DEGENERATING FAMILIES OF FINITE BRANCHED COVERINGS

Mакото NAMBA and Maкı TAKAI

(Received May 1, 2001)

1. Introduction

The category of finite branched coverings of a given complex projective manifold M is equivalent to the category of finite extensions $K / \mathbb{C}(M)$ of the rational function field $\mathbb{C}(M)$ of M. Hence the study of finite branched coverings of M is nothing but a geometric study of extensions of algebraic function fields. In Namba [8], we constructed and studied the moduli space of equivalence classes of finite branched coverings of the complex projective line $\mathbb{P}^{1}=\mathbb{P}^{1}(\mathbb{C})$. If we want to compactify the moduli space, we are obliged to consider degenerations of branched coverings.

In this paper, we study degenerating families of finite branched coverings of \mathbb{P}^{1} and $\mathbb{P}^{m}=\mathbb{P}^{m}(\mathbb{C})(m \geq 2)$ the m-dimensional complex projective space. In order to observe the degeneration, it is useful to introduce a picture which topologically represents a finite branched covering of the complex projective line. In $\S 3$, we call such a picture a Klein picture, since we can find such pictures in Klein [5]. In §5 (resp. §7), we assert that the topological type of the central fiber of a degenerating family of finite branched coverings of \mathbb{P}^{1} (resp. $\left.\mathbb{P}^{m}(m \geq 2)\right)$ is completely determined by that of the central branch divisor and the permutation monodromy of the general fiber. In $\S 6$, we prove (Theorem 8) that the topological structure of a degenerating family of finite branched coverings of \mathbb{P}^{1} can be determined by the permutation monodromy of the general fiber and the braid nomodromy of the family. Some results of this paper were anounced in Namba [10].

2. Terminology

For a given connected complex manifold M, a finite branched covering of M is by definition a finite proper holomorphic mapping

$$
f: X \longrightarrow M
$$

of an irreducible normal complex space X onto M. A ramification point of f is a point of X such that f is not biholomorphic around the point. The image by f of a ramification point is called a branched point of f. The set of all ramification points (resp. branch points) is denoted by R_{f} (resp. B_{f}). This is a hypersurface of
X (resp. M). The mapping

$$
f: X-f^{-1}\left(B_{f}\right) \longrightarrow M-B_{f}
$$

is a finite unbranched covering. Its mapping degree is denoted by $\operatorname{deg}(f)$ and is called the degree of f. For a hypersurface B of M, a finite branched covering f is said to branch at most at B if B_{f} is contained in B. Finite branched coverings $f: X \longrightarrow M$ and $f^{\prime}: X^{\prime} \longrightarrow M$ are said to be isomorphic if there is a biholomorphic mapping $\psi: X \longrightarrow X^{\prime}$ such that $f=f^{\prime} \cdot \psi$. In this case, we denote $f \simeq f^{\prime}$. Finite branched coverings $f: X \longrightarrow M$ and $f^{\prime}: X^{\prime} \longrightarrow M^{\prime}$ are said to be equivalent (resp. topologically equivalent) if there are biholomorphic mappings (resp. orientation preserving hemeomorphisms) $\psi: X \longrightarrow X^{\prime}$ and $\varphi: M \longrightarrow M^{\prime}$ such that $\varphi \cdot f=f^{\prime} \cdot \psi$. In this case, we denote $f \sim f^{\prime}$ (resp. $f \sim f^{\prime}$ (top.)).

Theorem 1 (Grauert-Remmert [4]). Let B be a hypersurface of a connected complex manifold M and $f^{\prime}: X^{\prime} \longrightarrow M-B$ be a finite unbranched covering. Then there exists a unique (up to isomorphisms) finite covering $f: X \longrightarrow M$ which branches at most at B and is an extension of f^{\prime}.

A topological version of Theorem 1 is given in Fox [3]. Theorem 1 asserts that the correspondence $f \longleftrightarrow f^{\prime}$ gives a categorical equivalence between finite unbranched coverings of $M-B$ and finite coverings of M branching at most at B. Thus we can apply terminology of finite unbranched coverings of $M-B$ to finite coverings of M branching at most at B; for example, covering transformations, Galois coverings, abelian coverings, cyclic coverings, etc.

Corollary 1. There is a one-to-one correspondence between the set of all isomorphism classes of finite coverings of M branching at most at B and the set of all conjugacy classes of subgroups of finite index of the fundamental group $\pi_{1}\left(M-B, q_{0}\right)$ of $M-B$.

3. Monodromy representations and Klein pictures

Let $f: X \longrightarrow M$ be a finite branched covering of a connected complex manifold M of degree d branching at most at a hypersurface B of M. Take a reference point q_{0} of $M-B$ and put $f^{-1}\left(q_{0}\right)=\left\{p_{1}, \ldots, p_{d}\right\}$. The homotopy class $[\gamma]$ of a loop γ in $M-B$ starting from q_{0} gives the homotopy class of the pull-back over f of γ starting from every point $p_{j},(j=1, \ldots, d)$. Hence its end point $p_{j^{\prime}}$ is determined. Thus we obtain a mapping

$$
\Phi_{f}: \pi_{1}\left(M-B, q_{0}\right) \longrightarrow S_{d},
$$

which maps $[\gamma]$ to the permutation $j \rightarrow j^{\prime}$, where S_{d} is the d-th symmetric group. We define the product of pathes α and β as $\alpha \beta$, where the end point of α is the initial point of β. We also define the product of permutations as in the following example:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) .
$$

The mapping Φ_{f} is then a homomorphism and is called the (permutation) monodromy representation of the covering f. Note that the representation class $\left[\Phi_{f}\right]$ of Φ_{f} does not depend on the choice of the arrangement of the points p_{1}, \ldots, p_{d}, nor the choice of the reference point q_{0}. That is, if one changes the arrangement of the points p_{1}, \ldots, p_{d} or one chooses another reference point, then Φ_{f} is changed to $A^{-1} \Phi_{f} A$ for a fixed permutation A. Note also that the image of Φ_{f} is a transitive subgroup of S_{d}, for $X-f^{-1}(B)$ is connected. The image is called the monodromy group of the covering f. Monodromy groups of finite branched coverings correspond to Galois groups of algebraic equations. By the theorem of Grauert-Remmert and its corollary, we easily have the following 2 theorems:

Theorem 2. (1) Finite branched coverings f and f^{\prime} of M are isomorphic if and only if $B_{f}=B_{f^{\prime}}$ and $\left[\Phi_{f}\right]=\left[\Phi_{f^{\prime}}\right]$. ($\left[\Phi_{f}\right]$ is the representation class of Φ_{f}.)
(2) Finite branched coverings f of M and f^{\prime} of M^{\prime} are equivalent (resp. topologically equivalent) if and only if there is a biholomorphic mapping (resp. orientation preserving homeomorphism) $\varphi: M \longrightarrow M^{\prime}$ such that $\varphi\left(B_{f}\right)=B_{f^{\prime}}$ and $\left[\Phi_{f^{\prime}} \cdot \varphi_{*}\right]=$ $\left[\Phi_{f}\right]$.

Theorem 3. For a given homomorphism $\Phi: \pi_{1}\left(M-B, q_{0}\right) \longrightarrow S_{d}$ whose image is transitive, there exists a unique (up to isomorphisms) covering $f: X \longrightarrow M$ of degree d branching at most at B such that $\Phi_{f}=\Phi$.

However it is a difficult problem in general to construct covering $f: X \longrightarrow M$ in the theorem from a given Φ concretely (analytically or algebraically). The problem for the case $M=\mathbb{P}^{1}$ the complex projective line and $B=\{0,1, \infty\}$ is studied in number theorey (see Schneps [11]).

We construct branched coverings of the complex projective line \mathbb{P}^{1} topologically for any given Φ, by drawing a picture which we call a Klein picture, the idea of which comes from Klein [5]. Let $B=\left\{q_{1}, \ldots, q_{n}\right\}$ be a set of n distinct points of \mathbb{P}^{1}. Let $f: X \longrightarrow \mathbb{P}^{1}$ be a covering of degree d branching at most at B. We draw a simple loop in \mathbb{P}^{1} passing through all points $q_{j}, j=1, \ldots, n$, oriented in this order which bounds a domain (the inside area) clockwisely (see Fig. 1). We regard the inside area of the loop as a continent and the outside area as an ocean. We assume that the reference point q_{0} is contained in the continent. We then pull them back over the covering f. Then we get a checked pattern of d continents and d oceans on X. We call such a

Fig. 1.

