1-GENUS 1-BRIDGE SPLITTINGS FOR KNOTS

Dedicated to Professor Yukio Matsumoto on his 60th birthday

Chuichiro HAYASHI

(Received March 15, 2002)

1. Introduction

A knot K in the 3 -sphere S^{3} is called a 1-genus 1-bridge knot if a torus H splits S^{3} into two solid tori each of which K intersects in a trivial arc. Such splittings for 2-bridge knots are studied in [25]. We show that, if K is neither a 2-bridge knot nor a satellite knot, and if K has two non-isotopic 1-genus 1-bridge splitting tori H_{1}, H_{2}, then we can move them to be interesect each other in two essential circles, and either (1) K is obtained from a component of a 2-bridge link by twisting along the other component, or (2) we can move H_{1} and H_{2} further to meet in a torus with two holes each circle of which c_{i} bounds a disc in $H_{i}-K$ and a twice punctured disc in $H_{j}-K$ for $(i, j)=(1,2)$ and $(2,1)$. We consider also knots in lens spaces.

We recall the precise definition of g-genus n-bridge splittings of links. Let W be a 3 -manifold with non-empty boundary ∂W, and $T=\left\{t_{1}, \ldots, t_{n}\right\}$ a set of disjoint arcs properly embedded in W, that is, $t_{i} \cap W=\partial t_{i}$ for every $1 \leq i \leq n$. We say T is trivial in (W, T) if there is a set $\left\{D_{1}, \ldots, D_{n}\right\}$ of disjoint discs embedded in W so that $D_{i} \cap(\cup T)=\partial D_{i} \cap t_{i}=t_{i}$ and so that $D_{i} \cap \partial W$ is the $\operatorname{arc} \operatorname{cl}\left(\partial D_{i}-t_{i}\right)$. We call D_{i} a cancelling disc of t_{i}. When W is a ball and T is trivial, the pair (W, T) is called a trivial n-string tangle.

Let M be a closed orientable 3-manifold, and L a link in M. Let H be a genus g Heegaard splitting surface of M, that is, H divides M into two handlebodies W_{1} and W_{2} of genus g. Suppose that H is transverse to L. Then we say H is a g-genus n-bridge splitting of (M, L) if L intersects W_{i} in a trivial set of n arcs for $i=1$ and 2 . A link L is called a g-genus n-bridge link if it admits a g-genus n-bridge splitting. A link in S^{3} is simply called an n-bridge link if it has a 0 -genus n-bridge splitting. For studies on positive genus n-bridge splittings, see [6], [22], [25], [17], [18], [19], [20], [15], and [24].
H. Rubinstein and M. Scharlemann showed in [31] that two strongly irreducible Heegaard splitting surfaces are isotoped to intersect each other in essential loops. They applied this result to isotope two Heegaard splitting surfaces of genus two to intersect each other beautifully ([32]). In [25] T. Kobayashi and O. Saeki generalized the

[^0]above result, and made two g-genus n-bridge splitting surfaces to intersect each other in " K-essential" loops as below.

We need to recall some terminologies. In general, let X be a 3-manifold, and T a properly embedded 1-manifold in X, that is, $T \cap \partial X=\partial T$. Let F be a 2-manifold properly embedded in X. Suppose that F is transverse to T. In particular $\partial F \cap T=$ \emptyset. We say F is T-compressible if there is a disc D embedded in X such that D is disjoint from T, that $D \cap F=\partial D$ and that ∂D does not bound a disc disjoint from T on F. Such D is called a T-compressing disc of F. We call F is T-incompressible if it is not T-compressible. Note that these definitions are different from those in [25].

Let H be a 2-manifold properly embedded in X so that H is transverse to T. The 2-manifold H is said to be meridionally compressible in (X, T) if there is a disc D embedded in X such that int D intersects T transversely in a single point, that $D \cap H=D \partial \cap(H-T)=\partial D$ and that ∂D in H does not bound a disc whose interior intersects T transversely in a single point. Such D is called a meridionally compressing disc of H. We call H is meridionally incompressible if it is not meridionally compressible. We define a T-compressible 2 -submanifold and a meridionally compressible 2-submanifold of ∂X similarly.

Assume that either P is a 2-manifold properly embedded in X such that P is transverse to T, or P is a 2-submanifold of ∂X with $\partial P \cap T=\emptyset$. A simple loop l on P is said to be T-essential if it is disjoint from T and if it does not bound a disc which intersects T transversely in zero or one point.

Let M be a closed orientable 3-manifold, and L a link in M. Let H be a g-genus n-bridge splitting surface of (M, L), and W_{1}, W_{2} the handlebodies obtained by cutting M along H. We say that H is weakly K-reducible if W_{1} and W_{2} contain K-compressing or meridionally compressing discs D_{1} and D_{2} of H respectively such that $\partial D_{1} \cap \partial D_{2}=\emptyset$. We call H strongly K-irreducible if it is not weakly K-reducible. Note that these definitions coincide with those in [25] but do not coincide with those in [17].

Theorem 1.1 (Proposition 6.19 in [25]). Suppose that (M, L) is not the pair of the 3-sphere and the trivial knot and that M has a double cover branched along L. Let H_{i} be a strongly K-irreducible g_{i}-genus n_{i}-bridge splitting of (M, L) for $i=1$ and 2. Then we can isotope H_{1} and H_{2} in (M, L) so that they intersect each other in a non-empty union of disjoint simple loops which are L-essential both in H_{1} and in H_{2}.

It is well-known that it is easy to isotope the splitting surfaces to be disjoint from each other. Hence the condition "non-empty" in the conclusion is very important. This result has been applied to studies of splittings of 2-bridge knots in [25] and [24]. In particular, every 1 -genus 1 -bridge splitting of a 2 -bridge knot is weakly K-reducible, and hence is isotopic to a torus obtained by performing a tubing operation on the

2 -bridge splitting 2 -sphere along a single string of one of the two trivial 2 -string tangles (Theorem 8.2 in [25]).

In this paper, we study on 1-genus 1 -bridge splittings of 1 -genus 1 -bridge knots in the 3 -sphere or a lens space, where a lens space is a genus one 3-manifold except $S^{2} \times S^{1}$.

The class of 1 -genus 1 -bridge knots (1-bridge torus knots, or (1,1)-knots for short) contains all torus knots and 2-bridge knots ((1.6) in [28]), and is important in light of Heegaard splitting theory ([23], Theorem 4 in [37], [21]) and Dehn surgery theory ([1], [7], [8], [33], [39], [40], [41]). See also [5], [3], [4], [9], [11], [13], [14], [16], [26], [27], [29], [35], [34].

Let M be the 3 -sphere or a lens space. A knot in M is called the trivial knot if it bounds an embedded disc in M. A knot K in M is called a core knot if its exterior $M-\operatorname{int} N(K)$ is a solid torus. As we will see in Section 3, (M, K) has a weakly K-reducible 1 -genus 1 -bridge splitting if and only if K is the trivial knot, a core knot, a 2-bridge knot in S^{3} or a connected sum of a core knot and a 2-bridge knot. A knot in M is called a torus knot if it can be isotoped onto a circle in a Heegaard splitting torus of M.

Let V be a solid torus, and l, m essential loops on ∂V. The loop m is of the meridional slope if it bounds a disc in V. The loop l is of a longitudinal slope if it is isotopic to a loop l^{\prime} on ∂V such that l^{\prime} intersects m transversely in a single point.

Let $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$ be a 1-genus 1-bridge splitting. We say that the splitting has a satellite diagram if there is an essential circle l on the torus H such that t_{1} and t_{2} have cancelling discs C_{1} and C_{2} disjoint from l. We call the set of arcs $\partial C_{1} \cap H$ and $\partial C_{2} \cap H$ a satellite diagram, and l the slope of it. We say that the slope of the satellite diagram is meridional (resp. longitudinal) if it is meridional (resp. longitudinal) on ∂V_{1} or ∂V_{2}. When the slope is meridional, K is clearly trivial. When the slope is longitudinal on $\partial V_{i}, K$ can be obtained from a component of a 2 -bridge link by a Dehn surgery on the other component, as is essentially shown in [28]. (In fact, K has a 1-bridge diagram on the annulus $A=\operatorname{cl}\left(\partial V_{i}-N(l)\right)$, and an adequate Dehn surgery on a core of the other solid torus V_{j} deforms A to a flat annulus in S^{3}.) When $M=S^{3}$, the Dehn surgery is the same operation as a twisting. A knot with 1 -genus 1-bridge splitting is a non-trivial non-core torus knot or a satellite knot if and only if the splitting has a satellite diagram of non-meridional and non-longitudinal slope. See Theorem 3 in [27], [28] and Theorem III in [14].

Theorem 1.2. Let M be the S^{3} or a lens space, and K a knot in M. Let H_{1} and H_{2} be 1-genus 1-bridge splitting tori of (M, K) such that they intersect each other in non-empty disjoint union of loops which are K-essential on both H_{1} and H_{2}. Then one of the four conditions (1)-(4) below holds.
(1) H_{1} and H_{2} are isotopic in (M, K).
(2) One of the splittings is weakly K-reducible.
(3) One of the splittings has a satellite diagram of non-meridional and nonlongitudinal slope. Moreover, after an adequate isotopy of H_{1} and H_{2} in $(M, K), a$ loop of $H_{1} \cap H_{2}$ gives the slope of the satellite diagram.
(4) We can isotope H_{1} and H_{2} in (M, K) so that they intersect each other in one or two loops which are K-essential on both H_{1} and H_{2}.

In general, let X be a 3-manifold, and T a 1-manifold properly embedded in X. Let F be a 2 -manifold embedded in X so that F is transverse to T. Let γ be a subarc of T such that $\gamma \cap F=\partial \gamma$. We take a small tubular neighbourhood of γ, say $N(\gamma) \cong$ $\gamma \times D^{2}$, so that $N(\gamma) \cap F=\partial \gamma \times D^{2}$. A tubing operation on F along γ is the operation deforming F into the 2-manifold $\left(F-\left(\partial \gamma \times D^{2}\right)\right) \cup\left(\gamma \times \partial D^{2}\right)$.

Theorem 1.3. In case of the conclusion (4) of Theorem 1.2, one of the four conditions (a)-(d) below holds after an adequate isotopy of H_{1} and H_{2} in (M, K).
(a) One of the conclusions (1)-(3) of Theorem 1.2 holds.
(b) (M, K) is a sum of a trivial 2 -string tangle and a pair of a once punctured lens space X and two strings $S=s_{1} \cup s_{2}$ properly embedded in X such that the exterior $E_{i}=\operatorname{cl}\left(X-N\left(s_{i}\right)\right)$ is homeomorphic to a solid torus and the other string s_{j} is trivial in E_{i} for $(i, j)=(1,2)$ and $(2,1)$. Moreover, H_{i} is obtained from ∂X by performing a tubing operation along s_{i}, for $i=1$ and 2 .
(c) One of the splittings has a satellite diagram of a longitudinal slope, two splitting tori intersect each other in precisely two loops which are essential on both H_{1} and H_{2}, and one of them gives the slope of the satellite diagram.
(d) There are a solid torus V embedded in M, and two disjoint discs D_{1} and D_{2} on ∂V as below. The exterior $\operatorname{cl}(M-V)$ is also a solid torus. K intersects V in two arcs. There are two disjoint balls B_{1} and B_{2} in $\mathrm{cl}(M-V)$ such that $V \cap B_{i}=D_{i}$, that K intersects B_{i} in a trivial arc and that K intersects the solid torus $V_{i}=V \cup B_{i}$ in a trivial arc for $i=1$ and 2. Moreover, $H_{i}=\partial V_{i}$ for $i=1$ and 2.

We will obtain the conclusion (c) precisely in Lemmas 5.8 and 7.5 . We will obtain the conclusion (d) precisely in the end of Section 7.
K. Morimoto showed in Theorem 3 in [27] that 1-genus 1-bridge splitting torus of a torus knot is unique. H.J. Song and K.H. Ko showed in [35] that the pretzel knot $P(-2,3,7)$ has at least two non-isotopic 1 -genus 1 -bridge splitting tori.

The author expects that the situation of the conclusion (c) gives many examples of mutually non-isotopic 1 -genus 1 -bridge splitting tori. In case (c), K has a 1-bridge diagram on the annulus A obtained from the splitting torus H_{i} by cutting along the circle of slope. Note that the core circle of A forms a core knot in M. There are cancelling discs C_{1}, C_{2} which form the satellite diagram composed of the $\operatorname{arcs}\left(\partial C_{i} \cap H_{i}\right) \subset A$, $i=1$, 2. Then $S_{k}=\partial N\left(A \cup C_{i}\right)$ is a 1-genus 1-bridge splitting torus having a satellite diagram of longitudinal slope for $k=1$ and 2 . When are S_{1} and S_{2} isotopic?

We give an example of case (b) in Section 13 such that the two strings s_{1} and s_{2} are not parallel in X.

Problem 1.4. Is there a knot which admits two non-isotopic 1-genus 1-bridge splittings located as described in (d)?

The author is wondering whether the conclusion (d) occurs for all the 1 -genus 1-bridge knots or only for a special subclass of them. It may be possible that the splitting tori can be isotoped to intersect each other more beautifully in case (d).

The next corollary is on 1-genus 1-bridge knots in S^{3}. There is a double covering of M branched along a knot K if M is the 3 -sphere (or a (p, q)-lens space with p odd). Hence we can apply Theorem 1.1 to 1-genus 1-bridge splittings, and obtain the result below from Theorems 1.2 and 1.3.

Corollary 1.5. Let H_{i} be a 1-genus 1-bridge splitting of a knot K in S^{3} for $i=$ 1 and 2. Suppose that H_{1} and H_{2} are not isotopic in $\left(S^{3}, K\right)$ and that K is not a 2-bridge knot nor a satellite knot. Then either
(1) K is obtained from a component of a 2-bridge link by twisting along the other component, or
(2) the conclusion (d) of Theorem 1.3 holds.

We can classify all the knot types of 2-bridge knots from the uniquness of the isotopy classes of 2-bridge splitting spheres. The author expects that all the knot types of 1 -genus 1 -bridge knots are classified after studies in the course of this paper in the future.

This paper is made up of 13 sections and 4 appendixes. In Section 2, we prepare preliminary lemmas. In particular, we see in Remark 2.6 that every 1 -genus 1 -bridge splitting has infinitely many 1 -bridge diagrams on the torus, while it has a unique "Heegaard diagram". t-incompressible and t - ∂-incompressible surfaces in (V, t) are studied in Lemma 2.10, where V is a solid torus, and t a trivial arc in V. In Section 3, we consider weakly K-reducible 1 -genus 1 -bridge splittings. In Sections 4-12, we give a proof of Theorems 1.2 and 1.3. In Section 4, we consider the "general" case where $H_{1} \cap H_{2}$ contains three parallel loops on $H_{1}-K$ or $H_{2}-K$. In Section 5, we consider the case $H_{1} \cap H_{2}$ is a single loop. We consider the case $\left|H_{1} \cap H_{2}\right|=2$ in Sections 6-9, the case $\left|H_{1} \cap H_{2}\right|=3$ in Section 10 and the case $\left|H_{1} \cap H_{2}\right|=4$ in Section 11. In Section 12, we show that the conclusion "one of the splittings has a semi-satellite diagram of non-meridional and non-longitudinal slope" of Lemma 6.3 implies that either H_{1} or H_{2} has a satellite diagram, or K is a torus knot. In Section 13, we give an example of the conclusion (b) of Theorem 1.3 such that s_{1} and s_{2} are not parallel in X.

Acknowledgement. The author would like to thank Shin'ichi Suzuki, Kazuaki Kobayashi, Tsuyoshi Kobayashi, Makoto Sakuma, Kanji Morimoto, Katura Miyazaki, Kimihiko Motegi, Kouki Taniyama, Hiroshi Goda, Koya Shimokawa, Makoto Ozawa, Kazuhiro Ichihara and Hiroshi Matsuda for helpful comments.

2. Preliminaries

The next lemma implies that a trivial arc in a solid torus does not have a "local knot".

Lemma 2.1. Let M be an irreducible 3-manifold and t a trivial arc in M. Any 2-sphere S embedded in the interior of M and intersecting t transversely in two points bounds a trivial 1-string tangle $\left(B, t^{\prime}\right)$, where $t^{\prime}=t \cap B$.

Proof. Let C be a cancelling disc of the trivial arc t in M. Since M is irreducible, S bounds a ball, say B, in M. A standard innermost loop argument shows that we can isotope C so that C intersects S in a single arc connecting the two points $t \cap S$. This arc cuts off from C a cancelling disc of the $\operatorname{arc} t \cap B$ in the ball B.

In the rest of this section, V denotes a solid torus, and t a trivial arc in V. We study "essential" surfaces in (V, t).

Lemma 2.2. Let D be a t-compressing disc of ∂V. Then either D is a meridian disc disjoint from t, or a peripheral disc which cuts off a ball B containing t from V. In the latter case, we can take a cancelling disc C of t with $C \cap D=\emptyset$.

Let Q be a meridionally compressing disc of ∂V in (V, t). Then Q is a meridian disc of V.

Proof. When ∂D is essential on ∂V (ignoring ∂t), D is a meridian disc disjoint from t. When ∂D is inessential on $\partial V, D$ is a peripheral disc cutting off a ball, say B, from V. If B were disjoint from the arc t, then D would not be a t-compressing disc. Hence B contains t entirely. By Lemma $2.1, t$ is trivial in B. We can take a cancelling disc C of t in the ball B so that the arc $\partial C \cap \partial B$ is disjoint from D.

Suppose that ∂Q bounds a disc Q^{\prime} on ∂V. Since Q is a meridionally compressing disc, Q^{\prime} contains zero or two points of ∂t. Hence the 2 -sphere $Q \cup Q^{\prime}$ intersects t in one or three points, which contradicts that V is irreducible.

Lemma 2.3. Let C be a cancelling disc of t in V, and D a meridian disc of V with $D \cap t=\emptyset$. Then we can isotope D in (V, t) to be disjoint from C.

Proof. We isotope D in (V, t) so that ∂D intersects the arc $\partial C-t$ transversely in minimum number of points and that D intersects C transversely. A standard innermost
loop argument allows us to isotope D in (V, t) to cancel all the intersection loops of $D \cap C$. Suppose for a contradiction that $D \cap C$ contains one or more arcs. Let γ be an arc of $D \cap C$ such that γ is outermost on C away from t, that is, γ cobounds a disc Q_{C} on C with a subarc of $\partial C-t$ such that $Q_{C} \cap D=\gamma$. Let A be an annulus obtained by cutting ∂V along ∂D, and l_{1} and l_{2} the boundary loops of A. Then the arc $\gamma^{\prime}=\partial Q_{C} \cap A$ has its endpoints in the same component of ∂A, say l_{1}, and γ^{\prime} and a subarc of l_{1} cobound a disc Q_{A} on A. If Q_{A} contained no endpoint of t, then we could isotope D along Q_{A} to decrease $|\partial D \cap(\partial C-t)|$. Hence Q_{A} contains the two endpoints $\partial t . \partial C \cap A$ contains an arc with its both endpoints in l_{2} since $\left|l_{1} \cap(\partial C-t)\right|=$ $\left|l_{2} \cap(\partial C-t)\right|$. Near an outermost such arc, we can isotope D along the outermost disc, to decrease $|\partial D \cap(\partial C-t)|$. This is again a contradiction.

Lemma 2.4. Let D_{i} be a meridian disc of V with $D_{i} \cap t=\emptyset$ for $i=1$ and 2. Then D_{1} and D_{2} are isotopic in (V, t).

Proof. Let C be a cancelling disc of t in V. Lemma 2.3 allows us to isotope D_{i} in (V, t) so that D_{i} is disjoint from C for $i=1$ and 2. After an adequate small isotopy of D_{1} in $(V, t), D_{1}$ and D_{2} intersect each other transversely. Since D_{1} and D_{2} are meridian discs of $V, \partial D_{1}$ and ∂D_{2} are isotopic in ∂V (ignoring ∂t). If $\partial D_{1} \cap \partial D_{2} \neq \emptyset$, then $\partial D_{1} \cup \partial D_{2}$ has two bigons on H, where a bigon is an open disc component of $H-\left(\partial D_{1} \cup \partial D_{2}\right)$ incident to a single arc of $\partial D_{1}-\partial D_{2}$ and a single arc of $\partial D_{2}-\partial D_{1}$. One of the bigons does not contain the arc $\partial C \cap H$, and hence is disjoint from ∂t. We can isotope D_{1} along the bigon, to decrease $\left|\partial D_{1} \cap \partial D_{2}\right|$. Repeating such operations as above, we can isotope D_{1} in ($\left.V, t\right)$ so that $\partial D_{1} \cap \partial D_{2}=\emptyset$. A standard innermost loop argument shows that we can isotope D_{1} to be disjoint from $D_{2} . D_{1}$ and D_{2} together divide V into two balls, one of which is disjoint from t. Hence D_{1} and D_{2} are isotopic in (V, t).

The next lemma implies that there are infinitely many isotopy classes of cancelling discs of a trivial arc in a solid torus.

Lemma 2.5. Let D be a meridian disc of V with $D \cap t=\emptyset$. Let α be an arc on ∂V with $\partial \alpha=\partial t$ and $\alpha \cap \partial D=\emptyset$. Then there is a cancelling disc C of t in V with $\partial C \cap \partial V=\alpha$ and $C \cap D=\emptyset$.

Proof. Let B be the ball obtained by cutting V along D. By Lemma $2.3 B$ contains a cancelling disc C of t. We can isotope C in B near the $\operatorname{arc} \partial C \cap \partial B$ so that $\partial C \cap \partial B=\alpha$.

