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1. Introduction

The category of finite branched coverings of a given complex projective manifold
is equivalent to the category of finite extensions/C( ) of the rational function

field C( ) of . Hence the study of finite branched coverings of is nothing but
a geometric study of extensions of algebraic function fields. In Namba [8], we con-
structed and studied the moduli space of equivalence classes of finite branched cover-
ings of the complex projective lineP1 = P1(C). If we want to compactify the moduli
space, we are obliged to consider degenerations of branchedcoverings.

In this paper, we study degenerating families of finite branched coverings ofP1

and P = P (C) ( ≥ 2) the -dimensional complex projective space. In order to
observe the degeneration, it is useful to introduce a picture which topologically repre-
sents a finite branched covering of the complex projective line. In §3, we call such a
picture a Klein picture, since we can find such pictures in Klein [5]. In §5 (resp.§7),
we assert that the topological type of the central fiber of a degenerating family of fi-
nite branched coverings ofP1 (resp. P ( ≥ 2)) is completely determined by that
of the central branch divisor and the permutation monodromyof the general fiber. In
§6, we prove (Theorem 8) that the topological structure of a degenerating family of
finite branched coverings ofP1 can be determined by the permutation monodromy of
the general fiber and the braid nomodromy of the family. Some results of this paper
were anounced in Namba [10].

2. Terminology

For a given connected complex manifold , a finite branched covering of is
by definition a finite proper holomorphic mapping

: −→

of an irreducible normal complex space onto A ramification point of is
a point of such that is not biholomorphic around the point. The image by
of a ramification point is called a branched point of . The set of all ramification
points (resp. branch points) is denoted by (resp. ). This is ahypersurface of
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(resp. ). The mapping

: − −1( ) −→ −

is a finite unbranched covering. Its mapping degree is denoted by deg( ) and is called
the degree of . For a hypersurface of , a finite branched covering is said to
branch at most at if is contained in . Finite branched coverings : −→
and ′ : ′ −→ are said to be isomorphic if there is a biholomorphic mapping
ψ : −→ ′ such that = ′ · ψ. In this case, we denote ≃ ′. Finite branched
coverings : −→ and ′ : ′ −→ ′ are said to be equivalent (resp. topo-
logically equivalent) if there are biholomorphic mappings(resp. orientation preserving
hemeomorphisms)ψ : −→ ′ and ϕ : −→ ′ such thatϕ · = ′ · ψ. In this
case, we denote ∼ ′ (resp. ∼ ′ (top.)).

Theorem 1 (Grauert-Remmert [4]). Let be a hypersurface of a connected
complex manifold and ′ : ′ −→ − be a finite unbranched covering.
Then there exists a unique(up to isomorphisms) finite covering : −→ which
branches at most at and is an extension of′.

A topological version of Theorem 1 is given in Fox [3]. Theorem 1 asserts that
the correspondence ←→ ′ gives a categorical equivalence between finite un-
branched coverings of − and finite coverings of branching at most at . Thus
we can apply terminology of finite unbranched coverings of− to finite coverings
of branching at most at ; for example, covering transformations, Galois coverings,
abelian coverings, cyclic coverings, etc.

Corollary 1. There is a one-to-one correspondence between the set of all iso-
morphism classes of finite coverings of branching at most at and the set of all
conjugacy classes of subgroups of finite index of the fundamental groupπ1( − 0)
of − .

3. Monodromy representations and Klein pictures

Let : −→ be a finite branched covering of a connected complex manifold
of degree branching at most at a hypersurface of . Take a reference point

0 of − and put −1( 0) = { 1 . . . }. The homotopy class [γ] of a loop γ in
− starting from 0 gives the homotopy class of the pull-back over ofγ starting

from every point ( = 1 . . . ). Hence its end point ′ is determined. Thus we
obtain a mapping

: π1( − 0) −→
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which maps [γ] to the permutation → ′, where is the -th symmetric group. We
define the product of pathesα and β as αβ, where the end point ofα is the initial
point of β. We also define the product of permutations as in the following example:

(
1 2 3
2 3 1

)(
1 2 3
2 1 3

)

=

(
1 2 3
1 3 2

)

The mapping is then a homomorphism and is called the (permutation) mon-
odromy representation of the covering . Note that the representation class [ ] of

does not depend on the choice of the arrangement of the points1 . . . , nor
the choice of the reference point0. That is, if one changes the arrangement of the
points 1 . . . or one chooses another reference point, then is changed to

−1 for a fixed permutation . Note also that the image of is a transitive
subgroup of , for − −1( ) is connected. The image is called the monodromy
group of the covering . Monodromy groups of finite branched coverings correspond
to Galois groups of algebraic equations. By the theorem of Grauert-Remmert and its
corollary, we easily have the following 2 theorems:

Theorem 2. (1) Finite branched coverings and ′ of are isomorphic if
and only if = ′ and [ ] = [ ′ ]. ([ ] is the representation class of .)
(2) Finite branched coverings of and ′ of ′ are equivalent(resp. topolog-
ically equivalent) if and only if there is a biholomorphic mapping(resp. orientation
preserving homeomorphism) ϕ : −→ ′ such thatϕ( ) = ′ and [ ′ · ϕ∗] =
[ ] .

Theorem 3. For a given homomorphism : π1( − 0) −→ whose im-
age is transitive, there exists a unique(up to isomorphisms) covering : −→ of
degree branching at most at such that = .

However it is a difficult problem in general to construct covering : −→ in
the theorem from a given concretely (analytically or algebraically). The problem for
the case =P1 the complex projective line and ={0 1 ∞} is studied in number
theorey (see Schneps [11]).

