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1. Introduction

Throughout this paper, the base field is the real numbersR and all semialgebraic
maps are assumed to be continuous. For general terminology and the theory of semi-
algebraic sets we refer the reader to [1].

Let be a compact semialgebraic group. One can see easily thatevery com-
pact semialgebraic group has a Lie group structure, and conversely, every compact Lie
group has a semialgebraic group structure. Asemialgebraic representationof is,
by definition, a semialgebraic homomorphismρ : → GL( R) for some . In this
caseR equipped with the linear action of viaρ is denoted byR (ρ) and called a
semialgebraic representation spaceof . A semialgebraic -setis a -invariant semi-
algebraic set in some finite dimensional semialgebraic representation space of . One
may define a semialgebraic -set as a semialgebraic set with a semialgebraic action
of , but two definitions are equivalent when is semialgebraically isomorphic to a
semialgebraic subgroup of some GL(R), see [17, Thoerem 1.1]. Note that GL(R)
is a semialgebraic set in (R) ∼= R

2
where (R) denotes the set of all × real

matrices. A -equivariant semialgebraic map between semialgebraic -sets is called a
semialgebraic -map.

The simple homotopy theory and the theory of Whitehead torsions have equivari-
ant generalizations in the topological category, see e.g. [6]. In this paper we consider
the equivariant generalizations of them to the semialgebraic category. Namely, we de-
fine the equivariant Whitehead group of a semialgebraic -setand the Whitehead tor-
sion of a -homotopy equivalence between semialgebraic -sets. Moreover, we prove
the semialgebraic invariance of the equivariant Whiteheadtorsion.

The basic ingredients for the development are the existenceof an equivariant
semialgebraic -CW complex structure of a semialgebraic -set (Proposition 2.2) and
equivariant semialgebraic homotopy theory in [16]. We remark that the (equivariant)
Whitehead group is defined on a complete ( -) CW complex [6, 13]. However, in
general, a semialgebraic -set has a finite open -CW complex structure which is not
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necessarily complete. See Definition 2.1 for the definitionsof “open” and “complete”
-CW complexes.

The core of , denoted by co( ), is defined to be the maximal complete (and
thus compact) -CW subcomplex of . It is shown, in [16, p.166],that there exists
a semialgebraic -retract : → co( ) such that the inclusion map : co( )→

is the semialgebraic -homotopy inverse of . Since co( ) is a complete -CW
complex, the equivariant Whitehead group Wh (co( )) is defined as in [6]. We define
the equivariant Whitehead group of a semialgebraic -set by

Wh ( ) := Wh (co( 0))

where 0 is a preferred semialgebraic -CW complex structure on . Let be an-
other semialgebraic -CW complex structure on . We may assumethat both and

0 have the same underlying topological space . Letλ
0

denote the composition

λ
0
: co( ) → = 0

0→ co( 0)

Then we show in Section 3 thatλ
0

induces an isomorphism

(λ
0
)∗ : Wh (co( ))→ Wh (co( 0))

which implies that the definition of Wh ( ) is independent of the choice of a semi-
algebraic -CW complex structure on .

For a -homotopy equivalence : → between two semialgebraic -sets we
define the Whitehead torsionτ ( ) of to be an element in Wh ( ) as follows.
Choose any semialgebraic -CW complex structures and on and ,respec-
tively. Put ˜ = ◦ ◦ : co( ) → co( ). Thenτ ( ˜ ) ∈ Wh (co( )). We define
τ ( ) by

τ ( ) = (λ
0
)∗(τ ( ˜ )) ∈ Wh ( )

Our main theorem asserts that such defined Whitehead torsionis well-defined, i.e.,
independent of the choice of semialgebraic -CW complex structures, and is an equiv-
ariant semialgebraic invariant. Namely we have the following theorem.

Theorem 1.1. Let be a compact semialgebraic group, and let and
be semialgebraic -sets. For a -homotopy equivalence: → there is a
well-defined Whitehead torsionτ ( ) ∈ Wh ( ), and if is a semialgebraic

-homeomorphism thenτ ( ) = 0.

Notice that the topological invariance of the Whitehead torsion does not hold in the
equivariant topological category, see Examples I.4.25 andI.4.26 in [13].
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Recently, S. Illman proved a similar result in [10, 11] for (not necessarily com-
pact) Lie groups acting smoothly and properly on smooth -manifolds with the com-
pact orbit spaces, which are not necessarily compact. Our results in this paper are mo-
tivated by those in [10, 11]. Indeed, Theorem 1.1 (and Theorem 1.2 below) is mod-
elled on [10, Theorem III] and [11, Theorem III] (resp. [11, Theorem IV]). But the
differences of Theorem 1.1 (and Theorem 1.2) and the S. Illman’s are as follows: The
stability under the finite union is one of many wide differences between the semialge-
braic category and the other (subanalytic or smooth) category. For example, the infinite
union of locally finite semialgebraic sets is not a semialgebraic set. Thus the attaching
map of infinite semialgebraic maps, which are well-defined inthe intersections of the
domains, is not semialgebraic. So, in general, we must provesemialgebraic results in
finite steps. From this reason, in the semialgebraic category, we only consider finite

-CW complexes.
The assumption that the orbit spaces are compact is used essentially in [10, 11].

It is used in the construction of a complete finite -CW complexstructure of a proper
-manifold. Thus every -CW complex in [11] is complete. However, in Theorem 1.1

(and Theorem 1.2), the acting groups are compact but the semialgebraic -sets and
their orbit spaces are not necessarily compact. Thus the (semialgebraic) -CW com-
plex is not complete in general. Therefore the completenessof the -CW complexes
is another wide difference between this paper and [10, 11].

When a semialgebraic -set is compact (equivalently,/ is compact since
is compact), we have Theorem 1.1 (and Theorem 1.2) from the results in [10, 11].

So the focus of this paper is to generalize the results in [11]on finite complete -CW
complexes to the finite open -CW complex case.

In this paper we also discuss the restriction homomorphism between Whitehead
groups in the semialgebraic category. We first discuss the operation of restricting the
compact (topological) group to a closed subgroup of . Let be acompact

-CW complex. The underlying topological space with the restricted action of
does not have an -CW complex structure which is compatible with the given -CW
complex in a canonical way, see [8, Section 2].

