THE RECURRENCE OF BLOCKS FOR BERNOULLI PROCESSES

Dong Han KIM

(Received July 25, 2000)

1. Introduction

Convergence of the logarithm of the first return time normalized by the block length n has been investigated in relation to data compression methods such as ZivLempel algorithms [11]. For each sample sequence $x=\left(x_{1}, x_{2}, \ldots\right)$ from an ergodic stationary information source, define $P_{n}(x)$ to be the probability of the initial n-block in x, i.e., $P_{n}(x)=\operatorname{Pr}\left(x_{1} \cdots x_{n}\right)$. The classical Shannon-Breiman-McMillan Theorem states that $-\left(\log P_{n}\right) / n$ converges to entropy in L^{1} and almost surely. Throughout the article, \log denotes the logarithm with respect to base 2 and \ln denotes the natural logarithm.

Definition 1.1. Given a block size n, the first return time R_{n} is defined by

$$
R_{n}(x)=\min \left\{j \geq 1: x_{1} \cdots x_{n}=x_{j+1} \cdots x_{j+n}\right\}
$$

Kac's Lemma [3] states that $E\left[R_{n} \mid x_{1} \ldots x_{n}=B\right]=1 / \operatorname{Pr}(B)$. This suggests that $R_{n}(x)$ is close to $1 / P_{n}(x)$, hence we expect that $\left(\log R_{n}\right) / n$ converges to entropy h in a suitable sense. It was proved that $\left(\log R_{n}\right) / n$ converges to entropy in probability by Wyner and Ziv [8] and almost surely by Ornstein and Weiss [6]. For a comprehensive introduction to the subject consult Shields [7] and the references therein. For the application to the testing pseudorandom numbers, see [2]. Recently several interesting results have been obtained regarding convergence rates by other investigators for R_{n} and related concepts such as the longest match-length, the waiting time and the redundancy rate, etc. See [4], [10]. In this article we investigate the relation between first return time and entropy for a Bernoulli process. Since the formula contains a correction terms, it approximates the entropy very well. See the last section for simulations.

In his Ph.D thesis [9] A.J. Wyner discovered that for a stationary aperiodic Markov chain with entropy h we have a second order limit law:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\frac{\log R_{n}-n h}{\sigma \sqrt{n}} \leq \alpha\right)=\Phi(\alpha)
$$

[^0]where
$$
\Phi(\alpha)=\int_{-\infty}^{\alpha} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x
$$
and
$$
\sigma^{2}=\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(-\log P_{n}(x)\right)}{n}
$$

Kontoyiannis ([4, Corollary 1]) showed that for any $\beta>0$

$$
\log \left[R_{n}(x) P_{n}(x)\right]=o\left(n^{\beta}\right)
$$

almost surely for mixing Markov chains. Later A.J. Wyner ([10, Corollary B5]) proved that for any $\epsilon>0$

$$
-(1+\epsilon) \cdot \log n \leq \log \left[R_{n}(x) P_{n}(x)\right] \leq \log \log n
$$

eventually, almost surely for mixing Markov chains. Hence we have

$$
-(1+\epsilon) \cdot \log n \leq E\left[\log R_{n} P_{n}\right] \leq \log \log n
$$

approximately for large n. In this paper we investigate the speed of convergence of the average of $\log R_{n}$ to entropy. Now we state the main theorem.

Theorem 1.2. For a Bernoulli process with entropy h, we have

$$
\lim _{n \rightarrow \infty} E\left[\log \left(R_{n} P_{n}\right)\right]=-\frac{\gamma}{\ln 2}
$$

and

$$
\lim _{n \rightarrow \infty} E\left[\log R_{n}\right]-n \cdot h=-\frac{\gamma}{\ln 2}
$$

Maurer [5] studied the non-overlapping first return time

$$
R_{n}^{\prime}(x) \equiv \min \left\{j \geq 1: x_{1} \cdots x_{n}=x_{j n+1} \cdots x_{j n+n}\right\}
$$

In computing $R_{n}^{\prime}(x)$ we need approximately n times more digits of x than $R_{n}(x)$. So the overlapping algorithm is efficient compared to the non-overlapping one.

Definition 1.3. For $0<r<1$, define

$$
v(r) \equiv r \sum_{i=1}^{\infty}(1-r)^{i-1} \log i
$$

Put $r=2^{-n}$. Then the expectation of $\log R_{n}^{\prime}$ equals $v(r)$ in case of the Bernoulli ($1 / 2,1 / 2$)-process. Note that

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}}[v(r)+\log r] & =\lim _{s \rightarrow 1-}[v(1-s)+\log (1-s)] \\
& =\sum_{i=1}^{\infty}\left(\ln \frac{i+1}{i}-\frac{1}{i}\right) / \ln 2 \\
& =-\frac{\gamma}{\ln 2} \\
& =-0.832746 \cdots,
\end{aligned}
$$

where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n}(1 / i)-\ln n\right)$ is Euler's constant. Hence the expectation of $\log R_{n}^{\prime}$ is approximately equal to $n-\gamma / \ln 2$ for large n. In Markov case a similar result is obtained in [1].

In Section 2 we prove Theorem 1.2 and we propose a practical formula for entropy approximation in Section 3.

2. Proof of Theorem 1.2

An alphabet is a finite set \mathcal{A} and we call each element of \mathcal{A} a symbol. A block is a finite sequence of symbols, and an n-block is a block of length n. Let $|B|$ be the length of the block B. For an n-block $B=a_{1} a_{2} \cdots a_{n}$ we write $B_{[i, j]}=$ $a_{i} a_{i+1} \cdots a_{j}, 1 \leq i \leq j \leq n$.

Definition 2.1. Let B be an n-block. Suppose m satisfies $1 \leq m<n$ and

$$
\left(B_{[1, m]} B_{[1, m]} \cdots B_{[1, m]}\right)_{[1, n]}=B,
$$

for some $1 \leq j \leq m$. The smallest such m is denoted by $\lambda_{1}(B)$, and the next smallest such m that is not a multiple of $\lambda_{1}(B)$ is $\lambda_{2}(B)$, and we can define $\lambda_{k}(B)$ by the smallest such m which is not a multiple of $\lambda_{i}(B)$ for every $i<k$.