Remark 2.6. The above lemma implies that every homeomorphism class of 1 -genus 1 -bridge splitting has infinitely many isotopy classes of 1-bridge diagrams on
the torus up to homeomorphism, while it has a unique Heegaard diagram up to homeomorphism as below. Let H be an abstract torus, and p, q two distinct points on H. Let l_{1} and l_{2} be two essential loops on H with $\left(l_{1} \cup l_{2}\right) \cap(p \cup q)=\emptyset$. From such a system, we can form a 1 -genus 1 -bridge knot by attaching a solid torus V_{1} containing a trivial arc t_{1} on the front side of H so that l_{1} bounds a disc disjoint from t_{1} in V_{1}, and attaching $\left(V_{2}, t_{2}\right)$ similarly on the reverse side. By Lemma 2.4 , such a diagram is unique under the condition " $\left|l_{1} \cap l_{2}\right|$ is minimal up to isotopy on $H-(p \cup q)$ ". Theorem B in [13] and Lemma 2.2 together imply that such a Heegaard diagram represents the trivial knot if and only if p and q are in the same component of $H-\left(l_{1} \cup l_{2}\right)$.

A standard innermost loop and outermost arc argument as in the proofs of the above lemmas shows the next lemma. We omit the proof.

Lemma 2.7. Let D be a meridian disc of V with $D \cap t=\emptyset$. Let Q be a meridionally compressing disc of ∂V in (V, t). Then Q can be isotoped in (V, t) to be disjoint from the disc D. Moreover, after such an isotopy we can take a cancelling disc C of t so that C is disjoint from D and intersects Q in a single arc connecting the point $t \cap Q$ and a point in the arc $\partial C-t$. Hence we obtain a trivial 2 -string tangle by cutting (V, t) along Q.

The next lemma implies that there are infinitely many isotopy classes of meridionally compressing discs of ∂V in (V, t).

Lemma 2.8. Let D be a meridian disc of V with $D \cap t=\emptyset$. Let A be the annulus obtained by cutting ∂V along ∂D. Let l be an essential loop on int A such that l separates the two points ∂t on A. Then l bounds a meridionally compressing disc of ∂V in (V, t).

Proof. The loop l divides A into two anuuli, say A_{1} and A_{2}. We push the interior of the disc $A_{i} \cup D$ slightly into int V, to obtain a meridionally compressing disc as desired.

In general, let X be a compact 3-manifold, and T a 1-manifold properly embedded in X. Let F be a 2-manifold such that either F is properly embedded in X transversely to T, or F is a subsurface of ∂X with $\partial F \cap T=\emptyset$. We say that F is T - ∂-compressible if there is a disc D embedded in X such that (1) $D \cap T=\emptyset$, (2) $D \cap(F \cup \partial X)=\partial D$, (3) $\partial D \cap F=\alpha$ is an essential arc in $F-T$, (that is, α does not cobound a disc with a subarc of ∂F on $F-T)$ and (4) $\partial D \cap(\partial X-\operatorname{int} F)=\beta$ is an essential arc in the surface obtained by cutting $(\partial X-$ int $F)-T$ along ∂F. We call such a disc D a T - ∂-compressing disc of F. If F is not T - ∂-compressible, then it is T - ∂-incompressible.

Remark 2.9. In the usual definition, the above condition (4) is omitted. But, this definition of T - ∂-compressibility is equivalent to the usual one for T-incompressible surfaces.

Lemma 2.10. Let F be a 2-manifold properly embedded in (V, t) such that F is transverse to t. Suppose that F is t-incompressible and t - ∂-incompressible. Then F is a union of several surfaces of types (1)-(6) below.
(1) A 2-sphere disjoint from t.
(2) A 2-sphere intersecting t transversely in two points.
(3) A meridian disc of V disjoint from t.
(4) A meridian disc of V intersecting t transversely in a single point.
(5) A peripheral disc disjoint from t.
(6) A peripheral disc intersecting t transversely in a single point.

Proof.
Step 1. Let C be a cancelling disc of t in V. Suppose first that F is disjoint from C. Let V^{\prime} be the solid torus obtained by cutting V along C, and C^{\prime} be the disc composed of the two copies of C in ∂V^{\prime}. Then F is contained in V^{\prime} and is disjoint from C^{\prime}. Since F is incompressible and ∂-incompressible also in V^{\prime}, F is of type (1) or (3) or (5).

Step 2. We can assume that F intersects C. A standard innermost loop argument allows us to isotope F so that $F \cap C$ consists of arcs only since F is t-incompressible.

Step 3. Suppose that $F \cap C$ contains an arc component which has both endpoints in the arc $\partial C \cap \partial V$. Let α be an outermost one away from t among such arcs, and C_{1} the outermost disc of α. Note that $C_{1} \cap t=\emptyset$. We perform a t - ∂-compressing operation on F along C_{1}, to obtain another 2-manifold F_{1}. Since F is t-incompressible and t - ∂-incompressible, Remark 2.9 implies that α cuts off a disc, say Q, from F such that $Q \cap t=\emptyset . F$ is obtained from F_{1} by taking a band sum of the disc $Q \cup C_{1}$ disjoint from t and another component. Note that F_{1} is t-incompressible and t - ∂-incompressible in (V, t). To show that F is a union of surfaces of types (1)-(6), it is enough to show that F_{1} is so. Hence we can assume that $F \cap C$ does not contain such an arc.

STEP 4. If $F \cap C$ contains an arc component which has both endpoints in t. Then let β be an outermost one among such arcs, and C_{2} the outermost disc. Note that $\partial C_{2}-\beta \subset t$. Let N^{\prime} be a regular neighbourhood of C_{2} in the 3-manifold obtained by cutting V along F. Then N^{\prime} intersects F in a disc R which forms a regular neighbourhood of the arc β in F. Let R_{1} be the disc $\operatorname{cl}\left(\partial N^{\prime}-R\right)$. Note that $R_{1} \cap F=\partial R_{1}$. Since F is t-incompressible, the loop ∂R_{1} bounds a disc R_{2} disjoint from t in F. Thus $R \cup R_{2}$ forms a 2 -sphere intersecting t in two points. Let F_{2} be a 2-manifold or an emptyset obtained by discarding this 2 -sphere from F. F is a union of surfaces of
types (1)-(6) if F_{2} is a union of such surfaces or an emptyset. Hence we can assume that $F \cap C$ does not contain such an arc.

STEP 5. Thus $F \cap C$ contains an arc component which has an endpoint in t and the other endpoint in the arc $\partial C \cap \partial V$. Let γ be an outermost one among such arcs. That is, γ cuts off a disc C_{3} from C such that $C_{3} \cap F=\gamma$ and that C_{3} is cobounded by γ, a subarc of t and a subarc of $\partial C \cap \partial V$. Let $N^{\prime \prime}$ be a regular neighbourhood of C_{3} in the 3 -manifold obtained by cutting V along F. Then $N^{\prime \prime}$ intersects F in a disc R^{\prime} which forms a regular neighbourhood of γ in F. Let R_{1}^{\prime} be the disc $\operatorname{cl}\left(\left(\partial N^{\prime \prime} \cap \operatorname{int} V\right)-R^{\prime}\right)$. Since F is t-incompressible and t - ∂-incompressible, Remark 2.9 implies that the arc $F \cap \partial R_{1}^{\prime}$ cuts off a disc R_{2}^{\prime} disjoint from t from F. Thus $R^{\prime} \cup R_{2}^{\prime}$ forms a disc intersecting t in a single point. Let F_{3} be a 2-manifold or an emptyset obtained by discarding this disc from F. It is easy to see that F is a union of surfaces of types (1)-(6) if F_{3} is a union of such surfaces or an emptyset. Hence we complete the proof by an induction on the number of the arcs $F \cap C$.

3. Weakly K-reducible splittings

We will show that a 1 -genus 1 -bridge splitting is weakly K-reducible if and only if the knot K is the trivial knot, core knots, 2-bridge knots or composite knots of a core knot and a 2-bridge knot.

Throughout this section, let M denote the 3 -sphere or a lens space, and K a knot in M with a 1 -genus 1 -bridge splitting $(M, K)=\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$.

In this paper, we call H is K-reducible if there are K-compressing discs D_{1} and D_{2} of H in V_{1} and V_{2} respectively such that $\partial D_{1} \cap \partial D_{2}=\emptyset$. A K-reducible 1-genus 1 -bridge splitting is weakly K-reducible. If there are a cancelling disc C_{1} of t_{1} and a meridian disc D_{2} of V_{2} disjoint from t such that $\partial C_{1} \cap D_{2}=\emptyset$, then H is K-reducible.

Lemma 3.1. If the splitting H is K-reducible, then K is the trivial knot.
Proof. Let D_{1}, D_{2} be discs as in the above definition of K-reducibility. By Lemma 2.2, D_{i} is either a meridian disc disjoint from the arc t_{i}, or a peripheral disc cutting off from V_{i} a ball B_{i} with $t_{i} \subset B_{i}$. Since $\partial D_{1} \cap \partial D_{2}=\emptyset$, at least one of D_{1} and D_{2} is a peripheral disc. (Otherwise, $M \cong S^{2} \times S^{1}$.)

First we suppose that both are peripheral discs. For $i=1$ and 2, set $Q_{i}=B_{i} \cap H$, which is a disc containing ∂t. By Lemma 2.1, in B_{i} we can take a cancelling disc C_{i} of t_{i} with $C_{i} \cap \partial B_{i} \subset Q_{1}$. We can isotope the disc C_{1} near the arc $\partial C_{1} \cap\left(Q_{1} \cup Q_{2}\right)$ so that $\partial C_{1} \cap H=\partial C_{2} \cap H$. Thus K is the trivial knot.

Suppose that one of D_{1} and D_{2}, say D_{1}, is a meridian disc. Then D_{2} is peripheral, and cuts off a ball B_{2} from V_{2}. We perform a K-compressing operation on a copy of the once punctured torus $H^{\prime}=\operatorname{cl}\left(H-B_{2}\right)$ along D_{1}, to obtain a peripheral disc disjoint from t_{1} in V_{1}. Then K is the trivial knot as shown in the previous paragraph.

Lemma 3.2. If the splitting H is weakly K-reducible, then K is the trivial knot, a 2-bridge knot in S^{3}, a core knot in a lens space or a connected sum of a core knot in a lens space and a 2-bridge knot in S^{3}.

Proof. Let D_{1} and D_{2} be discs as in the definition of weakly K-reducibility. We can assume that one of them, say D_{1}, is a meridionally compressing disc by Lemma 3.1. Then D_{1} is a meridian disc of V_{1} by Lemma 2.2. Since $M \not \approx S^{2} \times S^{1}$, D_{2} is a peripheral K-compressing disc, and cuts off a ball B containing t_{2} from V_{2}. The pair $\left(B, t_{2}\right)$ is a trivial 1 -string tangle by Lemma 2.2. Let N be a small regular neighbourhood of D_{1} in V_{1} such that t_{1} intersects N in a single short trivial arc t. By Lemma 2.7, $\left.\left(\operatorname{cl}\left(V_{1}-N\right), \operatorname{cl}\left(t_{1}-t\right)\right)\right)$ is a trivial 2-string tangle. Set $X_{1}=N \cup \operatorname{cl}\left(V_{2}-B\right)$, $X_{2}=\operatorname{cl}\left(V_{1}-N\right) \cup B$ and $s_{i}=K \cap X_{i}$. Then X_{1} is a ball if M is the 3 -sphere, and is a once punctured lens space if M is a lens space. The exterior of s_{1} in X_{1} is homeomorphic to the solid torus $\operatorname{cl}\left(V_{2}-B\right)$. Since $\left(X_{2}, s_{2}\right)$ is the sum of a trivial 1 -string tangle and a trivial 2-string tangle along the disc $B \cap H$, we obtain the trivial knot or a 2-bridge knot in the 3 -sphere if we attach a trivial 1 -string tangle to (X_{2}, s_{2}).

Conversely, we consider weakly K-reducibility for splittings of such knots.
Lemma 3.3 (Theorem B in [13]). If K is a trivial knot, then H is K-reducible.
Katura Miyazaki told us a very easy proof of the above lemma using the handle addition theorem. We omit it. Similar argument gives an easier proof of the weakly K-reducibility for core knots as below.

Lemma 3.4 (Essentially Theorem C in [13], 6.2 Lemma in [21]). Suppose that H is not K-reducible. Then K is a core knot if and only if there are a cancelling disc C_{i} of t_{i} in V_{i} and a meridian disc R_{j} of V_{j} with $R_{j} \cap t_{j}=\emptyset$ such that the arc $\partial C_{i} \cap H$ intersects ∂R_{j} transversely in a single point for $(i, j)=(1,2)$ or $(2,1)$.

Remark 3.5 . We can easily see weakly K-reducibility by isotoping R_{j} near ∂R_{i} along a subarc of $\partial C_{i} \cap H$.

Proof. "If" part follows from Lemma 2.5 . We consider the "only if" part. Suppose that K is a non-trivial core knot. Let D_{i} be a meridian disc of V_{i} with $D_{i} \cap t_{i}=\emptyset$ for $i=1$ and 2. We take regular neighbourhoods $N\left(D_{2}\right)$ in V_{2} and $N\left(t_{1}\right)$ in V_{1} with $N\left(D_{2}\right) \cap N\left(t_{1}\right)=\emptyset$. Set $E\left(t_{1}\right)=\operatorname{cl}\left(V_{1}-N\left(t_{1}\right)\right)$ and $X=E\left(t_{1}\right) \cup N\left(D_{2}\right)$. Then X is homeomorphic to the exterior of the knot K in M. We take an essential loop m on the annulus $\partial N\left(t_{1}\right)-H . D_{1}$ gives a compressing disc of the surface $\partial E\left(t_{1}\right)-m$ in $E\left(t_{1}\right)$. The torus ∂X has a compressing disc since K is a core knot. By the generalized handle addition theorem (Theorem 1 (a) in [38]), either $\partial E\left(t_{1}\right)-\left(\partial D_{2} \cup m\right)$
has a compressing disc in $E\left(t_{1}\right)$, or $\partial E\left(t_{1}\right)-\partial D_{2}$ has a compressing disc D in $E\left(t_{1}\right)$ such that $\partial D \cap m \neq \emptyset$. In the former case, H is K-reducible, which is a contradiction. We consider the latter case. Let C_{1} be a cancelling disc of t_{1} in $E\left(t_{1}\right)$, that is, $\left|\partial C_{1} \cap m\right|=1$. We take C_{1} so that $C_{1} \cap D$ consists of arcs only and $\left|C_{1} \cap D\right|$ is minimal over all the cancelling discs of t_{1}. Let A be the annulus obtained from H by cutting along ∂D_{2}.

When the arcs $\partial C_{1} \cap A$ separate the two points ∂t_{1}, we will obtain a contradiction as below. Since $\partial D \cap m \neq \emptyset$, between every two adjacent points of $\partial D \cap m$ on ∂D, there is an intersection point of $\partial D \cap \partial C_{1}$. Hence there is an outermost arc α of $C_{1} \cap D$ on D such that α cuts off an outermost disc Q from D with $|\partial Q \cap m|=0$ or 1 . The arc α divides C_{1} into two discs C and C^{\prime} where $|\partial C \cap m|=1$. When $|\partial Q \cap m|=1$, the cancelling disc $Q \cup C^{\prime}$ intersects D in less number of arcs than C_{1} does, which is a contradiction. When $|\partial Q \cap m|=0$, we obtain a contradiction again, considering $C \cup Q$.

When $\partial C_{1} \cap A$ does not separate ∂t_{1}, there is an arc, say α, on A such that α is contained in A, connects the two points ∂t_{1} and is disjoint from $\operatorname{int}\left(\partial C_{1} \cap H\right)$. We can take a cancelling disc C_{2} of t_{2} in $\left(V_{2}, t_{2}\right)$ so that $\partial C_{2}=\alpha$ by Lemma 2.5. Then $\partial C_{2} \cap \partial C_{1}=K \cap H$, and K has a 1-bridge diagram with no crossings on H.

The loop $K^{\prime}=\left(\partial C_{1} \cup \partial C_{2}\right) \cap H$ is of non-meridional slope of the solid tori V_{1} and V_{2}. Otherwise, K would be the trivial knot. If K^{\prime} is of non-longitudinal slope of V_{1} and V_{2}, then the exterior of K is a Seifert fibred space over a disc with two exceptional points, which contradicts it is a solid torus. Hence K^{\prime} is of a longitudinal slope of V_{1} or V_{2}, say V_{1} and we can take a meridian disc R_{1} of V_{1} such that R_{1} intersects K^{\prime} in a single point and that the intersection point is contained in ∂C_{2}. A standard innermost loop and outermost arc argument allows us to isotope int R_{1} so that R_{1} is disjoint form the cancelling disc C_{1}.

Weakly K-reducibility of 1 -genus 1 -bridge splittings is shown in Theorem 8.2 in [25] for 2-bridge knots. For composite knots, it is essentially shown in Theorem 1.6 in [6]. See also Theorem II in [14].

4. General case

We begin to prove Theorems 1.2 and 1.3. This proof is completed at the end of Section 13. Let M be the 3 -sphere or a lens space, and K a knot in M. Let H_{i} be a torus giving a 1-genus 1-bridge splitting $(M, K)=\left(V_{i 1}, t_{i 1}\right) \cup_{H_{i}}\left(V_{i 2}, t_{i 2}\right)$ for $i=1$ and 2. We assume that H_{1} and H_{2} intersect transversely in non-empty collection of loops which are K-essential on both H_{1} and H_{2}. If a loop l of $H_{1} \cap H_{2}$ is inessential on one of H_{1} and H_{2}, say on H_{1}, then l bounds a disc intersecting K transversely in two points on H_{1}. Each of H_{1} and H_{2} contains zero or even number of essential loops of $H_{1} \cap H_{2}$ since the splitting tori are separating in M.

The goal of this section is the next proposition.

Proposition 4.1. Suppose that the loops $H_{1} \cap H_{2}$ contains three parallel loops on $H_{1}-K$ or $H_{2}-K$, say $H_{2}-K$. Then one of the following three conditions holds.
(1) We can isotope H_{1} and H_{2} in (M, K) so that they intersect in non-empty collection of smaller number of loops which are K-essential on both H_{1} and H_{2}. Moreover, we can decrease the number of the intersection loops by two or more.
(2) The splitting H_{1} is K-reducible.
(3) The splitting H_{1} has a satellite diagram of non-meridional and non-longitudinal slope. Moreover, a loop of $H_{1} \cap H_{2}$ gives the slope of the satellite diagram.

To prove this proposition, we need the next three lemmas. We use the basic lemmas in Appendix A.

In general, let X be a 3 -manifold, and T a 1-manifold properly embedded in X. Let F_{1} and F_{2} be 2-manifolds embedded in X so that $F_{1} \cap F_{2}=\partial F_{1}=\partial F_{2}$. We say F_{1} and F_{2} are T-parallel if the 2 -manifold $F_{1} \cup F_{2}$ bounds a submanifold M of X such that the triple $\left(M, F_{1}, T \cap M\right)$ is homeomorphic to the triple $\left(F_{1} \times[0,1], F_{1} \times\{0\}, P \times\right.$ $[0,1])$, where P is a union of finite number of points in int F_{1}.

Lemma 4.2. Suppose that one of V_{11} and V_{12}, say V_{11} contains a component S of $H_{2} \cap V_{11}$ such that S is K-parallel to a subsurface S^{\prime} of ∂V_{11}. Suppose that $H_{1} \cap$ H_{2} consists of larger number of loops than $|\partial S|$. Then we can isotope H_{1} and H_{2} in (M, K) so that H_{1} and H_{2} intersect in non-empty collection of smaller number of loops which are K-essential on both H_{1} and H_{2}. Moreover, if S is an annulus disjoint from K, then we can decrease the number of intersection loops by two or more.

Proof. Suppose that int S^{\prime} is disjoint from H_{2}. Then we isotope H_{2} near S slightly beyond S^{\prime} along the parallelism, to cancel the intersection loops ∂S. Since $\left|H_{1} \cap H_{2}\right|>|\partial S|$ before this isotopy, $H_{1} \cap H_{2} \neq \emptyset$ after the isotopy. If S is an annulus, then we have decreased $\left|H_{1} \cap H_{2}\right|$ by two.

Suppose (int S^{\prime}) $\cap H_{2} \neq \emptyset$. Then we isotope S^{\prime} very closely to S along the parallelism to cancel the intersection curves (int S^{\prime}) $\cap H_{2}$. The loops ∂S remain to be intersection loops of $H_{1} \cap H_{2}$. We consider the case where S is an annulus disjoint from K. If int S^{\prime} intersects H_{2} in two or more loops, then we have decreased the number of the intersection loops by two or more. Suppose for a contradiction that int S^{\prime} intersects H_{2} in a single loop c. Since c is K-essential in H_{1}, it is essential in the annulus S^{\prime}, and bounds a surface in the parallelism between S and S^{\prime}. This is a contradiction since c generates the homology group of the solid torus of parallelism.

Recall that we consider the general case where $H_{1} \cap H_{2}$ contains three parallel loops l_{1}, l_{2}, l_{3}, appearing in this order, on $H_{2}-K$. (They may be essential or inessential on H_{2}.) Let A_{1} and A_{2} be the annuli on $H_{2}-K$ between l_{1} and l_{2} and between l_{2} and l_{3} respectively. We can assume, without loss of generality, that A_{i} is contained

Fig. 4.1.
in $V_{1 i}$ for $i=1$ and 2. See Fig. 4.1.
Lemma 4.3. Suppose that at least one of A_{1} and A_{2}, say A_{1}, has boundary loops which are inessential in H_{1}. Then one of the two conditions below holds.
(1) A_{i} is K-parallel in $\left(V_{1 i}, t_{1 i}\right)$ to an annulus on H_{1} for $i=1$ or 2 .
(2) K is the trivial knot.

