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1. Introduction

In this paper we consider a maximal inequality associateth iltration on
Lorentz spaces and Orlicz spaces. L&t (), (Y, v) be arbitrary measure spaces and
let T be a bounded linear operator from a function space defimef, ) to a func-

tion space on X, ). Let E, be a sequence of measurable subsety of  which are

nested:E, C E,+ for all n. Such a sequence is calledfiiration of Y. Denote by
xr the characteristic function off . M. Christ and A. Kiselev i8] [considered the
maximal operator

T f(x) = SILlJp|T(fXE,,)(x)|,

which was studied to obtain the a.e. convergence of an igltegrerator [4]. They ob-
tained the following result.

Theorem 1.1. Let1 < p, g < oo, and suppose thaf': L?(Y) — LI(X) is a
bounded linear operator. Then for any nested sequence ofuredale subset§E,} C
Y, the maximal operatorT* is a bounded operator froni.?(Y) to L9(X) provided
p < q. Moreover

1% < (1— 27 (/=@ 7|,

where||T||,,, denotes the operator norm @f  fro’(Y) to L7(X).

It should be noted that the phenomena for the maximal iné@guatcur because
of the strict difference of convexity between two functidin8, t7) generating the func-
tion spaces [’ and.¢ ). Based on this fact, we extend the theolmweato some
different function spaces which naturally contain the Lszhee spaces. Especially, we
thus show a version of Theorem 1.1 still holds on Lorentz epagnd Orlicz spaces
reflecting the difference of convexity. For another refeeerconcerning the Lorentz
space, see the paper [5].
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Let L7 (X) = LP"(X,du) denote the space of all measurable functions satisfying

1 pegagadr )
1£1p.q = (1/ [ f (r)]q—) < o9
P Jo t
where f* is the decreasing rearrangement f  (see [6]). Then we firgt kize fol-
lowing result:

Theorem 1.2. Letl< p<r <s <g < oo, and supposel': L”"(Y) — L%*(X)
is a bounded linear operator. Thefi* is bounded fromL?-"(Y) to L?*(X). Moreover

(1.1) 7| 12~ {@/N-wah = 7|

Lrr Las < ( Lrr—Las

where ||T |

Lrr—ras denotes the operator norm af  frof?” 0

Now we consider a generalization to Orlicz spaces. The Yofumgtion ® is
given by @ ¢) :fos ¢(t) dt for an increasing left continuous functigh with ¢(0) = 0.
For the Young function, the Luxemburg norm is defined by

p®(f) = inf{k: /d> (@) dv(y) < 1}.

Then the Orlicz spacé® Y( )&? Y(dv) is the function space with the north ||, =
p®(-). For further details, see pp. 265-280 in [2].

Next, we consider a pair of Young functionB add . We imposesrsdvas-
sumptions ond W . For any ¢, > 0, let us assume

(1.2) W (st)~ W(s)W(r).
Here A ~ B means that there is a constaft> 0 such that
C 'A< B<CA.

For the function® , we assume that there is a strictly conveaction ® such that for
any o > 1,

(1.3) O(ar) < CO()P() and d(a) ~ D(1/)~ L
Then the second result is the following:

Theorem 1.3. Let T be a bounded linear operator froh®(Y) to LY(X). As-
sumed and¥ satisfyl.3) and (1.2), respectivelyand further assume

(1.4) /Olqu(t)w—l(t—l)? < o0
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Then there is a constar@  such thff* f |z < C|| f||ze-

Compared with the result in [3] wher@ ¢ ()2 anlr ( ¥& , the resbiowe
is more general. For this particular example, the conditith3) and (1.2) are satisfied
and

1 1
/ Q_l(l)\l}_l(l_l)ﬂ :/ t(l/P)_(l/‘I)ﬂ < 00
0 4 0 ! ’

provided p < g. We obtain another example if we s&tr ()= ®,r ()= (log2+¥))
with 5 > 0. The condition (1.2) is clearly satisfied. It is easily fied that for any
a > 1, there exists > 0 such that® dz) < af<®(r) with p. = p +e4. So if we
set d(¢) = t7=, then (1.3) is satisfied and we can fiadso that® satisfies the condi-
tion (1.4) forp < q.