Let $\Lambda(B)=\left\{\lambda_{1}(B), \lambda_{2}(B), \ldots\right\}$ and if B has no such m, we write $\Lambda(B)=\emptyset$.

Example 2.2. Consider the case of binary blocks, in other words, the symbols are 0 and 1 . The number of different binary 4 -blocks is 16 . By symmetry we only have to examine 8 different blocks having ' 0 ' as the first symbol. We have

$$
\begin{array}{ll}
\Lambda(0000)=\{1\}, & \Lambda(0010)=\Lambda(0100)=\Lambda(0110)=\{3\}, \\
\Lambda(0101)=\{2\}, & \\
\hline(0001)=\Lambda(0011)=\Lambda(0111)=\emptyset .
\end{array}
$$

If we consider the 5 -block $B=00100$, we have $\Lambda(B)=\{3,4\}$ and $B_{\left[1, \lambda_{1}(B)\right]}=$ $001, B_{\left[1, \lambda_{2}(B)\right]}=0010$.

We classify n-blocks into the following sets

$$
\begin{aligned}
& \mathcal{T}(n)=\left\{|B|=n: \lambda_{1}(B)>\frac{n}{2} \text { or } \Lambda(B)=\emptyset\right\}, \\
& \mathcal{R}(n)=\left\{|B|=n: \lambda_{1}(B) \leq \frac{n}{2}\right\} .
\end{aligned}
$$

Lemma 2.3. For a Bernoulli process, $\operatorname{Pr}\left(x_{1} \cdots x_{n} \in \mathcal{R}(n)\right)$ converges to 0 exponentially as $n \rightarrow \infty$.

Proof. Let d be the maximal probability of the symbols. Then for $i<n$ we have

$$
\operatorname{Pr}\left(i \in \Lambda\left(x_{1} \cdots x_{n}\right)\right) \leq d^{n-i}
$$

and

$$
\operatorname{Pr}\left(x_{1} \cdots x_{n} \in \mathcal{R}(n)\right) \leq \sum_{i=1}^{[n / 2]} d^{n-i}=\frac{d^{n-[n / 2]}-d^{n}}{1-d}
$$

where $[t]$ is the greatest integer that does not exceed t.
Lemma 2.4. Let B be an n-block.
(i) If $B=(C B)_{[1, n]}$ for some m-block $C, 1 \leq m<n$, then $m \in \Lambda(B)$ or m is a multiple of some $\lambda \in \Lambda(B)$.
(ii) If $B=B_{[m+1, n]} B_{[1, m]}$ for some $1 \leq m<n$, then there is $\lambda \in \Lambda(B)$ such that λ divides n and m.

Proof. (i) is directly derived from the definition of $\Lambda(B)$.
(ii) Let $m^{\prime}=\operatorname{gcd}(m, n)$ and $n=h m^{\prime}, m=l m^{\prime}$. Put $B_{i}=B_{\left[(i-1) m^{\prime}+1, i m^{\prime}\right]}$. Then $B_{1} \cdots B_{h}=B_{l+1} \cdots B_{h} B_{1} \cdots B_{l}$. So we have $B_{i}=B_{j}$ if $i \equiv j+l(\bmod h)$. Since l and h are relatively prime, B_{i} 's are identical for every i.

Definition 2.5. (i) For an n-block B and $k \geq n$ let $\mathcal{F}(B, k)$ be the set of all k-blocks C such that $B C$ of length $k+n$ does not contain B except for the first B, in other words,

$$
\mathcal{F}(B, k)=\left\{C:(B C)_{[i, i+n-1]} \neq B \text { for any } i>1\right\} .
$$

For $1 \leq k<n$, let $\mathcal{F}(B, k)$ be the set of all k-blocks.
(ii) Let $\mathcal{S}(B, k)$ be the set of k-blocks $C, k \geq 1$, such that $B C B$ of length $k+2 n$ does not contain B except for the first and the last B 's, or equivalently

$$
\mathcal{S}(B, k)=\left\{C:(B C B)_{[i, i+n-1]} \neq B \text { for any } i, 1<i \leq k+n\right\} .
$$

Clearly, we have $\mathcal{S}(B, k) \subset \mathcal{F}(B, k)$.
Example 2.6. Take $B=010$ and $k=3$. The 3 -blocks ' 001 ' is not in $\mathcal{S}(010,3)$ but in $\mathcal{F}(010,3)$, since the 6 -block ' 010001010 ' has three ' 010 ' blocks (e.g. 010 001 010). Now we have

$$
\begin{aligned}
\mathcal{F}(010,3) & =\{000,001,011,110,111\}, \\
\mathcal{S}(010,3) & =\{000,011,110,111\} .
\end{aligned}
$$

The following shows the relation between $\mathcal{F}(B, k)$ and $\mathcal{S}(B, k)$.
Lemma 2.7. For $B \in \mathcal{T}(n)$ and $k>n$ we have a pairwise disjoint union

$$
\begin{aligned}
\mathcal{S}(B, k) & =\mathcal{F}(B, k) \backslash \bigcup_{\lambda \in \Lambda(B)}\left\{C \in \mathcal{F}(B, k):(B C)_{[k+n-\lambda+1, k+n]}=B_{[1, \lambda]}\right\} \\
& =\mathcal{F}(B, k) \backslash \bigcup_{\lambda \in \Lambda(B)}\left\{C B_{[1, \lambda]}: C \in \mathcal{S}(B, k-\lambda)\right\} .
\end{aligned}
$$