We construct branched coverings of the complex projective line P1 topologically
for any given , by drawing a picture which we call a Klein picture, the idea of
which comes from Klein [5]. Let ={ 1 . . . } be a set of distinct points ofP1.
Let : −→ P1 be a covering of degree branching at most at . We draw a simple
loop in P1 passing through all points , = 1. . . , oriented in this order which
bounds a domain (the inside area) clockwisely (see Fig. 1). We regard the inside area
of the loop as a continent and the outside area as an ocean. We assume that the refer-
ence point 0 is contained in the continent. We then pull them back over thecovering

. Then we get a checked pattern of continents and oceans on . Wecall such a
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pattern the Klein picture of the covering . The Klein picturerepresents the branched
covering topologically. Starting from a homomorphism :π1(P1 − 0) −→
such that Im is transitive, we construct the branched covering in Theorem 2 topo-
logically by drawing its Klein picture as follows: Put

= (γ ) ∈ = 1 . . .

whereγ are lassos surrounding the points as in Fig. 2. Note that

π1(P1− 0) = 〈γ1 . . . γ | γ · · · γ1 = 1〉
· · · 1 = 1∈

Thus the representation is determined by the permutations .Decompose each
into mutually prime cyclic permutations whose length are . Put (by Riemann-
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Hurwitz formula)

=
1
2

[∑

( − 1)− 2
]

+ 1

We prepare an oriented compact surface of genus . We then drawthe Klein pic-
ture, that is, a checked pattern of continents and oceans on which is compatible
with . Here, the compatibility means that, for the point of−1( ) which cor-
responds to , continents and oceans are arranged alternately and counterclock-
wisely around .

EXAMPLE 1. Put = 3, = 3 and

1 = (γ1) = (1 2) 2 = (γ2) = (1 3) 3 = (γ3) = (1 2 3)

The genus of is 0. The Klein picture in this case is as in Fig. 3,in which the points
denote the points in −1( ) and the circled number© denotes the -th continent.

Observe that the points 1, 2 and 3 are seaside cities (vertices) of every continents ar-
ranged colckwisely in this order, while for example the continents 1©, 2© and 3© are
arranged counterclockwisely in this order around the city 3, which means 3 = (1 2 3).
(Conversely, we can read the monodromy from the Klein picture.) Put

: −→ P1 ( ) 7−→

where is the Riemann surface of the algebraic function = ( ) given by the equa-
tion 3 − 3 − = 0. Then 1 = −2, 2 = 2, 3 =∞ and = .

EXAMPLE 2. Put = 3, = 3 and

= (γ ) = (1 2 3) = 1 2 3

The genus of is 1. The Klein picture in this case is as in Fig. 4.Put
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: −→ P1 ( ) 7−→

where is the Riemann surface of the algebraic function = ( ) given by the equa-
tion 3 − 3 + 1 = 0. Then is a cyclic covering such that = .

EXAMPLE 3. Put = 4, = 3 and

1 = (γ1) = (1 3 2) 2 = (γ2) = (1 3 2)

3 = (γ3) = (1 2 3) 4 = (γ4) = (1 2 3)

The genus of is 2. The Klein picture in this case is as in Fig. 5.Put

: −→ P1 ( ) 7−→

where is the Riemann surface of the algebraic function = ( ) given by the equa-
tion 3 − 2( − 1)2( − 2) = 0. Then is a cyclic covering such that1 = 0, 2 = 1,

3 = 2, 4 =∞ and = .

4. Families of finite branched coverings

Let be a connected complex manifold. A family of connected complex mani-
folds with the parameter space is by definition a smooth holomorphic mapping

π : −→

of a connected complex manifold onto a connected complex manifold such that
every fiber is connected. Here the smoothness means that the Jacobian matrix π is of
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maximal rank at every point of . Every fiber =−1( ) of ∈ is a connected
complex manifold. We denote

= { } ∈

Let = { } ∈ be a family of connected complex manifolds. A family of finite
branched coverings of ={ } ∈ is by definition a finite branched covering

: −→

such that
(i) 6⊂ for every ∈ ,
(ii) there is a hypersurface of such that

= : = −1( ) −→

is a finite branched covering of for every∈ − .
(iii) For any and ′ in − , and ′ are topologically equivalent.

We denote ={ }. In particular if π : −→ is a holomorphicP -bundle,
then we call : −→ a family of finite branched coverings ofP .

REMARK. and ( ∈ − ) have only normal singularity, while (∈ ),
the degenerated coverings, may not be normal. In this sense,our definition of degen-
erations is different from the usual one.

We are interested in for ∈ , that is, degenerated coverings. In the subse-
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quent sections, we restrict our consideration to degenerating families of finite branched
coverings ofP and a disc inC.

EXAMPLE 4. Put ={ (( 0 : 1 : 2 : 3) ( 0 : 1)) ∈ P3 × P1 | 0
3
1 + 1

2
1 0 +

2 1
2
0 + 3

3
0 = 0}, : (( 0 : 1 : 2 : 3) ( 0 : 1)) ∈ 7−→ ( 0 : 1 : 2 : 3) ∈ P3,

where ( 0 : 1 : 2 : 3) and ( 0 : 1) are homogeneous coordinate systems ofP3

and P1, respectively. Then is non-singular and is a branched covering of degree 3
whose branch locus is the discriminant locus

= { ( 0 : 1 : 2 : 3) ∈ P3 | 2
1

2
2 − 4 0

3
2 + 18 0 1 2 3− 4 3

1 3 − 27 2
0

2
3 = 0}

Let P3∗ be the dual projective space ofP3 and put

= { (( 0 : 1 : 2 : 3) ( 0 : 1 : 2 : 3)) ∈ P3∗ × P3 | 0 0 + 1 1 + 2 2 + 3 3 = 0}
π : (( 0 : 1 : 2 : 3) ( 0 : 1 : 2 : 3)) ∈ 7−→ ( 0 : 1 : 2 : 3) ∈ P3∗

π′ : ( 0 : 1 : 2 : 3) ( 0 : 1 : 2 : 3)) ∈ 7−→ ( 0 : 1 : 2 : 3) ∈ P3

where (0 : 1 : 2 : 3) is a homogeneous coordinate system ofP3∗. Then π is
a P2-bundle onP3∗. Let be the normalization of the fiber product ×P3 of
π′ : −→ P3 and : −→ P3. Let

: −→

be the composition of the normalization

−→ ×P3

and the projection

×P3 −→

Then ={ } ∈P3∗ is a family of branched coverings ofP2. ( : −→ π−1( ) is the
restriction to the planeπ−1( ) in P3 of .)