Fig. 2.
pattern the Klein picture of the covering f. The Klein picture represents the branched covering f topologically. Starting from a homomorphism $\Phi: \pi_{1}\left(\mathbb{P}^{1}-B, q_{0}\right) \longrightarrow S_{d}$ such that $\operatorname{Im} \Phi$ is transitive, we construct the branched covering f in Theorem 2 topologically by drawing its Klein picture as follows: Put

$$
A_{j}=\Phi\left(\gamma_{j}\right) \in S_{d}, j=1, \ldots, n
$$

where γ_{j} are lassos surrounding the points q_{j} as in Fig. 2. Note that

$$
\begin{gathered}
\pi_{1}\left(\mathbb{P}^{1}-B, q_{0}\right)=\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{n} \cdots \gamma_{1}=1\right\rangle, \\
A_{n} \cdots A_{1}=1 \in S_{d} .
\end{gathered}
$$

Thus the representation Φ is determined by the permutations A_{j}. Decompose each A_{j} into mutually prime cyclic permutations $A_{j_{k}}$ whose length are $e_{j_{k}}$. Put (by Riemann-

Fig. 3.
Hurwitz formula)

$$
g=\frac{1}{2}\left[\sum_{j, k}\left(e_{j_{k}}-1\right)-2 d\right]+1 .
$$

We prepare an oriented compact surface X of genus g. We then draw the Klein picture, that is, a checked pattern of d continents and d oceans on X which is compatible with Φ. Here, the compatibility means that, for the point $p_{j_{k}}$ of $f^{-1}\left(q_{j}\right)$ which corresponds to $A_{j_{k}}, e_{j_{k}}$ continents and oceans are arranged alternately and counterclockwisely around $p_{j_{k}}$.

Example 1. Put $n=3, d=3$ and

$$
A_{1}=\Phi\left(\gamma_{1}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right), A_{2}=\Phi\left(\gamma_{2}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right), A_{3}=\Phi\left(\gamma_{3}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) .
$$

The genus of X is 0 . The Klein picture in this case is as in Fig. 3, in which the points j denote the points in $f^{-1}\left(q_{j}\right)$ and the circled number (i) denotes the i-th continent. Observe that the points 1,2 and 3 are seaside cities (vertices) of every continents arranged colckwisely in this order, while for example the continents (1), (2) and (3) are arranged counterclockwisely in this order around the city 3 , which means $A_{3}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$. (Conversely, we can read the monodromy from the Klein picture.) Put

$$
f: X \longrightarrow \mathbb{P}^{1},(z, w) \longmapsto z,
$$

where X is the Riemann surface of the algebraic function $w=w(z)$ given by the equation $w^{3}-3 w-z=0$. Then $q_{1}=-2, q_{2}=2, q_{3}=\infty$ and $\Phi_{f}=\Phi$.

Example 2. Put $n=3, d=3$ and

$$
A_{j}=\Phi\left(\gamma_{j}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), \quad j=1,2,3 .
$$

The genus of X is 1 . The Klein picture in this case is as in Fig. 4. Put

Fig. 4.

$$
f: X \longrightarrow \mathbb{P}^{1},(z, w) \longmapsto z
$$

where X is the Riemann surface of the algebraic function $w=w(z)$ given by the equation $w^{3}-z^{3}+1=0$. Then f is a cyclic covering such that $\Phi_{f}=\Phi$.

Example 3. Put $n=4, d=3$ and

$$
\begin{array}{ll}
A_{1}=\Phi\left(\gamma_{1}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), & A_{2}=\Phi\left(\gamma_{2}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), \\
A_{3}=\Phi\left(\gamma_{3}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), & A_{4}=\Phi\left(\gamma_{4}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) .
\end{array}
$$

The genus of X is 2. The Klein picture in this case is as in Fig. 5. Put

$$
f: X \longrightarrow \mathbb{P}^{1},(z, w) \longmapsto z,
$$

where X is the Riemann surface of the algebraic function $w=w(z)$ given by the equation $w^{3}-z^{2}(z-1)^{2}(z-2)=0$. Then f is a cyclic covering such that $q_{1}=0, q_{2}=1$, $q_{3}=2, q_{4}=\infty$ and $\Phi_{f}=\Phi$.

4. Families of finite branched coverings

Let T be a connected complex manifold. A family of connected complex manifolds with the parameter space T is by definition a smooth holomorphic mapping

$$
\pi: M \longrightarrow T
$$

of a connected complex manifold M onto a connected complex manifold T such that every fiber is connected. Here the smoothness means that the Jacobian matrix $d \pi$ is of

Fig. 5.
maximal rank at every point of M. Every fiber $M_{t}=f^{-1}(t)$ of $t \in M$ is a connected complex manifold. We denote

$$
M=\left\{M_{t}\right\}_{t \in T}
$$

Let $M=\left\{M_{t}\right\}_{t \in T}$ be a family of connected complex manifolds. A family of finite branched coverings of $M=\left\{M_{t}\right\}_{t \in T}$ is by definition a finite branched covering

$$
f: X \longrightarrow M
$$

such that
(i) $M_{t} \not \subset B_{f}$ for every $t \in T$,
(ii) there is a hypersurface V of T such that

$$
f_{t}=f: X_{t}=f^{-1}\left(M_{t}\right) \longrightarrow M_{t}
$$

is a finite branched covering of M_{t} for every $t \in T-V$.
(iii) For any t and t^{\prime} in $T-V, f_{t}$ and $f_{t^{\prime}}$ are topologically equivalent.

We denote $f=\left\{f_{t}\right\}$. In particular if $\pi: M \longrightarrow T$ is a holomorphic \mathbb{P}^{m}-bundle, then we call $f: X \longrightarrow M$ a family of finite branched coverings of \mathbb{P}^{m}.

Remark. $\quad X$ and $X_{t}(t \in T-V)$ have only normal singularity, while $X_{t}(t \in V)$, the degenerated coverings, may not be normal. In this sense, our definition of degenerations is different from the usual one.

We are interested in X_{t} for $t \in V$, that is, degenerated coverings. In the subse-
quent sections, we restrict our consideration to degenerating families of finite branched coverings of \mathbb{P}^{m} and a disc in \mathbb{C}.

Example 4. Put $Y=\left\{\left(\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(x_{0}: x_{1}\right)\right) \in \mathbb{P}^{3} \times \mathbb{P}^{1} \mid a_{0} x_{1}^{3}+a_{1} x_{1}^{2} x_{0}+\right.$ $\left.a_{2} x_{1} x_{0}^{2}+a_{3} x_{0}^{3}=0\right\}, g:\left(\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(x_{0}: x_{1}\right)\right) \in Y \longmapsto\left(a_{0}: a_{1}: a_{2}: a_{3}\right) \in \mathbb{P}^{3}$, where $\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ and $\left(x_{0}: x_{1}\right)$ are homogeneous coordinate systems of \mathbb{P}^{3} and \mathbb{P}^{1}, respectively. Then Y is non-singular and g is a branched covering of degree 3 whose branch locus is the discriminant locus

$$
B_{f}=\left\{\left(a_{0}: a_{1}: a_{2}: a_{3}\right) \in \mathbb{P}^{3} \mid a_{1}^{2} a_{2}^{2}-4 a_{0} a_{2}^{3}+18 a_{0} a_{1} a_{2} a_{3}-4 a_{1}^{3} a_{3}-27 a_{0}^{2} a_{3}^{2}=0\right\}
$$

Let $\mathbb{P}^{3 *}$ be the dual projective space of \mathbb{P}^{3} and put

$$
\begin{aligned}
M= & \left\{\left(\left(t_{0}: t_{1}: t_{2}: t_{3}\right),\left(a_{0}: a_{1}: a_{2}: a_{3}\right)\right) \in \mathbb{P}^{3 *} \times \mathbb{P}^{3} \mid t_{0} a_{0}+t_{1} a_{1}+t_{2} a_{2}+t_{3} a_{3}=0\right\}, \\
& \pi:\left(\left(t_{0}: t_{1}: t_{2}: t_{3}\right),\left(a_{0}: a_{1}: a_{2}: a_{3}\right)\right) \in M \longmapsto\left(t_{0}: t_{1}: t_{2}: t_{3}\right) \in \mathbb{P}^{3 *}, \\
& \left.\pi^{\prime}:\left(t_{0}: t_{1}: t_{2}: t_{3}\right),\left(a_{0}: a_{1}: a_{2}: a_{3}\right)\right) \in M \longmapsto\left(a_{0}: a_{1}: a_{2}: a_{3}\right) \in \mathbb{P}^{3},
\end{aligned}
$$

where ($t_{0}: t_{1}: t_{2}: t_{3}$) is a homogeneous coordinate system of $\mathbb{P}^{3 *}$. Then π is a \mathbb{P}^{2}-bundle on $\mathbb{P}^{3 *}$. Let X be the normalization of the fiber product $M \times_{\mathbb{P}^{3}} Y$ of $\pi^{\prime}: M \longrightarrow \mathbb{P}^{3}$ and $g: Y \longrightarrow \mathbb{P}^{3}$. Let

$$
f: X \longrightarrow M
$$

be the composition of the normalization

$$
X \longrightarrow M \times_{\mathbb{P}^{3}} Y
$$

and the projection

$$
M \times_{\mathbb{P} 3} Y \longrightarrow M .
$$

Then $f=\left\{f_{t}\right\}_{t \in \mathbb{P}^{3} *}$ is a family of branched coverings of $\mathbb{P}^{2} .\left(f_{t}: X_{t} \longrightarrow \pi^{-1}(t)\right.$ is the restriction to the plane $\pi^{-1}(t)$ in \mathbb{P}^{3} of g.)