Proof. Take a k-block $C \in \mathcal{F}(B, k)$. If $(B C B)_{[s, s+n-1]}=B$ for some s, then $s>$ $k+1$ and

$$
B=(B C B)_{[s, s+n-1]}=(B C)_{[s, k+n]} B_{[1, s-k-1]} .
$$

Put $\lambda=k+n-s+1$. Then by Lemma 2.4(i) $\lambda \in \Lambda(B)$ and $(B C)_{[s, k+n]}=B_{[1, \lambda]}$. Hence we have

$$
\begin{aligned}
\mathcal{S}(B, k) & =\left\{C:(B C B)_{[i, i+n-1]} \neq B \text { for any } i, i<i \leq k+n\right\} \\
& =\left\{C \in \mathcal{F}(B, k):(B C)_{[k+n-\lambda+1, k+n]} \neq B_{[1, \lambda]} \text { for any } \lambda \in \Lambda(B)\right\} \\
& =\mathcal{F}(B, k) \backslash \bigcup_{\lambda \in \Lambda(B)}\left\{C \in \mathcal{F}(B, k):(B C)_{[k+n-\lambda+1, k+n]}=B_{[1, \lambda]}\right\} .
\end{aligned}
$$

Suppose that there exists $C \in \mathcal{F}(B, k)$ such that $C_{[k+n-\lambda+1, k+n]}=B_{[1, \lambda]}$ and $C_{\left[k+n-\lambda^{\prime}+1, k+n\right]}=B_{\left[1, \lambda^{\prime}\right]}$ for some $\lambda, \lambda^{\prime} \in \Lambda(B)$ with $\lambda<\lambda^{\prime}$. Then $B_{[1, \lambda]}=B_{\left[\lambda^{\prime}-\lambda+1, \lambda^{\prime}\right]}$ and

$$
B_{\left[1, \lambda^{\prime}\right]}=\left(B_{[1, \lambda]} B_{[1, \lambda]}\right)_{\left[1, \lambda^{\prime}\right]}=B_{[1, \lambda]} B_{\left[1, \lambda^{\prime}-\lambda\right]}=B_{\left[\lambda^{\prime}-\lambda+1, \lambda^{\prime}\right]} B_{\left[1, \lambda^{\prime}-\lambda\right]} .
$$

By Lemma 2.4(ii) $B_{\left[1, \lambda^{\prime}\right]}=B_{\left[1, \lambda^{\prime}-\lambda\right]} \cdots B_{\left[1, \lambda^{\prime}-\lambda\right]}$ and this contradicts $\lambda^{\prime} \in \Lambda(B)$. Hence the sets $\left\{C \in \mathcal{F}(B, k): C_{[k+n-\lambda+1, k+n]}=B_{[1, \lambda]}\right\}$ are disjoint.

For every $C \in \mathcal{S}(B, k-\lambda)$ we have $C B_{[1, \lambda]} \in \mathcal{F}(B, k)$ obviously. Put $C \in \mathcal{F}(B, k)$ with $C_{[k-\lambda+1, k]}=B_{[1, \lambda]}$. If $C_{[1, k-\lambda]} \notin \mathcal{S}(B, k-\lambda)$, then there is λ^{\prime} with $\lambda^{\prime}<n-\lambda$ such that $C_{\left[1, k-\lambda-\lambda^{\prime}\right]} B=\left(C_{[1, k-\lambda]} B\right)_{\left[1, k+n-\lambda-\lambda^{\prime}\right]}$ or $B=\left(C_{\left[k-\lambda-\lambda^{\prime}+1, k-\lambda\right]} B\right)_{[1, n]}$. So by Lemma 2.4(i) $\lambda^{\prime} \in \Lambda(B)$ or λ^{\prime} is a multiple of $\lambda_{1}(B)$. Since $\lambda^{\prime}<n-\lambda<n / 2$, this
contradicts $B \in \mathcal{T}(n)$. Hence we have

$$
\left\{C \in \mathcal{F}(B, k):(B C)_{[k+n-\lambda+1, k+n]}=B_{[1, \lambda]}\right\}=\left\{C B_{[1, \lambda]}: C \in \mathcal{S}(B, k-\lambda)\right\} .
$$

Definition 2.8. For a given n-block B, define

$$
\begin{aligned}
p_{i}(B) & =\operatorname{Pr}\left(R_{n}(x)=i \mid x_{1} \ldots x_{n}=B, R_{n}(x) \geq i\right), \\
r_{i}(B) & =\operatorname{Pr}\left(x_{n+1} \cdots x_{n+i} \in \mathcal{F}(B, i) \mid x_{1} \cdots x_{n}=B\right), \\
s_{i}(B) & =\operatorname{Pr}\left(x_{n+1} \cdots x_{n+i} \in \mathcal{S}(B, i) \mid x_{1} \cdots x_{n}=B\right) .
\end{aligned}
$$

We have $r_{i}(B) \geq s_{i}(B)$. Put $r_{0}(B)=1, s_{0}(B)=1$.
Proposition 2.9. For Bernoulli processes we have

$$
\begin{aligned}
\operatorname{Pr}\left(R_{n}(x)>i \mid x_{1} \cdots x_{n}=B\right) & =r_{i}(B), \\
\operatorname{Pr}\left(R_{n}(x)=i+n \mid x_{1} \cdots x_{n}=B\right) & =s_{i}(B) \operatorname{Pr}(B) .
\end{aligned}
$$

Proof. Let $x_{1} \cdots x_{n}=B$. Since $R_{n}(x)>i$ if and only if $x_{1} \cdots x_{i+n}=B C$ for some $C \in \mathcal{F}(B, i)$, we have

$$
\operatorname{Pr}\left(R_{n}(x)>i \mid x_{1} \cdots x_{n}=B\right)=\operatorname{Pr}\left(x_{n+1} \cdots x_{i+n} \in \mathcal{F}(B, i)\right)=r_{i}(B) .
$$

And since $R_{n}(x)=i+n$ if and only if $x_{1} \cdots x_{i+2 n}=B C B$ for some $C \in \mathcal{S}(B, i)$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{n}(x)=i+n \mid x_{1} \cdots x_{n}=B\right) \\
& \quad=\operatorname{Pr}\left(x_{n+1} \cdots x_{i+n} \in \mathcal{S}(B, i)\right) \cdot \operatorname{Pr}\left(x_{i+n+1} \cdots x_{i+2 n}=B\right) \\
& \quad=s_{i}(B) \cdot \operatorname{Pr}(B) .
\end{aligned}
$$

Since $r_{0}(B)=s_{0}(B)=1$, the equations hold for $i=0$.