Proof. We apply Lemma A. 3 in Appendix A to A_{1} in $\left(V_{11}, t_{11}\right)$. (1) of Lemma A. 3 implies (1) of this lemma. Hence we can assume that (2) of Lemma A. 3 holds. Then there is a cancelling disc, say C_{1}, of t_{11} such that $\partial C_{1} \cap H_{1}$ is contained in the disc, say Q, bounded by the outermost loop among l_{1} and l_{2} on H_{1}.

Since l_{2} is inessential on H_{1}, by Lemmas A. 2 and A.3, either A_{2} is K-parallel in $\left(V_{12}, t_{12}\right)$ to an annulus in H_{1}, or there is a cancelling disc C_{2} of t_{12} in $\left(V_{12}, t_{12}\right)$ with $\partial C_{2} \cap H_{1} \subset Q$. In the former case, we obtain the conclusion (1). In the latter case, the knot K has a 1-bridge diagram on the disc Q, and hence is the trivial knot.

Lemma 4.4. Suppose that one component of ∂A_{1} is essential and the other is inessential on ∂V_{11}. Then one of the two conditions below holds.
(1) A_{2} is K-parallel in $\left(V_{12}, t_{12}\right)$ to an annulus in H_{1}.
(2) The splitting H_{1} is K-reducible.

Proof. We assume that the conclusion (1) does not occur to show that (2) occurs. Then, applying Lemmas A.1, A. 2 and A. 3 to A_{2} in $\left(V_{12}, t_{12}\right)$, there is a cancelling disc C_{2} of t_{12} with $C_{2} \cap \partial A_{2}=\emptyset$. By Lemma A. 2 a component of ∂A_{1} bounds a meridian disc D disjoint from K in V_{11}. If ∂A_{2} contains ∂D, then H_{1} is K-reducible since $C_{2} \cap \partial D=\emptyset$. If a component l of ∂A_{2} is inessential on H_{1}, then the arc $\partial C_{2} \cap H_{1}$ is contained in the disc bounded by l on H_{1}, and hence ∂C_{2} is disjoint from ∂D. Thus

Fig. 5.1.
H_{1} is K-reducible.
Proof. We prove Proposition 4.1. (1) of Lemma 4.3 and (1) of Lemma 4.4 imply (1) of this proposition together with Lemma 4.2 since $H_{1} \cap H_{2}$ contains three or more loops. (2) of Lemma 4.3 implies (2) of this proposition by Theorem B in [13]. (2) of Lemma 4.4 is contained in (2) of this proposition.

Hence we can assume that the loops of ∂A_{1} and ∂A_{2} are essential in H_{1}. If at least one of A_{1} and A_{2}, say A_{1}, is K-parallel in $\left(V_{11}, t_{11}\right)$ to an annulus in H_{1}, then we obtain the conclusion (1) by Lemma 4.2 since $H_{1} \cap H_{2}$ consists of three or more loops. Then we can assume that the annuli are not K-parallel into H_{1}, and that ∂A_{i} is of non-longitudinal slope of $V_{1 i}$ for $i=1$ and 2 by Lemma A.1. Hence there is a cancelling disc C_{i} of t_{i} in $\left(V_{1 i}, t_{1 i}\right)$ with $\partial C_{i} \cap \partial A_{i}=\emptyset$ for $i=1$ and 2. l_{1}, l_{2} and l_{3} together divide H_{1} into three annuli, one of which, say R, contains the two points $K \cap H_{1}$. We can isotope C_{1} and C_{2} near their boundary so that the arcs $\partial C_{1} \cap H_{1}$ and $\partial C_{2} \cap H_{1}$ are contained in R. This implies that H_{1} admits a satellite diagram of a non-longitudinal slope. If the slope of the satellite diagram is meridional, then K is the trivial knot, and H_{1} is K-reducible by Lemma 3.3. This completes the proof of the proposition.

5. When $\left|H_{1} \cap H_{2}\right|=1$

In this section, we study the case where H_{1} and H_{2} intersect each other in a single loop l. We are going to use the basic lemmas in Appendix B. Since 1 is odd, l is inessential and K-essential in both H_{1} and H_{2}. l bounds a disc, say Q_{i}, intersecting K in two points in H_{i} for $i=1$ and 2. See Fig. 5.1.

For $(i, j)=(1,2)$ and $(2,1), Q_{i}$ is contained in $V_{j 1}$ or $V_{j 2}$, say $V_{j 1}$, and forms a 2-sphere bounding a 3-ball B together with Q_{j} in the solid torus $V_{j 1}$. K intersects B in two subarcs each of which connects Q_{i} and Q_{j}. Set $V_{j 1}^{\prime}=\operatorname{cl}\left(V_{j 1}-B\right)$ and $t_{j 1}^{\prime}=$ $t_{j 1} \cap V_{j 1}^{\prime}$ for $j=1$ and 2 . Note that $t_{j 1}^{\prime}=t_{i 2}$ for $(i, j)=(1,2)$ and $(2,1)$.

By Lemma 2.10, Q_{i} is K-compressible or K - ∂-compressible in $\left(V_{j 1}, t_{j 1}\right)$. Hence it is sufficient to consider the four cases (1), (2), (3)(a), (3)(b) below.
(1) Q_{i} is K-compressible in $\left(V_{j 1}, t_{j 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$.
(2) Q_{1} or Q_{2}, say Q_{1} is K-incompressible in $\left(V_{21}, t_{21}\right), K$ - ∂-incompressible in $\left(V_{21}^{\prime}, t_{21}^{\prime}\right)$ and K - ∂-compressible in ($B, K \cap B$).
(3) Q_{1} or Q_{2}, say Q_{1} is K-incompressible in $\left(V_{21}, t_{21}\right)$ and is K - ∂-compressible in $\left(V_{21}^{\prime}, t_{21}^{\prime}\right)$. There are two subcases.
(a) Q_{2} is K-compressible in $\left(V_{11}, t_{11}\right)$.
(b) Q_{2} is K-incompressible in $\left(V_{11}, t_{11}\right)$ and K - ∂-compressible in $\left(V_{11}^{\prime}, t_{11}^{\prime}\right)$.

We do not need to consider the subcase where Q_{2} is K-incompressible in $\left(V_{11}, t_{11}\right), K$ - ∂-incompressible in ($V_{11}^{\prime}, t_{11}^{\prime}$) and K - ∂-compressible in $(B, K \cap B)$, since this case is contained in the case (2).

Lemma 5.1. In case (1) H_{2} is K-reducible.
Proof. Since Q_{1} is K-compressible in $\left(V_{21}, t_{21}\right), \partial Q_{2}$ bounds a K-compressing disc D of H_{2} in $\left(V_{21}, t_{21}\right)$ by Lemma B. 1 in Appendix B. Let D^{\prime} be a K-compressing disc of Q_{2} in $\left(V_{11}, t_{11}\right)$. By Lemma B.1(1), D^{\prime} is contained in $V_{11}^{\prime}=V_{11} \cap V_{22}$. Then D and D^{\prime} show that H_{2} is K-reducible.

Lemma 5.2. In case (3)(a) K is isotopic to a core of V_{21} in M.

Proof. Since Q_{2} is K-compressible in (V_{11}, t_{11}), by Lemma B. 1 (2), there is a cancelling disc C of t_{11} in $\left(V_{11}, t_{11}\right)$ with $C \cap H_{1} \subset Q_{1}$. Let D be a K - ∂-compressing disc D of Q_{1} in ($V_{21}^{\prime}, t_{21}^{\prime}$). By Lemma B. 3 (1) D is a meridian disc of V_{21}^{\prime}, and by Lemma B. 3 (4) there is a cancelling disc P of t_{21}^{\prime} in $\left(V_{21}^{\prime}, t_{21}^{\prime}\right)$ such that P is disjoint from D and that $P \cap Q_{1}$ consists of two arcs each of which contains a point of ∂t_{21}^{\prime}. Since K intersects Q_{1} in precisely two points, we can take C and P so that $\partial C \cap \partial D$ is a single point and that $\partial C \cap \partial P=K \cap Q_{1}$. Hence K is isotopic to the circle ($\partial C \cup$ $\partial P) \cap \partial V_{21}^{\prime}$, and is isotopic to a core of V_{21}.

Lemma 5.3. In case (3)(b) H_{j} is isotopic to the torus obtained by performing a tubing operation on ∂B along $t_{i 2}$ for $(i, j)=(1,2)$ and $(2,1)$. Moreover, $(B, K \cap B)$ is a trivial 2-string tangle, and its complementary tangle (X, S) with $X=\operatorname{cl}(M-B)$ and $S=K \cap X$ is as below.
(i) X is a ball or a once punctured lens space and S is a disjoint union of two arcs s_{1} and s_{2},
(ii) $E_{i}=\operatorname{cl}\left(X-N\left(s_{i}\right)\right)$ is a solid torus for $i=1$ and 2 and
(iii) s_{j} is trivial in E_{i} for $(i, j)=(1,2)$ and $(2,1)$.

In particular, K is the trivial knot or a 2-bridge knot when $M=S^{3}$.

Proof. For $(i, j)=(1,2)$ and $(2,1)$, we consider the arguments below. Let D_{j} be a K - ∂-compressing disc of Q_{i} in $\left(V_{j 1}^{\prime}, t_{j 1}^{\prime}\right)$. The arc $D_{j} \cap Q_{i}$ separates the two points $K \cap Q_{i}$ in Q_{i}. Let $N\left(D_{j}\right)$ be a regular neighbourhood of D_{j} in $V_{j 1}^{\prime}$ and set $B^{\prime}=B \cup$ $N\left(D_{1}\right) \cup N\left(D_{2}\right)$. Then B^{\prime} is a ball isotopic to B in (M, K). Set $X=\operatorname{cl}\left(M-B^{\prime}\right), s_{j}=$ $t_{j 1}^{\prime}=t_{i 2}$ and $S=s_{1} \cup s_{2}$. The ball $N_{j}=\operatorname{cl}\left(V_{j 1}^{\prime}-N\left(D_{j}\right)\right)$ forms a regular neighbourhood of s_{j} in X by Lemma B.3. Hence H_{j} is isotopic in (M, K) to the torus obtained by performing a tubing operation on ∂B along $t_{i 2}$. Since $V_{j 1} \cup B^{\prime}$ is a solid torus isotopic to $V_{j 1}$ in (M, K), the exterior $E_{j}=\operatorname{cl}\left(X-N_{j}\right)$ of s_{j} is isotopic to the solid torus $V_{j 2}$.

We can take a cancelling disc C_{j} of $t_{j 2}$ in $\left(V_{j 2}, t_{j 2}\right)$ with $C_{j} \cap D_{i}=\emptyset$. Then C_{j} is also a cancelling disc of $s_{i}=t_{j 2}$ in $E_{j}=\operatorname{cl}\left(X-N_{j}\right)$. Since the tangle ($B^{\prime}, K \cap B^{\prime}$) is isotopic to $(B, K \cap B)$ in (M, K), and since $(B, K \cap B$) is a trivial 2-string tangle by Lemma B. 2 (3), ($B^{\prime}, K \cap B^{\prime}$) is a trivial 2-string tangle.

When $M=S^{3}, X$ is a ball, $\operatorname{cl}\left(X-N_{1}\right)$ and $\operatorname{cl}\left(X-N_{2}\right)$ are solid tori, and $\operatorname{cl}(X-$ $\left.N_{1} \cup N_{2}\right)$ is a handlebody because s_{1} is trivial in E_{2}. Hence (X, S) is a trivial 2-string tangle by Theorem 1 in [10]. Thus K is the trivial knot or a 2-bridge knot.

Lemma 5.4. Assume that $(B, K \cap B)$ is a trivial 2 -string tangle. Suppose that the once punctured torus $H_{2} \cap V_{12}$ or $H_{1} \cap V_{22}$, say $H_{2} \cap V_{12}$ is compressible in $V_{12} \cap V_{22}$. Then $M=S^{3}$ and K is the trivial knot or a 2-bridge knot.

Proof. Let D be a compressing disc of $H_{2} \cap V_{12}$ in $V_{12} \cap V_{22}$. Note that $V_{12} \cap V_{22}$ is disjoint from K. We perform a compressing operation on a copy of $H_{2} \cap V_{12}$ along D. Then we obtain a disc D^{\prime} (and possibly a torus component) with $\partial D^{\prime}=\partial Q_{i}$. The 2-sphere $D^{\prime} \cup Q_{i}$ bounds a ball W_{i} in $V_{i 2}$ for $i=1$ and 2 . Moreover, $t_{i 2}$ is trivial in W_{i} by Lemma 2.1 for $i=1$ and 2. Then ($W_{1} \cup_{D^{\prime}} W_{2}, t_{12} \cup t_{22}$) is a trivial 2-string tangle, and hence K is the trivial knot or a 2-bridge knot.

Lemma 5.5. In case (2) either K is the trivial knot or a 2-bridge knot in S^{3}, or we can isotope H_{1} in (M, K) so that
(i) $H_{1} \cap H_{2}$ consists of two essential loops on both H_{1} and H_{2},
(ii) $H_{1} \cap H_{2}$ divide H_{i} into two annuli one of which, say A_{i}, intersects K in two points for $i=1$ and 2 and
(iii) there is a parallelism $(P, K \cap P)$ of A_{1} and A_{2} with (int $\left.P\right) \cap\left(H_{1} \cup H_{2}\right)=\emptyset$.

Proof. In case (2), $(B, K \cap B)$ gives a parallelism between Q_{1} and Q_{2} by Lemma B.4. Suppose first that $H_{2} \cap V_{12}$ has a K-compressing disc D in $\left(V_{12}, t_{12}\right)$. Then by Lemma B. 2 (4) D is contained in $V_{12} \cap V_{22}$. By Lemma B. 2 (3), ($B, K \cap B$) is a trivial 2 -string tangle, and hence K is the trivial knot or a 2-bridge knot in S^{3} by Lemma 5.4.

Hence we can assume that $H_{2} \cap V_{12}$ is K-incompressible in (V_{12}, t_{12}). Then $H_{2} \cap$ V_{12} has a K - ∂-compressing disc R in $\left(V_{12}, t_{12}\right)$ by Lemma 2.10. If R is contained

Fig. 5.2.
in V_{21}^{\prime}, then $R \cap Q_{1}$ is an arc essential in $Q_{1}-K$ by the unusual definition of K - ∂-compressibility. Hence R is also a $K-\partial$-compressing disc of Q_{1}, which contradicts that we are now considering case (2). Then R is contained in $V_{12} \cap V_{22}$. The arc $R \cap\left(H_{1} \cap V_{22}\right)$ is essential in $H_{1} \cap V_{22}$ by the definition of K - ∂-compressibility. We isotope H_{2} along R, and obtain the desired conclusion.

In the rest of this section, we consider the latter half of the conclusion of Lemma 5.5, that is, we assume that the conditions (i), (ii) and (iii) are satisfied. See Fig. 5.2. Set $A_{i}^{\prime}=\operatorname{cl}\left(H_{i}-A_{i}\right)$ for $i=1$ and 2. Let $V_{i 1}$ be the solid torus bounded by H_{i} and containing the annulus A_{j} for $(i, j)=(1,2)$ and $(2,1)$. Let $V_{i 2}$ be the other solid torus bounded by H_{i} in M. Set $t_{i j}=K \cap V_{i j}$. Let $V_{i 1}^{\prime}$ be the solid torus $V_{i 1}-P$, and let $t_{i 1}^{\prime}=K \cap V_{i 1}^{\prime}$ for $i=1$ and 2. In $\left(V_{j 2}, t_{j 2}\right)$ the annulus A_{i}^{\prime} is K-compressible or $K-\partial$-compressible by Lemma 2.10. Hence there are five cases (A), (B), (C), (D)(i), (D)(ii) below.
(A) One of A_{1}^{\prime} and A_{2}^{\prime}, say A_{1}^{\prime} has a K-compressing disc in $V_{12} \cap V_{22}$.
(B) A_{1}^{\prime} and A_{2}^{\prime} are K-compressible in $\left(V_{11}^{\prime}, t_{11}^{\prime}\right)$ and in $\left(V_{21}^{\prime}, t_{21}^{\prime}\right)$ respectively.
(C) One of A_{1}^{\prime} and A_{2}^{\prime}, say A_{1}^{\prime} has a $K-\partial$-compressing disc in $V_{12} \cap V_{22}$.
(D) One of A_{1}^{\prime} and A_{2}^{\prime}, say A_{1}^{\prime} is $K-\partial$-compressible in ($V_{11}^{\prime}, t_{11}^{\prime}$). There are two subcases.
(i) A_{2}^{\prime} is K-compressible in $\left(V_{21}^{\prime}, t_{21}^{\prime}\right)$.
(ii) A_{2}^{\prime} is K - ∂-compressible in $\left(V_{21}^{\prime}, t_{21}^{\prime}\right)$.

Lemma 5.6. In case (A), K is the trivial knot.

Proof. A K-compressing operation on a copy of A_{1}^{\prime} in $V_{12} \cap V_{22}$ yields meridian discs D_{1} and D_{2} of V_{12} and V_{22}. By Lemma A.1, there is a cancelling disc C_{i} of $t_{i 2}$ disjoint from D_{1} and D_{2} in $\left(V_{i 2}, t_{i 2}\right)$ for $i=1$ and 2. Then $\partial C_{i} \cap H_{i} \subset A_{i}$. Since A_{1}
and A_{2} are K-parallel in $(P, K \cap P)$, we can extend C_{2} to a cancelling disc C_{2}^{\prime} of t_{11} in (V_{11}, t_{11}) with $\partial C_{1} \cap H_{1} \subset A_{1}$. Thus K admits a 1-bridge diagram on A_{1}. (Note that C_{2}^{\prime} may intersect A_{1}^{\prime}.) Since ∂A_{1} is meridional on $\partial V_{12}, A_{1}$ is an unknotted and untwisted annlus, and K is the trivial knot.

Lemma 5.7. In case (C), H_{1} and H_{2} are isotopic in (M, K).
Proof. Let D be a K - ∂-compressing disc of A_{1}^{\prime} with $D \subset V_{12} \cap V_{22}$. The arc $\partial D \cap A_{1}^{\prime}$ connects two distinct components of ∂A_{1}^{\prime}. Hence the arc $\partial D \cap A_{2}^{\prime}$ is also essential in A_{2}^{\prime}. If we perform a K - ∂-compressing operation on A_{1}^{\prime} along D, then we obtain a disc whose boundary bounds a disc on A_{2}^{\prime}. These discs together form a 2-sphere bounding a ball in V_{12}. Thus $V_{12} \cap V_{22}$ gives a K-parallelism between A_{1}^{\prime} and A_{2}^{\prime} in (M, K). Since $(P, K \cap P)$ gives K-parallelism between A_{1} and A_{2}, H_{1} and H_{2} are isotopic in (M, K).

Lemma 5.8. In case (D)(ii), there is an annulus A embedded in M satisfying the following two conditions (a) and (b).
(a) A core loop of A forms a core knot in M.
(b) K has a 1-bridge diagram on A. That is, K intersects A transversely in two points and is divided into two subarcs t_{1} and t_{2}, and there is an embedded disc C_{i} with $K \cap C_{i}=t_{i} \subset \partial C_{i} \operatorname{cl}\left(\partial C_{i}-t_{i}\right)=C_{i} \cap \operatorname{int} A$ and $C_{1} \cap C_{2} \subset \operatorname{int} A$ for $(i, j)=(1,2)$ and $(2,1)$.
Moreover, let R_{i} be the annulus obtained by isotoping A fixing ∂A along C_{i} slightly beyond t_{i}. Then H_{i} is isotopic to the torus $A \cup R_{i}$ in (M, K) for $i=1$ and 2, after changing suffix numbers if necessary.

Proof. For $(i, j)=(1,2)$ and $(2,1)$, we consider the argument below. Since the annulus A_{i}^{\prime} is disjoint from the knot K, performing $K-\partial$-compressing operation on a copy of A_{i}^{\prime}, we obtain a disc Q_{i} such that ∂Q_{i} bounds a disc Q_{i}^{\prime} on A_{j}. The 2-sphere $Q_{i} \cup Q_{i}^{\prime}$ bounds a ball B_{i} in $V_{j 2}$. Hence A_{i}^{\prime} and A_{j} are parallel in M (ignoring K). A standard innermost loop and outermost arc argument allows us to take a cancelling disc $C_{j 2}$ of $t_{j 2}$ in $\left(V_{j 2}, t_{j 2}\right)$ with $C_{j 2} \cap Q_{i}=\emptyset$. Since A_{1} and A_{2} are K-parallel in ($P, K \cap P$), we have the desired conclusion.

Lemma 5.9. In case (B), we have a contradiction.
Proof. A K-compressing operation on A_{1}^{\prime} yields meridian discs D_{1} and D_{2} of V_{22}. Since A_{2}^{\prime} has a K-compressing disc in $V_{21}^{\prime}, M \cong S^{2} \times S^{1}$, which contradicts our assumption.

Lemma 5.10. In case (D)(i), H_{2} is K -reducible.

