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1. Introduction

For each integed > 0, we denote by Hgl 2, CP") the space consisting of all
holomorphic mapsS? — CP" of degreed . The corresponding space of continuous
maps is denoted by Mapst, CP*). We also denote by Hls?, CP") (resp.Q3CP")
the subspace of HplSE, CP") (resp. Map §2, CP")) consisting of all mapsf €
Hol, (52, CP*) which preserve the base-points. The space of holomorphjs are of
interest both from a classical and modern point of view (§1g. [3], [6]). It is an
elementary and fundamental fact that Ji6f(CP") and Hoj}(S?, CP") are connected
spaces. Ifn = 1, the fundamental groups of these spaceZA2¢ and Z, repec-
tively ([7], [12]); if n > 2, these spaces are simply connected amd-2{)-connected,
respectively. The following more general result was olgdilmy G. Segal:

Theorem 1.1([12]). If

ig: Hol, (82, CP") — Map, (52, CP")
ig: Holi($2, CP") — Q32CP"

are inclusion mapsi, and i, are homotopy equivalences up to dimensibtd, n) =
(2n — 1)d.

Remark. The mapf :X — Y is said to bea homotopy equivalence up to di-
mensionN if f.: m(X) — m(Y) is bijective whenk < N and surjective wheik &

The principal motivation of this paper derives from the wark Segal ([12]), in
which he describes the homotopy types of H6F,(CP*) and Ha}(S?, CP*) from the
point of view of the infinite dimensional Morse theoreticalngiple by using a tech-
nique of scanning maps ([8], [9], [12]). Now the homotopy egpof Hof;(5?, CP")
were studied well by several authors ([3], [9], [10]). So hist paper we shall study
the homotopy types of HglS¢, CP"). We identify $> = C U oo and consider the eval-
uation fibration sequence Hgb2, CP*) % Hol, (2, CP*) &5 CP", where the mapv
is given byev (f ) =f 6o) for f € Holy (5%, CP?).
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In this situation, we define the spat®l,($2, CP") by
Holy(S2, CP") ={(f, x) € Holy (52, CP") x §2"*1: ev(f) = ha(x)},

whereh, :5*** — CP" denotes the Hopf fibering with fibrg'.
There is the commutative diagram

Hol, (82, Py — &, g2+l

m| |

Hol, (82, CP") —— CP"

where vertical maps are fibrations. Recall the followingules

Theorem 1.2([14]). Letd > 1 be an integer and IeH~0Ij, denote the universal
covering ofHol (52, 52).
(i) Hol,(S2, S?) is a universal covering oHol,(S2, $2).
(i) There is a homotopy equivalent®l, (52, $2) ~ Hol, x 3.
(i) Sq if k > 2, there is an isomorphism
7Tk(H0|d(SZ, Sz)) ~ m(Hol)) @ 7Tk(53).
In particular, if 2 <k < d, there is an isomorphism
mi(Hola(S2, §%)) = mis2(5?) & mi(S3).

We would like to investigate the corresponding results far tasen > 2. In fact,
the main purpose of this paper is to investigate whether dasimesult holds or not.
Our results are as follows:

Theorem 1.3. Letn > 2 andd > 1 be integers.
(i) Holy(S?, CP") is the 2-connective covering dflol;(S%, CP").
(i) There is a fibration sequendgip to homotopy

%), Hol (82, CP") %% Hol, (82, CP") 4 s21+1,
d

Moreover the fibration (x), has a section if and only it = 1 (mod 2)or n =d =0
(mod 2)

Corollary 1.4. Letd > 1 andn > 2 be integers such that = 1 (mod 2) or
n=d=0 (mod 2)
(i) If k > 3, there is an isomorphism

me(Holy (82, CP")) = mp(Holj (82, CP")) @ mi(S2Y).
(i) In particular, if 3 <k < d, there is an isomorphism

7Tk(H0|d(SZ, CPY)) = 7Tk+2(52n+1) &) 7Tk(SZ”+l).



CoNNECTIVE COVERINGS 743

We shall also see that the fibratiow),( does not have a sectionif= 0 (mod 2)
andd =1 (mod 2). However, we can prove the weaker version as follows

Proposition 1.5. Letn > 2 andd > 1 be integers and letA be an abelian
group. Then there are isomorphisms of graded abelian gramps graded rings

H,(Holy (52, CP"), A)= H,(Hol}(52, CP"), A)® H,(S2*1, A),
H*(Holy(82, CP"), A) > H*(Holj(s2, CP"), A)® H*($"*, A).