We explain this as follows: Let

3 = { (1 : : 2 : 3) ∈ P3∗ | ∈ P1}

be the rational normal curve, which is the image curve of the holomorphic imbedding

| | : P1 −→ P3∗

of the unique complete linear system| | of degree 3 ( is a divisor onP1 of de-
gree 3). is then the dual variety of3. That is, is the set of all planes inP3∗
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which contain tangent lines to3. Every divisor in| | is the intersection of 3 with a
(unique) plane inP3∗. In this sense,| | is identified withP3 = (P3∗)∗. By the unique-
ness of the complete linear system| | of degree 3, every automorphism ofP1 acts on
| | = P3 (resp. onP3∗) as a projective transformation, which maps to (resp.3

to 3). Let be the ruled surface inP3∗ consisting of tangent lines to3.
For any two points and′ in P3∗ − , there is an automorphismϕ of P1 such

that ϕ( ) = ′. In fact, there are just 3 points1, 2 and 3 in 3 (resp.
′

1,
′

2 and
′

3 in 3) such that the osculating plane at (resp. at
′

) to 3 passes through

(resp. ′) for = 1, 2, 3. Thenϕ ∈ Aut(P1) such thatϕ( ) =
′

( = 1, 2, 3) maps
to ′. Thus Aut(P1) acts onP3∗ − transitively. (The orbits of the group action of

Aut(P1) on P3∗ are P3∗ − , and 3.) The projectionπ with the center maps

3 onto a rational plane cubic curve with a node and 3 flexesπ ( 1), π ( 2) and
π ( 3). The plane projective transformation induced byϕ maps to ′ . The branch
locus (resp. ′ ) of (resp. ′ ) is the dual curve of (resp. ′ ) which is a ra-
tional plane quartic curve with 3 simple cusps. Hence the plane projective transforma-
tion induced byϕ maps to ′ . Now, ϕ induces an automorphism of the projective
manifold which, by the above discussion, induces an equivalence of and ′ .

A similar discussion shows that if ∈ − 3 ( say = (0 : 1 : 0 : 0) ), then
is the union of a rational plane cubic curve with 1 simple cuspand a line pass-

ing through a flex of the curve. For any points and′ in − 3, and ′ are
equivalent.

If ∈ 3 ( say = (0 : 0 : 0 : 1) ), then is the union of an irreducible conic and
a double tangent line to the conic. In this case, is not irreducible.

5. Degenerating families of finite branched coverings ofP1

Let

= (0 ǫ) = { ∈ C | | | < ǫ}

be a disc and ∗ = − {0} be the punctured disc. A finite branched covering

: −→ × P1

is called a degenerating family of finite branched coveringsof P1 and is denoted by
= { }, if the following three conditions are satisfied:

(1) × P1 * for every ∈
(2) For every ∈ ∗, × P1 meets at points transversally with . ( is constant
for ∈ ∗ )
(3) For every ∈ ∗,

= : = −1( × P1) −→ × P1
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is a covering ofP1 of degree = deg( ) branching at = ∩ ( × P1) =
{ 1( ) . . . ( )} (see Fig. 6).

The central fiber 0 = −1(0 × P1) is a degeneration of a general fiber for
6= 0. The Klein picture of degenerates to a picture on0, which we call the Klein

picture of 0. This represents (0 0) topologically.

EXAMPLE 5. Let be the Riemann surface of the algebraic function = ( )
given by the equation 3− 3 − = 0. Put

: −→ P1 ( ) 7−→

Then ={ } is a degenerating family of branched coverings ofP1. For a fixed non-
zero , the monodromy representation and the Klein picture ofare given as same
as in Example 1. Note that1( ) = −2 3/2

2( ) = 2 3/2 and 3( ) = ∞. As −→
0, both branch points 1( ) and 2( ) converge to 1(0) = 2(0) = 0, so the pathes
connecting the points 1 and 2 in Fig. 3 converge to the point 1 =2, and we get the
Klein picture of 0 as in Fig. 7. In fact 0 : 3 − = 0.
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EXAMPLE 6. Let be the Riemann surface of the algebraic function = ( )
given by the equation 2 − ( − )( − 1) = 0. Put

: −→ P1 ( ) 7−→

Then ={ } is a degenerating family of branched double coverings ofP1. Note
that 1( ) = 0, 2( ) = , 3( ) = 1 and 4( ) = ∞. For a fixed non-zero , the mon-
odromy representation is given by = (γ ) = (1 2) for = 1, 2, 3, 4. The
Klein picture of is as in Fig. 8 in which the continent2© is the upper backside of
the torus. As −→ 0, both 1( ) and 2( ) converge to 1(0) = 2(0) = 0, so the pathes
connecting the points 1 and 2 in Fig. 8 converge to the point 1 =2, and we get the
Klein picture of 0 as in Fig. 9 in which the continent2© is also the upper backside.
In fact, 0 : 2 − 2( − 1) = 0.

EXAMPLE 7. Let be the Riemann surface of genus 1 of the algebraic function
= ( ) given by the equation 2− ( − )( − 1)( − 1− ) = 0. Put

: −→ P1 ( ) 7−→
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Then ={ } is a degenerating family of branched double covering ofP1. Note that

1( ) = 0 2( ) = 3( ) = 1 4( ) = 1 +

For fixed with 0 < | | < 1, the monodromy representation is a given by
= (γ ) = (1 2) for = 1, 2, 3, 4. The Klein picture of is as same as that

in Fig. 8 for Example 6. As −→ 0, 2( ) and 4( ) converge to 1(0) = 0, 3(0) = 1,
respectively, so the pathes connecting the points 1 to 2 and 3to 4 in Fig. 8 converge
to 1 = 2 and 3 = 4, respectively. Hence we get the Klein picture of 0 as in Fig. 10 in
which the continent2© is also the upper backside. In fact

0 : 2 − 2( − 1)2 = 0

which is not globally irreducible.

EXAMPLE 8. Let be the Riemann surface of genus 1 of the algebraic function
= ( ) given by the equation 2 − ( − )( − 2 ) = 0. Put

: −→ P1 ( ) 7−→

As −→ 0, the Klein picture of converges to that of0 as in Fig. 11, in which2©
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are the upper backside.

0 has a cusp singularity at the point 1 = 2 = 3. In fact

0 : 2 − 3 = 0

Now we assume and put

1(0) = · · · = 1(0) = 0
1

1+1(0) = · · · = 1+ 2(0) = 0
2

· · · · · ·
1+···+ −1+1(0) = · · · = 1+···+ (0) = 0

where ρ ≥ 1 (ρ = 1 . . . ), 1 + · · ·+ = and 0
1 , 0

2 . . . 0 are mutually distinct.
We regard

0 = ∩ (0× P1) = { 0
1

0
2 . . . 0 }

not as a point set but as a divisor onP1:

0 = 1
0
1 + 2

0
2 + · · · + 0

We draw a simple loop inP1 passing through all points0
1 . . . 0 oriented in this

order which bounds a domain clockwisely as in Fig. 1. We call the Klein picture of

0 for the checked patern on0 which is the pull-back of the picture over0.
Now, we show that topologically, the degenerating curve0 = −1(0×P1) can be

described by the divisor 0 and the monodromy = , where∈ ∗ is a fixed
point.