Fig. 6.1.
Proof. Performing a K - ∂-compressing operation on A_{1}^{\prime}, we obtain a K compressig disc of A_{2}, which is peripheral in V_{22} (ignoring t_{22}). This disc and a K-compressing disc of A_{2}^{\prime} in V_{21} show that H_{2} is K-reducible.

6. When $H_{1} \cap H_{\mathbf{2}}$ consists of two essential loops (I)

In this and the next sections, we consider the case where $H_{1} \cap H_{2}$ consists of two loops which are essential on both H_{1} and H_{2} (ignoring the points $K \cap H_{i}$).

See Fig. 6.1. The loops $H_{1} \cap H_{2}$ divide H_{i} into two annuli $A_{i 1}$ and $A_{i 2}$ for $i=1$ and 2. Let $V_{i 1}$ be the solid torus bounded by H_{i} in M with $A_{j 1} \subset V_{i 1}$ for $(i, j)=$ $(1,2)$ and $(2,1)$. Let $V_{i 2}$ be the other solid torus bounded by H_{i}. Set $t_{i j}=K \cap V_{i j}$.

Lemma 6.1. $A_{11}, A_{12}, A_{21}, A_{22}$ are parallel to an annulus in the boundary of $V_{21}, V_{22}, V_{11}, V_{12}$ respectively (ignoring K). Hence these solid tori are divided the anuuli into two solid tori.

Proof. In this proof we ignore K. We consider A_{11}. The same argument will do for the other annuli.

We can assume that ∂A_{11} are of meridional slope of V_{21}. (Otherwise, the conclusion is a well-known fact.) Then A_{11} is compressible in V_{21}. Moreover, we can assume, without loss of generality, that A_{11} has a compressing disc Q in $V_{21} \cap V_{12}$. Then, compressing A_{11}, we obtain a compressing disc R of A_{22} in $V_{21} \cap V_{12} . \partial Q$ is of meridional slope of V_{12}, and hence it is of non-meridional slope of V_{11}, otherwise, $M \cong S^{1} \times S^{2}$. Hence A_{21} is parallel to one of A_{11} and A_{12} in V_{11}. When A_{21} is parallel to A_{11}, we are done. Hence we can assume that A_{21} is parallel to A_{12}. Then we can isotope H_{1} into int V_{21} so that it is disjoint from the meridian disc R of V_{21}. Let S be the 2 -sphere obtained by compressing H_{2} along $R . S$ bounds a ball containing H_{1}

Fig. 6.2.

Fig. 6.3.
in V_{21}, and on the other side bounds a ball in V_{12}. See Fig. 6.2. Hence $M=S^{3}$, and ∂A_{21} is of longitudinal slope of V_{11} before the isotopy of H_{1}. Hence A_{21} is parallel to A_{11} in V_{11}.

We can assume, without loss of generality, that $\left|A_{i 1} \cap K\right| \geq\left|A_{i 2} \cap K\right|$. There are two cases: in case (I) $\left|A_{11} \cap K\right|=\left|A_{21} \cap K\right|=\left|A_{12} \cap K\right|=\left|A_{22} \cap K\right|=1$ (See Fig. 6.3), and in case (II) $\left|A_{11} \cap K\right|=\left|A_{21} \cap K\right|=2$ and $A_{12} \cap K=A_{22} \cap K=\emptyset$. We consider case (I) in this section, and case (II) in the next section. In this section, we will use lemmas in Appendix C.

When $A_{i k}$ has a K - ∂-compressing disc D in $\left(V_{j k}, t_{j k}\right)$ for $(i, j)=(1,2)$ or $(2,1)$
and $k \in\{1,2\}$, we say that D is essential if the arc $\partial D \cap A_{i k}$ is essential on $A_{i k}$, and inessential otherwise, following the definition in Appendix C.

There are many cases as below.
(1) Precisely one of the four solid tori $V_{11} \cap V_{21}, V_{11} \cap V_{22}, V_{12} \cap V_{21}$ and $V_{12} \cap V_{22}$ contains an essential K - ∂-compressing disc (Lemma 6.6).
(2) Precisely two adjacent solid tori do (Lemma 6.5).
(3) Two non-adjacent solid tori do (Lemma 6.4).
(4) None of the solid tori does. There are 2 subcases.
(a) At least one of $A_{11}, A_{12}, A_{21}, A_{22}$ is K-compressible (Lemma 6.2).
(b) All of the annuli are K-incompressible, and hence have inessential $K-\partial$ compressing discs (Lemma 6.3).

Lemma 6.2. Suppose that $A_{i k}$ is K-compressible in $\left(V_{j k}, t_{j k}\right)$ and $A_{i l}$ does not have an essential K - ∂-compressing disc in $\left(V_{j l}, t_{j l}\right)$ for $(i, j)=(1,2)$ or $(2,1)$ and $(k, l)=(1,2)$ or $(2,1)$. Then H_{j} is weakly K-reducible.

Proof. Suppose, without loss of generality, that the preliminary conditions hold for $(i, j)=(1,2)$ and $(k, l)=(1,2)$. Let D be a K-compressing disc of A_{11}. We can assume, without loss of generality, that D is contained in $V_{11} \cap V_{21}$. Then A_{21} has a K-compressing disc in $V_{11} \cap V_{21}$ by Lemma C.1. Moreover, $\partial A_{11}=\partial A_{21}$ is meridional on V_{21} and V_{11}.

First, suppose that A_{12} is K-compressible in (V_{22}, t_{22}). Then ∂A_{12} is of meridional slope of V_{22}, and $M \cong S^{2} \times S^{1}$, which is a contradiction.

Secondly, suppose that A_{12} is K-incompressible in $\left(V_{22}, t_{22}\right)$. Then A_{12} has a $K-\partial$-compressing disc D^{\prime} by Lemma 2.10. By the preliminary condition, the arc $\partial D^{\prime} \cap A_{12}$ is inessential in A_{12}. By Lemma C.3, we can take a cancelling disc C of t_{22} in $\left(V_{22}, t_{22}\right)$ so that ∂C is disjoint from a component of ∂A_{12}. ((1) of Lemma C. 3 contradicts our assumption in this lemma.) On the other hand, by performing a K-compressing operation on A_{11} along D, we obtain meridian discs, each of which intersects K at most one point. Hence H_{2} is weakly K-reducible.

We introduce the notion of "semi-satellite diagrams". In general, let $(M, K)=$ $\left(V_{1}, t_{1}\right) \cup_{H}\left(V_{2}, t_{2}\right)$ be a 1 -genus 1 -bridge splitting. We say that H has a semi-satellite diagram if there is a pair of disjoint simple loops l_{1} and l_{2} on H such that l_{1} and l_{2} are essential on H and that t_{i} has a cancelling disc C_{i} disjoint from l_{i} in V_{i} for $i=1$ and 2. A satellite diagram is a semi-satellite diagram. We call l_{1} and l_{2} the slopes of the semi-satellite diagram. We say that l_{1} and l_{2} are meridional (resp. longitudinal) if they are meridional (resp. longitudinal) on ∂V_{1} or ∂V_{2}.

The next lemma immediately follows from Lemma C.3.

Lemma 6.3. Suppose that A_{11}, A_{12}, A_{21} and A_{22} are K-incompressible in $\left(V_{21}, t_{21}\right),\left(V_{22}, t_{22}\right),\left(V_{11}, t_{11}\right)$ and $\left(V_{12}, t_{12}\right)$ respectively. Suppose that two non-adjacent solid tori among $V_{11} \cap V_{21}, V_{11} \cap V_{22}, V_{12} \cap V_{21}, V_{12} \cap V_{22}$ contain inessential K - ∂-compressing discs of $A_{11}, A_{12}, A_{21}, A_{22}$, and that these solid tori do not contain an essential K - ∂-compressing disc. Then H_{i} has a semi-satellite diagram of nonlongitudinal and non-meridional slope for $i=1$ and 2. Moreover, the other splitting torus is a union of two annuli as in (2) of Lemma C.3.

In Section 12, we will study what the conclusion of Lemma 6.3 implies.
The next lemma immediately follows from Lemma C.2.
Lemma 6.4. Suppose that two non-adjacent solid tori among $V_{11} \cap V_{21}, V_{11} \cap V_{22}$, $V_{12} \cap V_{21}, V_{12} \cap V_{22}$, say $V_{11} \cap V_{21}$ and $V_{12} \cap V_{22}$ contain essential K - ∂-compressing discs of $A_{11}, A_{12}, A_{21}, A_{22}$. Then H_{1} and H_{2} are isotopic in (M, K).

Lemma 6.5. Suppose that only two adjacent solid tori among $V_{11} \cap V_{21}, V_{11} \cap V_{22}$, $V_{12} \cap V_{21}, V_{12} \cap V_{22}$, say $V_{12} \cap V_{22}$ and $V_{11} \cap V_{22}$ contain essential K - ∂-compressing discs of A_{12}, A_{21}, A_{22}. Then either
(1) one of H_{1} and H_{2} is K-reducible, or
(2) we can isotope H_{1} and H_{2} so that they are in the situation of the latter half of Section 5 (which is considered in Lemmas 5.6-5.10).

Proof. Suppose that A_{11} is K-compressible in $\left(V_{21}, t_{21}\right)$. Then a K-compressing operation on A_{11} yields a meridian disc, say Q, disjoint from K and bounded by a loop of ∂A_{11}. Since A_{21} and A_{22} are parallel in $\left(V_{22}, t_{22}\right)$, we can take a cancelling disc C of t_{22} in $\left(V_{22}, t_{22}\right)$ with $\partial C \cap \partial Q=\emptyset$. Thus H_{2} is K-reducible.

Hence we can assume that A_{11} is $K-\partial$-compressible by Lemma 2.10. Then one of $V_{11} \cap V_{21}$ and $V_{12} \cap V_{21}$, say $V_{11} \cap V_{21}$ contains an inessential K - ∂-compressing disc D of A_{11}. Then D cuts off a ball B intersecting K in a single arc, say t, from $V_{11} \cap V_{21}$, and we can take a cancelling disc Δ of t in B so that each of $\partial \Delta \cap \partial V_{11}$ and $\partial \Delta \cap \partial V_{21}$ is a single arc. See Fig. 6.4. We isotope K near t along Δ slightly beyond the arc $\partial \Delta-t$. See Fig. 6.5. Then K is in the same situation as in the latter half of Section 5, since ($V_{12} \cap V_{22}, K \cap V_{12} \cap V_{22}$) gives a K-parallelism between A_{12} and A_{22} before the isotopy. Note that this isotopy does not change the isotopy classes of H_{1} and H_{2} in (M, K).

Lemma 6.6. Suppose that precisely one solid torus among $V_{11} \cap V_{21}, V_{11} \cap V_{22}$, $V_{12} \cap V_{21}, V_{12} \cap V_{22}$, say $V_{11} \cap V_{21}$ contains an essential K - ∂-compressing disc of A_{11}, A_{21}. Then one of the following three conditions holds.
(1) One of H_{1} and H_{2} is weakly K-reducible.
(2) We can isotope H_{1} and H_{2} so that they are in the situation of the latter half of Section 5.

Fig. 6.4.

Fig. 6.5.
(3) The conclusion of Lemma 6.3 holds.

Proof. By Lemma C.2, A_{11} and A_{21} are K-parallel in ($V_{11} \cap V_{21}, K \cap V_{11} \cap V_{21}$). Suppose that one of A_{11} and A_{21}, say A_{11} is K-compressible in $\left(V_{21}, t_{21}\right)$. Then H_{2} is weakly K-reducible by Lemma 6.2 since A_{12} does not have an essential $K-\partial-$ compressing disc by the assumption of this lemma. Hence we can assume that A_{11} and A_{21} are K-incompressible.

Suppose that one of A_{12} and A_{22}, say A_{12} has a K-compressing disc D in $\left(V_{22}, t_{22}\right)$. If D is contained in $V_{11} \cap V_{22}$, then A_{21} is also K-compressible by Lemma C.1, which contradicts our assumption. Hence D is contained in $V_{12} \cap V_{22}$. By Lemma C.1, $t=K \cap\left(V_{12} \cap V_{22}\right)$ has a cancelling disc C^{\prime} in $V_{12} \cap V_{22}$ such that each of $\partial C^{\prime} \cap A_{12}$ and $\partial C^{\prime} \cap A_{22}$ is a single arc. We isotope K near t along C^{\prime} slightly

Fig. 7.1.
beyond the arc $\partial C^{\prime}-t$. Then K is in the situation in the latter half of Section 5.
Hence we can assume that A_{12} and A_{22} are K-incompressible, and hence $K-\partial$ compressible by Lemma 2.10. Suppose that $V_{12} \cap V_{22}$ contains an inessential $K-\partial-$ compressing disc D of A_{12} and A_{22}. Then D cuts off a ball B from $V_{12} \cap V_{22}$, and we can take a cancelling disc C of the arc $K \cap B$ so that $\partial C \cap A_{i 2}$ is an arc for $i=1$ and 2. Then we isotope K along C to be in the situation of latter half of Section 5 .

Hence we can suppose that $V_{11} \cap V_{22}$ and $V_{12} \cap V_{21}$ contain inessential $K-\partial$ compressing discs of A_{12} and A_{22} respectively. This is the situation of Lemma 6.3.

7. When $H_{1} \cap H_{\mathbf{2}}$ consists of two essential loops (II)

In this section, we will use Lemma D. 1 in Appendix D. Let $H_{i}, V_{i j}, A_{i j}, t_{i j}$ be as in Section 6. In this section, we consider case (II) where $\left|A_{11} \cap K\right|=\left|A_{21} \cap K\right|=2$ and $A_{12} \cap K=A_{22} \cap K=\emptyset$. See Fig. 7.1.
$K \cap\left(V_{11} \cap V_{21}\right)$ consists of two arcs, say t_{1} and t_{2}, each of which connects A_{11} and A_{21}. By Lemma 2.10, $A_{j 1}$ is K-compressible or K - ∂-compressible in $\left(V_{i 1}, t_{i 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$.

Suppose that $A_{j 1}$ is K - ∂-compressible in ($V_{i 1} \cap V_{j 2}, t_{j 2}$). Any K - ∂-compressing disc of $A_{j 1}$ intersects $A_{i 2}$ in an essential arc by the unusual definition of $K-\partial-$ compressibility, and hence it is also a K - ∂-compressing disc of $A_{i 2}$. K - ∂-compressing a copy of $A_{i 2}$, we obtain a K-compressing disc of $A_{j 1}$ in $\left(V_{i 1} \cap V_{j 2}, t_{j 2}\right)$.

Hence $A_{j 1}$ is K-compressible in ($V_{i 1}, t_{i 1}$) or K - ∂-compressible in $\left(V_{11} \cap V_{21}, t_{1} \cup\right.$ t_{2}). In the latter case, a K - ∂-compressing disc of $A_{j 1}$ is also a K - ∂-compressing disc of $A_{i 1}$ in ($V_{11} \cap V_{21}, t_{1} \cup t_{2}$). Thus it is sufficient to consider the following two cases.
(1) A_{11} and A_{21} are $K-\partial$-compressible in $\left(V_{11} \cap V_{21}, t_{1} \cup t_{2}\right)$.
(2) A_{11} and A_{21} are K - ∂-incompressible in $\left(V_{11} \cap V_{21}, t_{1} \cup t_{2}\right)$, and $A_{j 1}$ is
K-compressible in $\left(V_{i 1}, t_{i 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$.
Lemma 7.1. In case (1), one of the three conditions (a)-(c) below holds.
(a) We can isotope H_{1} and H_{2} so that H_{1} and H_{2} intersect each other in a single inessential and K-essential loop. (We have already considered this situation in Section 5.)
(b) We can isotope H_{1} and H_{2} so that $H_{1} \cap H_{2}$ divide H_{i} into two annuli each of which intersects K in a single point for $i=1$ and 2. (We have already considered this situation in Section 6.)
(c) One of H_{1} and H_{2} is weakly K-reducible.

Proof. Let D be a K - ∂-compressing disc of A_{11} and A_{21} in $V_{11} \cap V_{21}$. Then the arc $\partial D \cap A_{i 1}$ is either essential in both A_{11} and A_{21}, or inessential in them.

In the former case, we isotope H_{1} along D. Then H_{1} and H_{2} intersect each other in a single inessential and K-essential loop. This is the conclusion (a).

In the latter case, let D_{i} be the disc cut off from $A_{i 1}$ by the arc $\partial D \cap A_{i 1}$ for $i=1$ and 2. Then $\left|K \cap D_{1}\right|=\left|K \cap D_{2}\right|$. This number of the intersection points is determined by the number of the arcs contained in the ball B bounded by the 2-sphere $D \cup D_{1} \cup D_{2}$ in $V_{11} \cap V_{21}$.

When $\left|K \cap D_{1}\right|=\left|K \cap D_{2}\right|=1, K \cap B$ is a single trivial arc. Hence we can isotope H_{1} along B so that H_{1} and H_{2} are in position as in case (I). This is the conclusion (b).

When $\left|K \cap D_{1}\right|=\left|K \cap D_{2}\right|=2$, we isotope H_{1} along D. Then $H_{1} \cap H_{2}$ is a union of a single inessential and K-essential loop and two essential loops on both H_{1} and H_{2}. We apply Lemma 10.1 in Section 10 to this situation. The conclusion (1) of Lemma 10.1 implies that we can isotope H_{1} and H_{2} so that they intersect each other in a single inessential and K-inessential loop. This is the conclusion (a) of this lemma. The conclusion (3) of Lemma 10.1 is the conclusion (c) of this lemma. The conclusion (2) of Lemma 10.1 implies that the discs D_{1} and D_{2} are K-parallel after the isotopy along D. Before the isotopy, B contains a K - ∂-compressing disc of A_{11} and A_{21} as we considered in the previous paragraph. Hence we obtain the conclusion (b).

In the rest of this section, we consider case (2) just before Lemma 7.1. Let D_{j} be a K-compressing disc of $A_{j 1}$ in $\left(V_{i 1}, t_{i 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$. We say that D_{j} is essential if $\partial D_{j} \cap A_{j 1}$ is essential on $A_{j 1}$, and otherwise it is inessential, following the definition in Appendix D.

We consider 4 cases below.
(1) Both D_{1} and D_{2} are essential (Lemma 7.2).
(2) One of D_{1} and D_{2} is essential, and the other is inessential (Lemma 7.4).
(3) Both D_{1} and D_{2} are inessential. There are two subcases.
(a) A_{11} or A_{21}, say A_{11} does not have a K - ∂-compressing disc in $\left(V_{12} \cap V_{21}, t_{12}\right)$ (Lemma 7.5).
(b) $A_{j 1}$ has a K - ∂-compressing disc in $\left(V_{j 2} \cap V_{i 1}, t_{j 2}\right)$ for $(i, j)=(1,2)$ and $(2,1)$ (right after Lemma 7.5).

Lemma 7.2. If D_{j} is essential for $j=1$ and 2, then one of H_{1} and H_{2} is K-reducible or weakly K-reducible.

Proof. Suppose first that one of D_{1} and D_{2}, say D_{1} is not contained in $V_{11} \cap V_{21}$. Then D_{1} is contained in $V_{12} \cap V_{21}$. Similar argument as in the proof of Lemma A. 1 (1) shows that D_{2} is not contained in $V_{11} \cap V_{21}$, and hence is contained in $V_{11} \cap V_{22}$. We perform a K-compressing operation on A_{11} along D_{1} and obtain a meridian disc D_{1}^{\prime} of V_{21}. Since D_{2} is a meridian disc of V_{22}, D_{2} and D_{1}^{\prime} shows that $M \cong S^{2} \times S^{1}$, which contradicts our assumption.

Secondly, we assume that both of D_{1} and D_{2} are contained in $V_{11} \cap V_{21} . A_{12}$ is K-compressible or K - ∂-compressible in $\left(V_{22}, t_{22}\right)$ by Lemma 2.10.

If A_{12} has a K-compressing disc, then K-compressing A_{12}, we obtain a meridian disc of V_{22}. Since D_{2} is a meridian disc of $V_{21}, M \cong S^{2} \times S^{1}$. This is again a contradiction.

Hence A_{12} has a $K-\partial$-compressing disc D in $\left(V_{22}, t_{22}\right)$. First, we consider the case where D is contained in $V_{11} \cap V_{22}$. $K-\partial$-compressing A_{12} along D, we obtain a peripheral disc D^{\prime} in $V_{22} . D^{\prime}$ is a K-compressing disc of A_{21}. We perform a K-compressing operation on A_{11} along D_{1}, to obtain a meridian disc Q of V_{21} such that Q intersects K in at most one point. Since $\partial Q \subset \partial A_{11}$ is disjoint from $\partial D^{\prime}, H_{2}$ is weakly K-reducible.

Secondly, we consider the case where D is contained in $V_{12} \cap V_{22}$.
Since $V_{12} \cap V_{22}$ is disjoint from $K, V_{12} \cap V_{22}$ gives K-parallelism between A_{12} and A_{22}. Hence we can isotope H_{1} near A_{12} in (M, K) so that H_{1} is contained in V_{21} and that H_{1} is disjoint from the K-compressing disc D_{2} of A_{21}. Since $D_{2} \subset V_{11} \cap$ $V_{21}, \partial D_{2}$ is essential on A_{21}, and D_{2} is a meridian disc of V_{21}. Note that $M=S^{3}$ because H_{1} is contained in the ball obtained by cutting V_{21} along D_{2}. Then we can apply Theorem 7.3 below, which is an extension of Lemma 4.5 in [31]. Hence H_{2} is weakly K-reducible.