Now we find the recurrence relations between $r_{k}(B)$ and $s_{k}(B)$.
Proposition 2.10. For a Bernoulli process with $B \in \mathcal{T}(n)$, if $i \geq n$,

$$
\begin{aligned}
r_{i}(B) & =r_{i-1}(B)-s_{i-n}(B) \operatorname{Pr}(B), \\
s_{i}(B) & =r_{i}(B)-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right) s_{i-\lambda}(B) .
\end{aligned}
$$

Proof. From Proposition 2.9 we have

$$
\begin{aligned}
r_{i}(B) & =\operatorname{Pr}\left(R_{n}(x)>i \mid x_{1} \cdots x_{n}=B\right) \\
& =\operatorname{Pr}\left(R_{n}(x)>i-1 \mid x_{1} \cdots x_{n}=B\right)-\operatorname{Pr}\left(R_{n}(x)=i \mid x_{1} \cdots x_{n}=B\right) \\
& =r_{i-1}(B)-s_{i-n}(B) \operatorname{Pr}(B)
\end{aligned}
$$

By Lemma 2.7 we have

$$
\begin{aligned}
s_{i}(B)= & \operatorname{Pr}\left(x_{n+1} \cdots x_{n+i} \in \mathcal{F}(B, i)\right) \\
& -\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(x_{n+1} \cdots x_{n+i-\lambda} \in \mathcal{S}(B, i-\lambda), x_{n+i-\lambda+1} \cdots x_{n+i}=B_{[1, \lambda]}\right) \\
= & r_{i}(B)-\sum_{\lambda \in \Lambda(B)} s_{i-\lambda}(B) \operatorname{Pr}\left(B_{[1, \lambda]}\right) .
\end{aligned}
$$

Lemma 2.11. For a Bernoulli process with $B \in \mathcal{T}(n)$, if $i \geq n$,

$$
p_{i}(B)=\frac{\operatorname{Pr}(B)}{\left(1-p_{i-1}(B)\right) \cdots\left(1-p_{i-n+1}(B)\right)}-\sum_{\lambda \in \Lambda(B)} \frac{\operatorname{Pr}\left(B_{[1, \lambda]}\right) p_{i-\lambda}(B)}{\left(1-p_{i-1}(B)\right) \cdots\left(1-p_{i-\lambda}(B)\right)}
$$

Proof. From Proposition 2.10 we have for $i \geq n$

$$
s_{i}(B)=r_{i}(B)-\sum_{\lambda \in \Lambda(B)} \frac{r_{i+n-\lambda-1}(B)-r_{i+n-\lambda}(B)}{\operatorname{Pr}\left(B_{[\lambda+1, n]}\right)}
$$

and

$$
r_{i-1}(B)-r_{i}(B)=\operatorname{Pr}(B) r_{i-n}(B)-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)\left(r_{i-\lambda-1}(B)-r_{i-\lambda}(B)\right)
$$

Since $r_{i}(B)=\left(1-p_{1}(B)\right)\left(1-p_{2}(B)\right) \cdots\left(1-p_{i}(B)\right)$, we conclude the lemma.

REmark 2.12. (i) From the definition of $\Lambda(B)$ we have for $1 \leq i<n=|B|$

$$
p_{i}(B)= \begin{cases}0 & \text { if } i \notin \Lambda(B) \\ \frac{\operatorname{Pr}\left(B_{[1, i]}\right)}{\prod_{j<i}\left(1-p_{j}(B)\right)} & \text { if } i \in \Lambda(B)\end{cases}
$$

and

$$
\left(1-p_{1}(B)\right) \cdots\left(1-p_{n-1}(B)\right)= \begin{cases}1 & \text { if } \Lambda(B)=\emptyset \\ 1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right) & \text { if } \Lambda(B) \neq \emptyset\end{cases}
$$

(ii) For $B \in \mathcal{T}(n)$ and $\lambda \in \Lambda(B)$ we have

$$
\operatorname{Pr}(B)=\operatorname{Pr}\left(B_{[1, \lambda]}\right) \operatorname{Pr}\left(B_{[1, n-\lambda]}\right)=\operatorname{Pr}\left(B_{[1, n-\lambda]}\right)^{2} \operatorname{Pr}\left(B_{[n-\lambda+1, \lambda]}\right),
$$

and

$$
\operatorname{Pr}(B)<\operatorname{Pr}\left(B_{[1, \lambda]}\right)<\sqrt{\operatorname{Pr}(B)} .
$$

Lemma 2.13. For each Bernoulli process there is N such that for every block $B \in \mathcal{T}(n)$ with $n>N$ we have $p_{i}(B)<\sqrt{\operatorname{Pr}(B)}$ for each $i \geq 1$.

Proof. Let d be the maximal probability of the symbols. Choose N so that $\sqrt{d^{n}}<1 / n$ and $n^{1-2 / n} /(n-1)<1$ for all $n>N$ and $N \geq 2$. Put $\lambda_{i}=\lambda_{i}(B)$. If $p_{\lambda_{j}}(B)<\sqrt{\operatorname{Pr}(B)}$ for all $j<i$, then

$$
\begin{aligned}
p_{\lambda_{i}}(B) & =\frac{\operatorname{Pr}\left(B_{\left[1, \lambda_{i}\right]}\right)}{\left(1-p_{\lambda_{1}}(B)\right) \cdots\left(1-p_{\lambda_{i-1}}(B)\right)} \\
& =\operatorname{Pr}\left(B_{\left[1, \lambda_{1}\right]}\right) \frac{\operatorname{Pr}\left(B_{\left[\lambda_{1}+1, \lambda_{2}\right]}\right)}{1-p_{\lambda_{1}}(B)} \cdots \frac{\operatorname{Pr}\left(B_{\left[\lambda_{i-1}+1, \lambda_{i}\right]}\right)}{1-p_{\lambda_{i-1}}(B)} \\
& <\sqrt{\operatorname{Pr}(B)}\left(\frac{d}{1-\sqrt{\operatorname{Pr}(B)}}\right)^{i-1}<\sqrt{\operatorname{Pr}(B)}\left(\frac{n^{-2 / n}}{1-\sqrt{d^{n}}}\right)^{i-1} \\
& <\sqrt{\operatorname{Pr}(B)}\left(\frac{n^{1-2 / n}}{n-1}\right)^{i-1}<\sqrt{\operatorname{Pr}(B)}
\end{aligned}
$$