In the case when is a semialgebraic -CW complex structure of asemialge-
braic -set , one can always construct a semialgebraic -CW complex structure
I on the -space such that each -equivariant cell of is an -subcomplex
of I , see Lemma 4.1. We call I anidentity -reduction of , following Illman
[11]. Let denote the collection of (open) -cells of I which are contained in
| co( )|. Then is a compact (and thus complete) -CW subcomplex of I with
| co( )| as the underlying space, and hence is a semialgebraic -CW structure of
| co( )| = | co( )∩ I |. Moreover co( ) and co(I ) have the same -homotopy
type. In particular we may consider as a preferred -reduction R (co( )) of the

-CW complex co( ) in [8, 9, 10, 11] (Proposition 4.6). From this reason we de-
note by R (co( )), and call R (co( )) apreferred -reduction ofco( ), follow-
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ing Illman [8, 9]. See Section 4 and [8, 9] for more details. Because co( ) is compact
(and hence complete), there is the restriction homomorphism Res : Wh (co( ))→
Wh (R (co( ))) by [8, 9]. We are now able to define the restriction homomorphism

R : Wh (co( ))
Res→ Wh (R (co( )))

( )∗→ Wh (co( ))

by R = ( )∗ ◦ Res , where : R (co( )) = co( )→ co( ) is the inclu-
sion map. By using the properties of Res with the fact that we define the Whitehead
group Wh ( ) of a semialgebraic -set by Wh (co( )) for arbitrarily semialge-
braic -CW complex structure of , we prove the following theorem in Section 4,
5 and 6.

Theorem 1.2. Let be a compact semialgebraic group, and let < be a
closed semialgebraic subgroup of . Let be a semialgebraic -set. Then there ex-
ists a well-defined restriction homomorphism

R : Wh ( ) → Wh ( )

such that for a -homotopy equivalence: → between semialgebraic -sets,
and for the induced -homotopy equivalence : → obtained from the re-
striction of the acting group to , we have

τ ( ) = R (τ ( )) ∈ Wh ( )

Furthermore, for closed semialgebraic subgroups< < , we have

R = R ◦R

Remark thatR = Res when is compact. Theorem 1.2 is modelled on Theo-
rem VI of [11]. However, as is mentioned in the remark after Theorem 1.1, there exist
several wide differences between semialgebraic and the other categories, which make
our theorem meaningful and independent from the results in [11].

The authors would like to thank the referee for many invaluable comments on this
paper.

2. G-CW complex structures on semialgebraicG-sets

In this section we discuss the semialgebraic -CW complex structures on a given
semialgebraic -set and list some of its basic properties. Webegin with basic defini-
tions.

DEFINITION 2.1. For the definition of a -CW complex we refer the reader to [6].
A -CW complex is said to befinite if has only a finite number of -cells. A
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-CW complex pair( ) consists of a -CW complex and a -CW subcomplex
of .

A -CW complex is calledstraight if each closed -cell ∈ has a cross
section :π ( ) → of the restricted orbit mapπ | as in [11, Definition 11.2].

Let be a -CW complex such that the orbit space/ is a simplicial com-
plex and the orbit mapπ : → / is a cellular map, i.e., for each closed -cell
, π ( ) is a simplex of / . For a -CW complex , an equivariant subdivision∗

of induces a subdivision ∗/ of / . Conversely, if is a straight -CW com-
plex then any subdivision (/ )∗ of the orbit space / induces an equivariant sub-
division ∗ := {π−1(σ) | σ is a simplex of ( / )∗} of such that ∗/ = ( / )∗.
In this case the -th barycentric subdivisionof is the induced subdivision of by
the -th barycentric subdivision of / .

Recall that an open -cell is the image of the restriction of a characteristic
-mapϕ : / × → to / × int( ), where int( ) is the interior of .

Note that, when = 0, we let int(0) = 0 as usual.
A finite open -CW complexis defined to be a -invariant subspace of some fi-

nite -CW complex by removing some open -cells of . Classical -CW com-
plexes are calledcomplete -CW complexes here. Let be a finite open -CW com-
plex. Recall that thecore of , denoted by co( ), is the maximal complete -CW
subcomplex of . Hence co( ) is compact. If is complete, then clearly co( ) = .

From now on denotes a compact semialgebraic group. In the equivariant semi-
algebraic category, the following proposition shows that any semialgebraic -set has a
straight semialgebraic finite open -CW complex structure. This proposition is proved
in [15, 17], but the proof has a minor mistake with an incomplete proof. So we proof
it here. Moreover, by a similar way of the following proof, wecan prove this propo-
sition for semialgebraic proper actions of noncompact semialgebraic groups (see, [2,
Theorem 4.4]).

Proposition 2.2. Let be a semialgebraic -set and a semialgebraic
-subset of . Then there exist a pair( ) of finite open -CW complexes such

that
(1) the underlying spaces of and are equal to and, respectively;
(2) / is a finite open simplicial complex which is compatible with the orbit types
and . Moreover the orbit mapπ is a semialgebraic cellular map;
(3) each open -cell of is a semialgebraic -set, and thus its closure in is
a semialgebraic -set;
(4) each characteristic -map : / × int( ) → is a semialgebraic -homeo-
morphism;
(5) each open -cell of has a semialgebraic cross section: π (¯)→ ¯ of π | ,̄
where ¯ denotes the closure of in = .
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Proof. Since every semialgebraic -set has only finitely manyorbit types [17,
Theorem 3.2], has finite orbit types, say (/ 1) . . . ( / ). Let ( ) denote the
set of points on orbit of type (/ ), i.e.,

( ) = { ∈ | = −1 for some ∈ }

Then ( ) is a semialgebraic -subset of . Letπ : → / be the semialgebraic
orbit map. By the semialgebraic triangulation theorem [5, 12], there are a finite open
simplicial complex and a semialgebraic homeomorphismτ : | | → / which is
compatible with{π( ( 1)) . . . π( ( ))} and π( ). Let ′ denote the first barycen-
tric subdivision of . Let denote the subcomplexτ−1(π( )) of ′. For simplicity,
identify | ′| and | | with / and / , respectively.

We claim that

= { = π−1(σ) | σ is an open simplex of ′}
= { = π−1(σ) | σ is an open simplex of }

are desired semialgebraic -CW complexes.
Let 0 . . . be generically independent points ofR . The -simplex〈 0 . . . 〉

spanned by 0 . . . is defined by

〈 0 . . . 〉 =

{∑

=0

∈ R

∣∣∣∣
∑

=0

= 1 ≥ 0

}

The open -simplex (0 . . . ) spanned by 0 . . . is defined by

( 0 . . . ) =

{∑

=0

∈ R

∣∣∣∣
∑

=0

= 1 > 0

}

Note that the open 0-simplex ( ) spanned by is not empty but thevertex set{ }.
Let = 〈 0 . . . 〉 for = 0 . . . . We filter by 0 ⊂ · · · ⊂ ⊂ · · · ⊂ , where

is considered as a subset of through the (semialgebraic) inclusion : → .
For each open simplexσ of ′, we can viewσ = ( 0 . . . ) and let δ denote

the closure ofσ in | ′| = / . Then δ is obtained from by deleting some lower
dimensional open faces. A straight filtration ofδ is a filtration

∅ = δ−1 ⊂ δ0 ⊂ · · · ⊂ δ = δ

where δ = δ ∩ for all = 0 . . . . If δ0 = δ1 = · · · = δ −1 = ∅ but δ 6= ∅, then
dim δ = for all ≥ . Moreover, the vertices 0 . . . can be ordered in such a
way that
(i) δ − δ −1 has a constant isotropy type, say ( ), for≤ ≤ .
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(ii) ∈ δ = δ .
(iii) ( ) ≤ ( −1) ≤ · · · ≤ ( ).