We explain this as follows: Let

$$
C_{3}=\left\{\left(1: u: u^{2}: u^{3}\right) \in \mathbb{P}^{3 *} \mid u \in \mathbb{P}^{1}\right\}
$$

be the rational normal curve, which is the image curve of the holomorphic imbedding

$$
\Phi_{|D|}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3 *}
$$

of the unique complete linear system $|D|$ of degree 3 (D is a divisor on \mathbb{P}^{1} of degree 3). B_{f} is then the dual variety of C_{3}. That is, B_{f} is the set of all planes in $\mathbb{P}^{3 *}$
which contain tangent lines to C_{3}. Every divisor in $|D|$ is the intersection of C_{3} with a (unique) plane in $\mathbb{P}^{3 *}$. In this sense, $|D|$ is identified with $\mathbb{P}^{3}=\left(\mathbb{P}^{3 *}\right)^{*}$. By the uniqueness of the complete linear system $|D|$ of degree 3 , every automorphism of \mathbb{P}^{1} acts on $|D|=\mathbb{P}^{3}$ (resp. on $\mathbb{P}^{3 *}$) as a projective transformation, which maps B_{f} to B_{f} (resp. C_{3} to C_{3}). Let V be the ruled surface in $\mathbb{P}^{3 *}$ consisting of tangent lines to C_{3}.

For any two points t and t^{\prime} in $\mathbb{P}^{3 *}-V$, there is an automorphism φ of \mathbb{P}^{1} such that $\varphi(t)=t^{\prime}$. In fact, there are just 3 points p_{1}, p_{2} and p_{3} in C_{3} (resp. $p_{1}^{\prime}, p_{2}^{\prime}$ and p_{3}^{\prime} in C_{3}) such that the osculating plane at p_{j} (resp. at p_{j}^{\prime}) to C_{3} passes through t (resp. t^{\prime}) for $j=1,2,3$. Then $\varphi \in \operatorname{Aut}\left(\mathbb{P}^{1}\right)$ such that $\varphi\left(p_{j}\right)=p_{j}^{\prime}(j=1,2,3)$ maps t to t^{\prime}. Thus $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ acts on $\mathbb{P}^{3 *}-V$ transitively. (The orbits of the group action of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ on $\mathbb{P}^{3 *}$ are $\mathbb{P}^{3 *}-V, V$ and C_{3}.) The projection π_{t} with the center t maps C_{3} onto a rational plane cubic curve C_{t} with a node and 3 flexes $\pi_{t}\left(p_{1}\right), \pi_{t}\left(p_{2}\right)$ and $\pi_{t}\left(p_{3}\right)$. The plane projective transformation induced by φ maps C_{t} to $C_{t^{\prime}}$. The branch locus B_{t} (resp. $B_{t^{\prime}}$) of f_{t} (resp. $f_{t^{\prime}}$) is the dual curve of C_{t} (resp. $C_{t^{\prime}}$) which is a rational plane quartic curve with 3 simple cusps. Hence the plane projective transformation induced by φ maps B_{t} to $B_{t^{\prime}}$. Now, φ induces an automorphism of the projective manifold Y which, by the above discussion, induces an equivalence of f_{t} and $f_{t^{\prime}}$.

A similar discussion shows that if $t \in V-C_{3}$ (say $t=(0: 1: 0: 0)$), then B_{t} is the union of a rational plane cubic curve with 1 simple cusp and a line passing through a flex of the curve. For any points t and t^{\prime} in $V-C_{3}, f_{t}$ and $f_{t^{\prime}}$ are equivalent.

If $t \in C_{3}$ (say $t=(0: 0: 0: 1)$), then B_{t} is the union of an irreducible conic and a double tangent line to the conic. In this case, X_{t} is not irreducible.

5. Degenerating families of finite branched coverings of $\mathbb{P}^{\mathbf{1}}$

Let

$$
\Delta=\Delta(0, \epsilon)=\{t \in \mathbb{C}| | t \mid<\epsilon\}
$$

be a disc and $\Delta^{*}=\Delta-\{0\}$ be the punctured disc. A finite branched covering

$$
f: X \longrightarrow \Delta \times \mathbb{P}^{1}
$$

is called a degenerating family of finite branched coverings of \mathbb{P}^{1} and is denoted by $f=\left\{f_{t}\right\}$, if the following three conditions are satisfied:
(1) $t \times \mathbb{P}^{1} \nsubseteq B_{f}$ for every $t \in \Delta$.
(2) For every $t \in \Delta^{*}, t \times \mathbb{P}^{1}$ meets at n points transversally with B_{f}. (n is constant for $t \in \Delta^{*}$.)
(3) For every $t \in \Delta^{*}$,

$$
f_{t}=f: X_{t}=f^{-1}\left(t \times \mathbb{P}^{1}\right) \longrightarrow t \times \mathbb{P}^{1}
$$

Fig. 6.
is a covering of \mathbb{P}^{1} of degree $d=\operatorname{deg}(f)$ branching at $B_{t}=B_{f} \cap\left(t \times \mathbb{P}^{1}\right)=$ $\left\{q_{1}(t), \ldots, q_{n}(t)\right\}$ (see Fig. 6).

The central fiber $X_{0}=f^{-1}\left(0 \times \mathbb{P}^{1}\right)$ is a degeneration of a general fiber X_{t} for $t \neq 0$. The Klein picture of f_{t} degenerates to a picture on X_{0}, which we call the Klein picture of f_{0}. This represents (X_{0}, f_{0}) topologically.

Example 5. Let X_{t} be the Riemann surface of the algebraic function $w=w(z)$ given by the equation $w^{3}-3 t w-z=0$. Put

$$
f_{t}: X_{t} \longrightarrow \mathbb{P}^{1},(z, w) \longmapsto z .
$$

Then $f=\left\{f_{t}\right\}$ is a degenerating family of branched coverings of \mathbb{P}^{1}. For a fixed nonzero t, the monodromy representation Φ_{t} and the Klein picture of f_{t} are given as same as in Example 1. Note that $q_{1}(t)=-2 t^{3 / 2}, q_{2}(t)=2 t^{3 / 2}$ and $q_{3}(t)=\infty$. As $t \longrightarrow$ 0 , both branch points $q_{1}(t)$ and $q_{2}(t)$ converge to $q_{1}(0)=q_{2}(0)=0$, so the pathes connecting the points 1 and 2 in Fig. 3 converge to the point $1=2$, and we get the Klein picture of f_{0} as in Fig. 7. In fact $X_{0}: w^{3}-z=0$.

Fig. 7.

Fig. 8.
Example 6. Let X_{t} be the Riemann surface of the algebraic function $w=w(z)$ given by the equation $w^{2}-z(z-t)(z-1)=0$. Put

$$
f_{t}: X_{t} \longrightarrow \mathbb{P}^{1},(z, w) \longmapsto z
$$

Then $f=\left\{f_{t}\right\}$ is a degenerating family of branched double coverings of \mathbb{P}^{1}. Note that $q_{1}(t)=0, q_{2}(t)=t, q_{3}(t)=1$ and $q_{4}(t)=\infty$. For a fixed non-zero t, the monodromy representation Φ_{t} is given by $A_{j}=\Phi_{t}\left(\gamma_{j}\right)=(12)$ for $j=1,2,3,4$. The Klein picture of f_{t} is as in Fig. 8 in which the continent (2) is the upper backside of the torus. As $t \longrightarrow 0$, both $q_{1}(t)$ and $q_{2}(t)$ converge to $q_{1}(0)=q_{2}(0)=0$, so the pathes connecting the points 1 and 2 in Fig. 8 converge to the point $1=2$, and we get the Klein picture of f_{0} as in Fig. 9 in which the continent (2) is also the upper backside. In fact, $X_{0}: w^{2}-z^{2}(z-1)=0$.

Example 7. Let X_{t} be the Riemann surface of genus 1 of the algebraic function $w=w(z)$ given by the equation $w^{2}-z(z-t)(z-1)(z-1-t)=0$. Put

$$
f_{t}: X_{t} \longrightarrow \mathbb{P}^{1}, \quad(z, w) \longmapsto z .
$$

Fig. 9.

Fig. 10.
Then $f=\left\{f_{t}\right\}$ is a degenerating family of branched double covering of \mathbb{P}^{1}. Note that

$$
q_{1}(t)=0, q_{2}(t)=t, q_{3}(t)=1, q_{4}(t)=1+t .
$$

For fixed t with $0<|t|<1$, the monodromy representation Φ_{t} is a given by $A_{j}=\Phi_{t}\left(\gamma_{j}\right)=(12)$ for $j=1,2,3,4$. The Klein picture of f_{t} is as same as that in Fig. 8 for Example 6. As $t \longrightarrow 0, q_{2}(t)$ and $q_{4}(t)$ converge to $q_{1}(0)=0, q_{3}(0)=1$, respectively, so the pathes connecting the points 1 to 2 and 3 to 4 in Fig. 8 converge to $1=2$ and $3=4$, respectively. Hence we get the Klein picture of f_{0} as in Fig. 10 in which the continent (2) is also the upper backside. In fact

$$
X_{0}: w^{2}-z^{2}(z-1)^{2}=0
$$

which is not globally irreducible.