Let γ ( ) (1≤ ≤ ) be the lasso around ( ) as in Fig. 2 and put

1 = (γ1) . . . = (γ )

Let ρ (1≤ ρ ≤ ) be the subgroup of generated by

1+···+ ρ−1+1 . . . 1+···+ ρ−1+ ρ
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ρ may not be a transitive subgroup of . We denote

A
ρ
1 . . . Aρ

ρ

the orbits of ρ on {1 2 . . . }. ρ is the number of orbits. Put

0
1 = 1 1−1 · · · 1

0
2 = 1+ 2 1+ 2−1 · · · 1+1

· · · · · ·
0 = 1+···+ 1+···+ −1 · · · 1+···+ −1+1

and

=
〈

0
1 . . . 0

〉

the subgroup of generated by0
1 . . . 0 Let

γ0
1 . . . γ0

be lassos around the points

0
1 . . . 0

respectively in 0× P1 as in Fig. 2. Put

0(γ0
ρ) = 0

ρ (1≤ ρ ≤ )

Then

0 : π1(0× P1− { 0
1 . . . 0 } 0) −→

is a homomorphism.

DEFINITION 1. For a permutation ∈ , if is written as = 1 · · · , the
product of mutually prime cyclic permutations, then we callthe number = ( ) the
weight of . ( ( ) depends also on . For example, if = 4 and = (1 2 3),then

( ) = ((1 2 3)(4)) = 2.)

Let χ( ) denote the Euler characteristic of .

Theorem 4. Let 6= 0. Then the following(1)–(4) hold:
(1) χ( ) = 2− 2 = 2 − +

∑

=1 ( ).
(2) χ( 0) = 2 − { −∑ρ=1( ρ − 1) } +

∑

ρ=1 ρ.
(3) χ( 0)− χ( ) =

∑

ρ=1( ρ − 1) +
∑

ρ=1 ρ −
∑

=1 ( ).
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(4) χ( 0) ≥ χ( ).

Proof. (1) The Klein picture of the covering : −→ P1 gives a cellular de-
composition of . The number of vertices is

∑

=1 ( ), the number of sides is
and the number of faces is 2 . Hence

χ( ) = 2 − +
∑

=1

( )

(2) Let ˆ be the (oriented) graph on of the pull-back by of the cycle

1( ) −→ 2( ) −→ · · · −→ ( ) −→ 1( )

Then ˆ is the graph whose points and lines are vertices and sides, respectively, of
the Klein picture of . Every point of̂ has been numbered as a vertix of the Klein
picture. We put the circled number© on every sides of -th continent. Thus we get
a graph ˆ with numbered points and circle numbered lines.

Let ρ (1 ≤ ρ ≤ ) be the (oriented) graph on of the pull-back by of the
tree

1+···+ ρ−1+1( ) −→ 1+···+ ρ−1+2( ) −→ · · · −→ 1+···+ ρ−1+ ρ
( )

Then every ρ is a subgraph ofˆ . Let

1 + · · · + ρ−1 + 1≤ < + 1≤ 1 + · · · + ρ−1 + ρ

If the permutaion and +1 are witten as, say,

=

(· · · · · ·
· · · · · ·

)

+1 =

(· · · · · ·
· · · · · ·

)

then there are lines© and © in ρ which have the starting point ( a point of

ρ ∩ −1( ) ), and so are connected at the point . Moreover there is a line © in

ρ such that the lines© and© have the same end point + 1, and so are connected
at the point + 1. Hence the lines©, © and© are connected in ρ.

Now the Klein picture of 0 gives a cellular decomposition of 0 which can be
obtained from that of by converging every connected component of the graphs

ρ (1 ≤ ρ ≤ ) to a point. Hence the number of vertices is
∑

ρ=1 ρ, the number
of sides is −∑ρ=1( ρ − 1) and the number of faces is 2 . Hence

χ( 0) = 2 −
{

−
∑

ρ=1

( ρ − 1)
}

+
∑

ρ=1

ρ

(3) This follows from (1) and (2).
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(4) For a graph , the following inequality holds:

≥ −

where is the number of points of , is the number of lines of and is the
number of connected components of . Here the equality holds if and only if every
component is a tree, that is, a graph without cycles.
We apply this to every graph ρ. Then

= ρ = ( 1+···+ ρ−1+1) + · · · + ( 1+···+ ρ−1+ ρ
)

= ρ = ( ρ − 1)

= ρ = ρ

Note that

∑

ρ=1

ρ =
∑

=1

( )

Hence by (3)

χ( 0)− χ( ) =
∑

ρ=1

ρ +
∑

ρ=1

ρ −
∑

ρ=1

ρ =
∑

ρ=1

( ρ + ρ − ρ) ≥ 0

Theorem 5. (1) −1
0 ( 0

ρ) consists of ρ points, which can be identified with
A
ρ
1 . . . Aρ

ρ
.

(2) Every 0
ρ (1 ≤ ρ ≤ ) induces a permutation 0

ρ : A
ρ −→ A

ρ. 0 has local
( 0

ρ ) irreducible components at the point corresponding toA
ρ.

(3) There is a natural one-to-one correspondence between the set of global irreducible
components of 0 and the set of orbits of =

〈
0
1 . . . 0

〉
on {1 . . . }. 0,

regarded as the representation to permutations on an orbit of on {1 . . . }, gives
the monodromy representation of the branched covering

0 · η : ˆ′
0 −→ 0× P1

where η : ˆ′
0 −→

′

0 is the normalization of the global irreducible component
′

0 of

0 corresponding to the orbit of .

Proof. (1) follows from the proof (2) of Theorem 4. For a sufficiently small | |,

1+···+ ρ−1+1( ) . . . 1+···+ ρ−1+ ρ
( )

are in a small neighborhood of0ρ. Hence the lassoγ0
ρ is homotopic to the product

γ 1+···+ ρ−1+ ρ
( ) · · · γ 1+···+ ρ−1+1( )
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Let

: = 0× P1 −→ = × P1

be the inclusion mapping. Then the fiber product× can be identified with 0.
Now, (2) and (3) of Theorem 5 follow from the following lemma,whose proof is
straightforward and is omitted.