Since

$$
p_{\lambda_{1}}(B)=\operatorname{Pr}\left(B_{\left[1, \lambda_{1}\right]}\right)<\sqrt{\operatorname{Pr}(B)}
$$

by induction rule we have $p_{\lambda}(B)<\sqrt{\operatorname{Pr}(B)}$ for all $\lambda \in \Lambda(B)$. and $p_{i}(B)<\sqrt{\operatorname{Pr}(B)}$ for all $i<n$.

If $p_{i}(B)<\sqrt{\operatorname{Pr}(B)}$ for all $i<j$, Then from Lemma 2.11 we have

$$
\begin{aligned}
p_{j}(B) & <\frac{\operatorname{Pr}(B)}{(1-\sqrt{\operatorname{Pr}(B)})^{n-1}} \\
& \leq \sqrt{\operatorname{Pr}(B)} \frac{\sqrt{d^{n}}}{\left(1-\sqrt{d^{n}}\right)^{n-1}}<\sqrt{\operatorname{Pr}(B)} \frac{\sqrt{d^{n}}}{1-(n-1) \sqrt{d^{n}}} \\
& =\sqrt{\operatorname{Pr}(B)} \frac{\sqrt{d^{n}}}{1-n \sqrt{d^{n}}+\sqrt{d^{n}}} \leq \sqrt{\operatorname{Pr}(B)}
\end{aligned}
$$

Lemma 2.14. If we put

$$
\alpha_{n} \equiv \frac{n \sqrt{d^{n}}}{1-n \sqrt{d^{n}}},
$$

where d is the maximal probability of the symbols, then for $i \geq n$ we have

$$
p_{i}(B)<\operatorname{Pr}(B)+\operatorname{Pr}(B) \alpha_{n}
$$

Proof. By Lemma 2.11 and 2.13 we have

$$
\begin{aligned}
p_{i}(B) & \leq \frac{\operatorname{Pr}(B)}{\left(1-p_{i-1}(B)\right) \cdots\left(1-p_{i-n+1}(B)\right)} \\
& <\frac{\operatorname{Pr}(B)}{(1-\sqrt{\operatorname{Pr}(B)})^{n-1}} \leq \frac{\operatorname{Pr}(B)}{\left(1-\sqrt{d^{n}}\right)^{n-1}}
\end{aligned}
$$

and

$$
\begin{aligned}
p_{i}(B)-\operatorname{Pr}(B) & <\operatorname{Pr}(B)\left(\frac{1-\left(1-\sqrt{d^{n}}\right)^{n-1}}{\left(1-\sqrt{d^{n}}\right)^{n-1}}\right) \\
& <\operatorname{Pr}(B)\left(\frac{(n-1) \sqrt{d^{n}}}{1-(n-1) \sqrt{d^{n}}}\right)<\operatorname{Pr}(B) \alpha_{n}
\end{aligned}
$$

Lemma 2.15. For sufficiently large n if $B \in \mathcal{T}(n)$ and $i \geq n$, then we have

$$
p_{i}(B)>\operatorname{Pr}(B)-\operatorname{Pr}(B) \alpha_{n}
$$

Proof. By Lemma 2.11, 2.13 and 2.14 we have

$$
\begin{aligned}
p_{i}(B) & \geq \operatorname{Pr}(B)-\sum_{\lambda} \frac{\operatorname{Pr}\left(B_{[1, \lambda]}\right) p_{i-\lambda}(B)}{\left(1-p_{i-1}(B)\right) \cdots\left(1-p_{i-\lambda}(B)\right)} \\
& >\operatorname{Pr}(B)-\frac{n}{2} \cdot \frac{\operatorname{Pr}(B)\left(1+\alpha_{n}\right) \sqrt{\operatorname{Pr}(B)}}{(1-\sqrt{\operatorname{Pr}(\boldsymbol{B})})^{n-1}} \\
& \geq \operatorname{Pr}(B)-\frac{\operatorname{Pr}(B)\left(1+\alpha_{n}\right) n \sqrt{d^{n}}}{2\left(1-\sqrt{d^{n}}\right)^{n-1}}
\end{aligned}
$$

and

$$
\begin{aligned}
p_{i}(B)-\operatorname{Pr}(B) & >-\operatorname{Pr}(B) \frac{\left(1+\alpha_{n}\right) n \sqrt{d^{n}}}{2\left(1-\sqrt{d^{n}}\right)^{n-1}} \\
& >-\operatorname{Pr}(B) \frac{\alpha_{n}\left(1+\alpha_{n}\right)}{2}>-\operatorname{Pr}(B) \alpha_{n}
\end{aligned}
$$

for sufficiently large n.

Lemma 2.16. For any sequence $0 \leq c_{1}<c_{2}<\cdots$, let

$$
F\left(x_{1}, x_{2}, \ldots\right)=\sum_{i=1}^{\infty}\left(1-x_{1}\right) \cdots\left(1-x_{i-1}\right) x_{i} c_{i}
$$

be a function of x_{1}, x_{2}, \ldots under the conditions of
(1) $0 \leq x_{i} \leq 1, i=1,2, \ldots$,
(2) $\sum_{i=1}^{\infty} x_{i}$ diverges.