Theorem 7.3 ([24]). Let M be a closed orientable 3-manifold, and L a link in M. Assume that M has a double cover branched along L. Let H_{i} be a g_{i}-genus n_{i}-bridge splitting of (M, L) for $i=1$ and 2 , and W a handlebody of genus g bounded by H_{2} in M. Suppose that H_{1} is contained in int W, and that there is an L-compressing or meridionally compressing disc D of H_{2} in $(W, L \cap W)$ with $D \cap H_{1}=$ \emptyset. Then either $M=S^{3}$ and L is the trivial knot, or H_{2} is weakly L-reducible.

Lemma 7.4. Suppose that one of D_{1} and D_{2}, say D_{1} is essential, and that the other disc D_{2} is inessential. Then H_{2} is weakly K-reducible.

Proof. K-compressing A_{11} along D_{1}, we obtain a meridian disc Q of V_{21} such that Q intersects K in at most one point.

Since ∂D_{2} is inessential in A_{21} and the arcs $K \cap V_{11} \cap V_{21}$ connects A_{11} and A_{21}, D_{2} is contained in $\left(V_{22}, t_{22}\right)$. Hence H_{2} is weakly K-reducible because $\partial Q \cap \partial D_{2}=\emptyset$.

Lemma 7.5. Suppose that D_{1} and D_{2} are inessential. If A_{11} or A_{21}, say A_{11} does not have a K - ∂-compressing disc in $\left(V_{12} \cap V_{21}, t_{12}\right)$, then H_{2} has a satellite diagram on A_{21}.

Proof. D_{1} and D_{2} are inessential. Then, by Lemma D.1, there is a cancelling $\operatorname{disc} C_{1}$ of t_{21} in $\left(V_{21}, t_{21}\right)$ with $\partial C_{1} \cap H_{2} \subset A_{21}$. There is a cancelling disc C_{2} of t_{22} in $\left(V_{22}, t_{22}\right)$ with $C_{2} \cap D_{2}=\emptyset$. Note that $\partial C_{2} \cap H_{2} \subset A_{21}$. Then C_{1} and C_{2} together give a 1-bridge diagram on A_{21}.

Remark 7.6. Since A_{11} is K - ∂-incompressible in $\left(V_{12} \cap V_{21}, t_{12}\right)$, the loops $H_{1} \cap$ H_{2} are of non-longitudinal slopes of V_{21} and V_{12}. But they may be of longitudinal slopes of V_{22} and V_{11}.

Thus we can assume that $A_{j 1}$ has an inessential K-compressing disc D_{j} in ($V_{i 1}, t_{i 1}$), and that $A_{j 1}$ has a K - ∂-compressing disc in $\left(V_{j 2} \cap V_{i 1}, t_{j 2}\right)$ for $(i, j)=(1,2)$ and $(2,1)$. Isotoping H_{1} and H_{2} near A_{11} and A_{21} along these K - ∂-compressing discs, we obtain the conclusion (d) of Theorem 1.3.

8. When $H_{1} \cap H_{2}$ consists of two inessential loops

In this section, we consider the case where $H_{1} \cap H_{2}$ consists of two loops which are inessential and K-essential on both H_{1} and H_{2}. For $i=1$ and $2, H_{i}$ contains two loops, say $l_{i 1}$ and $l_{i 2}$, one of which, say $l_{i 1}$, bounds a disc Q_{i} intersecting K in two points and disjoint from $l_{i 2}$. Let R_{i} be the annulus cobounded by $l_{i 1}$ and $l_{i 2}$ on H_{i}, and H_{i}^{\prime} the once punctured torus cut off by $l_{i 2}$ from H_{i} for $i=1$ and 2 . Note that R_{i} and H_{i} are disjoint from K for $i=1$ and 2 . Let $V_{i 1}$ be the solid torus bounded by H_{i} in M such that $V_{i 1}$ contains Q_{j} and H_{j}^{\prime} for $(i, j)=(1,2)$ and $(2,1)$. Let $V_{i 2}$ be the other solid torus bounded by H_{i} in M with $R_{j} \subset V_{i 2}$. Set $t_{i j}=K \cap V_{i j}$.

If $l_{11}=l_{22}$ and $l_{12}=l_{21}$, then $H_{1}^{\prime} \cup R_{1} \cup H_{2}^{\prime}$ forms a closed surface of genus two which is disjoint from K and separates Q_{1} and Q_{2}. See Fig. 8.1, which is schematic. This contradicts that both Q_{1} and Q_{2} intersect K and K is a knot rather than a link. Hence $l_{11}=l_{21}$ and $l_{12}=l_{22}$. See Fig. 8.2, which is also schematic. Let B be the ball component of $V_{12} \cap V_{22}$ bounded by $Q_{1} \cup Q_{2}$.

Fig. 8.1.

Fig. 8.2.
By Lemma 2.10, $Q_{i} \cup H_{i}^{\prime}$ is K-compressible or $K-\partial$-compressible in $\left(V_{j 1}, t_{j 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$. Hence one of the following four conditions (i)-(iv) holds.
(i) H_{i}^{\prime} has a K-compressing disc D in $\left(V_{j 1}, t_{j 1}\right)$ with $D \cap Q_{i}=\emptyset$.
(ii) H_{i}^{\prime} has a K - ∂-compressing disc D in $\left(V_{j 1}, t_{j 1}\right)$ with $D \cap Q_{i}=\emptyset$.
(iii) Q_{i} has a K-compressing disc D in $\left(V_{j 1}, t_{j 1}\right)$ with $D \cap H_{i}^{\prime}=\emptyset$.
(iv) Q_{i} has a K - ∂-compressing disc D in $\left(V_{j 1}, t_{j 1}\right)$ with $D \cap H_{i}^{\prime}=\emptyset$.

Lemma 8.1. Suppose that the condition (iv) holds for $(i, j)=(1,2)$ or $(2,1)$. Then Q_{1} and Q_{2} are K-parallel in $(B, K \cap B)$, and we can isotope Q_{1} along B slightly beyond Q_{2} to make H_{1} and H_{2} intersect in a single inessential and K-essential loop as in Section 5.

Proof. Suppose, without loss of generality, that the condition (iv) holds for $i=$ $(1,2)$. Then there is a K - ∂-compressing disc D of Q_{1} in $\left(V_{21}, t_{21}\right)$ with $D \cap H_{1}^{\prime}=\emptyset$. If the arc $\partial D \cap H_{2}$ is contained in R_{2}, then it is an inessential arc in R_{2} because it has both endpoints in l_{21}. This contradicts the unusual definition of $K-\partial$-compressing
disc. Hence the arc $\partial D \cap H_{2}$ is contained in Q_{2}, and Q_{1} and Q_{2} are K-parallel in $(B, K \cap B)$ by Lemma B.4.

Lemma 8.2. Suppose that the condition (ii) holds for $i=1$ or 2 . Then one of the two conditions below holds.
(1) We can isotope H_{1} and H_{2} so that they intersect each other in a single loop which is inessential and K-essential on both H_{1} and H_{2} as in Section 5.
(2) One of H_{1} and H_{2} is weakly K-reducible.

Proof. Assume that (ii) holds for $i=1$. By the unusual definition of $K-\partial-$ compressing disc, the arc $\partial D \cap H_{2}$ is contained in H_{2}^{\prime}. Hence D is also a K -∂-compressing disc of H_{2}^{\prime} in $\left(V_{11}, t_{11}\right)$. We isotope H_{1} along the K - ∂-compressing disc D, and make H_{1} and H_{2} intersect in a single inessential loop and two essential loops both in H_{1} and H_{2}. We apply Lemma 10.1. The conclusion (1) of Lemma 10.1 implies that we can isotope one of the parallel annuli along the parallelism, and obtain the conclusion (1) of this lemma. The conclusion (2) of Lemma 10.1 implies that Q_{1} and Q_{2} are K-parallel before the isotopy along D. Then we can isotope Q_{1} along the parallelism slightly beyond Q_{2}, to cancel the intersection $l_{11}=l_{21}$. Hence we obtain the conclusion (1) of this lemma again. The conclusion (3) of Lemma 10.1 is the conclusion (2) of this lemma.

Lemma 8.3. Suppose that the condition (i) holds for $(i, j)=(1,2)$ or $(2,1)$. Then Q_{i} has a K-compressing disc in $\left(V_{j 1}, t_{j 1}\right)$, (which may intersect $\left.H_{i}^{\prime}\right)$.

Proof. Suppose that the condition (i) holds for $(i, j)=(1,2) . K$-compressing H_{1}^{\prime} along D, we obtain a disc D^{\prime} with $D^{\prime} \cap\left(K \cup Q_{1}\right)=\emptyset$ and $\partial D^{\prime}=\partial H_{1}^{\prime}$. Then the disc $R_{2} \cup D^{\prime}$ forms a K-compressing disc of Q_{1}.

By Lemmas 8.1, 8.2 and 8.3, we can assume that Q_{i} is K-compressible in $\left(V_{j 1}, t_{j 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$.

Lemma 8.4. Suppose that Q_{i} is K-compressible in $\left(V_{j 1}, t_{j 1}\right)$ for $(i, j)=(1,2)$ and $(2,1)$. Then K is the trivial knot.

Proof. Applying Lemma B. 1 (2) to Q_{1} in $\left(V_{21}, t_{21}\right)$, we obtain a cancelling disc C_{1} of t_{21} in V_{21} with $\partial C_{1} \cap H_{2} \subset Q_{2}$. Applying Lemma B. 1 (3) to Q_{2} in $\left(V_{11}, t_{11}\right)$, we obtain a cancelling disc C_{2} of t_{22} in $\operatorname{cl}\left(V_{11}-B\right)$ with $\partial C_{2} \cap H_{2} \subset Q_{2}$. Note that the interior of C_{1} and C_{2} may intersect each other in $V_{11} \cap V_{21}$. However, a standard innermost loop argument allows us to retake these discs so that their interiors are disjoint form each other. Then K has a 1-bridge diagram on the disc Q_{2}, and hence is trivial.

9. Two essential and inessential loops

In this section, we consider the case where $H_{1} \cap H_{2}$ are consists of two loops both of which are inessential in one of H_{1} and H_{2}, say H_{1}, and both essential in the other (ignoring the points $K \cap H_{1}$ and $K \cap H_{2}$). See Fig. 9.1.

Then a component of $H_{1} \cap H_{2}$, say l_{1}, bounds a disc, say Q, in H_{1} with $Q \cap H_{2}=$ l_{1} and $|K \cap Q|=2$. The other loop, say l_{2}, cobounds an annulus, say R, with l_{1} in $H_{1}-K$. Let H_{1}^{\prime} be the once punctured torus bounded by l_{2} in $H_{1}-K$. Let V_{21} be the solid torus bounded by H_{2} in M with $Q \cup H_{1}^{\prime} \subset V_{21}$. The other solid torus bounded by H_{2} is denoted by V_{22}. Then $R \subset V_{22}$. l_{1} and l_{2} together divide H_{2} into two annuli, say A_{1} and A_{2}. Since R is separating in V_{22} and is disjoint from K, one of A_{1} and A_{2}, say A_{1} intersects K in two points, and the other disjoint from K. Let V_{11} be the solid torus bounded by H_{1} in M with $A_{1} \subset V_{11}$. The other solid torus bounded by H_{1} is denoted by V_{12}. Then $A_{2} \subset V_{12}$. Set $t_{i j}=K \cap V_{i j}$ for $i, j \in\{1,2\}$.

Lemma 9.1. $M=S^{3}, l_{1}$ and l_{2} are longitudinal loops of V_{22} and R is K-parallel to A_{2} in $\left(V_{22}, t_{22}\right)$.

Proof. We ignore K in this paragraph. Since ∂Q is essential in H_{2}, it is of the meridional slope of V_{21}. Hence l_{1} and l_{2} are not of the meridional slope of V_{22}. Otherwise, $M \cong S^{2} \times S^{1}$, which contradicts our assumption. Thus R is parallel to one of A_{1} and A_{2} in V_{22}. Hence we can isotope H_{1} into int V_{21} so that H_{1} is disjoint from a parallel copy of the meridian disc Q of V_{21}. Performing a K-compressing operation on H_{2} along Q, we obtain a 2-sphere S in V_{21}, where S bounds a ball which contains H_{1}. This sphere S bounds another ball on the other side in a solid torus bounded by H_{1}. Hence $M=S^{3}$.

Since before the isotopy, l_{1} and l_{2} are of the meridional slope of V_{21}, they are of a longitudinal slope of V_{22}. Then R is parallel to A_{1} and A_{2} in V_{22} ignoring t_{22}. Because $V_{12} \cap V_{22}$ does not intersect K, A_{12} is K-parallel to A_{2} in (V_{22}, t_{22}).

By Lemma 2.10, $Q \cup H_{1}^{\prime}$ is K-compressible or K - ∂-compressible in $\left(V_{21}, t_{21}\right)$. Hence we have the four cases below.
(1) Q has a K-compressing disc D in $\left(V_{21}, t_{21}\right)$ with $D \cap H_{1}^{\prime}=\emptyset$.
(2) Q has a K-д-compressing disc D in $\left(V_{21}, t_{21}\right)$ with $D \cap H_{1}^{\prime}=\emptyset$.
(3) H_{1}^{\prime} has a K-compressing disc D in $\left(V_{21}, t_{21}\right)$ with $D \cap Q=\emptyset$.
(4) H_{1}^{\prime} has a K - ∂-compressing disc D in $\left(V_{21}, t_{21}\right)$ with $D \cap Q=\emptyset$.

Lemma 9.2. Suppose that A_{1} has a K-compressing or a meridionally compressing disc P in $\left(V_{11} \cap V_{21}, K \cap\left(V_{11} \cap V_{21}\right)\right)$. Then H_{2} is weakly K-reducible.

Proof. Since R and A_{2} are K-parallel in $\left(V_{22}, t_{22}\right)$, we can isotope H_{1} into int V_{21} so that H_{1} is disjoint from P. Since $M \cong S^{3}$ by Lemma $9.1, M$ has a dou-

Fig. 9.1.
ble cover branched along K. Hence we can apply Theorem 7.3, to conclude that H_{2} is weakly K-reducible.

Lemma 9.3. In case (2) H_{2} is weakly K-reducible.

Proof. Q has a $K-\partial$-compressing disc D in $\left(V_{21}, t_{21}\right)$ with $D \cap H_{1}^{\prime}=\emptyset$. Since A_{2} is disjoint from K, the arc $\partial D \cap H_{2}$ is contained in A_{1}, and D in $V_{11} \cap V_{21}$. The arc $\partial D \cap Q$ divides Q into two discs, each of which intersects K in a single point, and one of which, say Q^{\prime}, forms a meridian disc, say P, of V_{21} together with $D . P$ is a meridionally compressing disc of A_{1}. Thus we conclude that H_{2} is weakly K-reducible by Lemma 9.2.

Lemma 9.4. In case (4) H_{2} is weakly K-reducible.

Proof. $\quad H_{1}^{\prime}$ has a K - ∂-compressing disc D in $\left(V_{21}, t_{21}\right)$ with $D \cap Q=\emptyset$. The arc $\partial D \cap H_{2}$ is essential in $A_{1}-K$, and D is contained in $V_{11} \cap V_{21}$. Let O be the annulus obtained by $K-\partial$-compressing a copy of H_{1}^{\prime} along D. Note that O is contained in $V_{11} \cap V_{21}$. A component of ∂O is essential on H_{2}, and the other one is inessential and bounds a disc, say D^{\prime}, on A_{1}.

Suppose first that D^{\prime} intersects K in a single point. Then the disc $O \cup D^{\prime}$ gives a meridionally compressing disc of A_{1}. Hence H_{2} is weakly K-reducible by Lemma 9.2.

Secondly, we suppose that D^{\prime} intersects K in two points. We isotope H_{1} in (M, K) along D slightly beyond the arc $\partial D \cap H_{2}$. Then H_{1} and H_{2} intersect each other in three K-essential loops, and $H_{1} \cap H_{2}$ contains a loop which is essential on H_{i} and inessential on H_{j} for $(i, j)=(1,2)$ and $(2,1)$. Then by Lemma 10.3, H_{1} and H_{2} are weakly K-reducible.

Lemma 9.5. In case (1) H_{2} is weakly K-reducible.

Proof. In case (1), by K-compressing Q, we obtain a meridian disc Q^{\prime} of V_{21} with $K \cap Q^{\prime}=\emptyset . A_{1}$ is K-compressible or $K-\partial$-compressible in $\left(V_{11}, t_{11}\right)$ by Lemma 2.10.

Suppose that A_{1} has a K-compressing disc. If it is contained in $V_{11} \cap V_{22}$, then, together with Q^{\prime}, it shows that H_{2} is weakly K-reducible. If it is in $V_{11} \cap V_{21}$, then H_{2} is weakly K-reducible by Lemma 9.2.

Hence we can assume that A_{1} has a $K-\partial$-compressing disc, say D_{1}, in $\left(V_{11}, t_{11}\right)$. If D_{1} is contained in V_{21}, then it is also a $K-\partial$-compressing disc of Q or H_{1}^{\prime}. Hence, by Lemmas 9.3 and $9.4, H_{2}$ is weakly K-reducible. Thus D_{1} is contained in $V_{11} \cap$ V_{22}, and it is also a $K-\partial$-compressing disc of R. By performing a K - ∂-compressing operation on a copy of R, we obtain a peripheral K-compressing disc of A_{2}. This disc and Q^{\prime} show that H_{2} is K-reducible.

Lemma 9.6. In case (3) H_{2} is weakly K-reducible.
Proof. K-compressing H_{1}^{\prime}, we obtain a meridian disc E of V_{21} with $E \cap K=\emptyset$. If the K-compressing disc D is contained in $V_{11} \cap V_{21}$, then E is also in $V_{11} \cap V_{21}$, and H_{2} is weakly K-reducible by Lemma 9.2. If E is contained in $V_{12} \cap V_{21}$, then the disc $E^{\prime}=E \cup A_{2}$ forms a K-compressing disc of Q in $\left(V_{21}, t_{21}\right)$, and H_{2} is weakly K-reducible by Lemma 9.5.

10. When $\left|H_{1} \cap H_{2}\right|=3$

We consider the case where $\left|H_{1} \cap H_{2}\right|=3$ in this section. By Proposition 4.1, we can assume that $H_{i}-K$ does not contain three parallel loops of $H_{1} \cap H_{2}$. Then H_{i} contains two essential loops and a single inessential loop of $H_{1} \cap H_{2}$ for $i=1$ and 2. Let Q_{i} be the disc bounded by the inessential intersection loop on H_{i}. Note that Q_{i} intersects K transversely in two points for $i=1$ and 2 . Let A_{i} be the annulus cut off from H_{i} by the two essential intersection loops such that $A_{i} \cap Q_{i}=\emptyset$ for $i=1$ and 2. Set $H_{i}^{\prime}=\operatorname{cl}\left(H_{i}-\left(A_{i} \cup Q_{i}\right)\right)$, the 2-sphere with three holes, for $i=1$ and 2. Let $V_{i 1}$ be the solid torus bounded by H_{i} in M with $Q_{j} \cup A_{j} \subset V_{i 1}$ for $(i, j)=(1,2)$ and $(2,1)$. The other solid torus bounded by H_{i} is denoted by $V_{i 2}$. Set $t_{i j}=K \cap V_{i j}$ for i, $j \in\{1,2\}$.

Lemma 10.1. Suppose that among the components of $H_{1} \cap H_{2}$ essential loops on H_{1} are essential also on H_{2}, and the inessential loop on H_{1} is inessential also on H_{2}. See Fig. 10.1, which is schematic. Then one of the three conditions below holds.
(1) A_{1} and A_{2} are K-parallel, and the interior of the parallelism intersect neither H_{1} nor H_{2}.
(2) Q_{1} and Q_{2} are K-parallel, and the interior of the parallelism intersect neither H_{1} nor H_{2}.
(3) One of H_{1} and H_{2} is weakly K-reducible.

In cases (1) and (2), we can isotope H_{1} and H_{2} in (M, K) so that H_{1} and H_{2} intersect in smaller number of non-empty collection of loops which are K-essential on both H_{1} and H_{2}.

Proof.
Claim 10.2. For each pair of $(i, j)=(1,2)$ and $(2,1)$, one of the three conditions below holds.
(i) The conclusion (1) or (2) of the lemma holds.
(ii) Q_{j} has a K-compressing disc in $\left(V_{i 1}, t_{i 1}\right)$. (The compressing disc may intersect A_{j}.)
(iii) There is a meridian disc, say R_{j}, of $V_{i 1}$ with $\partial R_{j} \subset H_{i}^{\prime}, R_{j} \cap\left(Q_{j} \cup A_{j}\right)=\emptyset$ and $\left|K \cap R_{j}\right|=1$.

Fig. 10.1.
Proof. By Lemma 2.10, $Q_{j} \cup A_{j}$ is K-compressible or K - ∂-compressible in $\left(V_{i 1}, t_{i 1}\right)$.

Suppose first that $Q_{j} \cup A_{j}$ has a $K-\partial$-compressing disc D. We assume first that D is incident to A_{j}. When $\partial D \subset A_{1} \cup A_{2}, A_{1}$ and A_{2} are K-parallel. This is the conclusion (1) of this lemma. Hence we can assume that $\partial D \subset A_{j} \cup H_{i}^{\prime}$. K - ∂-compressing a copy of A_{j}, we obtain a peripheral disc, say D^{\prime}, in $V_{i 1}$ such that ∂D^{\prime} and ∂Q_{j} cobounds an annulus on H_{i}^{\prime}. The union of D^{\prime} and this annulus forms a K-compressing disc of Q_{j}. This is the conclusion (ii). Hence we can assume that D is incident to Q_{i}. When $\partial D \subset Q_{1} \cup Q_{2}, Q_{1}$ and Q_{2} are K-parallel by Lemma B.4. This is the conclusion (2) of this lemma. When $\partial D \subset Q_{j} \cup H_{i}^{\prime}$, by $K-\partial$-compressing a copy of Q_{j}, we obtain two meridian discs intersecting K in a single point. After an adequate small isotopy, this meridian discs are disjoint from Q_{j} and A_{j}. This is the conclusion (iii).