Since each -simplex of / is of the form δ we restrict our attention to the
orbit mapπ : = π−1(δ) → / = δ.

CLAIM 1. There exists a semialgebraic global -slice of .

Proof of Claim 1. It is enough to construct a semialgebraic -map → / .
The construction is done by induction on dimensions ofδ. If dim δ = 0, δ is a point
and is an orbit, and hence the semialgebraic -mapπ−1(δ0) → / is the iden-
tity map. Assume that there exists a semialgebraic -map−1 : π−1(δ −1) → / .
Then it is sufficient to extend the -map−1 to π−1(δ ) = → / .

Sinceδ − δ −1 has one orbit type and contractible, there is a semialgebraic cross
section :δ − δ −1 → ⊂ . Let denote the closure of (δ − δ −1) in . Let

= π−1(δ −1) ∩ , then the orbit mapπ maps ( ) onto (δ δ −1).
We now claim that there exists a semialgebraic retractionϕ : → . Let

be a semialgebraic triangulation of which is compatible with . Replace by its
barycentric subdivision. Take a regular open semialgebraic neighborhood ′ = St ( )
of in . Then, by [4, Theorem 1, Theorem 2.7], there is a semialgebraic retraction

: ′ → since is closed.
On the other hand, the set =π( ′) is a semialgebraic neighborhood ofδ −1.

Let be a semialgebraic triangulation ofδ which is compatible with{δ −1 δ }
and replace by its barycentric subdivision. Let be the regular neighborhood
St (δ −1) of δ −1 in . Then δ −1 ⊂ ⊂ . Since − δ −1 is contractible,
by [4, Theorem 3], there is a semialgebraic retraction :δ − δ −1 → − δ −1. Let

′ = π−1( ) ∩ ⊂ ′. Then the cross section induces the semialgebraic retraction

′ = ◦ ◦ π : − → ′ −

By composing and ′, we get a semialgebraic retraction

ϕ =

{
◦ ′ on −

id on

It extends to a semialgebraic -retractionφ : = π−1(δ ) → π−1(δ −1) by φ( ) =
ϕ( ) for all ∈ and ∈ . (Note thatφ is a -map because (δ −δ −1) ⊂ .)

Hence we obtain a semialgebraic -map =−1 ◦φ : → / , and a global
semialgebraic -slice = −1( ).

CLAIM 2. There exists a semialgebraic cross section ˜ :δ → of π such that any
point of ˜(δ − δ −1) has the constant isotropy subgroup for each 0≤ ≤ .
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Proof of Claim 2. We prove the claim by the double induction onthe dimension
of , and the number of components of .

By Claim 1, there exists a semialgebraic retraction :→ / = π−1( ).
If 6= , consider the slice = −1( ). Then is an -space with the orbit
space / ∼= / . By the induction hypothesis, we can find a semialgebraic section

: δ → ⊂ π−1(δ) = of the orbit map → / , and this section is a desired
section.

On the other hand if = , then 6= ∅. Let ′ = − . Then δ′ =
δ−π( ) is again a simplex, and by the previous argument of the casewhen 6= ,
we can find a semialgebraic section′ : δ′ → ′ of the orbit map ′ → ′/ . We
now define a semialgebraic section :δ → by

( ) =

{
′( ) ∈ δ′

π−1( ) ∈ π( )

Such defined is continuous because is compact.

Let = π−1(σ) and ¯ the closure of in . Then ¯ =π−1(δ). By Claim 2, there
exists a semialgebraic cross sectionδ : δ → ¯ of the orbit map. We now define the
semialgebraic characteristic -map :/ × δ → ¯ by ( ) 7→ δ( ), where

is the isotropy subgroup ofδ(δ −δ −1). The properties (1)–(5) follows easily from
the construction. This completes the proof.

Note that the property (5) in Proposition 2.2 is the straightness condition of .

Proposition 2.3 ([16, p.166]). Let be a finite open -CW complex structure
which satisfies(1)–(5) in Proposition 2.2. Then there exists a semialgebraic strong

-deformation retract : ′ × → ′ such that 0 = (· 0) = id ′ , ( ) =
for all ( ) ∈ co( ′) × and 1 = (· 1) = : ′ → co( ′) is a semialgebraic

-retraction, where ′ is the first barycentric subdivision of .

DEFINITION 2.4. Let be a semialgebraic -set. Asemialgebraic -CW com-
plex structure on is, by definition, a finite open -CW complex (for ) which sat-
isfies the properties (1)–(5) in Proposition 2.2. If we replace by its barycentric sub-
division, then there is a semialgebraic strong -deformation retraction : → co( )
by Proposition 2.3. Hence, without loss of generality we mayassume thatevery semi-
algebraic -CW complex structure on a semialgebraic -set admits a semialge-
braic strong -deformation retraction : → co( ). In particular, every semialge-
braic -CW complex structure is finite.

Note that the underlying space of is equal to . Therefore, fora semialgebraic
-set , there exist a compact semialgebraic -subset = co( ) of and a semi-
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algebraic strong -deformation retract :× → such that 0 = id , ( ) =
for all ( ) ∈ × and 1 = : → is a semialgebraic -retraction. Moreover,
the inclusion : → is a semialgebraic -homotopy inverse of . In particular,
is a semialgebraic -homotopy equivalence.

REMARK 2.5. Proposition 2.3 is proved in [16, Theorem 3.7 and p.166]. But since
the construction of the -retraction is used in Section 3, we sketch the proof of it
here for readers convenience. Let be a semialgebraic -CW complex structure on a
semialgebraic -set in a -representation space . We replace by its barycentric
subdivision ′. For the semialgebraic characteristic -map :/ × int( ) →
of an open -cell of , letσ denote the set ( × int( )) and let σ (resp.

σ) denote (resp. ). Then for each open - -cellσ, there exists a semialgebraic
characteristic -map σ : / × δ → σ ⊂ , where δ is a subset of a compact
standard -simplex by removing some finite open lower-dimensional faces of .
Thusσ = σ( × int(δ)) andσ = σ( × δ).