Finally, we shall study the casé = 1 carefully. In this case @an deter-
mine the homotopy types of Hgls2, CP") andHoly(52, CP*) explicitly. Let E; be the
(k x k)-identity matrix andA, C U, be the center olJ, given by, $aE; :« €
C, |af = 1}.

For each pair of integersk(m ) with ¥ k < m, let W,,, denote the complex
Stiefel manifold of orthogonak -frames i@" defined byW,+ =U,/Uyn_. Simi-
larly, let X,,, be the complex projective Stiefel manifold of lmwgonalk -frames in
C™ defined bemk :Um/(Ak X Um_k) = Wm,k/C*.

Theorem 1.6. If n > 2, there are homotopy euivalences

D1t Xp+1,2 5 H0|1(SZ, CP"),
Grn : Wsa,2 = Holy(S2, CP").

Corollary 1.7. There are homotopy equivalences

H~0|1(SZ, CPZ) ~ SU3,
Holy(52, CP3) ~ §5 x §7.

This paper is organized as follows. In Section 2, we shalwskiwe existence of
the fundamental fibration«f, and prove Theorem 1.3. In Section 3, we shall compute
the (co-)homology 0H~0Id(SZ, CP") and prove Proposition 1.5. In Section 4, we shall
investigate the homogenous space structureHNGﬂt,(SZ, CP*) and Ho} 62, CP") for
the cased =1.

2. The fundamental fibration

First, in this section, we shall prove the following result.
Proposition 2.1. If n > 2, there are fibration sequences

() Hol(S2, CP") % Holy(s2, CP) %% 521+,
(Dn Holy(S2, CP") 2% Holy(S2, CP") Y K(Z, 2).
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Proof. Consider the commutative diagram

st - . !

l !

Hol(s2, CP) — &, g2+t

m| |

Holy($?, CP") —— CP" —— K(Z,2)=BS*

where the map.: CP* — BS! represents the generator of the homotopy set
[CP', K (Z,2)] = H?(CP", Z)=Z.

If we consider the Serre spectral sequence of the evalufitioation Q25%'*! ~
Q2CP* — Map, (5%, CP") v, CP", it is easy to see that the induced homomor-
phism ev)*: Z = HXCP',Z) = H%Map, (%, CP"),Z) is bijective. Hence there
is a map/: Hol,(S?,CP") — K(Z,2) such that. represents the generator of
[Hol, (8%, CP"), K (Z, 2)] = H?(Hol,(S?% CP"),Z) = Z with 1 o ev = //. Then it fol-
lows from [5, (2.1)] that there is a homotopy commutativegdéem

* — st SR

l l l

Hol;(S2, CP") —— Hol,(s2, CP") —2— g2+

| .| .|
Hol’(S2, CP") —%— Hol,(s2,CP') —*— CP
| d
" N K(Z,2) —— K(Z,2)

where all horizontal and vertical sequences are fibratiqueseces. Hence we have the
desired fibration sequences)( and (),. U

Corollary 2.2. If n > 2, the spaceHol, (52, CP") is a 2-connective covering of
Hol,(S?, CP*).

Proof. This follows from the diagram chasing of the abovegdian. U

For a connected spacE , let M&H(X ) (resp. M@&p, X)) denote the space
consisting of all (resp. basepoint preserving) continuoweps f :S" — X with
compact-open topology. Fof € Map(s”, X), let Map, 6", X ) and Majp(s", X) be
the path-component of Maf{(, X ) or M&g$", X) containing the elemenf . Let us
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consider the evaluation fibratiosv : Ma&J( X — X with fibre Mag,($", X), which
is given byev g ) =g o) for g € Map(s”, X) (so € S" is a fixed base point).
First, we recall the following two well-known results.

Lemma 2.3 ([13]). Let 9: m(X) — m—1(Map;(S", X)) be the boundary oper-
ator of the evaluation fibration. If we identify,_1(Mapy(S", X)) = m—14(X), 0 is
identified with the operatod’: m(X) — m—14(X), which is defined by the White-
head produc®d’(«) = [«, f] for « € mp(X).