The proof of these theorems follows the line of argument in Bt some techni-
cal difficulties arising in the consideration of Lorentz a@dicz spaces will be settled
by introducing several lemmas.

2. Proof of Theorem 1.2

We begin by proving an elementary but crucial lemma conogriiorentz space.

Lemma 2.1. Let F, G be disjoint measurable sets i  and Igt ¢ be measur-
able functions onX . I < p < oo, then

(21) ”fXF +gXG||;7r < ”fXF”;),r + ”gXG”’gar

and if p <r, then

(22) ”fXF +gXG||;1,r > ||fXF||;I,I’ + ”gXG”;;r

Proof. By a limiting argument, we may assume that and are lsiriync-
tions. Without loss of generality, we may writéxr, gx¢ as fxXr = D i1 CiXF»
gXG = >i-1CiXq; respectively, whereF; (G; are measurable sets containefl iv
respectively. We may also assume

lea] > Jea > - > il > Jeisa| > -+

Seta; =v(F;), bi = v(G;). Also for 1< i < n, setA; =>_,a, Bi =Y\, bx.
Then the decreasing rearrangementsfqfr, gxg are given by

|C,'| if Aj_1<t<A;

(fxr) (t)I{0 it A <1
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|C,'| if Bj_1<t<B,

(gxc) (t)={ 0 itB <t

Since the supports of ang are disjoint, we haVe g + ) =c;xruc,- Thus we
have

|C,-| if Aji_1+Bi_1<t<A;+B;

+ NOE
(fxr +gxc) (1) {0 if A,+ B, <t.

Now fori =1, ...,n, let us set
Si= (A +B)/P — (Aj_y+ Bi_q) /P — AP+ AT/P _ BV + BT

Then a simple computation shows that

1f +2gl

n
v =l = gl = 3 leil" S
i

Finally, we only need to observe th& < 0if 0 < r/p < 1 andS; > 0 if
r/p > 1. This completes the proof of Lemma 2.1. U

Now we prove Theorem 1.2. Fig r, g s, sSothatdp <r <s < ¢q < o0.
Without loss of generality, we may assumi¢||.»-yy = 1. Define a functionM from
measurable sets of’(v) to R by

M(S) = 1 xslzrrry-

As mentioned in [3], we may assume that for> 0 and for any measurable set
E, if A < M(E), then there is a measurable subSet such $hatt and M(S) = A.
This can be achieved by replacing by [0, 1], v by the product ofv and Lebesgue
measure on [0 1]I" byl o wherenf(y) = fol f(y,s)ds, and E, byE, x [0, 1].
Then we see that the boundednessrdéfis implied by the boundedness of e m)*.
Indeed, assume that’(c x)* is bounded fromL?" X x [0, 1]) to L4*(X) and (1.1)
holds for (I o m)* instead ofT*. Given f € L”"(Y), apply the above assumption to
f ® x[o0,15- Since

1
(T om)* f ® X011 = SUpT </ XEx0.1(f ® X[O,l])ds> =T*f
n 0

and SinCEHf (%9 X[o_]_]| Lrr(y x[0,1]) = ||f| Lrr(Y) (11) follows.
We also need the following lemma which is a modification of tme in [3].

Lemma 2.2. Let f be a measurable function withf||.»-yvy = 1. Then there is
a collection{B}} of measurable subsets &f with/ € {0, 1, 2...} and1<k <2,
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satisfying the following conditions.

1. {BL:1<k <2} is a partition of Y into disjoint measurable subsets.

2. |Ixp fllimy <27 for 1<k <2,

3. For eachn, E, can be decomposed as an empgtgite or countable union such
that for some sequencés, k',

E.=|UBo |UDu with 1<tz <iy<--
i>1

where D, is a measurable set for whigW((D,) = 0.
Proof of Lemma 2.2. Define for ¥ k <2 —1,
N;=min{n € N: M(E,) > 27"k} .