Put = co( ). Then is the union of all open -cellsσ of such that
( σ) ⊂ , where ( σ) denotes the closure of σ in . Namely, is the union

of open -cells which have semialgebraic characteristic -maps σ : / ×δ → σ =
σ such thatδ is some compact standard -simplex . Thenσ ∩ 6= ∅ for all

open -cells σ of .
Let C be the set of open - -cells σ of such that σ ∩ = ∅. Clearly C

is a finite set andC0 = ∅.
Let 0 = and = ∪ ( ) for ≥ 1, where ( ) is the -skeleton of .

Clearly = ∪ { σ | σ ∈ C 0 ≤ ≤ }.
For each open - -cell σ ∈ C , by the nonequivariant result in [4], there exists

a nonequivariant semialgebraic strong deformation retraction σ : σ× → σ from σ to
∂σ = σ̄ − int(σ). Hence we have a semialgebraic strong -deformation retraction

σ : σ × → σ ( ) 7→ σ ( )

from σ to ∂σ(⊂ −1).
Put =∪{ σ | σ ∈ C }. Then : × → is a semialgebraic strong

deformation retraction from to −1. We denote (· 1) and σ(· 1) by and

σ , respectively. Clearly =∪{ σ | σ ∈ C }.
Then we can define +1

⊛ : +1 × → for 1 ≤ ,

+1
⊛ ( ) =

{ +1( 2 ) if 0 ≤ ≤ 1/2
( +1( 1) 2 − 1) if 1/2≤ ≤ 1

The map in Proposition 2.3 is obtained by

= ⊛
−1

⊛ · · · ⊛ 2
⊛

1 : × →
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which is the desired semialgebraic strong -deformation retraction from to ,
where = min{ ∈ N | = }. In particular = 1 = 1 ◦ 2 ◦ · · · ◦ −1 ◦
is a semialgebraic -retraction from to .

Now we study some elementary properties of semialgebraic -CW complex struc-
tures on semialgebraic -sets, which are useful in the equivariant CW category. The
following three lemmas and proofs of them are semialgebraicversions of Corol-
lary 11.7, Lemma 11.8 and 11.9 given in [11].

Lemma 2.6. If 1 and 2 are two semialgebraic -CW complex structures on
a semialgebraic -set , then there exists a semialgebraic -CW complex structure

∗ on such that ∗ is a common -subdivision of 1 and 2.

Proof. For each (= 1 2) the orbit space/ is a finite open simplicial com-
plex structure of / with underlying space / such that allπ( ) are semialge-
braic subsets of / for all open -cells of , whereπ : → / is the or-
bit map. Let C be the set of subsetsπ( ) for all open -cells of 1 or 2. Then
C is a collection of finite semialgebraic subsets of a semialgebraic set / . By the
nonequivariant triangulation theorem [5], there is a finitesemialgebraic open simplicial
complex structure (/ )∗ of / which is compatible withC. By the straightness
of , ( / )∗ induces a semialgebraic -CW complex structure∗ on which is
a common -subdivision of 1 and 2.

Lemma 2.7. Let and be semialgebraic -CW complex structures on some
semialgebraic -sets, respectively. If : → is a semialgebraic -map then there
exists a semialgebraic -subdivision∗ of such that : → ∗ is skeletal, and
each -cell of the image ( ) is a -CW subcomplex of ∗.

Proof. Each open -cell of is a semialgebraic -subset of , and hence
( ) is a semialgebraic -subset of . Set

A = { ( ) | is an open -cell of }
B = { | is an open -cell of }

Then C = A ∪B is a family of finite semialgebraic -subsets of . Thus the set

π(C) = {π(δ) | δ ∈ C}

is also a family of finite semialgebraic subsets of/ , whereπ is the orbit map of
. By the semialgebraic triangulation theorem [5], there exists a semialgebraic finite

open simplicial complex structure on/ which is compatible withπ(C). Then
is a subdivision of / . Since is straight, induces a semialgebraic -CW
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complex ∗ on which is compatible withC. Let ¯: / → ∗/ be the induced
semialgebraic map by . Then̄ is skeletal because every semialgebraic map can not
be dimension increasing, see [1, Theorem 2.2.8]. Hence :→ ∗ is also skeletal.

It is shown in [16] that any topological -homotopy class of a continuous -map
between two semialgebraic -sets can be represented by a semialgebraic -map. From
this and the above lemma, we can see that any continuous -map between semialge-
braic -sets is -homotopic to a -skeletal map.

Lemma 2.8. Let : → be a semialgebraic -map between semialgebraic
-CW complex structures on some semialgebraic -sets, respectively. Then there ex-

ists a semialgebraic -subdivision∗ of such that maps each open -cell of∗

into an open -cell of .

Proof. Since is a semialgebraic -CW complex structure,

A = { −1( ) | is an open -cell of }

is a family of finite semialgebraic -subsets of . Set

B = { | is an open -cell of }

ThenC = A∪B is also a family of finite semialgebraic -subsets of . By the similar
argument as in the proof of Lemma 2.7, there exists a semialgebraic -subdivision ∗

of which is compatible withC. Clearly ∗ is the desired -CW complex.

We shall use the following lemma to prove Theorem 1.1 in Section 3.

Lemma 2.9. Let : → be a semialgebraic -homeomorphism between
semialgebraic -sets. Then there are semialgebraic -CW complexes and on
and , respectively, such that : → is a -isomorphism of -CW complexes.

Proof. From Proposition 2.2 we take a semialgebraic -CW complex structure
on . Set

= ∗( ) = { ( ) | is an open -cell of }

Since is a semialgebraic homeomorphism, is a semialgebraic-CW complex
structure on . Moreover : → is a -isomorphism of -CW complexes.
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3. The Whitehead group of a semialgebraicG-set

In this section we will prove Theorem 1.1. We first discuss some basic properties
of Whitehead groups and Whitehead torsions. For details of the equivariant Whitehead
group and the torsion we refer the reader to [6], [7] and [13].

Let be a compact Lie group. For a finite complete -CW complex , we de-
note its equivariant Whitehead group by Wh ( ). Note that Wh ( )is an abelian
group. Remember that each element of Wh ( ) is an equivalence class ( ) of a

-CW complex pair ( ) such that is a strong -deformation retract of , where
two pairs ( ) and ( ) are equivalent if there is an equivariant formal deforma-
tion from to rel .

A -map : → between finite complete -CW complexes induces a group
homomorphism ∗ : Wh ( ) → Wh ( ) defined by ∗( ( )) = ( ∪ ).

Therefore

Wh : { finite complete -CW complex} → { abelian group}

is a covariant functor. For a -homotopy equivalence :→ its Whitehead torsion
τ ( ) ∈ Wh ( ) is the class ( (̄) ) where (̄ ) is the mapping cylinder of any
equivariant skeletal approximation̄ of . This definition of the Whitehead torsion of

is the same as the one defined in [6, 7]. Note that the Whiteheadtorsion of is
defined to be ∗(τ ( )) ∈ Wh ( ) in [13].