Lemma 1. Let and be connected complex manifolds and: −→ be
a holomorphic mapping. Let : −→ be a finite unbranched covering of of
degree and be its monodromy representation. Let′ : × −→ be the
projection of the fiber product × onto . Then the followings hold:
(1) There is a one-to-one correspondence between the set of orbits of ·
∗(π1( 0)) on {1 . . . } and the set of connected components of× .

(2) For a connected component of × , ′ : −→ is a finite unbranched
covering of whose monodromy representation is equal to· ∗ regarded as the
representation to permutations on the orbit of · ∗(π1( 0)) on {1 . . . } cor-
responding to .

Theorem 6. The following four conditions are mutually equivalent:
(1) 0 is homeomorphic to for 6= 0.
(2) χ( 0) = χ( ) for 6= 0.
(3)

∑

ρ=1( ρ − 1) =
∑

=1 ( )−∑ρ=1 ρ.
(4)

∑

ρ=1( ρ − 1) =
∑

=1 ( )−∑ρ=1 ( 0
ρ).

Proof. If 0 is homeomorphic to , thenχ( 0) = χ( ). If χ( 0) = χ( ),
then every connected component of the graphsρ (1 ≤ ρ ≤ ) is a tree as is shown
in the proof of Theorem 4. When converges to 0, every connected component of the
graphs ρ (1 ≤ ρ ≤ ) converges to a point. This means that0 is homeomorphic to

. Next, note that

0
ρ = 0

ρ1 · · · 0
ρ ρ

where 0
ρ is the permutation on the orbitAρ induced by 0

ρ. Hence

( 0
ρ) = ( 0

ρ1) + · · · + ( 0
ρ ρ

)

In particular

( 0
ρ) ≥ ρ

Here the equality holds if and only if every0
ρ is a cyclic permutation. Hence,

by (2) of Theorem 5, the equality holds if and only if0 is locally irreducible at ev-



156 M. NAMBA AND M. TAKAI

ery point Aρ (1≤ ≤ ρ). Now, by (4) of Theorem 4, the following inequality holds:

∑

ρ=1

( ρ − 1) ≥
∑

=1

( )−
∑

ρ=1

ρ ≥
∑

=1

( )−
∑

ρ=1

( 0
ρ)

If

∑

ρ=1

( ρ − 1) =
∑

=1

( )−
∑

ρ=1

( 0
ρ)

then

∑

ρ=1

( ρ − 1) =
∑

=1

( )−
∑

ρ=1

ρ

Henceχ( 0) = χ( ) by Theorem 4.
Conversely, ifχ( 0) = χ( ), then 0 is homeomorphic to . In particular, 0

is locally irreducible at every pointAρ (1≤ ≤ ρ 1≤ ρ ≤ ). Thus

∑

ρ=1

( ρ − 1) =
∑

=1

( )−
∑

ρ=1

ρ =
∑

=1

( )−
∑

ρ=1

( 0
ρ)

REMARK. If one of the conditions of Theorem 6 is satisfied, then0 is non-
singular. In fact, if one of the conditions of Theorem 6 is satisfied, then every con-
nected component of every graphρ (1 ≤ ρ ≤ ) is a tree. 0 is obtained from
converging every tree to a point. Hence0 is still a manifold. (The total space is
also non-singular.)

This can be also shown in the following way: The arithmetic genus is constant.
In particular, the arithmetic genus of0 is equal to the geometric genus of (6= 0).
If 0 is singular, then the geometric genus of0 is less than the arithmetic genus, a
contradiction to the assumptionχ( 0) = χ( ). On the other hand, ifχ( 0) > χ( ),
then the graph contains a cycle. As−→ 0, such a cycle converges to a point ,
while, for a connected open neighborhood of ,− , which has two connected
components, moves homeomorphically. Hence0 is locally a cone with the vertex .
Thus 0 can not be a manifold, so 0 is singular.

6. Topological equivalence of families

In this section we show that the topologial structure of the degenerating family
= { } of finite branched coverings ofP1 is not determined by alone, but de-

pends also on the braid monodromyθ(δ). Here

δ : 7−→ = 0 (0≤ ≤ 2π)
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σ

1 − 1 + 1 + 2

Fig. 12.

is the loop around = 0. (0 ∈ ∗ is a fixed point.) In this section we assume for
simplicity that ( ) 6=∞ for every ∈ and 1≤ ≤ . Then

{ 1( 0 ) . . . ( 0 )}0≤ ≤2π

gives an (Artin) braid of strings, which is called the braid monodromy of the curve
around = 0 and is denoted byθ(δ). The braidθ = θ(δ) can not be arbitrary. It

is given by a complex analytic curve . So such a braid we call a complex analytic
braid. We fix a reference point0 ∈ ∗ and put

= ( 0) for 1≤ ≤

Then the Artin braid group naturally acts on the fundamentalgroup
π1(P1− { 1 . . . } 0) as follows:

σ (γ ) = γ−1γ +1γ

σ (γ +1) = γ

σ (γ ) = γ ( 6= + 1)

whereγ ( = 1 . . . ) are the lassos as in Fig. 2 andσ ( = 1 . . . − 1) are the
generators of defined as in Fig. 12.

A theorem of Zariski-van Kampen (see e.g. Dimca [2]) asserts

Theorem 7 (Zariski-van Kampen).

π1( × P1− 0)

= 〈γ1 . . . γ | γ · · · γ1 = 1 θ(δ)γ = γ (1≤ ≤ )〉

whereγ are lassos as inFig. 2 for 0 : 0 −→ P1.