Example 8. Let X_{t} be the Riemann surface of genus 1 of the algebraic function $w=w(z)$ given by the equation $w^{2}-z(z-t)(z-2 t)=0$. Put

$$
f_{t}: X_{t} \longrightarrow \mathbb{P}^{1}, \quad(z, w) \longmapsto z .
$$

As $t \longrightarrow 0$, the Klein picture of f_{t} converges to that of f_{0} as in Fig. 11, in which (2)

Fig. 11.
are the upper backside.
X_{0} has a cusp singularity at the point $1=2=3$. In fact

$$
X_{0}: w^{2}-z^{3}=0
$$

Now we assume and put

$$
\begin{aligned}
& q_{1}(0)=\cdots=q_{k_{1}}(0)=q_{1}^{0}, \\
& q_{k_{1}+1}(0)=\cdots=q_{k_{1}+k_{2}}(0)=q_{2}^{0}, \\
& \quad \cdots \cdots \\
& \quad q_{k_{1}+\cdots+k_{r-1}+1}(0)=\cdots=q_{k_{1}+\cdots+k_{r}}(0)=q_{r}^{0}
\end{aligned}
$$

where $k_{\rho} \geq 1(\rho=1, \ldots, r), k_{1}+\cdots+k_{r}=n$ and $q_{1}^{0}, q_{2}^{0}, \ldots, q_{r}^{0}$ are mutually distinct. We regard

$$
B_{0}=B_{f} \cap\left(0 \times \mathbb{P}^{1}\right)=\left\{q_{1}^{0}, q_{2}^{0}, \ldots, q_{r}^{0}\right\}
$$

not as a point set but as a divisor on \mathbb{P}^{1} :

$$
B_{0}=k_{1} q_{1}^{0}+k_{2} q_{2}^{0}+\cdots+k_{r} q_{r}^{0}
$$

We draw a simple loop in \mathbb{P}^{1} passing through all points $q_{1}^{0}, \ldots, q_{r}^{0}$ oriented in this order which bounds a domain clockwisely as in Fig. 1. We call the Klein picture of f_{0} for the checked patern on X_{0} which is the pull-back of the picture over f_{0}.

Now, we show that topologically, the degenerating curve $X_{0}=f^{-1}\left(0 \times \mathbb{P}^{1}\right)$ can be described by the divisor B_{0} and the monodromy $\Phi_{t}=\Phi_{f_{t}}$, where $t \in \Delta^{*}$ is a fixed point.

Let $\gamma_{j}(t)(1 \leq j \leq n)$ be the lasso around $q_{j}(t)$ as in Fig. 2 and put

$$
A_{1}=\Phi_{t}\left(\gamma_{1}\right), \ldots, A_{n}=\Phi_{t}\left(\gamma_{n}\right) .
$$

Let $H_{\rho}(1 \leq \rho \leq r)$ be the subgroup of S_{d} generated by

$$
A_{k_{1}+\cdots+k_{\rho-1}+1}, \ldots, A_{k_{1}+\cdots+k_{\rho-1}+k_{\rho}} .
$$

H_{ρ} may not be a transitive subgroup of S_{d}. We denote

$$
\mathfrak{A}_{1}^{\rho}, \ldots, \mathfrak{A}_{v_{\rho}}^{\rho}
$$

the orbits of H_{ρ} on $\{1,2, \ldots, d\} . v_{\rho}$ is the number of orbits. Put

$$
\begin{aligned}
A_{1}^{0}= & A_{k_{1}} A_{k_{1}-1} \cdots A_{1} \\
A_{2}^{0}= & A_{k_{1}+k_{2}} A_{k_{1}+k_{2}-1} \cdots A_{k_{1}+1} \\
& \cdots \cdots \\
A_{r}^{0}= & A_{k_{1}+\cdots+k_{r}} A_{k_{1}+\cdots+k_{r}-1} \cdots A_{k_{1}+\cdots+k_{r-1}+1}
\end{aligned}
$$

and

$$
K=\left\langle A_{1}^{0}, \ldots, A_{r}^{0}\right\rangle
$$

the subgroup of S_{d} generated by $A_{1}^{0}, \ldots, A_{r}^{0}$. Let

$$
\gamma_{1}^{0}, \ldots, \gamma_{r}^{0}
$$

be lassos around the points

$$
q_{1}^{0}, \ldots, q_{r}^{0}
$$

respectively in $0 \times \mathbb{P}^{1}$ as in Fig. 2. Put

$$
\Phi_{0}\left(\gamma_{\rho}^{0}\right)=A_{\rho}^{0} \quad(1 \leq \rho \leq r) .
$$

Then

$$
\Phi_{0}: \pi_{1}\left(0 \times \mathbb{P}^{1}-\left\{q_{1}^{0}, \ldots, q_{r}^{0}\right\}, q_{0}\right) \longrightarrow S_{d}
$$

is a homomorphism.
Definition 1. For a permutation $A \in S_{d}$, if A is written as $A=A_{1} \cdots A_{w}$, the product of mutually prime cyclic permutations, then we call the number $w=w(A)$ the weight of $A .\left(w(A)\right.$ depends also on d. For example, if $d=4$ and $A=\left(\begin{array}{ll}1 & 2\end{array}\right)$, then $\left.w(A)=w\left(\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)(4)\right)=2.\right)$

Let $\chi\left(X_{t}\right)$ denote the Euler characteristic of X_{t}.
Theorem 4. Let $t \neq 0$. Then the following (1)-(4) hold:
(1) $\chi\left(X_{t}\right)=2-2 g=2 d-n d+\sum_{j=1}^{n} w\left(A_{j}\right)$.
(2) $\chi\left(X_{0}\right)=2 d-\left\{n d-\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d\right\}+\sum_{\rho=1}^{r} v_{\rho}$.
(3) $\chi\left(X_{0}\right)-\chi\left(X_{t}\right)=\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d+\sum_{\rho=1}^{r} v_{\rho}-\sum_{j=1}^{n} w\left(A_{j}\right)$.
(4) $\chi\left(X_{0}\right) \geq \chi\left(X_{t}\right)$.

Proof. (1) The Klein picture of the covering $f_{t}: X_{t} \longrightarrow \mathbb{P}^{1}$ gives a cellular decomposition of X_{t}. The number of vertices is $\sum_{j=1}^{n} w\left(A_{j}\right)$, the number of sides is $n d$ and the number of faces is $2 d$. Hence

$$
\chi\left(X_{t}\right)=2 d-n d+\sum_{j=1}^{n} w\left(A_{j}\right) .
$$

(2) Let \hat{G} be the (oriented) graph on X_{t} of the pull-back by f_{t} of the cycle

$$
q_{1}(t) \longrightarrow q_{2}(t) \longrightarrow \cdots \longrightarrow q_{n}(t) \longrightarrow q_{1}(t) .
$$

Then \hat{G} is the graph whose points and lines are vertices and sides, respectively, of the Klein picture of f_{t}. Every point of \hat{G} has been numbered as a vertix of the Klein picture. We put the circled number (i) on every sides of j-th continent. Thus we get a graph \hat{G} with numbered points and circle numbered lines.

Let $G_{\rho}(1 \leq \rho \leq r)$ be the (oriented) graph on X_{t} of the pull-back by f_{t} of the tree

$$
q_{k_{1}+\cdots+k_{\rho-1}+1}(t) \longrightarrow q_{k_{1}+\cdots+k_{\rho-1}+2}(t) \longrightarrow \cdots \longrightarrow q_{k_{1}+\cdots+k_{\rho-1}+k_{\rho}}(t) .
$$

Then every G_{ρ} is a subgraph of \hat{G}. Let

$$
k_{1}+\cdots+k_{\rho-1}+1 \leq i<i+1 \leq k_{1}+\cdots+k_{\rho-1}+k_{\rho} .
$$

If the permutaion A_{i} and A_{i+1} are witten as, say,

$$
A_{i}=\left(\begin{array}{ccc}
\cdots & a & \cdots \\
\cdots & b & \cdots
\end{array}\right), \quad A_{i+1}=\left(\begin{array}{ccc}
\cdots & a & \cdots \\
\cdots & c & \cdots
\end{array}\right),
$$

then there are lines (a) and (b) in G_{ρ} which have the starting point i (a point of $\left.G_{\rho} \cap f_{t}^{-1}\left(q_{i}\right)\right)$, and so are connected at the point i. Moreover there is a line (c) in G_{ρ} such that the lines (a) and (c) have the same end point $i+1$, and so are connected at the point $i+1$. Hence the lines (a), (b) and (c) are connected in G_{ρ}.