Then F is monotonously decreasing in x_{1}, x_{2}, \ldots
Proof. For a fixed k and $\delta>0$, we have

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{k}, \ldots\right)-F\left(x_{1}, \ldots, x_{k}+\delta, \ldots\right) \\
& \quad=\left(1-x_{1}\right) \cdots\left(1-x_{k-1}\right) \delta\left(-c_{k}+\sum_{i=k+1}^{\infty}\left(1-x_{k+1}\right) \cdots\left(1-x_{i-1}\right) x_{i} c_{i}\right) \\
& \quad \geq\left(1-x_{1}\right) \cdots\left(1-x_{k-1}\right) \delta\left(-c_{k}+c_{k+1} \sum_{i=k+1}^{\infty}\left(1-x_{k+1}\right) \cdots\left(1-x_{i-1}\right) x_{i}\right) .
\end{aligned}
$$

Since for $m \geq k+1$,

$$
\prod_{i=k+1}^{m}\left(1-x_{i}\right)=1-\sum_{i=k+1}^{m}\left(1-x_{k+1}\right) \cdots\left(1-x_{i-1}\right) x_{i}
$$

we have

$$
\sum_{i=k+1}^{\infty}\left(1-x_{k+1}\right) \cdots\left(1-x_{i-1}\right) x_{i}=1-\prod_{i=k+1}^{\infty}\left(1-x_{i}\right)
$$

From the condition (2)

$$
\log \left(\prod_{i=k+1}^{\infty}\left(1-x_{i}\right)\right)=\sum_{i=k+1}^{\infty} \log \left(1-x_{i}\right) \leq-\sum_{i=k+1}^{\infty} x_{i}=-\infty
$$

and

$$
\sum_{i=k+1}^{\infty}\left(1-x_{k+1}\right) \cdots\left(1-x_{i-1}\right) x_{i}=1 .
$$

Hence we have

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{k}, \ldots\right)-F\left(x_{1}, \ldots, x_{k}+\delta, \ldots\right) \\
& \quad \geq\left(1-x_{1}\right) \cdots\left(1-x_{k-1}\right) \delta\left(-c_{k}+c_{k+1}\right) \geq 0
\end{aligned}
$$

Proof of Theorem 1.2. Since

$$
\operatorname{Pr}\left(R_{n}(x)=i \mid x_{1} \ldots x_{n}=B\right)=\left(1-p_{1}(B)\right) \cdots\left(1-p_{i-1}(B)\right) p_{i}(B)
$$

we have from Lemma 2.14, 2.15 and 2.16

$$
\begin{aligned}
& E\left[\log R_{n} \mid x_{1} \cdots x_{n}=B\right]=\sum_{i=1}^{\infty}\left(1-p_{1}(B)\right) \cdots\left(1-p_{i-1}(B)\right) p_{i}(B) \log i \\
& \quad \geq \sum_{i=1}^{n-1}\left(1-p_{1}(B)\right) \cdots\left(1-p_{i-1}(B)\right) p_{i}(B) \log i \\
& \quad+\left(1-p_{1}(B)\right) \cdots\left(1-p_{n-1}(B)\right) \sum_{i=n}^{\infty}\left(1-\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)^{i-n} \operatorname{Pr}(B)\left(1+\alpha_{n}\right) \log i \\
& \quad=\sum_{i=1}^{n-1}\left(1-p_{1}\right) \cdots\left(1-p_{i-1}\right) p_{i} \log i+\frac{\left(1-p_{1}\right) \cdots\left(1-p_{n-1}\right)}{\left(1-\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)^{n-1}} v\left(\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right) \\
& \quad-\left(1-p_{1}\right) \cdots\left(1-p_{n-1}\right) \sum_{i=1}^{n-1}\left(1-\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)^{i-n} \operatorname{Pr}(B)\left(1+\alpha_{n}\right) \log i
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left[\log R_{n} \mid x_{1} \cdots x_{n}=B\right] \\
& \quad \leq \sum_{i=1}^{n-1}\left(1-p_{1}\right) \cdots\left(1-p_{i-1}\right) p_{i} \log i+\frac{\left(1-p_{1}\right) \cdots\left(1-p_{n-1}\right)}{\left(1-\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)^{n-1}} v\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right) \\
& \quad-\left(1-p_{1}\right) \cdots\left(1-p_{n-1}\right) \sum_{i=1}^{n-1}\left(1-\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)^{i-n} \operatorname{Pr}(B)\left(1-\alpha_{n}\right) \log i,
\end{aligned}
$$

where v is the function in Definition 1.3. Put

$$
\begin{aligned}
\Sigma_{n}^{ \pm}(B) \equiv & \sum_{i=1}^{n-1}\left(1-p_{1}(B)\right) \cdots\left(1-p_{i-1}(B)\right) p_{i}(B) \log i \\
& -\left(1-p_{1}(B)\right) \cdots\left(1-p_{n-1}(B)\right) \\
& \sum_{i=1}^{n-1}\left(1-\operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right)\right)^{i-n} \operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right) \log i .
\end{aligned}
$$

Then for all $B \in \mathcal{T}(n)$ we have

$$
\begin{aligned}
& \frac{\left(1-p_{1}(B)\right) \cdots\left(1-p_{n-1}(B)\right)}{\left(1-\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)^{n-1}} v\left(\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)+\Sigma_{n}^{+}(B) \\
& \quad<E\left[\log R_{n} \mid x_{1} \cdots x_{n}=B\right] \\
& \quad<\frac{\left(1-p_{1}(B)\right) \cdots\left(1-p_{n-1}(B)\right)}{\left(1-\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)^{n-1}} v\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)+\Sigma_{n}^{-}(B)
\end{aligned}
$$

From Remark 2.12 we have for $B \in \mathcal{T}(n)$

$$
\begin{aligned}
& \frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)+\Sigma_{n}^{+}(B) \\
& \quad<E\left[\log R_{n} \mid x_{1} \cdots x_{n}=B\right] \\
& \quad<\frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)+\Sigma_{n}^{-}(B)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)-v(\operatorname{Pr}(B))+\Sigma_{n}^{+}(B) \\
& \quad<E\left[\log R_{n}-v\left(\operatorname{Pr}\left(x_{1} \cdots x_{n}\right)\right) \mid x_{1} \cdots x_{n}=B\right] \\
& \quad<\frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)-v(\operatorname{Pr}(B))+\Sigma_{n}^{-}(B) .
\end{aligned}
$$

