(L,O(T*+°L)), we can
write p,x) = p for all k > ko. Consider the Kahler metrie,, = ci(L;h,) on M
in the clasasci(L)g, Whereh,, = (ro|?+ |7|? +--- + |7w,|?)~Y™. From now on, let
m = m(k), wherek is running through all integees ko. Put X; :=¢;0/0t;. Then
{X1, X2,...,X,} forms aC-basis for the Lie algebrg such that, using the notation
as in (3.2), we have

Do aij|7i|2
my|mf?

where in the numerator and the denominator, the sum is takenall integersi such
that 0<i < N,. From (2.3) and Theorem B, using the notation as in (3.2), tt@io

(4.6) (X jhw), =— 1<j<r, form=m(k) with k > ko,

@.7) /M )R =0, 1< <7

By [, ho '(X;ho),wh/ [, wh =0, we haven; = hg*(X;ho), € KerDo. Then(n;) =
v—1X;. Hence{ni, no, ..., n} is an R-basis for KemDy. Since ¥ ¢,w(l)) = C,
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modulo ¢'**, it follows that

m

N,
n!
(4.8) —Cy 3 il = wg"™
i=0

modulo ¢'*? for some v, € Ker Dy, because (4.4) is true foar E . In view of (4.2),
(4.6), h,y — ho = O(q) andw(l) — wo = O(gq), we see from (4.8) that, modulg™*?,

m

N,
+1 no— n! 2 n
q /MUJUIWO /MUJ < A~ ; |7 ”h(l)) {w®}
n' Nl”
= / ho (X jho), <_Cf1 + o Z ||7':||/21(1)> {w®}"
M i=0
n' Nl”
= / o (X jhm), (—Cq D ||n-||i<,>) {w}"
M i=0
> aijlimillig nl &
= | ==z |G D lnliy | {w®}".
. mzi ”7_1_”%(1) a7 n - h(l)
Since ", a;; = 0 for all j, we obtain, module;'*?,
> ajllill;

) NV =C hfl h,, NG
M m Zi HTIH/Z,([) {W( )} 4q /M m (XJ )p{w( )}

= c, /M (X )y — ()X h )} LD}

q”l/ njuwg = Cy
M

where the equivalence just above follows from (4.7). The ilategrand is rewritten as

m

N
_ _ A 1 n!
Ao X)), = X log (5 ) = = 2, og (m— > ||n-||iu>>
i=0
= —qX;log(C, +vig"") = —C;l(va,)q’+2 =0, mod ¢'*2.

Therefore,fM njuwg =0 for all j. Fromu; € Ker Do, it now follows thatv, = 0. This
shows that (4.5) is true fok £ , as required. [l

5. Concludung remarks

As in Donaldson’s work [3], the construction of approxima@utions in Threo-
rem C is a crucial step to the approach of the stability probfer a polarized alge-
braic manifold with a Kahler metric of constant scalar @iwwe. Actually, in a forth-
coming paper [14], this construction allows us to prove tbkofing:
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Theorem. For a sequence as in2.1), assume that the isotropy actions for
(M, L) are stable Assume further that;(L)r admits a Kahler metric of constant
scalar curvature Then for this sequencéM, L) is asymptotically Chow-stahle

Moreover, if a sequence (2.1) exists in such a way that (208)sh then the same
argument as in the case dsh = 0 (cf. [3]) is applied, and we daa show the
uniguness, modulo the action @ , of the Kahler metrics ofistant scalar curva-
ture in the polarization class(L)r. We finally remark that, if dinG =0, the asymp-
totic Chow-stability implies the asymptotic stability itne sense of Hilbert schemes
(cf. [17], p.215). Hence the result of Donaldson [3] follokr®m the theorem just
above.
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