Now the Klein picture of f_{0} gives a cellular decomposition of X_{0} which can be obtained from that of X_{t} by converging every connected component of the graphs $G_{\rho}(1 \leq \rho \leq r)$ to a point. Hence the number of vertices is $\sum_{\rho=1}^{r} v_{\rho}$, the number of sides is $n d-\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d$ and the number of faces is $2 d$. Hence

$$
\chi\left(X_{0}\right)=2 d-\left\{n d-\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d\right\}+\sum_{\rho=1}^{r} v_{\rho} .
$$

(3) This follows from (1) and (2).
(4) For a graph G, the following inequality holds:

$$
b \geq a-c
$$

where a is the number of points of G, b is the number of lines of G and c is the number of connected components of G. Here the equality holds if and only if every component is a tree, that is, a graph without cycles.
We apply this to every graph G_{ρ}. Then

$$
\begin{aligned}
a & =a_{\rho}=w\left(A_{k_{1}+\cdots+k_{\rho-1}+1}\right)+\cdots+w\left(A_{k_{1}+\cdots+k_{\rho-1}+k_{\rho}}\right) \\
b & =b_{\rho}=\left(k_{\rho}-1\right) d \\
c & =c_{\rho}=v_{\rho}
\end{aligned}
$$

Note that

$$
\sum_{\rho=1}^{r} a_{\rho}=\sum_{j=1}^{n} w\left(A_{j}\right)
$$

Hence by (3)

$$
\chi\left(X_{0}\right)-\chi\left(X_{t}\right)=\sum_{\rho=1}^{r} b_{\rho}+\sum_{\rho=1}^{r} c_{\rho}-\sum_{\rho=1}^{r} a_{\rho}=\sum_{\rho=1}^{r}\left(b_{\rho}+c_{\rho}-a_{\rho}\right) \geq 0
$$

Theorem 5. (1) $f_{0}^{-1}\left(q_{\rho}^{0}\right)$ consists of v_{ρ} points, which can be identified with $\mathfrak{A}_{1}^{\rho}, \ldots, \mathfrak{A}_{v_{\rho}}^{\rho}$.
(2) Every $A_{\rho}^{0}(1 \leq \rho \leq r)$ induces a permutation $A_{\rho j}^{0}: \mathfrak{A}_{j}^{\rho} \longrightarrow \mathfrak{A}_{j}^{\rho}$. X_{0} has local $w\left(A_{\rho j}^{0}\right)$ irreducible components at the point corresponding to \mathfrak{A}_{j}^{ρ}.
(3) There is a natural one-to-one correspondence between the set of global irreducible components of X_{0} and the set of orbits of $K=\left\langle A_{1}^{0}, \ldots, A_{r}^{0}\right\rangle$ on $\{1, \ldots, d\} . \Phi_{0}$, regarded as the representation to permutations on an orbit of K on $\{1, \ldots, d\}$, gives the monodromy representation of the branched covering

$$
f_{0} \cdot \eta: \hat{X}_{0}^{\prime} \longrightarrow 0 \times \mathbb{P}^{1}
$$

where $\eta: \hat{X}_{0}^{\prime} \longrightarrow X_{0}^{\prime}$ is the normalization of the global irreducible component X_{0}^{\prime} of X_{0} corresponding to the orbit of K.

Proof. (1) follows from the proof (2) of Theorem 4. For a sufficiently small $|t|$,

$$
q_{k_{1}+\cdots+k_{\rho-1}+1}(t), \ldots, q_{k_{1}+\cdots+k_{\rho-1}+k_{\rho}}(t)
$$

are in a small neighborhood of q_{ρ}^{0}. Hence the lasso γ_{ρ}^{0} is homotopic to the product

$$
\gamma_{k_{1}+\cdots+k_{\rho-1}+k_{\rho}}(t) \cdots \gamma_{k_{1}+\cdots+k_{\rho-1}+1}(t)
$$

Let

$$
i: N=0 \times \mathbb{P}^{1} \longrightarrow M=\Delta \times \mathbb{P}^{1}
$$

be the inclusion mapping. Then the fiber product $N \times_{M} X$ can be identified with X_{0}. Now, (2) and (3) of Theorem 5 follow from the following lemma, whose proof is straightforward and is omitted.

Lemma 1. Let M and N be connected complex manifolds and $h: N \longrightarrow M$ be a holomorphic mapping. Let $f: X \longrightarrow M$ be a finite unbranched covering of M of degree d and Φ_{f} be its monodromy representation. Let $f^{\prime}: N \times_{M} X \longrightarrow N$ be the projection of the fiber product $N \times_{M} X$ onto N. Then the followings hold:
(1) There is a one-to-one correspondence between the set of orbits of Φ_{f}. $h_{*}\left(\pi_{1}\left(N, p_{0}\right)\right)$ on $\{1, \ldots, d\}$ and the set of connected components of $N \times_{M} X$.
(2) For a connected component Y of $N \times_{M} X, f^{\prime}: Y \longrightarrow N$ is a finite unbranched covering of N whose monodromy representation is equal to $\Phi_{f} \cdot h_{*}$ regarded as the representation to permutations on the orbit of $\Phi_{f} \cdot h_{*}\left(\pi_{1}\left(N, p_{0}\right)\right)$ on $\{1, \ldots, d\}$ corresponding to Y.

Theorem 6. The following four conditions are mutually equivalent:
(1) X_{0} is homeomorphic to X_{t} for $t \neq 0$.
(2) $\chi\left(X_{0}\right)=\chi\left(X_{t}\right)$ for $t \neq 0$.
(3) $\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d=\sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} v_{\rho}$.
(4) $\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d=\sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} w\left(A_{\rho}^{0}\right)$.

Proof. If X_{0} is homeomorphic to X_{t}, then $\chi\left(X_{0}\right)=\chi\left(X_{t}\right)$. If $\chi\left(X_{0}\right)=\chi\left(X_{t}\right)$, then every connected component of the graphs $G_{\rho}(1 \leq \rho \leq r)$ is a tree as is shown in the proof of Theorem 4. When t converges to 0 , every connected component of the graphs $G_{\rho}(1 \leq \rho \leq r)$ converges to a point. This means that X_{0} is homeomorphic to X_{t}. Next, note that

$$
A_{\rho}^{0}=A_{\rho 1}^{0} \cdots A_{\rho v_{\rho}}^{0}
$$

where $A_{\rho j}^{0}$ is the permutation on the orbit \mathfrak{A}_{j}^{ρ} induced by A_{ρ}^{0}. Hence

$$
w\left(A_{\rho}^{0}\right)=w\left(A_{\rho 1}^{0}\right)+\cdots+w\left(A_{\rho v_{\rho}}^{0}\right) .
$$

In particular

$$
w\left(A_{\rho}^{0}\right) \geq v_{\rho}
$$

Here the equality holds if and only if every $A_{\rho j}^{0}$ is a cyclic permutation. Hence, by (2) of Theorem 5, the equality holds if and only if X_{0} is locally irreducible at ev-
ery point $\mathfrak{A}_{j}^{\rho}\left(1 \leq j \leq v_{\rho}\right)$. Now, by (4) of Theorem 4, the following inequality holds:

$$
\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d \geq \sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} v_{\rho} \geq \sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} w\left(A_{\rho}^{0}\right) .
$$

If

$$
\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d=\sum_{j=1}^{k} w\left(A_{j}\right)-\sum_{\rho=1}^{r} w\left(A_{\rho}^{0}\right),
$$

then

$$
\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d=\sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} v_{\rho} .
$$

Hence $\chi\left(X_{0}\right)=\chi\left(X_{t}\right)$ by Theorem 4.
Conversely, if $\chi\left(X_{0}\right)=\chi\left(X_{t}\right)$, then X_{0} is homeomorphic to X_{t}. In particular, X_{0} is locally irreducible at every point $\mathfrak{A}_{j}^{\rho}\left(1 \leq j \leq v_{\rho}, 1 \leq \rho \leq r\right)$. Thus

$$
\sum_{\rho=1}^{r}\left(k_{\rho}-1\right) d=\sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} v_{\rho}=\sum_{j=1}^{n} w\left(A_{j}\right)-\sum_{\rho=1}^{r} w\left(A_{\rho}^{0}\right) .
$$

Remark. If one of the conditions of Theorem 6 is satisfied, then X_{0} is nonsingular. In fact, if one of the conditions of Theorem 6 is satisfied, then every connected component of every graph $G_{\rho}(1 \leq \rho \leq r)$ is a tree. X_{0} is obtained from X_{t} converging every tree to a point. Hence X_{0} is still a manifold. (The total space X is also non-singular.)

This can be also shown in the following way: The arithmetic genus is constant. In particular, the arithmetic genus of X_{0} is equal to the geometric genus of $X_{t}(t \neq 0)$. If X_{0} is singular, then the geometric genus of X_{0} is less than the arithmetic genus, a contradiction to the assumption $\chi\left(X_{0}\right)=\chi\left(X_{t}\right)$. On the other hand, if $\chi\left(X_{0}\right)>\chi\left(X_{t}\right)$, then the graph G contains a cycle. As $t \longrightarrow 0$, such a cycle Γ converges to a point p, while, for a connected open neighborhood U of $\Gamma, U-\Gamma$, which has two connected components, moves homeomorphically. Hence X_{0} is locally a cone with the vertex p. Thus X_{0} can not be a manifold, so X_{0} is singular.