By Lemma 2.17 given below we have

$$
\lim _{n \rightarrow \infty} E\left[\log R_{n}(x)-v\left(\operatorname{Pr}\left(x_{1} \cdots x_{n}\right)\right) \mid x_{1} \cdots x_{n} \in \mathcal{T}(n)\right]=0
$$

and

$$
\lim _{n \rightarrow \infty} E\left[\log R_{n}(x)+\log P_{n}(x) \mid x_{1} \cdots x_{n} \in \mathcal{T}(n)\right]=-\frac{\gamma}{\ln 2}
$$

By Jensen's inequality and Kac's lemma, for any B we have

$$
E\left[\log R_{n}+\log P_{n} \mid x_{1} \cdots x_{n}=B\right] \leq \log E\left[R_{n} P_{n} \mid x_{1} \cdots x_{n}=B\right] \leq 0
$$

and if we let \bar{d} be the minimal probability of a symbol,

$$
E\left[\log R_{n}+\log P_{n} \mid x_{1} \cdots x_{n}=B\right] \geq E\left[\log P_{n} \mid x_{1} \cdots x_{n}=B\right] \geq n \log \bar{d}
$$

Hence by Lemma 2.3 we have

$$
\lim _{n \rightarrow \infty} E\left[\log R_{n}+\log P_{n}\right]=-\frac{\gamma}{\ln 2}
$$

Lemma 2.17. For sufficiently large n, if $B \in \mathcal{T}(B)$, then

$$
\left|\Sigma_{n}^{ \pm}(B)\right|<(n-1) \sqrt{d^{n}} \log (n-1)+(n-1) d^{n}\left(1+\alpha_{n}\right) \log (n-1)
$$

and

$$
\begin{gathered}
\left|\frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right)\right)-v(\operatorname{Pr}(B))\right| \\
\quad<\frac{\eta\left(d^{n}\left(1+\alpha_{n}\right)\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{\log \left(1-\alpha_{n}\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{\log d}{2} n^{2} d^{n / 2}
\end{gathered}
$$

where $\eta(x)=v(x)+\log (x)+\gamma / \ln 2$.
Proof. By Remark 2.12 for $1 \leq i<n$ we have

$$
\left(1-p_{1}(B)\right) \cdots\left(1-p_{i-1}(B)\right) p_{i}(B)= \begin{cases}0 & \text { if } i \notin \Lambda(B) \\ \operatorname{Pr}\left(B_{[1, i]}\right) & \text { if } i \in \Lambda(B)\end{cases}
$$

Since if $B \in \mathcal{T}(n), \operatorname{Pr}\left(B_{[1, \lambda]}\right)<\sqrt{\operatorname{Pr}(B)}$ for $\lambda \in \Lambda(B)$, we have

$$
\begin{aligned}
\left|\Sigma_{n}^{ \pm}(B)\right| \leq & \sum_{i=1}^{n-1}\left(1-p_{1}\right) \cdots\left(1-p_{i-1}\right) p_{i} \log i \\
& +\left(1-p_{1}\right) \cdots\left(1-p_{n-1}\right) \sum_{i=1}^{n-1}\left(1-\operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right)\right)^{i-n} \operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right) \log i \\
< & (n-1) \sqrt{\operatorname{Pr}(B)} \log (n-1)+(n-1) \operatorname{Pr}(B)\left(1+\alpha_{n}\right) \log (n-1) \\
\leq & (n-1) \sqrt{d^{n}} \log (n-1)+(n-1) d^{n}\left(1+\alpha_{n}\right) \log (n-1) .
\end{aligned}
$$

Now consider the blocks of $\mathcal{T}(n)$. Since $\operatorname{Pr}\left(B_{[1, \lambda]}\right)<\sqrt{\operatorname{Pr}(B)}$, we have

$$
1-n \sqrt{\operatorname{Pr}(B)}<\frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}}<\frac{1}{(1-\operatorname{Pr}(B))^{n-1}}
$$

The function $\eta(x)=v(x)+\log (x)+\gamma / \ln 2$ of x is monotonically increasing with $\lim _{x \rightarrow 0} \eta(x)=0$. Hence

$$
\begin{aligned}
& \frac{1-}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right)\right)-v(\operatorname{Pr}(B)) \\
& \quad<\frac{v\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)}{(1-\operatorname{Pr}(B))^{n-1}}-v(\operatorname{Pr}(B)) \\
& \quad=\frac{\eta\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)}{(1-\operatorname{Pr}(B))^{n-1}}-\eta(\operatorname{Pr}(B))-\frac{\log \left(1-\alpha_{n}\right)}{(1-\operatorname{Pr}(B))^{n-1}} \\
& \quad-\left(\frac{1}{(1-\operatorname{Pr}(B))^{n-1}}-1\right)\left(\log \operatorname{Pr}(B)+\frac{\gamma}{\ln 2}\right) \\
& \quad<\frac{\eta\left(\operatorname{Pr}(B)\left(1-\alpha_{n}\right)\right)}{(1-\operatorname{Pr}(B))^{n-1}}-\frac{\log \left(1-\alpha_{n}\right)}{(1-\operatorname{Pr}(B))^{n-1}}-\frac{(n-1) \operatorname{Pr}(B)}{1-(n-1) \operatorname{Pr}(B)} \log \operatorname{Pr}(B) \\
& \quad<\frac{\eta\left(d^{n}\left(1-\alpha_{n}\right)\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{\log \left(1-\alpha_{n}\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{n(n-1) d^{n}}{1-(n-1) d^{n}} \log d \\
& \quad<\frac{\eta\left(d^{n}\left(1-\alpha_{n}\right)\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{\log \left(1-\alpha_{n}\right)}{\left(1-d^{n}\right)^{n-1}}-n^{2} d^{n} \log d
\end{aligned}
$$