By the divisibility assumption for ¥ & < 2'—1, we can choose a subs¢f ~ Bf; in
such a way thatM(A}) = k2! and A}, = Y. SinceE, is increasing, we may assume
that Al C Al,; and A} = AL,. Now we defineB, by

1

Bl = Al

I — ) [ [ — [ )
BZ_(AZ\Al)v'”ka _(Ak\Akfl)v"w
Bh = (A5 \ AL ).

Sincep < r, by (2.2) in Lemma 2.1M(S1 U §2) > M(S1) + M(S,) if §; and S, are
disjoint. So for all 1< k < 2, we have

M(B}) = M(AL\ AL_y) < M(AL) — M(A}_)=27".

Form the construction, it follows that for eaeh , there arquemces{l'}, {m/}
so that

Iy Iy
A, CE,, A]

m,. m

,C A% lim M(AL) = M(E,)

k]
i Mmisy i—00

and!/!' is strictly increasing as increase. Indeed, using piaapansion, we can write
M(E,) = Z;?Zl 2~ where!? is strictly increasing ag  increases. By our constmict
of the sets{A}}, we see that for eache N, there is aAfjl{, such thaAf,",,_l C E, and
BN ol g ! ! =1 _ 4l ' I I,
M(A,,) =) 0521 277, Since A; C Ajy; and A;7" = Ay, we haveA;, C Ap!.
17, BN — plt : o
Now observe (Am;}ﬂ\Am?) = By* for some sequencék;'}. Since |J; Ay =
I I
\U; B;»» by the monotone convergence theorem, we hMe(E,l \ U, Bk’{,) = 0. Now

we setD, =E,\ B,i This completes the proof of Lemma 2.2. O



272 Y. QHo, E. KoH AND S. LEE

Let N: X — Z be a measurable function. Define an operaloff x () =
T(fXEyy)(x). To prove Theorem 1.2, it is sufficient to show that

7Y Fllzosey < ClLF llerrw)

where C is independent oV . Set, & : N(x) = n} and defineR,; to be the
index set{n: B, appears in the decomposition of,}. Define measurable sel@j.

by D! = U"€R5 A,. ObserveD; N D} = § if i # j. Suppose not. Then there is an
A, such thatA, C D; N D' becaused, is pair-wise disjoint. S&f  a®j  appear in
the decomposition of£, . But scalé-2 element is contained atrooce inE, . It is

a contradiction.

Note fxg, = > fxsup,- We write
@.j): E.2UB,

™= xal(fxe)=Y >, xaT(fxsup,)

no(1,j): Ea=U B}

= ZZXD;T(fXB}UDn)‘
L

Since T is bounded fronL?" Y( ) ta4* X( ), we may dradp, in the above expres-
sion. Sinceg > 1, the Lorentz spacé?*® is a Banach space (see 1.6 of [1]). Thus we
have

oo
1T Fllgs < D 1D X0 T x1)
=0 || j
q,S

Now fix [ and note that; > s and {Dﬁ} are disjoint. By (2.1) in Lemma 2.1, we have
the following.

HZ XD}T(fXBj.)
J

l < ZHXD}T(JCXB})H[I
q.s j s

<.

s

s
Ll’-"HL‘l-") H fXBj.

p.r

The second inequality is trivial. By the decomposition innirea 2.2, the last in the
above inequality is bounded by

Z(||TIIL»qu-r)32’{“/’)*1}’||fXB;. .-
i

Sincep < r and for each Bj. are disjoint, another application of Lemmai@ydlies
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> ||fxB}||§,_, < || fIl%,, Putting all things together, we have

s il gt
TN fllgs <D 27K T Nere—ror) |1l p.r

=0
< (1— 27 (@n-won Y 7|

L,,.,-_,Lq.r)
sincer < s and || f|.»- = 1. This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

We begin with making several observations. Sinke is gyrictEreasing, its in-
verseW 1 satisfies