6. Topological equivalence of families

In this section we show that the topologial structure of the degenerating family $f=\left\{f_{t}\right\}$ of finite branched coverings of \mathbb{P}^{1} is not determined by Φ_{t} alone, but depends also on the braid monodromy $\theta(\delta)$. Here

$$
\delta: u \longmapsto t=t_{0} e^{i u},(0 \leq u \leq 2 \pi)
$$

Fig. 12.
is the loop around $t=0 .\left(t_{0} \in \Delta^{*}\right.$ is a fixed point.) In this section we assume for simplicity that $q_{j}(t) \neq \infty$ for every $t \in \Delta$ and $1 \leq j \leq n$. Then

$$
\left\{q_{1}\left(t_{0} e^{i u}\right), \ldots, q_{n}\left(t_{0} e^{i u}\right)\right\}_{0 \leq u \leq 2 \pi}
$$

gives an (Artin) braid of n strings, which is called the braid monodromy of the curve B_{f} around $t=0$ and is denoted by $\theta(\delta)$. The braid $\theta=\theta(\delta)$ can not be arbitrary. It is given by a complex analytic curve B_{f}. So such a braid we call a complex analytic braid. We fix a reference point $t_{0} \in \Delta^{*}$ and put

$$
q_{j}=q_{j}\left(t_{0}\right) \quad \text { for } \quad 1 \leq j \leq n
$$

Then the Artin braid group B_{n} naturally acts on the fundamental group $\pi_{1}\left(\mathbb{P}^{1}-\left\{q_{1}, \ldots, q_{n}\right\}, q_{0}\right)$ as follows:

$$
\begin{aligned}
\sigma_{i}\left(\gamma_{i}\right) & =\gamma_{i}^{-1} \gamma_{i+1} \gamma_{i}, \\
\sigma_{i}\left(\gamma_{i+1}\right) & =\gamma_{i} \\
\sigma_{i}\left(\gamma_{j}\right) & =\gamma_{j} \quad(j \neq i, i+1),
\end{aligned}
$$

where $\gamma_{j}(j=1, \ldots, n)$ are the lassos as in Fig. 2 and $\sigma_{i}(i=1, \ldots, n-1)$ are the generators of B_{n} defined as in Fig. 12.

A theorem of Zariski-van Kampen (see e.g. Dimca [2]) asserts
Theorem 7 (Zariski-van Kampen).

$$
\begin{aligned}
& \pi_{1}\left(\Delta \times \mathbb{P}^{1}-B_{f}, q_{0}\right) \\
& \quad=\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{n} \cdots \gamma_{1}=1, \theta(\delta) \gamma_{j}=\gamma_{j},(1 \leq j \leq n)\right\rangle
\end{aligned}
$$

where γ_{j} are lassos as in Fig. 2 for $f_{t_{0}}: X_{t_{0}} \longrightarrow \mathbb{P}^{1}$.
The monodromy representation Φ_{f} of $f: X \longrightarrow \Delta \times \mathbb{P}^{1}$ is equal to $\Phi_{t_{0}}=\Phi_{f_{0}}$.

By Theorem 7, $\Phi_{t_{0}}$ satisfies

$$
\Phi_{t_{0}} \cdot \theta(\delta)=\Phi_{t_{0}}
$$

Definition 2. $f=\left\{f_{t}\right\}$ and $f^{\prime}=\left\{f_{t^{\prime}}^{\prime}\right\}$ are said to be topologically equivalent if there are orientation preserving homeomorphisms ψ, φ and η which make the following diagram commutative:

Using fundamental results in the theory of fiber bundles (see Steenrod [12]), we get the following theorem, which can be regarded as a branched covering version of a theorem in Matsumoto-Montesinos [6]:

Theorem 8. There exists a one to one correspondence between \{topological equivalence class of $f=\left\{f_{t}\right\}$, where $f_{t_{0}}\left(t_{0} \neq 0\right)$ has the degree d and n branched points $\left.q_{1}, \ldots, q_{n}\right\}$ and $\{([\Phi], \theta) \mid[\Phi]$ is the representation class of $\Phi: \pi_{1}\left(\mathbb{P}^{1}-\left\{q_{1}, \ldots, q_{n}\right\}, q_{0}\right) \longrightarrow S_{d}$ such that $\operatorname{Im} \Phi$ is transitive, and $\theta \in B_{n}$ is a complex analytic braid such that $\Phi \cdot \theta=\Phi\} / B_{n}$. Here $\sigma \in B_{n}$ acts on $([\Phi], \theta)$ as follows:

$$
\sigma([\Phi], \theta)=\left(\left[\Phi \cdot \sigma^{-1}\right], \sigma \theta \sigma^{-1}\right) .
$$

Proof. For two families

$$
\begin{equation*}
f=\left\{f_{t}\right\}: X \longrightarrow \Delta \times \mathbb{P}^{1}, \quad f^{\prime}=\left\{f_{t}^{\prime}\right\}: X^{\prime} \longrightarrow \Delta^{\prime} \times \mathbb{P}^{1} \tag{1}
\end{equation*}
$$

with the assumption

$$
(\Delta \times\{\infty\}) \cap B_{f}=\emptyset, \quad\left(\Delta^{\prime} \times\{\infty\}\right) \cap B_{f^{\prime}}=\emptyset
$$

we may assume that there are $q_{0} \in \mathbb{C}$ and $q_{0}^{\prime} \in \mathbb{C}$ such that

$$
\left(\Delta \times\left\{q_{0}\right\}\right) \cap B_{f}=\emptyset, \quad\left(\Delta^{\prime} \times\left\{q_{0}^{\prime}\right\}\right) \cap B_{f^{\prime}}=\emptyset .
$$

(For example, take q_{0} and q_{0}^{\prime} such that $\left|q_{0}\right|$ and $\left|q_{0}^{\prime}\right|$ are sufficiently large.)

Take reference points $t_{0} \in \Delta^{*}$ and $t_{0}^{\prime} \in \Delta^{\prime *}$. Put

$$
\begin{aligned}
\left(t_{0} \times \mathbb{C}\right) \cap B_{f} & =\left\{q_{1}=q_{1}\left(t_{0}\right), \ldots, q_{n}=q_{n}\left(t_{0}\right)\right\}, \\
\left(t_{0}^{\prime} \times \mathbb{C}\right) \cap B_{f^{\prime}} & =\left\{q_{1}^{\prime}=q_{1}^{\prime}\left(t_{0}^{\prime}\right), \ldots, q_{n}^{\prime}=q_{n}^{\prime}\left(t_{0}^{\prime}\right)\right\} .
\end{aligned}
$$

There is an orientation preserving homeomorphism

$$
\begin{equation*}
\xi: t_{0} \times \mathbb{C}=\mathbb{C} \longrightarrow t_{0}^{\prime} \times \mathbb{C}=\mathbb{C} \tag{2}
\end{equation*}
$$

such that

$$
\xi\left(q_{j}\right)=q_{j}^{\prime} \quad(j=0,1, \ldots, n) .
$$

We identify q_{j}^{\prime} with $q_{j}(j=0,1, \ldots, n)$ through ξ.
Now $\Delta^{*} \times \mathbb{C}-B_{f}$ is a topological fiber bundle with the base space Δ^{*} and the standard fiber $\mathbb{C}-\{n$ points $\}$ (see Dimca [2] and Matsuno [7]). Put
$G=\{\alpha: \mathbb{C} \longrightarrow \mathbb{C} \mid \alpha$ is an orientation preserving homoemorphism such that

$$
\left.\alpha\left(q_{0}\right)=q_{0}, \alpha\left(\left\{q_{1}, \ldots, q_{n}\right\}\right)=\left\{q_{1}, \ldots, q_{n}\right\}\right\} .
$$

G is then a topological group with compact-open topology. Let G_{e} be its connected component of the identity. Put

$$
\pi_{0}(G)=G / G_{e}
$$

Then $\pi_{0}(G)$ can be naturally identified with the Artin braid group B_{n} of n strings (see Birman [1, p. 165]).