Proposition 2.4 ([2]). Letn > 2 be an integer and lef,: $> — CP" be the
inclusion map of the bottom cel? in CP*. Then the following equality holds in
Ton+2(CP") =Z/2 - hy 0 N2p1.

U in] if n=1 (mod 2)
ns ln =
hponma1 70 ifn=0 (mod 2)

wheren, € m3(5?%) = Z denotes the Hopf map and we take= E*2n, € m41(S¥) =
Z)2-my for k > 3.

Proposition 2.5. Letn > 2 andd > 1 be integers.
() fn = 1(mMod2)orn = d = 0 (mod 2), there is a maps,: S —
H~0Id(SZ, CP*) which is a section ofx), with évos, = 12,+1, Wherey, € m(S¥) denotes
the identity map ofs* .
(i) Moreover if n =0 (mod 2)andd =1 (mod 2),there exists no section @¥),.

Proof. (i) It is sufficient to show that the induced homomasph
v, : mons1(HOlg (82, CP")) = m2,41(SP*Y) = Z - 12011

is surjective only whem =1 (mod 2) orn = d = 0 (mod 2). Consider the homotopy
exact sequence

Tons1(HOL(S2, CP)) — s 7r00a(S2Y) — 2 1y (Hol(S2, CPY))

(h,,)*le :-,,*la

7T2n+1(CP") L 7T2n+2(CP")E Wzn(Q[%CP")

First, assume: =1 (mod 2). It follows from Lemma 2.3 that the boundary homomor
phism @' is given byd'(f) =d[f, i.]. Becausenz,+1(CP*) =Z-h, and p,,i,] =0 (by
Proposition 2.4)9’ is trivial. Henceev, is surjective.

Next, assumen = d = 0 (mod 2). Then, because the order &f,[i, ] is two,
d[h,,i,] = 0. Hence & (m - h,) = md[h,,i,] = 0 and &’ is trivial. So eb, is also
surjective.
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(i) Finally, we assumen = 0 (mod 2) and thatd = 1 (mod 2). Then using
Proposition 2.4 as above, we can easily see ¢hatis not surjective. ]

Corollary 2.6. If d =1 andn > 2, there is a fibration sequenc@ip to homo-
topy),

() st H~0|1(SZ, CP") — §21*1,
In particular, (xx), has a section if and only it =1 (mod 2)

Proof. Since Hdl(s?, CP") ~ §?*~ ([3]), the assertion easily follows from the
fibration sequencex}, and Proposition 2.5. O

Now we can give the proofs of Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. The assertions (i), (ii) follow fromoposition 2.1,
Corollary 2.2 and Proposition 2.5. U

Proof of Corollary 1.4. This also easily follows from Theorel.l, Proposi-
tion 2.1, Corollary 2.2 and Proposition 2.5. U

3. Homology of Holg(S2, CP")

In this section, we shall prove Proposition 1.5. Recall tbkoWwing result.

Lemma 3.1([4]). () H.(Q25?"7Z/2)> ®;>1Z/2[x2,_1] =
7.)2[X20-1, X1, Xgn_1, - -], Where x; has degreé&  withB(xpi1,_1) = (x2i,_1)> for
i > 1
(i) If p>3is an odd prime integer
H, (Q257*Y, 7/ p) = E[xon-1] @ (Rix1E[Xpupi—1] @ Z/ plx2upi—2]),
where x; has degregé  With¥(x,,,i 1) = xp,pi_» for i > 1.

Proof of Proposition 1.5.  Since the proof is similar, we oshow the existence
of the first isomorphism. It follows from the universal caméint theorem that it sufi-
ices to show that there is an isomorphism

(1) H,(Holy(S?, CP"), A)= H,(Hol,(5?, CP"), A)® H,(S**%, A)
for A=Q or Z/p (p: any prime integer).
Because the proof of the cage Q=is easier, we shall showt)for A =Z/p (p:

any prime). Consider the Serre spectral sequence of theidibré),,

E5 = Hy(S*"*, A)® Hy(Hol;($% CP"), A) = Hpuy(Hol (82, CP), A).
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Since Q3CP* ~ Q252*1 it follows from Theorem 1.1 that there is an isomorphism
Hi(Hol; (82, CP"), A) > H(Q?S%"*1, A)  for any k < (2n — 1)d.