and

$$
\left.\begin{array}{l}
\frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right)\right)-v(\operatorname{Pr}(B)) \\
\quad>\left(1-\sum_{\lambda} \operatorname{Pr}\left(B_{[1, \lambda]}\right)\right) v\left(\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)-v(\operatorname{Pr}(B)) \\
\quad=\left(1-\sum_{\lambda} \operatorname{Pr}\left(B_{[1, \lambda]}\right)\right) \eta\left(\operatorname{Pr}(B)\left(1+\alpha_{n}\right)\right)-\eta(\operatorname{Pr}(B)) \\
\quad-\left(1-\sum_{\lambda} \operatorname{Pr}\left(B_{[1, \lambda]}\right)\right) \log \left(1+\alpha_{n}\right)+\sum_{\lambda} \operatorname{Pr}\left(B_{[1, \lambda]}\right)\left(\log \operatorname{Pr}(B)+\frac{\gamma}{\ln 2}\right) \\
\quad>-\eta(\operatorname{Pr}(B))-\log \left(1+\alpha_{n}\right)+\frac{n}{2} \sqrt{\operatorname{Pr}(B)} \log \operatorname{Pr}(\boldsymbol{B}) \\
\quad>
\end{array}\right) \eta\left(d^{n}\right)-\alpha_{n}+\frac{\log d}{2} n^{2} d^{n / 2} . ~ \$
$$

Hence we have

$$
\left|\frac{1-\sum_{\lambda \in \Lambda(B)} \operatorname{Pr}\left(B_{[1, \lambda]}\right)}{(1-\operatorname{Pr}(B))^{n-1}} v\left(\operatorname{Pr}(B)\left(1 \pm \alpha_{n}\right)\right)-v(\operatorname{Pr}(B))\right|<A_{n}
$$

where

$$
A_{n}=\frac{\eta\left(d^{n}\left(1+\alpha_{n}\right)\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{\log \left(1-\alpha_{n}\right)}{\left(1-d^{n}\right)^{n-1}}-\frac{\log d}{2} n^{2} d^{n / 2}
$$

3. Estimation of entropy

From Theorem $1.2\left(E\left[\log R_{n}\right]+\gamma / \ln 2\right) / n$ is close to the entropy for sufficiently large n. If T is the left-shift defined by $(T x)_{k}=x_{k+1}$, then by the ergodicity we have $(1 / M) \sum_{0 \leq i \leq 1} \log R_{n}\left(T^{i} x\right)$ converges to $E\left[\log R_{n}\right]$ almost surely as $M \rightarrow \infty$. Hence we approximate the entropy by

$$
H(n, M) \equiv \frac{1}{n}\left(\frac{1}{M} \sum_{0 \leq i \leq M-1} \log R_{n}\left(T^{i} x\right)+\frac{\gamma}{\ln 2}\right)
$$

The conventional formula with no correction term is given by

$$
H^{\prime}(n, M) \equiv \frac{1}{n} \frac{1}{M} \sum_{0 \leq i \leq M-1} \log R_{n}\left(T^{i} x\right)
$$

In the following we compare the effectiveness of $H(n, M)$ and $H^{\prime}(n, M)$.

Fig. 1. Test result for Example 3.1 for $M=10000$.

Fig. 2. Test result for Example 3.2 for $M=10000$.
Example 3.1. Consider the Bernoulli process associated with the $(1 / 4,3 / 4)$ product measure. Note that $h=-1 / 4 \log _{2}(1 / 4)-3 / 4 \log _{2}(3 / 4)=0.811278 \cdots$. For generating the typical point of Bernoulli process x, we use the random number generator employed in Fortran 90 . Here $M=10000$ is rather large to demonstrate the accuracy of the theoretical prediction and in practical applications a sample of small size will do. The test result is given in Fig. 1.

Example 3.2. Consider the Bernoulli process associated with the ($1 / 8,7 / 8$) product measure. Note that $h=-1 / 8 \log _{2}(1 / 8)-7 / 8 \log _{2}(7 / 8)=0.543564 \cdots$. We test this example by the same method as before. The test result is given in Fig. 2.

Acknowledgement. The author thank Prof. Geon Ho Choe, Prof. S. Kotani and the referee for many helpful suggestions and comments.

References

[1] G.H. Choe and D.H. Kim: Average convergence rate of the first return time, Colloq. Math. 84/85 (2000), 159-171.
[2] G.H. Choe and D.H. Kim: The first return time test of pseudorandom numbers, J. Comput. Appl. Math. 143 (2002), 263-247.
[3] M. Kac: On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010.
[4] I. Kontoyiannis: Asymptotic recurrence and waiting times for stationary processes, J. Theor. Prob. 11 (1998), 795-811.
[5] U. Maurer: A universal statistical test for random bit generators, J. Cryptology, 5 (1992), 89-105.
[6] D. Ornstein and B. Weiss: Entropy and data compression schemes, IEEE Trans. Inform. Theory, 39 (1993), 78-83.
[7] P. Shields: The interactions between ergodic theory and information theory, IEEE Trans. Inform. Theory, 44 (1998), 2079-2093, Information theory: 1948-1998.
[8] A.D. Wyner and J. Ziv: Some asymptotic properties of the entropy of stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory, 35 (1989), 12501258.
[9] A.J. Wyner: Strong matching theorems and applications to data compression and statistics, Ph.D. thesis, Stanford Univ., 1993.
[10] A.J. Wyner: More on recurrence and waiting times, Ann. Appl. Probab. 9 (1999), 780-796.
[11] J. Ziv and A. Lempel: A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory, 23 (1977), 337-343.

School of Mathematics
Korea Institute for Advanced Study Seoul 130-722 Korea
e-mail: kimdh@kias.re.kr

[^0]: 2000 Mathematics Subject Classification : Primary 94A17, secondary 37M25.