Suppose that $Q_{j} \cup A_{j}$ has a K-compressing disc P. If P is incident to Q_{j}, then we are done. If P is incident to A_{j}, then, by K-compressing a copy of A_{j}, we obtain two meridian discs disjoint from K in $V_{i 1}$. By K-compressing a copy of $H_{i}^{\prime} \cup A_{i}$ along such a meridian disc, we obtain a K-compressing disc of Q_{j} in $\left(V_{i 1}, t_{i 1}\right)$. This is the conclusion (ii). Thus Claim has proven.

In case (ii), performing a K-compressing operation on a copy of Q_{j}, we obtain a peripheral disc S_{j} disjoint from K such that $\partial S_{j}=\partial Q_{j}$. Note that the disc S_{j} may intersect the annulus A_{j}. In case (iii), ∂R_{j} is parallel to a component of $\partial A_{i}=\partial A_{j}$ on H_{i}^{\prime}, and the loops ∂A_{j} are of meridional slope of the solid tori $V_{i 1}$ and $V_{j 2}$.

Fig. 10.2.
If (iii) holds for $(i, j)=(1,2)$ and $(2,1)$, then $M \cong S^{2} \times S^{1}$, which contradicts our assumption. If (ii) holds, say for $(i, j)=(1,2)$, and (iii) holds for $(i, j)=(2,1)$, then S_{2} and R_{2} show that H_{1} is weakly K-reducible.

Suppose that (ii) holds for $(i, j)=(1,2)$ and $(2,1)$. Since Q_{1} is K-compressible in (V_{21}, t_{21}), Lemma B. 1 (2) implies that t_{21} has a cancelling disc C_{1} in V_{21} with $\partial C_{1} \cap H_{2} \subset Q_{2}$. Let B be the ball bounded by $Q_{1} \cup Q_{2}$ in V_{11}. Since Q_{2} is K-compressible in (V_{11}, t_{11}), Lemma B. 1 (3) implies that t_{22} has a cancelling disc C_{2} in $V_{11}^{\prime}=\operatorname{cl}\left(V_{11}-B\right)$ with $\partial C_{1} \cap \partial V_{11}^{\prime} \subset Q_{2} . C_{1}$ and C_{2} may intersect each other in loops in their interior. A standard innermost loop argument allows us to retake C_{1} and C_{2} so that their interiors are disjoint from each other and so that they give a 1-bridge diagram of K on Q_{2}. Hence K is the trivial knot, and Theorem B in [13] implies that H_{2} is weakly K -reducible.

Lemma 10.3. Suppose that the inessential loop of $H_{1} \cap H_{2}$ on H_{i} is essential on H_{j} for $(i, j)=(1,2)$ and $(2,1)$. See Fig. 10.2. Then H_{i} is K-reducible for $i=1$ and 2.

Proof.

Claim 10.4. For $(i, j)=(1,2)$ and $(2,1), Q_{j}$ has a K-compressing disc D_{j} with $D_{j} \cap A_{j}=\emptyset$ in $\left(V_{i 1}, t_{i 1}\right)$.

Proof. Note that Q_{j} is a meridian disc of $V_{i 1}$ and that a component of ∂A_{j}, say l_{1} is essential on H_{i} and the other, say l_{2} is inessential on H_{i}. By Lemma A.2, there is a K-compressing disc D of A_{j} bounded by l_{1}. We take D so that $D \cap Q_{j}$ consists of minimal number of loops. Then a standard innermost loop argument shows that the intersection loops are essential on $Q_{j}-K$. If D is disjoint from Q_{j}, then the disc $D \cup A_{i}$ forms a K-compressing disc of Q_{j}. If D does intersect Q_{j}, then an innermost loop on D bounds a K-compressing disc of Q_{j} as desired. Thus Claim has proven.

For $(i, j)=(1,2)$ and $(2,1)$, the K-compressing disc D_{j} of Q_{j} is contained in $V_{i 1} \cap V_{j 2}$ since $V_{11} \cap V_{21}$ contains two subarcs of K connecting Q_{1} and Q_{2}. By K-compressing Q_{j} along D_{j}, we obtain a meridian disc P_{j} of $V_{i 1}$ with $P_{j} \cap K=\emptyset$. Since D_{i} is a K-compressing disc of H_{i} in $V_{i 2}$, and since ∂D_{i} and ∂P_{j} are disjoint, H_{i} is K-reducible.

11. When $\left|H_{1} \cap H_{2}\right|=4$

We consider in this section the case where $\left|H_{1} \cap H_{2}\right|=4$. By Proposition 4.1 we can assume for $i=1$ and 2 that H_{i} does not contain 3 loops of $H_{1} \cap H_{2}$ which are parallel in $H_{i}-K$. Then for each of $i=1$ and 2 , either
(I) H_{i} contains two essential intersection loops parallel in $H_{i}-K$ and two inessential intersection loops parallel in $H_{i}-K$, or
(II) H_{i} contains two families of two parallel essential intersection loops in $H_{i}-K$.

In case (I) the two points $K \cap H_{i}$ are contained in the disc component of $H_{i}-H_{j}$, and in case (II) the two points $K \cap H_{i}$ are contained in distinct and non-adjacent annulus components of $H_{i}-H_{j}$. In both cases, for $(i, j)=(1,2)$ and $(2,1), H_{i}-H_{j}$ has two annulus components, say $A_{i 1}$ and $A_{i 2}$, disjoint from K. They are contained in the same solid torus, say $V_{j 1}$, bounded by H_{j} in M. Let $V_{j 2}$ be the other solid torus bounded by H_{j} in M, and set $t_{j k}=K \cap V_{j k}$ for $j, k \in\{1,2\}$.

Lemma 11.1. For $(i, j)=(1,2)$ and $(2,1)$, one of the two conditions below holds.
(1) $A_{i k}$ is K-parallel to an annulus on H_{j} in $\left(V_{j 1}, t_{j 1}\right)$ for $k=1$ or $k=2$.
(2) There is a cancelling disc C_{1} of $t_{j 1}$ in $\left(V_{j 1}, t_{j 1}\right)$ with $\left(\partial C_{1} \cap H_{j}\right) \cap\left(H_{1} \cap H_{2}\right)=\emptyset$. (int C_{1} may intersect H_{i}.)
Moreover, if the essential loops of $H_{1} \cap H_{2}$ are of a longitudinal slope of $V_{j 1}$, then the conclusion (1) holds.

Proof. By using Lemma 2.10 repeatedly, performing K-compressing and $K-\partial$ compressing operations on $A_{i 1} \cup A_{i 2}$, we can obtain discs.

Suppose that there are peripheral discs. Let Q_{1} be the outermost one cutting off a ball B_{1} from $V_{j 1}$ such that B_{1} is disjoint from the other discs. If B_{1} is disjoint
from K, then Q_{1} is yielded by a $K-\partial$-compressing operation since $H_{1} \cap H_{2}$ does not contain a K-inessential loop. Thus we obtain the conclusion (1). If B_{1} contains $t_{j 1}$, then the conclusion (2) holds. Note that the interior of the disc $B_{1} \cap H_{j}$ is disjoint from $H_{1} \cap H_{2}$ because Q_{1} is outermost.

Suppose that there are no peripheral discs. Then the argument as in the proof of Lemma A. 2 allows us to assume that the operations are all K-compressing ones, and that we obtain four meridian discs which are bounded by $H_{1} \cap H_{2}$, and together divide $V_{j 1}$ into four balls. One of the balls contain $t_{j 1}$, and the conclusion (2) holds.

If the essential loops of $\partial\left(A_{i 1} \cup A_{i 2}\right)$ are of a longitudinal slope of $V_{j 1}$, then Lemma A. 1 implies that the conclusion (1) holds.

Lemma 11.2. Suppose that, for $(i, j)=(1,2)$ or $(2,1), H_{i} \cap V_{j 2}$ contains a peripheral disc Q_{i} which intersects K in two points. Then one of the three conditions below holds.
(1) $A_{i k}$ is K-parallel to an annulus on H_{j} in $\left(V_{j 1}, t_{j 1}\right)$ for $k=1$ or 2 .
(2) Q_{i} is K-parallel to a disc in H_{j}.
(3) H_{j} is weakly K-reducible.

In cases (1) and (2), Lemma 4.2 allows us to isotope H_{1} and H_{2} in (M, K) so that H_{1} and H_{2} intersect each other in smaller number of non-empty collection of loops which are K-essential on both H_{1} and H_{2}.

Proof. The conclusion (1) of Lemma 11.1 is the conclusion (1) of this lemma. Hence we can assume that there is a cancelling disc C_{1} of $t_{j 1}$ with $\left(\partial C_{1} \cap H_{j}\right) \cap\left(H_{1} \cap\right.$ $\left.H_{2}\right)=\emptyset$ as in (2) of Lemma 11.1.

By Lemma 2.10, Q_{i} is K-compressible or K - ∂-compressible in ($V_{j 1}, t_{j 1}$). Suppose first that Q_{i} is K-compressible. By K-compressing Q_{i}, we obtain a K-compressing disc D_{i} of H_{j} with $D_{i} \cap K=\emptyset$. Then D_{i} and C_{1} are disjoint, and show that H_{j} is K-reducible.

Suppose that Q_{i} has a $K-\partial$-compressing disc, say D, in $\left(V_{j 2}, t_{j 2}\right)$. Since Q_{i} is peripheral, ∂Q_{i} bounds a disc Q_{j} on H_{j}. If the arc $\partial D \cap H_{j}$ is contained in Q_{j}, then we obtain the conclusion (2) by Lemma B.4. Hence we can assume that the arc $\partial D \cap H_{j}$ is disjoint from int Q_{j}. The arc $\partial D \cap Q_{i}$ divides Q_{i} into two discs, and let R_{i} be one of them. R_{i} intersects K in a single point, and $R_{i}^{\prime}=R_{i} \cup D$ forms a meridian disc of $V_{j 2}$ by the unusual definition of K - ∂-compressibility. After an adequate small isotopy, R_{i}^{\prime} is disjoint from Q_{i}. Since the two points $K \cap H_{j}$ is contained in $Q_{j}, \partial C_{1} \cap$ $H_{j} \subset \operatorname{int} Q_{j}$ and $\partial R_{i}^{\prime} \cap \partial C_{1}=\emptyset$. Hence H_{j} is weakly K-reducible.

Lemma 11.3. Suppose that, for $(i, j)=(1,2)$ or $(2,1)$, a component of $H_{i} \cap V_{j 2}$ forms a meridian disc Q_{i} of $V_{j 2}$ such that Q_{i} intersects K in two points. Then one of the two conditions below holds.
(1) We can isotope H_{1} and H_{2} in (M, K) so that H_{1} and H_{2} intersect each other in
smaller number of non-empty collection of loops which are K-essential on both H_{1} and H_{2}.
(2) H_{j} is weakly K-reducible.

Proof. The conclusion (1) of Lemma 11.1 implies the conclusion (1) of this lemma by Lemma 4.2. Hence we can assume that there is a cancelling disc C_{1} of $t_{j 1}$ with ($\partial C_{1} \cap H_{j}$) $\cap\left(H_{1} \cap H_{2}\right)=\emptyset$ as in (2) of Lemma 11.1.
H_{i} intersects $V_{j 2}$ in a disjoint union of Q_{i} and a 2-sphere with three holes, say P. By Lemma 2.10, $Q_{i} \cup P$ is K-compressible or K - ∂-compressible in ($V_{j 2}, t_{j 2}$). Suppose first that $Q_{i} \cup P$ has a K-compressing disc D. Then K-compressing $Q_{i} \cup P$, we obtain a disc component D^{\prime} disjoint from K and bounded by a component of $H_{1} \cap H_{2}$. Since $\partial D^{\prime} \cap C_{1}=\emptyset, H_{j}$ is K-reducible. Note that similar argument shows H_{j} is weakly K-reducible when P is meridionally K-compressible in ($V_{j 2}, t_{j 2}$).

Suppose that $Q_{i} \cup P$ has a $K-\partial$-compressing disc D. If D is incident to Q_{i}, then performing a $K-\partial$-compressing operation on a copy of Q_{i}, we obtain a meridian disc D_{1} and a peripheral disc D_{2} such that each of them intersects K in a single point. Let D_{2}^{\prime} be the disc bounded by ∂D_{2} on H_{j}. Then we can see that D_{2}^{\prime} also intersects K in a single point, considering the 2 -sphere $D_{2} \cup D_{2}^{\prime}$. If $H_{1} \cap H_{2}$ contains an inessential loop on H_{j}, then such a loop bounds a disc intersecting K in two points, and hence must intersect the arc $\partial D \cap H_{j}$, which is a contradiction. Hence no loop of $H_{1} \cap H_{2}$ is inessenital on H_{j}, and ∂D_{1} and a loop, say l, of $H_{1} \cap H_{2}$ cobound an annulus, say R, disjoint from K on H_{j}. (Recall that $H_{j}-K$ does not contain three parallel loops of $H_{1} \cap H_{2}$.) After an adequate small isotopy, the disc $R^{\prime}=R \cup D_{1}$ gives a meridian disc of $V_{j 2}$ with $\left|R^{\prime} \cap K\right|=1$ and $\partial R^{\prime}=l$. Since $\partial R^{\prime} \cap \partial C_{1}=\emptyset, H_{j}$ is weakly K-reducible.

Hence we can assume that D is incident to P. Suppose that a $K-\partial$-compressing operation on a copy of P along D yields a K-inessential boundary loop. Then this loop bounds a disc intersecting K in at most one point on H_{j}, and we isotope this disc near its boundary along the copies of D, to obtain a K-compressing disc or meridionally compressing disc of P in $\left(V_{j 2}, t_{j 2}\right)$. Hence we obtain the conclusion (2) by a similar argument in the second paragraph.

Hence we can assume that we can isotope H_{i} in (M, K) along D slightly beyond the arc $\partial D \cap H_{j}$, so that H_{1} and H_{2} intersect each other in K-essential loops after the isotopy. When the arc $\partial D \cap H_{j}$ connects distinct components of ∂P, this isotopy decreases the number of intersection loops, and we obtain the conclusion (1). When the arc $\partial D \cap H_{j}$ has both endpoints in the same component of ∂P, this isotopy increases the number of intersection loops by one. Note that $H_{1} \cap H_{2}$ has three parallel loops on H_{i}. We apply Proposition 4.1. The conclusion (1) of Proposition 4.1 implies that we can further isotope H_{1} and H_{2} so that H_{1} and H_{2} intersects each other in non-empty collection of three or less number of loops which are K-essential both on H_{1} and H_{2}. The conclusion (2) of Proposition 4.1 is the conclusion (2) of this lemma. The conclusion (3) of Proposition 4.1 is impossible, since $H_{1} \cap H_{2}$ contains ∂Q_{i} of the meridional
slope of $V_{j 2}$.
Lemma 11.4. Suppose that, for $(i, j)=(1,2)$ and $(2,1), H_{i} \cap V_{j 2}$ consists of two annuli, say $R_{i 1}$ and $R_{i 2}$, such that each of them intersects K in a single point. Then one of the four conditions below holds.
(1) $A_{i k}$ is K-parallel to an annulus on H_{j} in $\left(V_{j 1}, t_{j 1}\right)$ for $k=1$ or 2 .
(2) One of $R_{i 1}$ and $R_{i 2}$ is K-parallel to an annulus on H_{j} in $\left(V_{j 2}, t_{j 2}\right)$.
(3) One of H_{1} and H_{2} is K-reducible.
(4) One of H_{1} and H_{2} has a satellite diagram of non-meridional and non-longitudinal slope given by a loop of $H_{1} \cap H_{2}$.
In cases (1) and (2), Lemma 4.2 allows us to isotope H_{1} and H_{2} in (M, K) so that H_{1} and H_{2} intersect each other in smaller number of non-empty collection of loops which are K-essential on both H_{1} and H_{2}.

Proof. Note that the loops $H_{1} \cap H_{2}$ are essential both on H_{1} and H_{2}.
The conclusion (1) of Lemma 11.1 is the conclusion (1) of this lemma. Hence we can assume that there is a cancelling disc C_{1} of $t_{j 1}$ with $\left(\partial C_{1} \cap H_{j}\right) \cap\left(H_{1} \cap H_{2}\right)=\emptyset$ as in (2) of Lemma 11.1.

By Lemma 2.10, $R_{i 1} \cup R_{i 2}$ is K-compressible or K - ∂-compressible. Suppose first that it is K-compressible. The K-compression yields a meridian disc disjoint from K and C_{1}. Then H_{j} is K-reducible.

Suppose that $R_{i 1} \cup R_{i 2}$ is K-incompressible, and has a K - ∂-compressing disc, say D, in $\left(V_{j 2}, t_{j 2}\right)$. We can assume, without loss of generality, that D is incident to $R_{i 1}$. If the arc $\partial D \cap R_{i 1}$ is essential on $R_{i 1}$, then we obtain the conclusion (2) by Lemma C.2. Hence we can assume that the arc $\partial D \cap R_{i 1}$ is inessential on $R_{i 1}$. Then by Lemma C. 3 either the conclusion (2) holds, or there is a cancelling disc C_{2} of $t_{j 2}$ in $\left(V_{j 2}, t_{j 2}\right)$ such that $\partial C_{2} \cap H_{j}$ is disjoint from a component of $\partial R_{i 1}$. Hence C_{1} and C_{2} together show that H_{j} has a satellite diagram. If the slope of the satellite diagram is meridional, then K is the trivial knot. If the slope of the satellite diagram is longitudinal, then one of the conclusions (1) and (2) of this lemma holds by Lemmas A. 1 and C.3.

12. Semi-satellite diagrams

In this section, we will show that the conclusion of Lemma 6.3 implies that either H_{i} admits a satellite diagram or K is a torus knot.

Lemma 12.1. Let $M, K, H_{i}, V_{i k}, t_{i k}, A_{j k}$ as in Section 6. Suppose that the loops $H_{1} \cap H_{2}$ are non-meridional and non-longitudinal with respect to $V_{i k}$ for i, $k \in\{1,2\}$. For $(i, j)=(1,2)$ and $(2,1)$, if $A_{j 1}$ and $A_{j 2}$ are of the form as in the conclusion Lemma C. 3 (2) in Appendix C, then either
(1) H_{i} admits a satellite diagram of non-meridional and non-longitudinal slope, or
(2) K has a 1-bridge diagram with no crossings on H_{i} such that the diagram intersects each component of $H_{1} \cap H_{2}$ in a single point.

Proof. Since $A_{j 1}$ and $A_{j 2}$ are of the form of Lemma C. 3 (2), H_{i} has a semisatellite diagram of non-longitudinal and non-meridional slope. More precisely, there is a cancelling disc $C_{i k}$ of $t_{i k}$ in $\left(V_{i k}, t_{i k}\right)$ such that $\partial C_{i k} \cap H_{i}$ is disjoint from a component, say $l_{i k}$, of $H_{1} \cap H_{2}$ for $k=1$ and 2 . If $l_{i 1}$ and $l_{i 2}$ are the same component of $H_{1} \cap H_{2}$, then the semi-satellite diagram is a satellite diagram, which is the conclusion (1). Hence we can assume $l_{i 1} \neq l_{i 2}$.

We retake the cancelling disc $C_{i k}$ so that it intersects $l_{i h}$ in minimum number of points for $(k, h)=(1,2)$ and $(2,1)$. Let n_{k} be the number of intersection points of $\partial C_{i k} \cap l_{i h}$. We will show that $n_{k}=1$ for $k=1$ and 2 .

For $(i, j)=(1,2)$ and $(2,1)$ and $k \in\{1,2\}, A_{j k}$ is isotopic in $\left(V_{i k}, t_{i k}\right)$ to the annulus which is the union of the two annuli $R_{k 1}$ and $R_{k 2}$ as below. $R_{k 1}$ is obtained by cutting a copy of H_{i} along $l_{i k}$ and isotoping along $C_{i k}$. $R_{k 2}$ is obtained from a copy of one of the two annuli on H_{i} between the loops $H_{1} \cap H_{2}=l_{i 1} \cup l_{i 2}$ by slightly isotoping into int $V_{i k}$. $R_{k 1}$ is disjoint from K, and $R_{k 2}$ intersects K in a single point.

Sublemma 12.2. $n_{k}=1$ for $k=1$ and 2 .
Proof. If R_{12} and R_{22} are copies of the same annulus $A_{i 1}$ or $A_{i 2}$, say $A_{i 1}$, then H_{j} is isotopic to a union of two parallel copies of $A_{i 2}$ in M (ignoring K), and hence the loops $\partial A_{i 2}$ are of longitudinal slope of one of $V_{i 1}$ and $V_{i 2}$ because H_{j} is a Heegaard splitting torus. This is a contradiction. See Fig. 12.1.

Hence we can assume that $R_{k 2}$ is a copy of $A_{i k}$ for $k \in\{1,2\}$. See Fig. 12.2. We can isotope H_{j} so that $R_{k 2}$ is contained in $A_{i k}$, that one component of $\partial R_{k 2}$ coincides with $l_{i h}$ and the other is contained in int $A_{i k}$ and is very close to $l_{i k}$ for $(k, h)=(1,2)$ and $(2,1)$.