Now assume that the above two families

$$
\begin{aligned}
f & =\left\{f_{t}\right\}: X \longrightarrow \Delta \times \mathbb{P}^{1}, \\
f^{\prime} & =\left\{f_{t}^{\prime}\right\}: X^{\prime} \longrightarrow \Delta^{\prime} \times \mathbb{P}^{1}
\end{aligned}
$$

are topologically equivalent. We may assume that

$$
\begin{aligned}
\eta\left(t_{0}\right) & =t_{0}^{\prime} \\
\varphi: t_{0} \times \mathbb{C}=\mathbb{C} & \longrightarrow t_{0}^{\prime} \times \mathbb{C}=\mathbb{C}, \\
\varphi\left(q_{0}\right) & =q_{0}^{\prime} .
\end{aligned}
$$

Let

$$
\begin{aligned}
\chi & : \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{0}(G) \\
\text { (resp. } \chi^{\prime} & \left.: \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{0}(G)\right)
\end{aligned}
$$

be the characteristic homomorphism of the bundle

$$
\begin{aligned}
\Delta^{*} & \times \mathbb{C}-B_{f} \longrightarrow \Delta^{*} \\
\left(\operatorname{resp} . \Delta^{*}\right. & \left.\times \mathbb{C}-B_{f} \longrightarrow \Delta^{\prime *}\right)
\end{aligned}
$$

(see Steenrod [12, p. 96]). Let δ (resp. δ^{\prime}) be the loop around $t=0$ as before.
Two bundles

$$
\Delta^{*} \times \mathbb{C}-B_{f} \quad \text { and } \quad \Delta^{\prime *} \times \mathbb{C}-B_{f}
$$

over the base space Δ^{*} (which is homeomorphic to $(0,1) \times S^{1}$) and $\Delta^{\prime *}$ are weakly equivalent in the sence of Steenrod [12, p. 99]. Hence by Steenrod [12, p. 100], the characteristic $\chi(\delta)$ and $\chi^{\prime}\left(\delta^{\prime}\right)$ of these bundles satisfy either

$$
\chi(\delta)=\chi^{\prime}\left(\delta^{\prime}\right) \text { or } \quad \chi(\delta)=\chi^{\prime}\left(\delta^{\prime}\right)^{-1}
$$

in $\pi_{0}(G)$. The equality here is up to conjugacy in $\pi_{0}(G)$. But the last equality does not occur by Steenrod [12, p. 100], for η is orientation preserving. Hence

$$
\begin{equation*}
\chi(\delta)=\chi^{\prime}\left(\delta^{\prime}\right) \quad \text { (up to conjugacy). } \tag{3}
\end{equation*}
$$

But $\pi_{0}(G)$ can be identified with B_{n} as noted above, Under the identification, $\chi(\delta)$ (resp. $\chi^{\prime}\left(\delta^{\prime}\right)$) is equal to $\theta(\delta)$ (resp. $\theta^{\prime}\left(\delta^{\prime}\right)$), the braid monodromy. Hence by (3), there is $\sigma \in B_{n}$ such that

$$
\begin{equation*}
\theta^{\prime}\left(\delta^{\prime}\right)=\sigma \theta(\delta) \sigma^{-1} \tag{4}
\end{equation*}
$$

Now the restriction

$$
\varphi: t_{0} \times \mathbb{C}=\mathbb{C} \longrightarrow t_{0}^{\prime} \times \mathbb{C}=\mathbb{C}
$$

of φ is an orientation preserving homeomorphism. By the assumption of topological equivalence,

$$
\begin{equation*}
\left[\Phi_{f_{t_{0}}} \cdot \varphi_{*}^{-1}\right]=\left[\Phi_{f_{t_{0}^{\prime}}^{\prime}}\right] \tag{5}
\end{equation*}
$$

Consider an isotopy $\varphi_{t}(0 \leq t \leq 1)$ on \mathbb{C} such that $\varphi_{0}=$ the identity and $\varphi_{1}=\varphi$. This gives a braid σ. We may write

$$
\varphi=\sigma .
$$

Then by (5)

$$
\begin{equation*}
\left[\Phi_{f_{t_{0}}} \cdot \sigma^{-1}\right]=\left[\Phi_{f_{t_{0}^{\prime}}^{\prime}}\right] \tag{6}
\end{equation*}
$$

Now the braid σ in (4) and σ in (6) are the same. In fact, the braid σ in the relation

$$
\theta^{\prime}\left(\delta^{\prime}\right)=\sigma \theta(\delta) \sigma^{-1}
$$

is nothing but

$$
\sigma=\varphi: t_{0} \times \mathbb{C} \longrightarrow t_{0}^{\prime} \times \mathbb{C}
$$

if we regard $\theta^{\prime}\left(\delta^{\prime}\right)$ and $\theta(\delta)$ as elements of $\pi_{0}(G)$ (see Steenrod [12, p. 97-p. 98, p. 9p. 12]). On the other hand, σ in (6) is also

$$
\sigma=\varphi: t_{0} \times \mathbb{C} \longrightarrow t_{0}^{\prime} \times \mathbb{C} .
$$

Hence the braid σ in (4) and σ in (6) are the same. Thus there is $\sigma \in B_{n}$ such that

$$
\left(\left[\Phi_{f^{\prime}}\right], \theta^{\prime}\left(\delta^{\prime}\right)\right)=\left(\left[\Phi_{f} \cdot \sigma^{-1}\right], \sigma \theta(\delta) \sigma^{-1}\right)
$$

Conversely, for two families in (1), we identify q_{j}^{\prime} with $q_{j}(j=0,1, \ldots, n)$ through ξ in (2) and suppose that there is $\sigma \in B_{n}$ such that

$$
\left(\left[\Phi_{f^{\prime}}\right], \theta^{\prime}\left(\delta^{\prime}\right)\right)=\left(\left[\Phi_{f} \cdot \sigma^{-1}\right], \sigma \theta(\delta) \sigma^{-1}\right)
$$

Since $\theta^{\prime}\left(\delta^{\prime}\right)=\sigma \theta(\delta) \sigma^{-1}$, the above discussion shows that two bundles

$$
\Delta^{*} \times \mathbb{C}-B_{f} \quad \text { and } \quad \Delta^{\prime *} \times \mathbb{C}-B_{f^{\prime}}
$$

over Δ^{*} and $\Delta^{\prime *}$ respectively are weakly equivalent. That is, there are orientation preserving homeomorphism φ and η such that (i) the following diagram commutes:

(ii) $\eta\left(t_{0}\right)=t_{0}^{\prime}$ and
(iii) $\varphi=\sigma: t_{0} \times \mathbb{C}=\mathbb{C} \longrightarrow t_{0}^{\prime} \times \mathbb{C}=\mathbb{C}$.

Now the fiber bundle structures on $\Delta^{*} \times \mathbb{C}-B_{f}$ and $\Delta^{*} \times \mathbb{C}-B_{f^{\prime}}$ can be naturally extended to those on $\Delta^{*} \times \mathbb{C}$ and $\Delta^{\prime *} \times \mathbb{C}$ respectively (see Lemma 2 in Matsuno [7]). Hence φ can be extended to an orientation preserving homeomorphism

$$
\varphi: \Delta^{*} \times \mathbb{P}^{1} \longrightarrow \Delta^{\prime *} \times \mathbb{P}^{1}
$$

such that the following diagram commutes:

We show that φ and η can be extended so that the following diagram commutes:

We assume and put as in $\S 5$

$$
\begin{aligned}
& q_{1}(0)=\cdots=q_{k_{1}}(0)=q_{1}^{0}, \\
& \text { (resp. } \left.q_{1}^{\prime}(0)=\cdots=q_{k_{1}}^{\prime}(0)=q_{1}^{\prime 0}\right), \\
& q_{k_{1}+1}(0)=\cdots=q_{k_{1}+k_{2}}(0)=q_{2}^{0}, \\
& \left(\text { resp. } \quad q_{k_{1}+1}^{\prime}(0)=\cdots=q_{k_{1}+k_{2}}^{\prime}(0)=q_{2}^{\prime 0}\right), \\
& \quad \cdots \cdots \\
& q_{k_{1}+\cdots+k_{r-1}+1}^{\prime}(0)=\cdots=q_{k_{1}+\cdots+k_{r-1}+k_{r}}(0)=q_{r}^{0}, \\
& \text { (resp. } \left.\quad q_{k_{1}+\cdots+k_{r-1}+1}^{\prime}(0)=\cdots=q_{k_{1}+\cdots+k_{r-1}+k_{r}}^{\prime}(0)=q_{r}^{\prime 0}\right),
\end{aligned}
$$

where $k_{\nu} \geq 1(\nu=1, \ldots, r), k_{1}+\cdots+k_{r}=n$ and $q_{1}^{0}, \ldots, q_{r}^{0}$ (resp. $\left.q_{1}^{\prime 0}, \ldots, q_{r}^{\prime 0}\right)$ are mutually distinct.