Hence, ifd > 2, E2, =0 by Lemma 3.1. Ifd =1, it follows from H§(S?, CP**?) ~

*,2n
§2=1 ([3]) that E2,, = 0. BecauseE?,, = 0 for anyd > 1, E2, = E2 and the
assertion {) follows. ]

4. The homogenous space structure

For each pair of integersk(n ) with KX k& < n and an integerd > 1, let
Hol,(CP*, CP") denote the space consisting of all holomorphic mgp<P:: — CP"
of degreed . Now we shall study the cage =1 carefully.

Let 1 < k < n be integers and consider the rigtit+1-action onCP" induced by
matrix multiplication.

Define the mapp; ,,: U,+1 — Holi(CP*, CP") by

(A [zoiza - tz])=[z01z2:--- 12 :0:0:---:0:0JA

for ([zo:z1: -+ 1 z], A) € CP* X Upsa.
Since two subgroup®/,_« C A1 x U,—x C Uy+1 are fixed by this map, the map
#t., induces the maps

Ot Wastkr1 = Uns1/Up—x — Holy(CP¥, CP")
Brn s Xn+1k41 = Unsr/(Ax X U,—x) — Holy(CP:, CPY)

such that the diagram

Upet — %, Holy(CP*, CP")

Wit k+1 = Uns1 /Un—k L Hol;(CP*, CP")

Xt kot = Ut/ (Ass X Up—g) —22 Holy(CP*, CP")
is commutative, where the left vertical maps are naturajegtimns.
Now, we identify S = CP' and consider the case = 1. Recall the fibration
(1) Holy(S2, CP*) 2 Holy($2, CP") & K(Z,2). Since ! o ¢{, is contained in
[Wass,2, K(Z, 2)] = H*(Wys1,2,Z) = 0,/ o ¢, is null-homotopic. Hence there is a
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lifting d1.: Was1,2 — Hol1(82, CP") such thatp, o 61, = ¢, (up to homotopy),

W12 —_— W12

‘1’;1,11J( ¢1fnl
Hol1($2, CP") —"— Holy(§2, CP") —“— K(Z,?2).

RemArRk. BecauseH?(X,+12, Z) # 0, there is no lifting of¢,, to the space
Holi($2, CP").

Lemma 4.1. The diagram

Wisno2 —22 Holy(S2, CP")

l]ll Evl
B1 SZn+l

Un+1/Un T’

is commutative up to homotopwhere g1 and 31 denote the natural projection and
natural homeomorphisprespectively.

Proof. Usingh, o év = ev o p, and the direct computation, we hakgo 510¢1 =
hy, 0 €v o g1, (Up to homotopy). Moreover, because the sequence

(¥} = [Wyer2, 1 — [Woer2, 21 i [Wys1,2, CP']

is exact as a pointed set;,(. ) injective. Hencefioq; = e”voq?l,n (up to homotopy).
O

Proof of Theorm 1.6. We assume that> 2 and we shall show that the two
maps ¢, and <;~51,n are homotopy equivalences.

First, consider the maﬁ»l,n. It follows from Lemma 4.1 that there is a homotopy
commutative diagram

Un/Un—l iz > SZn—l

g l

Whs1,2= U1/ Uy—1 LN H~0|1(SZ, CP")

| |

Un+1/ Un %} SZn+l
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where vertical sequences are fibrations, gpds, denote natural projection and natu-
ral homeomorphism, respectively. Then it follows from thenfotopy exact sequences
of the fibrations that);, is a homotopy equivalence.

Next, we shall show thap, , is @ homotopy equivalence. Similarly as above, there
is a homotopy commutative diagram

A2 —

l l

Whs1,2= Ups1/Uy—1 % H~0|1(SZ, CP")

| m
Xp+1,2 = U1/ (A2 X Up_1) _ Holy (82, CP")
where vertical sequences are fibrations ahs a homeomorphism. Hengg, , is also
a homotopy equivalence. ]

Proof of Corollary 1.7. SincéWs, ~ SUz and W4, ~ S° x §’, the assertion
easily follows. O

RemARK. In a subsequent paper, we would like to study the map and inves-
tigate the homotopy type of H(ICP*, CP") explicitly for the case X k < n. In fact,
we shall prove thaty , is a homotopy equivalence for any<lk <n in [11].
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