The monodromy representation of : −→ × P1 is equal to 0 =
0
.
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By Theorem 7, 0 satisfies

0 · θ(δ) = 0

DEFINITION 2. = { } and ′ = { ′

′} are said to be topologically equivalent if
there are orientation preserving homeomorphismsψ, ϕ and η which make the follow-
ing diagram commutative:

ψ−−−−→ ′


y



y

′

× P1 ϕ−−−−→ ′ × P1



y



y

η−−−−→ ′

Using fundamental results in the theory of fiber bundles (seeSteenrod [12]), we
get the following theorem, which can be regarded as a branched covering version of a
theorem in Matsumoto-Montesinos [6]:

Theorem 8. There exists a one to one correspondence between{topological
equivalence class of = { }, where 0 ( 0 6= 0) has the degree and
branched points 1 . . . } and {([ ] θ) | [ ] is the representation class of

: π1(P1− { 1 . . . } 0) −→ such thatIm is transitive, andθ ∈ is a
complex analytic braid such that · θ = }/ . Here σ ∈ acts on ([ ] θ) as
follows:

σ([ ] θ) = ([ · σ−1] σθσ−1)

Proof. For two families

(1) = { } : −→ × P1 ′ = { ′} : ′ −→ ′ × P1

with the assumption

( × {∞}) ∩ = ∅ (
′ × {∞}) ∩ ′ = ∅

we may assume that there are0 ∈ C and
′

0 ∈ C such that

( × { 0}) ∩ = ∅ (
′ × { ′

0}) ∩ ′ = ∅

(For example, take 0 and
′

0 such that| 0| and | ′

0| are sufficiently large.)
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Take reference points0 ∈ ∗ and
′

0 ∈
′∗. Put

( 0 ×C) ∩ = { 1 = 1( 0) . . . = ( 0)}
(

′

0 × C) ∩ ′ = { ′

1 =
′

1(
′

0) . . .
′

=
′

(
′

0)}

There is an orientation preserving homeomorphism

(2) ξ : 0 ×C = C −→ ′

0 ×C = C

such that

ξ( ) =
′

( = 0 1 . . . )

We identify
′

with ( = 0 1 . . . ) throughξ.
Now ∗ × C − is a topological fiber bundle with the base space∗ and the

standard fiberC− { points} (see Dimca [2] and Matsuno [7]). Put

= {α : C −→ C | α is an orientation preserving homoemorphism such that

α( 0) = 0 α({ 1 . . . }) = { 1 . . . } }

is then a topological group with compact-open topology. Let be its connected
component of the identity. Put

π0( ) = /

Thenπ0( ) can be naturally identified with the Artin braid group of strings (see
Birman [1, p. 165]).

Now assume that the above two families

= { } : −→ × P1

′ = { ′} : ′ −→ ′ × P1

are topologically equivalent. We may assume that

η( 0) =
′

0

ϕ : 0 × C = C −→ ′

0 ×C = C

ϕ( 0) =
′

0

Let

χ : π1( 1) −→ π0( )

( resp.χ
′

: π1( 1) −→ π0( ) )
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be the characteristic homomorphism of the bundle

∗ × C− −→ ∗

( resp.
′∗ × C− −→ ′∗ )

(see Steenrod [12, p. 96]). Letδ (resp.δ
′

) be the loop around = 0 as before.
Two bundles

∗ ×C − and
′∗ × C−

over the base space∗ (which is homeomorphic to (0 1)× 1) and
′∗ are weakly

equivalent in the sence of Steenrod [12, p. 99]. Hence by Steenrod [12, p. 100], the
characteristicχ(δ) andχ

′

(δ
′

) of these bundles satisfy either

χ(δ) = χ
′

(δ
′

) or χ(δ) = χ
′

(δ
′

)−1

in π0( ). The equality here is up to conjugacy inπ0( ). But the last equality does
not occur by Steenrod [12, p. 100], forη is orientation preserving. Hence

(3) χ(δ) = χ
′

(δ
′

) (up to conjugacy)

But π0( ) can be identified with as noted above, Under the identification, χ(δ)
(resp.χ

′

(δ
′

)) is equal toθ(δ) (resp.θ
′

(δ
′

)), the braid monodromy. Hence by (3), there
is σ ∈ such that

(4) θ
′

(δ
′

) = σθ(δ)σ−1

Now the restriction

ϕ : 0 ×C = C −→ ′

0 ×C = C

of ϕ is an orientation preserving homeomorphism. By the assumption of topological
equivalence,

(5) [
0
· ϕ−1

∗ ] = [ ′
′
0

]

Consider an isotopyϕ (0≤ ≤ 1) on C such thatϕ0 = the identity andϕ1 = ϕ.
This gives a braidσ. We may write

ϕ = σ

Then by (5)

(6) [
0
· σ−1] = [ ′

′
0

]
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Now the braidσ in (4) and σ in (6) are the same. In fact, the braidσ in the
relation

θ
′

(δ
′

) = σθ(δ)σ−1

is nothing but

σ = ϕ : 0× C −→ ′

0 × C

if we regardθ
′

(δ
′

) andθ(δ) as elements ofπ0( ) (see Steenrod [12, p. 97–p. 98, p. 9–
p. 12]). On the other hand,σ in (6) is also

σ = ϕ : 0 × C −→ ′

0 × C

Hence the braidσ in (4) andσ in (6) are the same. Thus there isσ ∈ such that

([ ′ ] θ
′

(δ
′

)) = ([ · σ−1] σθ(δ)σ−1)

Conversely, for two families in (1), we identify ′ with ( = 0, 1 . . . )
throughξ in (2) and suppose that there isσ ∈ such that

([ ′ ] θ
′

(δ
′

)) = ([ · σ−1] σθ(δ)σ−1)

Sinceθ
′

(δ
′

) = σθ(δ)σ−1, the above discussion shows that two bundles

∗ ×C − and
′∗ ×C − ′

over ∗ and
′∗ respectively are weakly equivalent. That is, there are orientation pre-

serving homeomorphismϕ and η such that (i) the following diagram commutes:

∗ × C− ϕ−−−−→ ′∗ × C− ′



y



y

∗ η−−−−→ ′∗

(ii) η( 0) = ′
0 and

(iii) ϕ = σ : 0× C = C −→ ′
0 ×C = C.

Now the fiber bundle structures on∗×C− and
′∗×C− ′ can be naturally

extended to those on ∗×C and
′∗×C respectively (see Lemma 2 in Matsuno [7]).

Henceϕ can be extended to an orientation preserving homeomorphism

ϕ : ∗ × P1 −→ ′∗ × P1
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such that the following diagram commutes:

∗ × P1 ϕ−−−−→ ′∗ × P1



y



y

∗ η−−−−→ ′∗

We show thatϕ and η can be extended so that the following diagram commutes:

× P1 ϕ−−−−→ ′ × P1



y



y

η−−−−→ ′

We assume and put as in§5

1(0) = · · · = 1(0) = 0
1

( resp.
′

1(0) = · · · = ′

1
(0) =

′0
1 )

1+1(0) = · · · = 1+ 2(0) = 0
2

( resp.
′

1+1(0) = · · · = ′

1+ 2
(0) =

′0
2 )

· · · · · ·
1+···+ −1+1(0) = · · · = 1+···+ −1+ (0) = 0

(resp.
′

1+···+ −1+1(0) = · · · = ′

1+···+ −1+ (0) =
′0 )

where ν ≥ 1 (ν = 1 . . . ) 1 + · · ·+ = and 0
1 . . . 0 (resp.