We now discuss basic properties of Whitehead groups and Whitehead torsions.

Proposition 3.1 ([6, Lemma 2.1, 2.2 and Proposition 3.8], [7, Theorem B]).Let
, and be finite complete -CW complexes.

(1) If , : → are -maps which are -homotopic, then ∗ = ∗ : Wh ( ) →
Wh ( ).
(2) Let ∗ be an equivariant subdivision of . Then the identity map: ∗ → is
a simple -homotopy equivalence, and thusτ ( ) = 0.
(3) Let : → and : → be -homotopy equivalences. Then we have

τ ( ◦ ) = τ ( ) + −1
∗ τ ( )

(4) Let ⊂ ⊂ . If is a strong -deformation retract of and is a strong
-deformation retract of . Then we have

( ) = ∗ ( ) + ( )
where : → is a skeletal -retract.

In nonequivariant case, we have the following proposition.

Lemma 3.2. If is a simply connected finite completeCW complex then
Wh( ) = 0.
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τb( )

π(co( ))

π(co( ))∪ τ

Fig. 3.1.

The above lemma is obtained from the isomorphism Wh( )∼= Wh(π1( )) for a con-
nected space , see [3, Section 21], [6, Corollary I.2.8], [19, p.105].

From now on denotes a compact semialgebraic group. Let be a semialge-
braic -set and a semialgebraic -CW complex structure on . Then there is a
semialgebraic strong -deformation retraction :→ co( ). Let ∗ be a semial-
gebraic -subdivision of . Then the underlying space of co( ) is contained in the
underlying space of co(∗). Recall that co( ) and co(∗) are complete semialgebraic

-CW complexes. Let : co( )→ co( ∗) denote the inclusion map between the
underlying spaces. Then is skeletal and (co( )) can be viewedas a -CW sub-
complex of co( ∗). Moreover, the restriction map |co( ∗) of is the semialgebraic

-homotopy inverse of .

Lemma 3.3. The inclusion map : co( ) → co( ∗) is a simple -homotopy
equivalence and thusτ ( ) = 0 ∈ Wh (co( )).

Proof. It suffices to construct a formal -deformation from co( ∗) to co( ).
With the same notation as in Remark 2.5, let be the maximal integer such that
C 6= ∅. Let σ ∈ C , i.e., σ is an open - -cell of such that σ ∩ co( ) = ∅
and σ ∩ co( ) 6= ∅. Note that the orbit spaces/ and ∗/ are semialgebraic
finite open simplicial complex structures on/ which are induced by the orbit map
π : → / . We denoteπ( σ) by τ . Set := co( ∗)∩ σ, b( ) := ∩ −1

and := π( ), b( ) := π( b( )), see Fig. 3.1. Then andb( ) are simplicial
subcomplexes of co(∗/ ). In particular,b( ) (and thus ) is simply connected be-
causeτ (and thus ) is strong deformation retract toτ ∩ π(co( )) = ∩ π(co( )) ∼=

−1. The inclusion :b( ) → is a homotopically equivalent skeletal map. By
Lemma 3.2, we have Wh(b( )) = 0, and thus is a simple homotopy equivalence.
Hence there is a formal deformation from tob( ). Using the cross section from
τ = π( σ) to σ and the given -action, we have a formal -deformation from
to b( ). By the finiteness of the number of elements ofC and the induction argu-
ment on , we get a formal -deformation from co(∗) → co( ).

Since |co( ∗) ◦ = idco( ), we haveτ ( |co( ∗)) = − ∗τ ( ) = 0 ∈ Wh (co( ∗))
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from Proposition 3.1 and Lemma 3.3.

NOTATION. Let be a semialgebraic -CW complex structure on a semialgebraic
-set . The map : co( )→ = denotes the inclusion from co( ) to and
: = → co( ) denotes the semialgebraic strong -deformation retract as in

Proposition 2.3. Let be another semialgebraic -CW complex structure on . Then
we denote ◦ = |co( ): co( )→ co( ) by λ . Note thatλ has a semialgebraic

-homotopy inverseλ : co( )→ co( ). So we denoteλ by (λ )[−1].

Now we prove that any semialgebraic -set has a well-defined simple -homotopy
type.

Lemma 3.4. Let be a semialgebraic -set. Let and be semialgebraic
-CW complex structures on . Thenτ ( ◦ ) = 0 ∈ Wh (co( )), and thusλ =
◦ : co( )→ co( ) is a simple -homotopy equivalence.

Proof. By Lemma 2.6, there exists a semialgebraic -CW complex structure
on which is a common -subdivision of and . Let : co( )→ co( ) denote
the inclusion map and thus the restriction map|co( ) of is the -homotopy in-
verse of . By Lemma 3.3, is a simple -homotopy equivalence, i.e., τ ( ) =
0 ∈ Wh (co( )), and thusτ ( |co( )) = −( )∗τ ( ) = 0 ∈ Wh (co( )). Similarly
we haveτ ( ) = 0 ∈ Wh (co( )) andτ ( |co( )) = 0 ∈ Wh (co( )). By Proposi-
tion 3.1,

τ ( ◦ ) = τ ( |co( ) ◦ ) = τ ( ) + ( )−1
∗ τ ( |co( )) = 0

in Wh ( ). Therefore ◦ : co( ) → co( ) is a simple -homotopy equivalence.

It follows from Lemma 3.4 that the simple -homotopy type on , defined in
this way, is independent of the choice of the semialgebraic -CW complex structure
on .

Now we define the equivariant Whitehead group for a given semialgebraic -set
. Let and be semialgebraic -CW complex structures on . Then the map

λ = ◦ : co( ) → co( ) has a -homotopy inverseλ : co( ) → co( ). By
Proposition 3.1, we have

(λ )∗ ◦ (λ )∗ = (λ ◦ λ )∗ = (idco( ))∗ = idWh (co( ))

and (λ )∗ ◦ (λ )∗ = idWh (co( )). Accordingly, the mapλ induces an isomorphism

(λ )∗ : Wh (co( ))
∼=→ Wh (co( ))

with the inverse homomorphism
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(λ )∗ : Wh (co( ))→ Wh (co( )).
Let us fix a semialgebraic -CW complex structure0 on . We define the

Whitehead group of by

Wh ( ) := Wh (co( 0))

Thus we obtain the Whitehead group Wh ( ) such that, for each semialgebraic
-CW complex structure on , there is an isomorphism

(λ )∗ : Wh (co( ))
∼=→ Wh (co( 0)) = Wh ( )

whereλ = λ
0
.

Now we prove Theorem 1.1.