Set $A_{i k}^{\prime}=\operatorname{cl}\left(A_{i k}-R_{k 2}\right)$ after the isotopy. Then $t_{i h}=t_{j k}$ for $(i, j)=(1,2)$ and $(2,1)$ and for $(k, h)=(1,2)$ and $(2,1)$. Note that $\left(\partial C_{i h} \cap H_{i}\right) \subset\left(R_{12} \cup A_{i k}^{\prime} \cup R_{22}\right)$ for $(k, h)=$ $(1,2)$ and $(2,1)$.
$A_{i k}^{\prime}$ is K-incompressible and K - ∂-incompressible in ($V_{j k} \cap V_{i k}, K \cap\left(V_{j k} \cap V_{i k}\right)$) since $H_{1} \cap H_{2}$ is of non-meridional and non-longitudinal slope of $V_{i k}$. It is also K-incompressible in ($V_{j k} \cap V_{i h}, K \cap\left(V_{j k} \cap V_{i h}\right)$) since $H_{1} \cap H_{2}$ is of non-meridional slope of $V_{i h}$. Since $A_{i k}^{\prime}$ is K-compressible or K - ∂-compressible in ($V_{j k}, t_{j k}$) by Lemma 2.10, $A_{i k}^{\prime}$ has a $K-\partial$-compressing disc P in $V_{j k} \cap V_{i h}$. We leave the proof of the next claim to readers. See Fig. 12.3, where $A_{i k}^{\prime}$ is contracted to $l_{i k}$.

Claim 12.3. Let D be a disc properly embedded in the solid torus $V_{j k} \cap V_{i h}$. Suppose that D is a K-compressing disc of the toral boundary of the solid torus, and is disjoint from $C_{i h}$. Then ∂D intersects $A_{i k}^{\prime}$ in n_{h} or larger number of arcs. If ∂D in-

Fig. 12.1.
tersects $A_{i k}^{\prime}$ in just n_{h} arcs, then D is a meridian disc of $V_{j k} \cap V_{i h}$.
Recall that P is a $K-\partial$-compressing disc of $A_{i k}^{\prime}$ in $V_{j k} \cap V_{i h} . \partial P$ intersects $A_{i k}^{\prime}$ in a single essential arc. We retake P among all such $K-\partial$-compressing discs so that ∂P intersects $\partial C_{i h} \cap H_{i}$ in minimum number of points. A standard innermost loop argument allows us to isotope P so that each component of $P \cap C_{i h}$ is an arc rather than a loop.

If P is disjoint from $C_{i h}$, then Claim shows that ∂P intersect $A_{i k}^{\prime}$ in n_{h} or larger number of arcs. In fact, $\partial P \cap A_{i k}^{\prime}$ consists of a single arc, and hence we obtain $n_{h}=1$ as desired. We consider the case $P \cap C_{i h} \neq \emptyset$. We can isotope P near ∂P so that $\partial P \cap \partial C_{i h} \cap A_{i j}^{\prime}=\emptyset$. Let ρ be an arc of $P \cap C_{i h}$ such that ρ is outermost away from $A_{i k}^{\prime}$ on P. That is, ρ cuts off a disc P^{\prime} from P such that ∂P^{\prime} is disjoint from $A_{i k}^{\prime}$. The arc ρ divides $C_{i h}$ into two discs C^{\prime} and $C^{\prime \prime}$ where ∂C^{\prime} is disjoint from $t_{i h}$ and

Fig. 12.2.
$\partial C^{\prime \prime}$ contains $t_{i h}$ entirely. Let D be a disc obtained from the disc $C^{\prime} \cup P^{\prime}$ by isotoping slightly to be disjoint from $C_{i h}$.

We first suppose that D is not a K-compressing disc of the torus $\partial V=\partial\left(V_{j k} \cap\right.$ $V_{i h}$). Then ∂D bounds a disc D^{\prime} on ∂V such that D^{\prime} is disjoint from K. Note that ∂P^{\prime} may intersect $R_{h 1}$, while ∂C^{\prime} does not intersect $R_{h 1}$, and that ∂C^{\prime} may intersect $A_{i k}^{\prime}$, while ∂P^{\prime} does not intersect $A_{i k}^{\prime}$. Hence we can isotope P^{\prime} near the arc $\partial P^{\prime} \cap \partial V$ so that P^{\prime} does not intersect $R_{h 1} \cup A_{i k}^{\prime}$. See Fig. 12.4. If $\partial C^{\prime} \cap A_{i k}^{\prime} \neq \emptyset$, then the disc $C^{\prime \prime} \cup P^{\prime}$ gives a cancelling disc of $t_{i h}$ which intersects $A_{i k}^{\prime}$ in smaller number of arcs. This is a contradiction.

If $\partial C^{\prime} \cap A_{i k}^{\prime}=\emptyset$, then let μ be an outermost arc of $P \cap C_{i h}$ on C^{\prime}, and $C^{\prime \prime \prime}$ the outermost disc. μ cuts P into two discs, one of which, say $P^{\prime \prime}$, intersects $A_{i k}^{\prime}$ in a single arc. Then $P^{\prime \prime} \cup C^{\prime \prime \prime}$ gives a $K-\partial$-compressing disc of $A_{i k}^{\prime}$, intersecting $\partial C_{i h}$ in

Fig. 12.3.
smaller number of points than P. This is again a contradiction.
Hence we can assume that D is a K-compressing disc of ∂V. By Claim 12.3, ∂D intersects $A_{i k}^{\prime}$ in n_{h} or more arcs. Since $n_{h}=\left|\partial C_{i h} \cap l_{j k}\right|$, and since $\partial P^{\prime} \cap A_{i k}^{\prime}=\emptyset$, the arc $\partial C^{\prime} \cap H_{i}$ intersects $A_{i k}^{\prime}$ in n_{h} arcs, and also ∂D does in only n_{h} arcs. Hence ∂D is a meridian disc of V, and the arc $\partial P^{\prime} \cap \partial V$ must intersect $R_{h 1}$. Moreover, the two $\operatorname{arcs}\left(\partial C_{i h}-\partial C^{\prime}\right) \cap H_{i}$ do not intersect $A_{i k}^{\prime}$. One of them and a subarc of $\partial P^{\prime} \cap \partial V$ give an arc in R_{12} such that it connects a point of $K \cap H_{i}$ and a component of $\partial R_{h 1}$, and is disjoint from the arc $\partial C_{i h} \cap H_{i}$. Hence there is no arc component of $\partial C_{i h} \cap R_{12}$ with both endpoints in the same component of ∂R_{12}. Then we obtain $n_{h}=1$.

Thus we have shown that $\partial C_{i h}$ intersects the loop $l_{i k}$ in a single point for $(k, h)=$ $(1,2)$ and $(2,1)$. Then we can take the discs $C_{i 1}$ and $C_{i 2}$ so that $\partial C_{i 1} \cap \partial C_{i 2}=K \cap H_{i}$. (In general, there is only a single isotopy class of arcs connecting a fixed point in an annulus and a fixed boundary component of the annulus.) This implies that K has a 1-bridge diagram on H_{i} with no crossing points.

Fig. 12.4.
In the case of Lemma 12.1 (2), K is a torus knot. If K is the trivial knot or a core knot, then H_{1} and H_{2} are weakly K-reducible as noted in Section 3. Hence we obtain the conclusion (2) of Theorem 1.2. If K is neither the trivial knot nor a core knot, then H_{i} is "cancellable" by the result of Theorem 3 in [27]. That is, for $i=1$ and 2, there is a cancelling disc $C_{i k}$ of $t_{i k}$ for $k=1$ and 2 such that $\partial C_{i 1} \cap \partial C_{i 2}=K \cap H_{i}$. The loop $K^{\prime}=\left(\partial C_{i 1} \cup \partial C_{i 2}\right) \cap H_{i}$ is isotopic to K and is of non-meridional and non-longitudinal slope. Its exterior $E\left(K^{\prime}\right)=M-\operatorname{int} N\left(K^{\prime}\right)$ has a Seifert fibering structure over a disc with two exceptional fibres such that $H_{i} \cap E\left(K^{\prime}\right)$ is a vertical essential annulus with respect to the fibering. Note that such an annulus is unique up to isotopy in $E\left(K^{\prime}\right)$. Hence H_{1} and H_{2} are isotopic in (M, K), and we obtain the conclusion (1) of Theorem 1.2.

13. An example of case (b)

We give an example of a pair of a once punctured lens space X and two disjoint $\operatorname{arcs} s_{1}$ and s_{2} properly embedded in X as described in the conclusion (b) of Theorem 1.3. That is, the exterior $E_{i}=\operatorname{cl}\left(X-N\left(s_{i}\right)\right)$ of the string s_{i} is a solid torus, and the other arc s_{j} is trivial in E_{i} for $(i, j)=(1,2)$ and $(2,1)$. We will give an example where s_{1} and s_{2} are not "parallel".

The exterior $E=\operatorname{cl}(X-N(S))$ of the two strings is homeomorphic to a handlebody of genus two since E is the exterior of s_{2} in E_{1}. In Fig. 13.1 we can find the boundary of the ball B obtained from E by cutting along two discs D_{1} and D_{2}. We

Fig. 13.1.
can find two copies of D_{i} in the figure for $i=1$ and 2 . The neighbourhood $N\left(s_{i}\right)$ of s_{i} contains a meridian disc R_{i} of s_{i}. That is, by some homeomorphism $N\left(s_{i}\right) \cong D^{2} \times s_{i}$ with $D^{2} \times \partial s_{i}=N\left(s_{i}\right) \cap \partial X$, the disc R_{i} is mapped to $D^{2} \times p$, where p is a point of int s_{i}. In the figure, ∂R_{1} is described by three solid lines, and ∂R_{2} is described by three broken lines. The four copies of D_{1} and D_{2} and these six lines together form vertices and edges of a 1 -skelton Δ of a tetrahedron. Note that neither the union of the three solid lines nor the union of the three broken lines forms a triangle. Each copy of D_{i} intersects ∂R_{i} in a single point, and intersects ∂R_{j} in two points for $(i, j)=(1,2)$ and $(2,1)$. We can recover E_{j} by attaching the 2-handle $N\left(s_{i}\right)$ on E along $\partial R_{i} . D_{i}$ shows that s_{i} is trivial in E_{j}.

We will show that s_{1} and s_{2} are not "parallel" in (X, S). The arcs s_{1} and s_{2} are parallel if there is a disc P properly embedded in E such that $P \cap \partial R_{i}$ is a single point for $i=1$ and 2 . We assume, for a contradiction, that there is such a disc P. We take P so that it intersects $\partial D_{1} \cup \partial D_{2}$ in minimum number of points over all the discs of parallelism. A standard innermost argument allows us to isotope P so that P intersects D_{1} and D_{2} in arcs only. Then there is an outermost $\operatorname{arc} \alpha$ of $\left(D_{1} \cup D_{2}\right) \cap P$
on P, that is, α cuts off a disc, say Q, from P such that $Q \cap\left(D_{1} \cup D_{2}\right)=\alpha$. We can take α so that $\partial Q \cap\left(\partial R_{1} \cup \partial R_{2}\right)$ is empty or a single point. The arc $\beta=\partial Q \cap \partial P$ is contained in the 2 -sphere ∂B, and has both endpoints in the same copy D of D_{1} or D_{2}. If β does not intersect $\partial R_{1} \cup \partial R_{2}$, then it is entirely contained in a single face of the tetrahedron, and hence we can isotope P near β in E so that ∂P intersects $\partial D_{1} \cup \partial D_{2}$ in smaller number of points. This is a contradiction. If β intersects $\partial R_{1} \cup \partial R_{2}$ in a single point, then it is contained in a union of two adjacent faces of the tetrahedron. Hence β and a subarc, say γ, of ∂D cobound a disc O intersecting $\partial R_{1} \cup \partial R_{2}$ in a single arc connecting β and γ. We can isotope P along O so that ∂P intersects $\partial D_{1} \cup \partial D_{2}$ in smaller number of points, which is a contradiction. Thus P is disjoint from D_{1} and $D_{2} . \partial P$ is contained in ∂B so that it is disjoint from the four vertices of the tetrahedron. Since ∂P intersects the 1 -skelton Δ of the tetrahedron in two points, it is contained in a union of two adjacent faces and bounds a disc intersecting Δ in a subarc of an edge. Then ∂P intersects ∂R_{i} in two points for $i=1$ or 2 , which is a contradiction.

Similar argument shows that s_{i} is not trivial in (X, S) for $i=1$ and 2, that is, there is a disc P_{i} properly embedded in E so that ∂P_{i} intersects ∂R_{i} in a single point and is disjoint from ∂R_{j} neither for $(i, j)=(1,2)$ nor $(2,1)$.

Similar situations are studied in Lemma 2.3.2 in [2], [10], [12].

A. Annuli disjoint from \boldsymbol{t}

Let V be a solid torus, and t a trivial arc in V. Let A be an annulus properly embedded in V with $A \cap t=\emptyset$.

Lemma A.1. Suppose that the loops of ∂A are essential on ∂V. Let A_{1} and A_{2} be the annuli obtained by cutting ∂V along ∂A. Suppose $\partial t \subset A_{1}$. Let R_{i} be the region bounded by the torus $A_{i} \cup A$ in V. Then one of the three conditions below holds.
(1) A is t-compressible, the loops ∂A bound meridian discs of V disjoint from a cancelling disc of t. Moreover, if R_{1} contains a t-compressing disc of A, then A_{2} is t-incompressible in R_{2}.
(2) A has a t - ∂-compressing disc in R_{2}, and is t-parallel to A_{2}.
(3) A has a t - ∂-compressing disc D in R_{1}, and there is a cancelling disc C of t such that $\partial C \cap \partial V \subset$ int A_{1} and $C \cap(A \cup D)=\emptyset$.
Moreover, if the slope of ∂A is longitudinal on ∂V, then (2) holds.
Proof. Lemma 2.10 implies that A is t-compressible or t - ∂-compressible in (V, t). Suppose that A has a t-compressing disc Q. Since $A \cap t=\emptyset, \partial Q$ divides A into two annuli. We perform a t-compressing operation on A along Q, that is, take a tubular neighbourhood $N \cong Q \times[0,1]$ of Q so that $N \cap A=\partial Q \times[0,1]$, and we deform A into the surface $(A-(\partial Q \times[0,1])) \cup(Q \times\{0\} \cup Q \times\{1\})$. Then we obtain
meridian discs D_{1}, D_{2} disjoint from t and bounded by ∂A. Then a standard innermost loop and outermost arc argument allows us to take a cancelling disc of t to be disjoint from D_{1}, D_{2}.

Suppose $Q \subset R_{1}$. We take a straight arc α in $N \subset R_{1}$ connecting $Q \times\{0\}$ and $Q \times\{1\}$. After the t-compressing operation, α connects D_{1} and D_{2}, and is contained in the ball bounded by $D_{1} \cup D_{2} \cup A_{2}$ in V. If A_{2} has a t-compressing disc P, then ∂P separates ∂D_{1} and ∂D_{2} on A_{2} because $A_{2} \cap t=\emptyset$. Hence P must intersect $D_{1} \cup D_{2}$ or α, and cannot be contained in R_{2} entirely.

Suppose that A is $t-\partial$-compressible. Since A is disjoint from t, any $t-\partial$-compressing disc intersects A in an essential arc. Performing a $t-\partial$-compressing operation on A, we obtain a disc, say D, in V. Since the loops ∂A are essential on $\partial V, \partial D$ bounds a disc, say D^{\prime}, on ∂V, and the 2 -sphere $D \cup D^{\prime}$ bounds a ball, say B, in V. If B does not contain t, then D is t-parallel to D^{\prime}, and A is also t-parallel to an annulus in ∂V. If $t \subset B$, then a standard innermost loop and outermost arc argument allows us to take a cancelling disc C of t with $C \cap D=\emptyset$ in B.

If the slope of ∂A is longitudinal, then it is well-known that in both regions R_{1} and $R_{2} A$ has ∂-compressing discs, which in R_{2} is disjoint from t.

Lemma A.2. Suppose that a component, say l_{1}, of ∂A is essential on ∂V and the other component, say l_{2}, is not. Let Q be the disc bounded by l_{2} on ∂V. Suppose $\partial t \subset Q$. Then (1) l_{1} bounds a meridian disc, say D_{1}, with $D_{1} \cap\left(t \cup\left(A-l_{1}\right)\right)=\emptyset$, (2) l_{2} bounds a peripheral disc, say D_{2}, with $D_{2} \cap\left(t \cup\left(A-l_{2}\right)\right)=\emptyset$, and (3) there is a cancelling disc C of t with $\partial C \cap \partial V \subset Q$ and $C \cap D_{2}=\emptyset$.

Proof. By Lemma 2.10, A is t-compressible or t - ∂-compressible in (V, t).
Suppose that A is t-compressible. Since $A \cap t=\emptyset$, performing a t-compressing operation on a copy of A, we obtain a meridian disc D_{1} bounded by l_{1}, and a peripheral disc D_{2} bounded by l_{2} disjoint from t. An adequate small isotopy makes their interior be disjoint from A. A standard innermost loop and outermost arc argument allows us to take a cancelling disc C of t with $C \cap D_{2}=\emptyset$. Since $\partial t \subset Q$, the arc $\partial C \cap H_{1}$ is contained in Q.

Suppose that A is $t-\partial$-compressible. Since $A \cap t=\emptyset$, performing a $t-\partial$-compressing operation on A, we obtain a meridian disc, say D, of V with $D \cap A=\emptyset$ after an adequate small isotopy. Then ∂D and l_{1} together divide ∂V into two annuli, one of which, say R, does not contain Q. Pushing the disc $D \cup R$ slightly into int V, we obtain a t-compressing disc of A. Then the previous paragraph shows the lemma.

Lemma A.3. Suppose that both components of A, say l_{1} and l_{2}, are inessential and t-essential on ∂V. Assume that l_{1} bounds a disc Q disjoint from l_{2} on ∂V. Let A^{\prime} be the annulus on ∂V such that $\partial A^{\prime}=\partial A$. Then one of two conditions below holds.
(1) A is t-parallel to A^{\prime} in (V, t).
(2) A is t-compressible in $(V, t), l_{1}$ and l_{2} bound peripheral discs Q_{1}, Q_{2} disjoint from t, and there is a cancelling disc C of t with $\partial C \cap \partial V \subset Q$ and $C \cap\left(Q_{1} \cup Q_{2}\right)=\emptyset$.

Proof. By Lemma 2.10, A is t-compressible or t - ∂-compressible in (V, t).
Suppose that A is t-compressible. Performing a t-compressing operation on A, we obtain peripheral discs Q_{1}, Q_{2} disjoint from t and bounded by l_{1} and l_{2} respectively. Since l_{1} is t-essential, $\partial t \subset Q$. Then a standard innermost loop and outermost arc argument allows us to take a cancelling disc C of t with $C \cap Q_{1}=\emptyset$ and $\partial C \cap \partial V \subset Q$.

Suppose that A has a t - ∂-compressing disc D. The $\operatorname{arc} D \cap \partial V$ connects l_{1} and l_{2}, and hence is contained in the annulus A^{\prime}. Performing a $t-\partial$-compressing operation on A, we obtain a peripheral disc, which is t-parallel to a disc in A^{\prime} since $A^{\prime} \cap \partial t=\emptyset$. Hence A is t-parallel to A^{\prime}.

B. Dises with two punctures

Let V be a solid torus, and t a trivial arc in V. Let Q be a peripheral disc properly embedded in V such that t intersects Q transversely in two points. Let B be the ball cut off from V by Q, and set $Q^{\prime}=\partial B \cap \partial V$ the disc, $V^{\prime}=\operatorname{cl}(V-B)$ and $t^{\prime}=t \cap V^{\prime}$.

Lemma B.1. Assume $\partial t \subset Q^{\prime}$. Then t^{\prime} is an arc. Suppose that Q has a t-compressing disc D in (V, t). Let D^{\prime} be the disc bounded by ∂D on Q, and set $R=\left(Q-D^{\prime}\right) \cup D$. Then (1) t intersects D^{\prime} in two points, $R \cap t=\emptyset$ and D is contained in V^{\prime}, (2) we can take a cancelling disc C of t in (V, t) with $C \cap R=\emptyset$ and $\partial C \cap \partial V \subset Q^{\prime}$ and (3) we can take a cancelling disc C^{\prime} of the arc t^{\prime} in $\left(V^{\prime}, t^{\prime}\right)$ with $C^{\prime} \cap D=\emptyset$ and $\partial C^{\prime} \cap \partial V^{\prime} \subset D^{\prime}$.

Proof. ∂D is essential on $Q-t$. If t intersects D^{\prime} at a single point, then t intersects the 2 -sphere $D \cup D^{\prime}$ in a single point, which contradicts that V is irreducible. Hence t intersects D^{\prime} in two points, and ∂D is parallel to ∂Q on $Q-t$. Suppose, for a contradiction, that D is contained in B. Then D divides B into two balls, both of which intersect t. This contradicts $D \cap t=\emptyset$. Thus we have shown that D is contained in V^{\prime}, and (1) follows.

A standard innermost loop and outermost arc argument allows us to take a cancelling disc C of t in V with $C \cap R=\emptyset$. Then (2) follows from $\partial t \subset Q^{\prime}$. Similar argument shows (3).