(3.1) W)W ) < WL(Csi), qu(%) < W I(5) W),

Let L® be an Orlicz space with Young’s functigd . §f s¢( > CQ(s)2(z) for some
C, then by the definition of Orlicz space norm, we hafi&(| f(x)|/| f |l 2)dx = 1.
The condition on®2 implies K C [ Q(| f(x)])/2(]| f||e) dx and hence |(f| .e) <
C [ Q(f(x))dx. Conversely if we assume s« J CQ(s)S2(r) for someC , then we
have Q2 (| f||z2) > C [ (| f(x)|) dx. By the assumptions (1.2) of  we have

‘*IJ(||f||LW)N/\IJ(|f(x)|)dx.

In the similar way it is easy to see that fgr  satisfying|| o <1,

B(|flls) < C / (| £ () dx.

As before, it is sufficient to show for all measuralile X :— Z, the operatorr”
given by

TV f(x) = T(f XEne) )

is bounded fromL® taL¥ . Without loss of generality we may assujnié;« = 1.
Now we introduce a decomposition for functions which is &amio Lemma 2.2.

Lemma 3.1. Let f be a measurable function withf||;» = 1. Then there is a
collection {Bj} of measurable sets i, indexed byl € {0, 1, 2...} and1< j <
2', satisfying the following conditions
1. {B}:1<j <2} is a partition of X into disjoint measurable subsets.

2. fd>(|f|XB;)dx =2"forall 1< <2.
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3. For eachn, E, can be decomposed as an emgdigite or countable union such
that for some sequenceés, k',

E,= (U B,ﬁ) UDw with 1f<i3<iy<---,
i>1

where M(D,) = 0.

The proof of the above lemma can be obtained by following tmaesline of argument
as in [3]. So we omit the detailed proof. According to Lemma, 3ve decomposg
with the same notations fod,, Ri. Di. as in the proof of Theorem 1.2.Wyite

TV f(x) =) T(fxe)®)xa, ()

n=1

=3 S T o0 0xa @) = 3 T ().
Jsl

n=1 j,il

where f;; = fxz. By the condition (1.2) on¥ and the fact that are mutually
disjoint for each fixed , we have

d

On the other hand, using the boundednesg’of fichh LYo , we have

D T(fix
J

) <c 3 [ v (Tt @) dr
J

LY

U (|l fill0) = @ (175 ]00) ~ / W(|Tf;.]) dx.

By the decomposition and the condition (1.3) & , we see that

B(|fle) < / (| ful) dx ~ 2.

Hence we have
\Ij (

since the number of is not greater than 2 for each . By theglaimequality, we

ZT(fj,l)XD; ) < CY (T fullLv)
j Lo j

<CY w(e@) < c2w(o@2))
J
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have

1T Fllee < 3 [ 7000
l j

LY

Summing with respect t&6 we get

(3.2) ITV fllpw <€ @7 w(2).
1

Finally, (1.4) implies the left hand side of the above is &niThis completes the proof
of Theorem 1.3.

Remark 1. In Theorem 13, if we se® ¢() # (log(2#+ A)(3 > 0) and W ¢ ) =
t7, then the inequality (3.2) can be expressed as

TN fllw < C 227(1/17571/61)1 =Cc(1- 27(1/11571/q))*1‘
]

Thus we have the similar result as in Theorem 1 1. It is intevg@sto prove Theo-
rem 13 for the casal 1 () # (log(2# A)and & ¢) =¢» where the convexity differ-
ence between and is logarithmic. But the lack of convexiffedence causes a
difficulty in controlling the inequality (3 2).

Remark 2. Theorem 11 can be easily extended to the vector valuedtidanc
spaces (e.gLy wher8 is a Banach space). For example, if isearlwperator
from L (Y,dv) to L% (X, dp) with 1< p, ¢ < oo and{E,} is a nested set sequence,
then the maximal operatdF* defined by

T*F =sup||T(Fxz,)||5
n

satisfies the same inequality as in Theorem 1 1.
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