Theorem 3.5 (Theorem 1.1). Let and be semialgebraic -sets.
(1) Any -homotopy equivalence : → has a well-defined equivariant White-
head torsionτ ( ) ∈ Wh ( ).
(2) If : → is a semialgebraic -homeomorphism thenτ ( ) = 0 ∈ Wh ( ),
and thus is a simple -homotopy equivalence.

Proof. (1) We choose a semialgebraic -CW complex structuresand on
and , respectively. Then the composite map

˜ = ◦ ◦ : co( )→ co( )

is a -homotopy equivalence. We defineτ ( ) = (λ )∗(τ ( ˜ )) ∈ Wh ( ) where
τ ( ˜ ) ∈ Wh (co( )).

It remains to prove thatτ ( ) is independent of the choice of semialgebraic
-CW complex structures on and . Suppose′ and ′ are another semialgebraic
-CW complex structures on and , respectively. Put

˜ ′ = ′ ◦ ◦ ′ : co( ′) → co( ′)

Let λ ′ = ′ ◦ : co( )→ co( ′) andλ ′ = ′ ◦ : co( )→ co( ′), thenλ ′ ◦ ˜ ,
˜ ′ ◦ λ ′ : co( ) → co( ′) are -homotopy equivalences which are -homotopic, and
thus τ (λ ′ ◦ ˜ ) = τ ( ˜ ′ ◦ λ ′). By Proposition 3.1, we have

τ ( ˜ ) + ˜ −1
∗ τ (λ ′) = τ (λ ′) + (λ ′)−1

∗ τ ( ˜′)

By Lemma 3.4,τ (λ ′) = 0 andτ (λ ′ ) = 0, and thusτ ( ˜ ) = (λ ′)−1
∗ τ ( ˜′).

On the other hand,λ ′ = ′ ◦ is -homotopic to ′◦ 0◦ 0◦ = (λ ′)−1◦λ
because 0 ◦ 0 = 0 is -homotopic to the identity map id0 on 0. This implies
(λ ′)∗ = ((λ ′)[−1])∗ ◦ (λ )∗. Hence we have

(λ )∗(τ ( ˜ )) = (λ ′)∗(τ ( ˜ ′))
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This completes the proof.
(2) By Lemma 2.9, there exist semialgebraic -CW complex structures and on

and , respectively, such that : → is a -isomorphism of open -CW
complexes and . Moreover,̃ = ◦ ◦ = |co( ): co( ) → co( ) is also
a -isomorphism of complete -CW complexes co( ) and co( ). Thusτ ( ˜ ) = 0 ∈
Wh (co( )). Thereforeτ ( ) = (λ )∗(τ ( ˜ )) = 0 ∈ Wh ( ).

4. H-reductions of semialgebraicG-CW complexes

In this section we introduce the notion of the identity -reduction and the pre-
ferred -reduction of a -CW complexes, following [8, 9, 10, 11].

Note that, in this paper, we only treat a semialgebraic -set which is contained in
a semialgebraic -representation spaceR (ρ) for some semialgebraic -representation
ρ : → GL (R). Hence we can replace byρ( )(⊂ GL (R)). In this case we know
that every compact subgroup of GL (R) is algebraic (see [14, 17]), and thus semial-
gebraic. If is a closed subgroup of a compact semialgebraic group (⊂ GL (R)),
then is a compact subgroup of GL (R), and thus is a semialgebraic subgroup of

. Conversely, every semialgebraic subgroup of a semialgebraic group is closed ([18,
Corollary 2.8], [2]).

Let denote a compact semialgebraic group, and a closed semialgebraic sub-
group of . Let be a semialgebraic -set. We consider the induced actions of
on by restricting the acting group to , and denote this semialgebraic -set
by . Let be a semialgebraic -CW complex structure on , and consider the
induced action of on . In this case one can always give the -space a semial-
gebraic -CW complex structure as follows.

Lemma 4.1. Let be a compact semialgebraic group and a closed semialge-
braic subgroup of . Let be a semialgebraic -set and a semialgebraic -CW
complex structure on . Then there is a semialgebraic -CW complex structureI
on such that each -cell of is an -subcomplex ofI .

Proof. We recall that the orbit space/ and the orbit mapπ : → /

are semialgebraic. The -CW complex structure induces a semialgebraic finite open
simplicial complex structure / of / by π. Note that each (open) -cell of is
an -invariant semialgebraic set. Take a semialgebraic finite open simplicial complex
structure of / which is compatible with open simplices of/ and orbit types
π (( )( )) of whereπ : → ( )/ is the orbit map. We replace by
its barycentric subdivision. Then induces a desired semialgebraic -CW complex
structure I , see Proposition 2.2.

We call a semialgebraic -CW complex structure I , as in Lemma 4.1, an
identity -reduction of following Illman in [11]. From Lemma 4.1 we have
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Corollary 4.2. Let be a semialgebraic -CW complex structure on some
semialgebraic -set . IfI and I′ are two identity -reductions of a semial-
gebraic -CW complex then there exists an identity -reductionI∗ of which
is a common -subdivision ofI and I′ .

Proof. By Lemma 2.6, there exists a semialgebraic -CW complex structure
I∗ which is a common -subdivision of I and I′ . Then I∗ also has the
property that each -cell of is a semialgebraic (open) -CW subcomplex of I∗ ,
and thus I∗ is an identity -reduction of .

By considering the collection of all -cells in I contained in| co( )|, we can
view co( ) as a semialgebraic -CW complex structure on| co( )|.

Corollary 4.3. Let be a semialgebraic -set and a semialgebraic -CW
complex structure on . Letη = : co( ) → co(I ) be the inclusion map. Then
(1) η is a semialgebraic -homotopy equivalence, and
(2) if I′ is another identity -reduction of andη′ : co( ) → co(I′ ) is the
inclusion map, then η′ ◦ η[−1] : co(I ) → co(I′ ) is a simple -homotopy equiva-
lence, whereη[−1] denotes an -homotopy inverse ofη.

Proof. (1) Since : → co( ) is the semialgebraic -homotopy inverse of
the inclusion map : co( )→ , the restriction |co(I ) : co(I ) → co( ) is the
semialgebraic -homotopy inverse ofη.
(2) We choose another identity -reduction I′ of and the inclusionη′ : co( ) →
co(I′ ). Since | I | = | I′ | = | | = , we have the following diagram commute
up to -homotopies:

co( )

&&MMMMMMMMMMMMMMMMMMMMMMMM

η′ //

η

��

co(I′ )

I′

��

|co(I′ )

oo

co(I )

|co(I )

OO

I // | |

ffMMMMMMMMMMMMMMMMMMMMMMMM

I′

OO

I

oo

Thus η′ ◦ η[−1] and I′ ◦ I are -homotopic. Hence, by Lemma 3.4,

η′ ◦ η[−1] : co(I ) → co(I′ )

is a simple -homotopy equivalence.