Lemma B.2. Suppose that Q is t-incompressible in (V, t). Then
(1) $\partial t \subset Q^{\prime}$, and hence t^{\prime} is an arc in V^{\prime},
(2) any cancelling disc C of t can be isotoped in (V, t) so that $C \cap Q$ consists of arcs only and that the two points $t \cap Q$ are contained in distinct arc components of $C \cap Q$,
(3) $(B, t \cap B)$ is a rational tangle, that is, a trivial 2-string tangle and
(4) the punctured torus $\partial V \cap \partial V^{\prime}=\operatorname{cl}\left(\partial V-Q^{\prime}\right)$ is t-incompressible in $\left(V^{\prime}, t^{\prime}\right)$.

Proof. If Q^{\prime} contains a single endpoint of ∂t, then t intersects the 2 -sphere $Q \cup Q^{\prime}$ in three points, which is a contradiction. If $Q^{\prime} \cap \partial t=\emptyset$, then Q^{\prime} gives a t-compressing disc of Q, which contradicts our assumption. Hence $\partial t \subset Q^{\prime}$, which is the conclusion (1).

Let C be a cancelling disc of t in V. Since Q is t-incompressible, a standard innermost loop argument allows us to isotope C in (V, t) so that $C \cap Q$ contains no loops. If there is an arc α of $C \cap Q$ connecting the two points $t \cap Q$, then it cuts off from C a disc D with $\partial D=\alpha \cup t^{\prime}, D \cap Q=\alpha$ and $D \subset V^{\prime}$. We take a small regular neighbourhood N of D in V^{\prime}. Then the disc $\operatorname{cl}(\partial N-Q)$ is a t-compressing disc of Q, which is a contradiction. Hence the two points $t \cap Q$ are contained in distinct arc components of $C \cap Q$. This is the conclusion (2). Let t_{1} and t_{2} be the two components of $t \cap B$. The arcs $C \cap Q$ divide C into subdiscs. There are two subdiscs C_{1}, C_{2} such that C_{i} contains a copy of t_{i} and that $C_{i} \cap t_{j}=\emptyset$ for $(i, j)=(1,2)$ and $(2,1)$. These two subdiscs show that $(B, t \cap B)$ is a trivial 2 -string tangle. Thus we obtain the conclusion (3).

Suppose for a contradiction that the punctured torus $T=\partial V \cap \partial V^{\prime}$ is t-compressible in $\left(V^{\prime}, t^{\prime}\right)$. Then we compress T and obtain a disc whose boundary coincides with ∂Q. This disc is disjoint from the arc t^{\prime}, which contradicts that Q is t-incompressible.

Lemma B.3. Assume $\partial t \subset Q^{\prime}$. Then t^{\prime} is an arc. Suppose that Q has a $t-\partial$ compressing disc D in $\left(V^{\prime}, t^{\prime}\right)$. Then
(1) the arc $D \cap Q$ separates the two points $t \cap Q$ on Q and D is a meridian disc of V^{\prime},
(2) V has a meridian disc R intersecting t in a sigle point and disjoint from Q,
(3) Q is t-incompressible in (V, t) and
(4) there is a cancelling disc P of t^{\prime} in $\left(V^{\prime}, t^{\prime}\right)$ such that
(a) P is disjoint from D,
(b) $P \cap Q$ consists of two arcs each of which contains a point of $t \cap Q$ and
(c) $P \cap R$ is a single arc.

Proof. The arc $D \cap Q$ divides Q into two discs Q_{1}, Q_{2}, each of which intersects t in a sigle point. However, the two points $t \cap Q$ are connected by the arc of t^{\prime} in V^{\prime}. Hence D is not separating in V^{\prime}, and is a meridian disc of V^{\prime}. This is the conclusion (1). Then we can obtain a disc R as desired by isotoping the disc $D \cap Q_{1}$ off of Q slightly. Note that $|R \cap t|=\left|Q_{1} \cap t\right|=1$. Thus we obtain the conclusion (2).

We assume, for a contradiction, that Q is t-compressible in (V, t). Then, by Lemma B.1, there is a cancelling disc C^{\prime} of t^{\prime} in $\left(V^{\prime}, t^{\prime}\right)$ with $\partial C^{\prime} \cap \partial V^{\prime} \subset Q$. We can isotope C^{\prime} near the arc $\partial C^{\prime} \cap Q$ so that $\partial C^{\prime} \cap \partial D \cap Q$ is a single point p. We can
isotope C^{\prime} slightly fixing ∂C^{\prime} so that it is transverse to D. Since D is disjoint from t, $\left(\partial C^{\prime}\right) \cap D$ consists of the only one point p. This contradicts that C^{\prime} and D intersect properly embedded 1-manifold in the disc C^{\prime}. Hence Q is t-incompressible in ($\left.V, t\right)$. Thus we obtain the conclusion (3).

Let C be a cancelling disc of t in (V, t) as in (2) of Lemma B.2. That is, $C \cap Q$ consists of arcs only and the two points $t \cap Q$ are contained in distinct arc components of $C \cap Q$. Moreover, we can take C so that the number of the arc components of $C \cap Q$ is minimal. Then a standard outermost arc argument shows that an arc of $C \cap Q$ separates the two points $t \cap Q$ on Q if it is disjoint from $t \cap Q$. Let C^{\prime} be one of subdiscs obtained by cutting C along the $\operatorname{arcs} C \cap Q$ such that C^{\prime} contains t^{\prime}. Note that C^{\prime} is a cancelling disc of t^{\prime} in $\left(V^{\prime}, t^{\prime}\right)$. We can isotope C^{\prime} so that ∂C^{\prime} is disjoint from the arc $D \cap Q$ since the arc $D \cap Q$ separates the two points $t \cap Q$ on Q. Then every arc of $C^{\prime} \cap Q$ is parallel to the arc $D \cap Q$ in $Q-t$ if it is disjoint from $t \cap Q$. We can retake C^{\prime} so that it is disjoint from D by a standard innermost loop and outermost arc argument on D. Then we add a copy of D along every arc component of $C^{\prime} \cap Q$ if it is disjoint from $t \cap Q$. A standard innermost loop and outermost arc argument allows us to retake C^{\prime} so that it intersects R in a single arc. Thus we have obtained a cancelling disc of t^{\prime} as desired, and we obtain the conclusion (4).

Lemma B.4. Suppose that Q is t - ∂-compressible in $(B, t \cap B)$. Then $\partial t \subset Q^{\prime}$, and Q and Q^{\prime} are t-parallel in (V, t).

Proof. Let D be a t - ∂-compressing disc of Q in $(B, t \cap B)$. The arc $D \cap Q$ is essential in $Q-T$, and hence it divides Q into two discs, say Q_{1} and Q_{2}, each of which intersects t in a single point. The arc $D \cap Q^{\prime}$ divides Q^{\prime} into two discs, say Q_{1}^{\prime} and Q_{2}^{\prime}, such that $\partial Q_{i} \cap \partial Q=\partial Q_{i}^{\prime} \cap \partial Q$ for $i=1$ and 2 . For $i=1$ and 2 , the 2 -sphere $Q_{i} \cup Q_{i}^{\prime} \cup D$ must intersect t in even number of points. Because Q^{\prime} contains at most two endpoints $\partial t, Q_{i}^{\prime}$ contains a single point of ∂t for $i=1$ and 2 . Thus $\partial t \subset Q^{\prime}$. Let B_{i} be the ball bounded by the 2 -sphere $Q_{i} \cup Q_{i}^{\prime} \cup D$. Then $t \cap B_{i}$ is a trivial arc in B_{i} for $i=1$ and 2 by Lemma 2.1. Thus ($B, t \cap B$) gives a parallelism between Q and Q^{\prime} in (V, t).

C. Annuli with a puncture

Throughout Appendix C, we consider the situation as below. Let V be a solid torus, and t a trivial arc in V. Let A be an annulus properly embedded in V intersecting t transversely in precisely one point. Suppose that ∂A are essential in ∂V (ignoring the points ∂t). Then they divide ∂V into two annuli A_{1} and A_{2}. Let R_{i} be the region bounded by $A_{i} \cup A$, and set $t_{i}=t \cap R_{i}$ for $i=1$ and 2 .

When A has a t - ∂-compressing disc D in (V, t), we say D is essential if $\partial D \cap A$ is an essential arc on A (ignoring the point $t \cap A$), and say D is inessential if $\partial D \cap A$ is inessential.

Lemma C.1. Suppose that A has a t-compressing disc D in R_{1}. Then ∂D is essential in A (ignoring the point $t \cap A$), A_{1} is also t-compressible in $\left(R_{1}, t_{1}\right)$, and A_{2} is t-incompressible in $\left(R_{2}, t_{2}\right)$. Moreover, R_{1} is a solid torus, and the arc $t \cap R_{1}$ has a cancelling disc C^{\prime} in R_{1} such that each of $\partial C^{\prime} \cap A$ and $\partial C^{\prime} \cap \partial V$ is an arc.

Proof. Suppose, for a contradiction, that ∂D bounds a disc, say D^{\prime}, in A. Since ∂D is essential in $A-t, D^{\prime}$ contains $t \cap A$. Then the 2 -sphere $D \cup D^{\prime}$ intersects t in a single point in V, which is a contradiction. Hence ∂D is essential.

A t-compressing operation on A along D yields a disc D_{1} disjoint from t and a disc D_{2} intersecting t transversely in a single point. Then D_{1} gives a t-compressing disc of A_{1}.

Similar argument as in the latter half of the first paragraph in the proof of Lemma A. 1 shows that A_{2} is t-incompressible in $\left(R_{2}, t_{2}\right)$.
R_{1} is a solid torus because it is obtained from the ball between D_{1} and D_{2} by gluing the two copies of the t-compressing disc D. t has a cancelling disc C in V. As in the proof of Lemma 2.7, a standard innermost loop and outermost arc argument allows us to take C so that it intersects $D_{1} \cup D_{2}$ in a single arc connecting the point $t \cap D_{2}$ and ∂D_{2}. Moreover, we can take C to be disjoint from the copies of D. Then the disc $C^{\prime}=C \cap R_{1}$ gives a cancelling disc of the arc $t \cap R_{1}$ as desired.

Lemma C.2. Suppose that A has an essential t - ∂-compressing disc D in R_{1}. Then A is t-parallel to A_{1} in (V, t).

Proof. Performing a $t-\partial$-compressing operation on A along D, we obtain a peripheral disc Q. Q cuts off a ball B from R_{1} with $t \cap B=t_{1} . t_{1}$ is trivial in B by Lemma 2.1. Hence A and A_{1} are t-parallel.

Lemma C.3. Suppose that A is t-incompressible and has an inessential $t-\partial$ compressing disc D in R_{1}. Let A^{\prime} be the annulus obtained by performing a $t-\partial-$ compressing operation on A along D. Then either
(1) A is t-parallel to A_{1}, or
(2) there is a cancelling disc C of t in (V, t) with $C \cap A^{\prime}=\emptyset$.

If ∂A is of a longitudinal slope of V, then the condition (1) holds. In case (2), A is isotopic in (V, t) to the annulus which is the union of the two annuli Z_{1} and Z_{2} as below. See Fig. C.1. Let l be the component of ∂A disjoint from D.
(a) Z_{1} is obtained by cutting a copy of ∂V along l and isotoping along C and
(b) Z_{2} is obtained from a copy of A_{1} by slightly isotoping into int V.

Proof. The arc $\partial D \cap A$ cuts off a disc, say D_{A}, from A. with $t \cap A \subset D_{A}$. The arc $\partial D \cap A_{1}$ also cuts off a disc, say D_{1}, from A_{1} with $\partial t \cap A_{1} \subset D_{1}$. Then the 2-sphere $D \cup D_{A} \cup D_{1}$ bounds a ball, say B, in R_{1}, with $t \cap B=t_{1}$ trivial in B by

Fig. C.1.
Lemma 2.1. We can recover A by pushing the interior of $A^{\prime} \cup D_{1}$ into int V. We can recover A also by taking the union of a copy of A^{\prime}, two copies of $\operatorname{cl}\left(A_{1}-D_{1}\right)$ and a copy of D_{1}.
A^{\prime} is t-compressible or t - ∂-compressible by Lemma 2.10. First, we suppose that A^{\prime} is t-compressible. Let P be a t-compressing disc of A^{\prime}. We isotope P near ∂P so that $P \cap D=\emptyset$. Then a standard innermost loop argument allows us to retake P to be disjoint from D and D_{A}. Then P forms a t-compressing disc of A, contradicting our assumption.

Hence A^{\prime} has a t - ∂-compressing disc D^{\prime}. When D^{\prime} is contained in $R_{2} \cup B$, we perform a t - ∂-compressing operation on a copy of A^{\prime} along D^{\prime}, and obtain a peripheral disc Q which cuts off a ball B^{\prime} from $R_{2} \cup B$ with $t \subset B^{\prime}$. Hence we can take a cancelling disc C of t with $C \cap Q=\emptyset$ and $C \subset B^{\prime}$. Then A^{\prime} is obtained from $A_{2} \cup D_{1}$ by isotoping along C. This implies the conclusion (2) by setting $Z_{1}=A^{\prime} \cup\left(A_{1}-D_{1}\right)$ and $Z_{2}=A_{1}$.

We consider the case where D^{\prime} is contained in $\operatorname{cl}\left(R_{1}-B\right)$. Note that such a $t-\partial$ compressing disc always exists if ∂A is of a longitudinal slope of V. We can take D^{\prime}
so that D^{\prime} is disjoint from the copy of D. Hence D^{\prime} is also a $t-\partial$-compressing disc of A. Note that the arc $D^{\prime} \cap A$ is essential in A (ignoring the point $t \cap A$). Hence A and A_{1} are t-parallel in (V, t) by Lemma C.2.

D. Annuli with two punctures

In Appendix D , we consider the situation as below. Let V be a solid torus V, and t a trivial arc in V. Let A be an annulus properly embedded in V intersecting t transversely in two points. Suppose that the loops ∂A are essential in ∂V (ignoring the points ∂t). Then they divide ∂V into two annuli A_{1} and A_{2}, one of which, say A_{1} contains the two points ∂t. The annulus A separates V into two regions R_{1} and R_{2} with $\partial R_{i}=A_{i} \cup A$ for $i=1$ and 2 . When A has a K-compressing disc D in (V, t), we say that D is essential if $\partial D \cap A$ is essential on A, otherwise it is inessential.

Lemma D.1. Suppose that A has an inessential t-compressing disc D in (V, t) and is t - ∂-incompressible in $\left(R_{2}, t \cap R_{2}\right)$. Then there is a cancelling disc C of t with $\partial C \cap \partial V \subset A_{1}$.

Proof. Note that D is contained in R_{2}. By performing a compressing operation on A along D, we obtain a 2 -sphere and an annulus, say $A^{\prime} . A^{\prime}$ is disjoint from t, and separates V into two regions R_{1}^{\prime} and R_{2}^{\prime}, one of which, say R_{1}^{\prime} contains t. By Lemma 2.10, A^{\prime} is t-compressible or t - ∂-compressible in ($\left.V, t\right)$.

If A^{\prime} is t-compressible, then, compressing A^{\prime}, we obtain two meridian discs of V. A standard innermost loop and outermost arc argument allows us to take a cancelling disc of t disjoint from these discs. This implies the conclusion.

If A^{\prime} has a t - ∂-compressing disc Q in R_{2}^{\prime}, then we can isotope Q near the arc $\partial Q \cap A^{\prime}$ in R_{2}^{\prime} so that ∂Q is disjoint from the copy of the t-compressing disc D. This implies that A is t - ∂-compressible in ($R_{2}, t \cap R_{2}$), which contradicts our assumption.

If A^{\prime} is $t-\partial$-compressible in R_{1}^{\prime}, then, performing a $t-\partial$-compressing operation on A^{\prime}, we obtain a peripheral disc which cuts off a ball containing t from R_{1}^{\prime}. We can take a cancelling disc of t entirely contained in the ball. This implies the conclusion.

References

[1] J. Berge: The knots in $D^{2} \times S^{1}$ with non-trivial Dehn surgery yielding $D^{2} \times S^{1}$, Topology Appl. 38 (1991), 1-19.
[2] M. Culler, C.M. Gordon, J. Luecke and P. Shalen: Dehn surgery on knots, Annals of Math. 125 (1987), 237-300.
[3] D.H. Choi and K.H. Ko: On 1-bridge torus knots, preprint.
[4] D.H. Choi and K.H. Ko: Parametrizations of 1-bridge torus knots, preprint.
[5] A. Cattabriga and M. Mulazzani: Strongly-cyclic branched coverings of (1, 1)-knots and cyclic presentations of groups, preprint.
[6] H. Doll: A generalized bridge number for links in 3-manifolds, Math. Ann. 294 (1992), 701-717.
[7] D. Gabai: Surgery on knots in solid tori, Topology 28 (1989), 1-6.
[8] D. Gabai: 1-bridge braids in solid tori, Topology Appl. 37 (1990), 221-235.
[9] H. Goda and C. Hayashi: Genus two Heegaard splittings of exteriors of 1-genus 1-bridge knots, preprint.
[10] C.McA. Gordon: On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987), 285-299.
[11] L. Grasselli and M. Mulazzani: Genus one 1-bridge knots and Dunwoody mainfolds, Forum Math. 13 (2001), 379-397.
[12] C. Hayashi: On parallelism of strings in tangles, Topology Appl. 62 (1995), 65-76.
[13] C. Hayashi: Genus one 1-bridge positions for the trivial knot and cabled knots, Math. Proc. Camb. Phil. Soc. 125 (1999), 53-65.
[14] C. Hayashi: Satellite knots in 1-genus 1-bridge positions, Osaka J. Math. 36 (1999), 711-729.
[15] C. Hayashi: Stable equivalence of Heegaards splittgins of 1-submanifolds in 3-manifolds, Kobe J. Math. 15 (1998), 147-156.
[16] C. Hayashi: A survey of known results on 1-genus 1-bridge knots, the Proceeding of the conference "On Heegaard splittings and Dehn surgeries of 3-manifolds, and topics related to them", 10-18, Kyoto University, June 2001.
[17] C. Hayashi and K. Shimokawa: Thin position for 1-submanifold in 3-manifold, Pacific J. Math. 197 (2001), 301-324.
[18] C. Hayashi and K. Shimokawa: Heegaard splittings of the trivial knot, J. Knot Theory Ramifications 7 (1998), 1073-1085.
[19] C. Hayashi and K. Shimokawa: Heegaard splittings of trivial arcs in compression bodies, J. Knot Theory Ramifications 10 (2001), 71-87.
[20] C. Hayashi and K. Shimokawa: Heegaard splittings of the pair of the solid torus and the core loop, Rev. Mat. Complut. 14 (2001), 479-501.
[21] J. Hempel: 3-manifolds as viewed from the curve complex, Topology 40 (2001), 631-657.
[22] P. Hoidn: On 1-bridge genus of small knots, Topology Appl. 106 (2000), 321-335.
[23] T. Kobayashi: Structures of the Haken manifolds with Heegaard splitting of genus two, Osaka J. Math. 21 (1984), 437-455.
[24] T. Kobayashi: Heegaard splittings of exteriors of two bridge knots, Geom. Topol. 5 (2001), 609-650.
[25] T. Kobayashi and O. Saeki: Rubinstein-Scharlemann graphic of 3-manifold as the discriminant set of a stable map, Pacific J. Math. 195 (2000), 101-156.
[26] H. Matsuda: Genus one knots which admit (1,1)-decompositions, Proc. Amer. Math. Soc. 130 (2002), 787-791.
[27] K. Morimoto: On minimum genus Heegaard splittings of some orientable closed 3-manifolds, Tokyo J. Math. 12 (1989), 321-355.
[28] K. Morimoto and M. Sakuma: On unknotting tunnels for knots, Math. Ann. 289 (1991), 143-167.
[29] K. Morimoto, M. Sakuma and Y. Yokota: Examples of tunnel number one knots which have the property ' $1+1=3$ ', Math. Proc. Camb. Phil. Soc. 119 (1996), 113-118.
[30] M. Mulazzani: Cyclic presentations of groups and branched cyclic coverings of (1, 1)-knots, preprint.
[31] H. Rubinstein and M. Scharlemann: Comparing Heegaard splittings of non-Haken 3-manifolds, Topology 35 (1996), 1005-1026.
[32] H. Rubinstein and M. Scharlemann: Genus two Heegaard splittings of orientable threemanifolds, Proceedings of the 1998 Kirbyfest, Geometry and Topology Monographs 2, 489-553.
[33] M. Scharlemann: Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990), 481-500.
[34] H.J. Song: Dunwoody (1, 1)-decomposable knots, preprint.
[35] H.J. Song and K.H. Ko: Spatial θ-curve associated with Dunwoody (1, 1)-decomposable knots, preprint.
[36] H.J. Song and S.H. Kim: Dunwoody 3-manifolds and (1, 1)-decomposible knots, preprint.
[37] A. Thompson: The disjoint curve property and genus 2 manifolds, Topology Appl. 97 (1999), 237-279.
[38] Y.-Q. Wu: A generalization of the handle addition theorem, Proc. Amer. Math. Soc. 114 (1992), 237-242.
[39] Y.-Q. Wu: Incompressibility of surfaces in surgered 3-manifold, Topology 31 (1992), 271-279.
[40] Y.-Q. Wu: ∂-reducing Dehn surgeries and 1-bridge knots, Math. Ann. 295 (1992), 319-331.
[41] Y.-Q. Wu: Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebodies, Math. Proc. Cambridge Phil. Soc. 120 (1996), 687-696.

Department of Mathematical and Physical Sciences Faculty of Science, Japan Women's University 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan e-mail: hayashic@fc.jwu.ac.jp

[^0]: 1991 Mathematics Subject Classification : 57M25, 57N10.