′0
1 . . .

′0 ) are
mutually distinct.

We may assume that there is a continuous functionρ(| |) of | | such that
(i) ρ(| |) > 0 for | | > 0,
(ii) ρ(0) = 0,
(iii) ( 0

ν ρ(| |)) ( resp. (
′0
ν ρ(| |)) ) (ν = 1 . . . ) are mutually disjoint,

(iv) each ( 0
ν ρ(| |)) ( resp. (

′0
ν ρ(| |)) ) (ν = 1 . . . ) contains

1+···+ ν−1+1( ) · · · 1+···+ ν−1+ ν
( )

(resp.
′

1+···+ ν−1+1( ) · · · ′

1+···+ ν−1+ ν
( ))

Now Lemma 2 in Matsuno [7] implies that the bundle structure on ∗ × C−
coincides with that of the product bundle∗ × C outside

=
⋃

0<| |<ǫ

⋃

ν=1

( 0
ν ρ(| |))

Similar assertion holds for the bundle structure on
′∗ × C− ′ . Hence we may as-

sume thatϕ does not depend on outside . Thusϕ can be extended to an orientation
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preserving homeomorphism

ϕ : × C− { 0
1 . . . 0} −→ ′ × C− { ′0

1 . . .
′0 }

Moreover if we define

ϕ( 0
ν) =

′0
ν (ν = 1 . . . )

thenϕ is extended to an orientation preserving homeomorphism

ϕ : × P1 −→ ′ × P1

Put alsoη(0) = 0. Thenη is extended to an orientation preserving homeomorphism

η : −→ ′

and the following diagram commutes:

× P1 ϕ−−−−→ ′ × P1



y



y

η−−−−→ ′

Next, note that

ϕ( ) = ′

ϕ = σ : 0× C −→ ′
0× C

Note also that

ϕ · : −→ ′ × P1

is unbranched on
′ × P1− ′ . By Theorem 1,ϕ · can be extended to a branched

covering

′′

:
′′ −→ ′ × P1

ϕ · and
′′

coincides on
′×C− ′ and both are Fox completions of the same

unbranched coverings of
′×C− ′ . Hence by the uniqueness of the Fox completion

(see Fox [3]), there is a homeomorphism

ψ
′

: −→ ′′
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such that the following diagram commutes:

ψ
′

−−−−→ ′′

ϕ ·


y



y

′′

′ × P1 −−−−→ ′ × P1

Note thatψ
′

is orientation preserving. Now, the representaion class ofthe monodromy
of

′′

is equal to that ofϕ · , which is clealy equal to [ ·ϕ−1
∗ ]. By the assumption

[ · ϕ−1
∗ ] = [ · σ−1] = [ ′ ]

we have

[ ′′ ] = [ ′ ]

Hence there is a biholomorphic mapping

ψ
′′

:
′′ −→ ′

which makes the following diagram commutative:

′′ ψ
′′

−−−−→ ′

′′



y



y

′

′ × P1 −−−−→ ′ × P1

Now put ψ = ψ
′′ · ψ′

. Then

ψ : −→ ′

is an orientation preserving homeomorphism which makes thefollowing diagram com-
mutative:

ψ−−−−→ ′



y



y

′

× P1 ϕ−−−−→ ′ × P1

Hence ={ } and ′ = { ′} are topologically equivalent.

Considering a trivial family, we get the following corollary, which can be also de-
rived directly from Theorem 2.
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Corollary 2 (cf. Wajnryb [13]). There exists a one to one correspondence
between {topological equivalence class of : −→ P1 of degree with
branched points 1 . . . } and {[ ] | [ ] is the representation class of

: π1(P1− { 1 . . . } 0) −→ such thatIm is transitive}/ .

REMARK. As one can see in the proof of Theorem 8, we do not need to mention
the points{ 1 . . . } in the statement of Theorem 8 and its corollary, if we replace
π1(P1− { 1 . . . } 0) by the abstract group

〈γ1 . . . γ | γ · · · γ1 = 1〉

7. Degenerating families of finite branched coverings ofPm

Let = (0 ǫ) be a disc and

: −→ × P

be a finite branched covering. As in the case ofP1, is called a degenerating fam-
ily of finite branched covering ofP and is denoted by ={ } if the following 4
conditions are satisfied
(1) × P 6⊂ for every ∈ .
(2) For every ∈ ∗, ×P meets transversally with and putting (×P )∩ =
× , is a hypersurface ofP of degree . ( is constant for∈ ∗.)

(3) For every ∈ ∗,

= : = −1( × P ) −→ × P

is a covering ofP of degree = deg( ) branching at .

(4) For any points and′ in ∗, and ′ are topologically equivalent.
The central fiber 0 = −1(0× P ) is a degeneration of a general fiber for

6= 0.
We show that, topologically, the central fiber0 can be described by the central

branch divisor 0, where 0× 0 = (0× P ) ∩ and by the monodromy = ,
where ∈ ∗ is a fixed point. We explain this as follows:

Let be a general line inP . We may assume that meets transversally with
every for ∈ . Consider the restriction

: = −1( × ) −→ ×

of to = −1( × ). Then

Lemma 2. (1) Every point of( − −1( )) ∩ is a non-singular point of
.
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(2) For 6= 0, every point of −1(Reg( )∩ ( × )) is non-singular point of .
(Reg( ) is the set of non-singular points of the branch locus .)
(3) For 6= 0, the restriction

: = −1( × ) −→ ×

of is a branched covering of degree= deg( )

Proof. (1) Let ∈ ( − −1( ))∩ . Then there are local coordinate systems
( 1 . . . ) and ( 1 . . . ) around in and = ( ) in ×P such that
(i) is a local coordinate system in and (1 . . . ) is that in P , (ii) is locally
given by the equation2 = · · · = = 0 and (iii) is locally given by

: ( 1 . . . ) 7−→ ( 1 . . . ) = ( 1 . . . )

Then is locally given by

: ( 1) 7−→ ( 1) = ( 1)

In particular, is a non-singular point of .
(2) Let 0 6= 0 and ∈ −1(Reg( )∩ ( 0 × )). Then there are local coordinate
systems ( 1 . . . ) and ( 1 . . . ) around in and = ( ) in × P
such that (i) is a local coordinate system in around0 and ( 1 . . . ) is that in
P , (ii) is locally given by the equation 2 = · · · = = 0 and (iii) is locally
given by

: ( 1 2 . . . ) 7−→ ( 1 2 . . . ) = ( 1 2 . . . )

Then is locally given by

: ( 1) 7−→ ( 1) = ( 1)

In particular, is a non-singular point of . Moreover is a ramification point of

0
with the ramification index .