When is a compact semialgebraic -set, every semialgebraic -CW complex
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structure on is finite and complete. Thus co( ) = , co(I ) = I ( ) and
| | = | I | = . From this we obtain the following corollary as a consequence of
Corollary 4.2 and 4.3.

Corollary 4.4. Let be a semialgebraic -CW complex structure on a compact
semialgebraic -set , and let I be an identity -reduction of . ThenI rep-
resents the simple -homotopy type of the semialgebraic -set.

In [8, 9], Illman proves the following proposition for the finite complete -CW
complexes when is compact Lie group.

Proposition 4.5 ([8, 9]). Let be a compact Lie group. For a finite com-
plete -CW complex there exist a finite complete -CW complexR and an

-homotopy equivalenceη : → R such that
(1) dim(R ) = dim , for each closed subgroup of , and
(2) the -isotropy types occurring inR and in the -space are equal.
Moreover, η : → R is unique up to a simple -homotopy type, i.e., if η′ : →
R′ is another such choice thenη′ ◦ η[−1] : R → R′ is a simple -homotopy
equivalence.

We call η : → R a preferred -reductionof following [8, 9, 11].
Suppose that ( ) is a finite complete -CW complex pair and thatη : →

R is a preferred -reduction of . Then there exists a preferred-reduction
η : → R of , which extendsη, and this construction is unique up to a sim-
ple -homotopy equivalencerel R , see [9, Theorem 6.3].

Moreover, suppose that : → is a -map between two finite complete
-CW complexes. Letθ : → R and η : → R be preferred -reductions

of and , respectively. Then we obtain an induced -map

R : R → R

by defining R =η ◦ ◦ θ[−1]. If is a -homotopy equivalence then R is an
-homotopy equivalence.

The construction of a preferred -reductionη : → R and an identity
-reduction I of are quite different. However, the followingproposition says

that they agree for all semialgebraic -CW complex structures on a compact semi-
algebraic -set. In fact, Illman [11] proves the following proposition in the equivari-
ant subanalytic category by using similar techniques used in the proof of Theorem 6.1
in [9]. If we follow exactly the same argument as in the proof of Theorem 14.2
in [11], we can prove the following proposition. The detailsare left to the reader.

Remember that every semialgebraic -CW complex structure ona semialgebraic
set is (automatically) complete when is compact.
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Proposition 4.6 (cf. [11, Theorem 14.2]). Let be a compact semialgebraic
-set and a complete semialgebraic -CW complex structure on . LetI be

an identity -reduction. Then the identity map

θ = id : → I

is a preferred -reduction of .

From Proposition 4.6, we have the following. Let and be complete semialge-
braic -CW complex structures on some compact semialgebraic-sets. If : →
is a -map then R = id◦ ◦ id[−1] = id ◦ ◦ id = = = I .

Generally, let be a semialgebraic -CW complex structure on asemialgebraic
-set , and let I be an identity -reduction of . Recall that co( )∩ co(I )

denotes the -CW complex structure on co( ) which is the collection of -cells of
co(I ) lying in the underlying space of co( ). Then co( )∩ co(I ) and co(I )
are complete and the set co( )∩ co(I ) = co( )∩ I is a -CW subcomplex of
co(I ) with | co( )∩co(I )| = | co( )|. Moreover we can identify co( )∩co(I )
with I (co( )). Thus by the above proposition

θ = idco( ): co( )→ co( )∩ co(I )

is a preferred -reduction of co( ). From this reason we denoteco( )∩ co(I ) by
R (co( )).

5. The restriction homomorphism

In this section we construct the restriction homomorphismR : Wh ( ) →
Wh ( ) for a semialgebraic -set where is a closed semialgebraic subgroup
of . Illman proves the following proposition.

Proposition 5.1 ([8, 9, 11]). Let be a compact Lie group and a closed
subgroup of . Let be a finite complete -CW complex andR a pre-
ferred -reduction of . Then there exists a well-defined restriction homomorphism
Res : Wh ( ) → Wh ( ) as follows; choose a preferred -reductionθ : →
R , and defineRes ( ( )) = (R R )∈ Wh ( ). Moreover,
(R1) suppose that : → is a -homotopy equivalence between finite complete

-CW complexes and letR : R ( ) → R ( ) be the -homotopy equivalence
induced from . ThenRes (τ ( )) = τ (R ) ∈ Wh ( ).
(R2) Let < < . Then the -CW complexesR (R ) and R have the
same simple -homotopy type. Furthermore, Res ◦Res = Res ,for each finite com-
plete -CW complex .

From this and Proposition 4.6, we have the following lemma when is compact.
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Lemma 5.2. Let be a compact semialgebraic -set and a semialgebraic
-CW complex structure on . Then there exists a well-defined restriction homomor-

phismRes : Wh ( )→ Wh ( ) which satisfies the above conditions(R1) and (R2).

We now consider the case when is not necessarily a compact semialgebraic
-set. Let be a finite (open) semialgebraic -CW complex structure on . As we

have mentioned in the previous section, R (co( )) = co(I )∩ co( ) is a preferred
-reduction of co( ). Note that co( ) is complete and|R (co( ))| = | co( )|. Thus,

by Lemma 5.2, there exists a restriction homomorphism

Res : Wh (co( ))→ Wh (co( )) = Wh (R (co( )))

which satisfies the conditions (R1) and (R2). Let : R (co( ))→ co(I ) be the
inclusion map and let : → co( ) be the (semialgebraic) -restriction map. In
particular, is an (semialgebraic) -homotopy equivalence with ( )[−1] = |co(I ),
and hence

( )∗ : Wh (R (co( ))) ≃→ Wh (co(I ))

is an isomorphism.
We are now able to define the restriction homomorphism

R : Wh (co( ))→ Wh (co(I ))

by R = ( )∗ ◦ Res . Then, by the definition ofR , we have the following
commutative diagram:

Wh (co( ))

Res ((RRRRRRRRRRRRR

R // Wh (co(I ))

Wh (R (co( )))

( )∗

55llllllllllllll

Theorem 5.3. Let and be semialgebraic -sets, and let and be
semialgebraic -CW complex structures on and , respectively. Suppose that

: → is a -homotopy equivalence and letI : co(I ) → co(I ) be
the -homotopy equivalence induced from, i.e., I = ◦ ◦ . Then
R (τ ( )) = τ (I ) ∈ Wh (co(I )).

Proof. Since R (co( ))⊂ co(I ) ⊂ co(I ) ⊂ , we can take a semi-
algebraic -subdivision ∗ of which is compatible with the semialgebraic -set
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co(I ). Then co( ∗) ⊃ co(I ) because co(I ) is compact. Let the -maps

1 : R co( ) → R co( ∗)

2 : R co( ) → co(I ) and

3 : co(I ) → R co( ∗)

denote the inclusions so that1 = 3 ◦ 2. By Lemma 3.3, the inclusion : co( )→
co( ∗) is a simple -homotopy equivalence, i.e.,τ ( ) = 0 ∈ Wh (co( )). It implies
that τ ( 1) = Res (τ ( )) = 0 ∈ Wh (R (co( ))) since R =1. Hence

(R co( ∗) R co( )) = ( ( 1) R co( )) = 0∈ Wh (R (co( )))

where (1) denotes the mapping cylinder of1.
We now consider the following semialgebraic strong -deformation retractions;

1 = R |R co( ∗) : R co( ∗) → R co( )

2 = R |co(I ) : co(I ) → R co( ) and

3 = I |R co( ∗) : R co( ∗) → co(I )

with the -homotopy inverses for = 1, 2, 3, respectively. Notethat 1 and 2 ◦ 3

are -homotopic andτ ( 1) = 0 ∈ Wh (R co( ∗)). By Proposition 3.1 (4), we have

( 2)∗ (R co( ∗) co(I )) + (co(I ) R co( ))
= (R co( ∗) R co( )) = 0

From this we have

(R co( ∗) co(I )) + ( 2)∗ (co(I ) R co( )) = 0

But from the definition of (2)∗ we have

( 2)∗ (co(I ) R co( )) = (co(I ) co(I )) = 0

in Wh (co(I )). Hence

τ ( 3) = (R co( ∗) co(I )) = 0∈ Wh (co(I ))

By Proposition 3.1, we haveτ ( ) = 0 andτ ( ) = 0 for all = 1, 2, 3.
Let R : R (co( )) → R (co( )) be the -homotopy equivalence induced

from , i.e., R = R ( ◦ |co( )). By (R1) we have Res (τ ( )) = τ (R ),
and so it remains to show (2)∗(τ (R )) = τ (I ). Let ′

2 : R co( ) → co(I )
denote the inclusion. Note that′2 ◦ R and I ◦ 2 are -homotopic and thus
τ ( ′

2 ◦ R ) = τ (I ◦ 2). But

τ ( ′
2 ◦ R ) = τ (R ) + (R )−1

∗ τ ( ′
2) = τ (R )
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and

τ (I ◦ 2) = τ ( 2) + (( 2)[−1])∗(τ (I )) = (( 2)[−1])∗(τ (I ))

Thus (2)∗(τ (R )) = τ (I ). Hence we have

R (τ ( )) = τ (I ) ∈ Wh (co(I ))

Recall that the Whitehead group Wh ( ) of a semialgebraic -setis defined by
Wh (co( )) for arbitrarily semialgebraic -CW complex structure on , and from
the definitions ofτ ( ) and I we getτ ( ) = τ ( I ◦ ◦ I ) = τ (I ).
Thus we have the following.

Corollary 5.4. Let be a compact semialgebraic group and let be a closed
semialgebraic subgroup of . Let and be semialgebraic -sets.Then there ex-
ists a well-defined restriction homomorphismR : Wh ( ) → Wh ( ) such that
if : → is a -homotopy equivalence, then R (τ ( )) = τ ( ) ∈ Wh ( ),
where : → is the -homotopy equivalence obtained from the restrictionof
the acting group to .

As a consequence of Corollary 5.4, we obtain the following.

Corollary 5.5. Let and be semialgebraic -sets. If: → is a sim-
ple -homotopy equivalence then the induced -map: → by is also a
simple -homotopy equivalence.

Remark that if is compact semialgebraic thenR = Res and R = =
.

6. The transitivity property of the restriction homomorphi sm

In this section denotes a compact semialgebraic group, and< < de-
note closed semialgebraic subgroups of . We shall prove the transitivity property in
condition (R2) of the restriction homomorphism.

Lemma 6.1. Let be a semialgebraic -set. Let be a semialgebraic -CW
complex structure on . Then for < <

(1) co(I (I )) and co(I ) have the same simple -homotopy type.
(2) R (R (co( )))and R (co( )) have the same simple -homotopy type.

Proof. (1) Since I (I ) and I are semialgebraic -CW complex struc-
tures on , co(I (I )) and co(I ) have the same simple -homotopy type by
Lemma 3.4.



THE WHITEHEAD GROUPS OFSEMIALGEBRAIC -SETS 309

(2) Because R (R (co( ))), R (co( )) have the same underlying space | co( )| and
co( ) is complete (and thus compact), R (R (co( ))) and R (co( ))have the same
simple -homotopy type by Lemma 3.4.

Remark that Proposition 5.1 (R2) implies Lemma 6.1 (2) directly because co( )
is a complete -CW complex. Note that we can take I by I (I ).

Theorem 6.2. Let be a semialgebraic -CW complex structure on some semi-
algebraic -set. Then for < < the following diagram is commutative.

Wh (co( ))

R ((QQQQQQQQQQQQ

R // Wh (co(I ))

Wh (co(I ))
R

66lllllllllllll

Proof. By the definition of the restriction homomorphism,R = ( 1)∗ ◦ Res ,
R = ( 2)∗ ◦ Res andR = ( 3)∗ ◦ Res where

1 : R (co( )) → co(I )

2 : R (co(I )) → co(I ) and

3 : co( ) → co(I )

are the inclusions such that3 = 2 ◦ 1.

CLAIM . Res ◦( 1)∗ = ∗ ◦ Res where : R R (co( ))→ R (co(I )) is the
inclusion.

Note that 2 ◦ = 3 because|R R (co( ))| = | co( )|. Hence we have

R ◦R = ( 2)∗ ◦ Res ◦( 1)∗ ◦ Res
= ( 2)∗ ◦ ∗ ◦ Res ◦Res
= ( 2 ◦ )∗ ◦ Res
= ( 3)∗ ◦ Res
= R

So it remains to show the above claim.

Proof of Claim. This follows from Lemma 6.1 and the definitionof Res as
follows:

∗ ◦ Res ( ( R (co( ))))
= ∗( (R R R (co( ))))
= (R ∪R R (co( ))R (co(I )) R (co(I )))
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On the other hand

Res ◦( 1)∗( ( R (co( ))))
= Res ( ( ∪R (co( )) co(I ) co(I )))
= (R ( ∪R (co( )) co(I )) R (co(I )))
= (R ∪R R (co( ))R (co(I )) R (co(I )))

Hence Res ◦( 1)∗ = ∗ ◦ Res .

This completes the proof.

As a corollary of Theorem 6.2, we have the following.

Corollary 6.3. Let be a compact semialgebraic group, and < < be
closed semialgebraic subgroups of . Let be a semialgebraic -set, then the fol-
lowing diagram commutes.

Wh ( )

R &&MMMMMMMMMM

R // Wh ( )

Wh ( )
R

88qqqqqqqqqq
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