(3) For 6= 0, the branched covering

: −→ P

gives a linear system on . By Bertini’s theorem, is non-singular and globally
irreducible. Hence, by the proof of (2),

: −→ ×
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is a branched covering of degree = deg( )

This lemma shows that the singular locus Sing( ) of is contained in
−1(0× ( 0 ∩ )), which is a finite set. is globally irreducible. Let

µ : ˜ −→

be the normalization of . Since Sing( ) is a finite set,µ is a bijective holomor-
phic mapping. In fact, suppose that there are distinct points 1 and 2 in ˜ such
that

= µ( 1) = µ( 2) ∈ −1(0× ( 0 ∩ ))

Then there are disjoint connected open neighborhoods1 and 2 of 1 and 2 re-
spectively such that

µ( 1) = µ( 2) =

and is connected open neighborhood of in . Since−1(0×( 0∩ )) is a finite
set, we may assume that

−1(0× ( 0 ∩ )) ∩ = { }

We may assume that ∩ is connected for non-zero with| | sufficiently small.
Hence − { } is a connected 2-dimensional complex manifold. Sinceµ is the nor-
malization of ,

1 − { 1 } = 2− { 2 }

and

µ : 1 − { 1 } = 2 − { 2 } −→ − { }

is biholomorphic, a contradiction. Thusµ is bijective. The composition

· µ : ˜ −→ ×

is a degenerating family of finite branched coverings of =P1, which we denote

· µ = { }

by abuse of notation.

Lemma 3. (1) Let 0 = 01∪· · ·∪ 0 be the global irreducible decomposition
of 0. Then

0 = ( 01∩ 0 ) ∪ · · · ∪ ( 0 ∩ 0 )
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is the global irreducible decomposition of0 .
(2) Let Sing −1( 0) be the union of global irreducible components ofSing( 0) which
are hypersurfaces of 0. Then (i) Sing −1( 0) ⊂ −1

0 ( 0) and (ii) (Sing −1( 0)) ∩
0 = Sing( 0 ).

(3) For a point ∈ Sing( 0 ), let

( 0) = 1 ∪ · · · ∪

be the local irreducible decompoition of0 at . Then the local irreducible decompo-
sition of 0 at is given by

( 0 ) = ( 1 ∩ 0 ) ∪ · · · ∪ ( ∩ 0 )

Proof. (1) Let

µ : ˆ 0 −→ 0

(1≤ ≤ ) be the normalization of 0 . By the proof of (1) of Lemma 2,

0 · µ : ˆ 0 −→ 0× P ( 0 = 0 | 0 )

is a finite branched covering. By Bertini’s theorem, (0 ·µ )−1(0× ) is a non-singular
connected curve of̂ 0 . Hence −1

0 (0× ) is a global irreducible component of0

and

0 = −1
0 (0× ) =

⋃

=1

−1
0 (0× ) =

⋃

=1

( 0 ∩ 0 )

is the irreducible decomposition of0 .
(2) By (2) of Lemma 2, every component of Sing−1( 0) is a global irreducible com-
ponent 0 of −1

0 ( 01), where 01 is a global irreducible component of0. Let be
a point of 0 ∩ 0. Then is clearly a singular point of 0 . Conversely, if is
a singular point of 0 , then 0( ) = is on ∩ 01 for an irreducible component

01 of 0. Since is a general line, every point on a global irreduciblecomponent

0 with ∈ 0 of −1
0 ( 01) is a singular point of 0. Hence 0 is a component of

Sing −1( 0). This shows (i) and (ii) of (2).
(3) We use the same notation as in the proof of (1). Every is an open set of some

0 . Hence

µ : ˆ = µ−1( ) −→ (µ = µ | ˆ )

is the normalization of . (0 ·µ )−1(0× ) is a non-singular connected curve ofˆ ,
where 0 = 0 | . Hence −1

0 (0× ) = ∩ 0 is a local irreducible component
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of 0 at and

( 0 ) = ( 1 ∩ 0 ) ∪ · · · ∪ ( ∩ 0 )

is the local irreducible decomposition of0 . at .

Now we refer a theorem of Zariski-van Kampen. Let be a hypersurface of de-
gree inP . Take a general point0 in P − and let

π : P − { 0} −→ P −1

be the projection with the center0. Put

π̂ = π | : −→ P −1

be the restriction. Let be the branch locus of ˆπ. A theorem of Zariski-van Kampen
in this case can be described as follows (cf. Matsuno [7]).

Theorem 9 (Zariski-van Kampen).

π1(P − 0)

= 〈 γ1 . . . γ | γ · · · γ1 = 1 θ(δ )γ = γ (1≤ ≤ 1≤ ≤ ) 〉 ,

where γ are lassos as inFig. 2 on π−1( 0), the line deleted the point{ 0}, δ are
the generators ofπ1(P −1− 0) for a reference point 0 ∈ P −1− , and θ(δ ) are
the braid monodromy alongδ .

This theorem shows in particular that the monodromy of is equal to the
monodromy of for a general line passing through0. Hence, we conclude
by Theorems 4, 5, 6 and Lemma 3 that topologically, the central fiber 0 can be de-
termined by the central branched divisor0 and by the monodromy = , where
∈ ∗ is a fixed point.

REMARK. If deg 0 = deg ( 6= 0), then there is a surjective homomorphism

π1(P − 0 0) −→ π1(P − 0) −→ 0

(see Zariski [14]). In this case, 0 is irreducible and

dim Sing( 0) ≤ − 2

Hence degenerations such that

dim Sing( 0) = − 1
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happen only if deg 0 < deg ( 6= 0), that is, only if 0 has a multiple component
as a divisor.
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