We may assume that there is a continuous function $\rho(|t|)$ of $|t|$ such that (i) $\rho(|t|)>0$ for $|t|>0$,
(ii) $\rho(0)=0$,
(iii) $\Delta\left(q_{\nu}^{0}, \rho(|t|)\right)\left(\right.$ resp. $\left.\Delta\left(q_{\nu}^{0}, \rho(|t|)\right)\right)(\nu=1, \ldots, r)$ are mutually disjoint,
(iv) each $\Delta\left(q_{\nu}^{0}, \rho(|t|)\right)\left(\right.$ resp. $\left.\Delta\left(q_{\nu}^{\prime}, \rho(|t|)\right)\right)(\nu=1, \ldots, r)$ contains

$$
\begin{array}{ll}
& q_{k_{1}+\cdots+k_{\nu-1}+1}(t), \cdots, q_{k_{1}+\cdots+k_{\nu-1}+k_{\nu}}(t) \\
\text { (resp. } & \left.q_{k_{1}+\cdots+k_{\nu-1}+1}^{\prime}(t), \cdots, q_{k_{1}+\cdots+k_{\nu-1}+k_{\nu}}^{\prime}(t)\right) .
\end{array}
$$

Now Lemma 2 in Matsuno [7] implies that the bundle structure on $\Delta^{*} \times \mathbb{C}-B_{f}$ coincides with that of the product bundle $\Delta^{*} \times \mathbb{C}$ outside

$$
T=\bigcup_{0<|t|<\epsilon} \bigcup_{\nu=1}^{r} \Delta\left(q_{\nu}^{0}, \rho(|t|)\right) .
$$

Similar assertion holds for the bundle structure on $\Delta^{\prime *} \times \mathbb{C}-B_{f^{\prime}}$. Hence we may assume that φ does not depend on t outside T. Thus φ can be extended to an orientation
preserving homeomorphism

$$
\varphi: \Delta \times \mathbb{C}-\left\{q_{1}^{0}, \ldots, q_{r}^{0}\right\} \longrightarrow \Delta^{\prime} \times \mathbb{C}-\left\{q_{1}^{\prime 0}, \ldots, q_{r}^{\prime 0}\right\}
$$

Moreover if we define

$$
\varphi\left(q_{\nu}^{0}\right)=q_{\nu}^{\prime 0} \quad(\nu=1, \ldots, r)
$$

then φ is extended to an orientation preserving homeomorphism

$$
\varphi: \Delta \times \mathbb{P}^{1} \longrightarrow \Delta^{\prime} \times \mathbb{P}^{1}
$$

Put also $\eta(0)=0$. Then η is extended to an orientation preserving homeomorphism

$$
\eta: \Delta \longrightarrow \Delta^{\prime}
$$

and the following diagram commutes:

Next, note that

$$
\begin{gathered}
\varphi\left(B_{f}\right)=B_{f^{\prime}}, \\
\varphi=\sigma: t_{0} \times \mathbb{C} \longrightarrow t_{0}^{\prime} \times \mathbb{C} .
\end{gathered}
$$

Note also that

$$
\varphi \cdot f: X \longrightarrow \Delta^{\prime} \times \mathbb{P}^{1}
$$

is unbranched on $\Delta^{\prime} \times \mathbb{P}^{1}-B_{f^{\prime}}$. By Theorem 1, $\varphi \cdot f$ can be extended to a branched covering

$$
f^{\prime \prime}: X^{\prime \prime} \longrightarrow \Delta^{\prime} \times \mathbb{P}^{1}
$$

$\varphi \cdot f$ and $f^{\prime \prime}$ coincides on $\Delta^{\prime} \times \mathbb{C}-B_{f^{\prime}}$ and both are Fox completions of the same unbranched coverings of $\Delta^{\prime} \times \mathbb{C}-B_{f^{\prime}}$. Hence by the uniqueness of the Fox completion (see Fox [3]), there is a homeomorphism

$$
\psi^{\prime}: X \longrightarrow X^{\prime \prime}
$$

such that the following diagram commutes:

Note that ψ^{\prime} is orientation preserving. Now, the representaion class of the monodromy of $f^{\prime \prime}$ is equal to that of $\varphi \cdot f$, which is clealy equal to $\left[\Phi_{f} \cdot \varphi_{*}^{-1}\right]$. By the assumption

$$
\left[\Phi_{f} \cdot \varphi_{*}^{-1}\right]=\left[\Phi_{f} \cdot \sigma^{-1}\right]=\left[\Phi_{f^{\prime}}\right]
$$

we have

$$
\left[\Phi_{f^{\prime \prime}}\right]=\left[\Phi_{f^{\prime}}\right] .
$$

Hence there is a biholomorphic mapping

$$
\psi^{\prime \prime}: X^{\prime \prime} \longrightarrow X^{\prime}
$$

which makes the following diagram commutative:

Now put $\psi=\psi^{\prime \prime} \cdot \psi^{\prime}$. Then

$$
\psi: X \longrightarrow X^{\prime}
$$

is an orientation preserving homeomorphism which makes the following diagram commutative:

Hence $f=\left\{f_{t}\right\}$ and $f^{\prime}=\left\{f_{t}^{\prime}\right\}$ are topologically equivalent.
Considering a trivial family, we get the following corollary, which can be also derived directly from Theorem 2.

Corollary 2 (cf. Wajnryb [13]). There exists a one to one correspondence between \{topological equivalence class of $f: X \longrightarrow \mathbb{P}^{1}$ of degree d with n branched points $\left.q_{1}, \ldots, q_{n}\right\}$ and $\{[\Phi] \mid[\Phi]$ is the representation class of $\Phi: \pi_{1}\left(\mathbb{P}^{1}-\left\{q_{1}, \ldots, q_{n}\right\}, q_{0}\right) \longrightarrow S_{d}$ such that $\operatorname{Im} \Phi$ is transitive $\} / B_{n}$.

Remark. As one can see in the proof of Theorem 8, we do not need to mention the points $\left\{q_{1}, \ldots, q_{n}\right\}$ in the statement of Theorem 8 and its corollary, if we replace $\pi_{1}\left(\mathbb{P}^{1}-\left\{q_{1}, \ldots, q_{n}\right\}, q_{0}\right)$ by the abstract group

$$
\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{n} \cdots \gamma_{1}=1\right\rangle .
$$

7. Degenerating families of finite branched coverings of \mathbb{P}^{m}

Let $\Delta=\Delta(0, \epsilon)$ be a disc and

$$
f: X \longrightarrow \Delta \times \mathbb{P}^{m}
$$

be a finite branched covering. As in the case of \mathbb{P}^{1}, f is called a degenerating family of finite branched covering of \mathbb{P}^{m} and is denoted by $f=\left\{f_{t}\right\}$ if the following 4 conditions are satisfied
(1) $t \times \mathbb{P}^{m} \not \subset B_{f}$ for every $t \in \Delta$.
(2) For every $t \in \Delta^{*}, t \times \mathbb{P}^{m}$ meets transversally with B_{f} and putting $\left(t \times \mathbb{P}^{m}\right) \cap B_{f}=$ $t \times B_{t}, B_{t}$ is a hypersurface of \mathbb{P}^{m} of degree n. (n is constant for $t \in \Delta^{*}$.)
(3) For every $t \in \Delta^{*}$,

$$
f_{t}=f: X_{t}=f^{-1}\left(t \times \mathbb{P}^{m}\right) \longrightarrow t \times \mathbb{P}^{m}
$$

is a covering of \mathbb{P}^{m} of degree $d=\operatorname{deg}(f)$ branching at B_{t}.
(4) For any points t and t^{\prime} in Δ^{*}, f_{t} and $f_{t^{\prime}}$ are topologically equivalent.

The central fiber $X_{0}=f^{-1}\left(0 \times \mathbb{P}^{m}\right)$ is a degeneration of a general fiber X_{t} for $t \neq 0$.

We show that, topologically, the central fiber X_{0} can be described by the central branch divisor B_{0}, where $0 \times B_{0}=\left(0 \times \mathbb{P}^{m}\right) \cap B_{f}$ and by the monodromy $\Phi_{t}=\Phi_{f_{t}}$, where $t \in \Delta^{*}$ is a fixed point. We explain this as follows:

Let L be a general line in \mathbb{P}^{m}. We may assume that L meets transversally with every B_{t} for $t \in \Delta$. Consider the restriction

$$
f^{L}: X^{L}=f^{-1}(\Delta \times L) \longrightarrow \Delta \times L
$$

of f to $X^{L}=f^{-1}(\Delta \times L)$. Then
Lemma 2. (1) Every point of $\left(X-f^{-1}\left(B_{f}\right)\right) \cap X^{L}$ is a non-singular point of X^{L}.
(2) For $t \neq 0$, every point of $f^{-1}\left(\operatorname{Reg}\left(B_{f}\right) \cap(t \times L)\right)$ is non-singular point of X^{L}. $\left(\operatorname{Reg}\left(B_{f}\right)\right.$ is the set of non-singular points of the branch locus B_{f}.)
(3) For $t \neq 0$, the restriction

$$
f_{t}^{L}: X_{t}^{L}=f^{-1}(t \times L) \longrightarrow t \times L
$$

of f^{L} is a branched covering of degree $d=\operatorname{deg}(f)$
Proof. (1) Let $p \in\left(X-f^{-1}\left(B_{f}\right)\right) \cap X^{L}$. Then there are local coordinate systems $\left(t, x_{1}, \ldots, x_{m}\right)$ and $\left(t, y_{1}, \ldots, y_{m}\right)$ around p in X and $q=f(p)$ in $\Delta \times \mathbb{P}^{m}$ such that (i) t is a local coordinate system in Δ and $\left(y_{1}, \ldots, y_{m}\right)$ is that in \mathbb{P}^{m}, (ii) L is locally given by the equation $y_{2}=\cdots=y_{m}=0$ and (iii) f is locally given by

$$
f:\left(t, x_{1}, \ldots, x_{m}\right) \longmapsto\left(t, y_{1}, \ldots, y_{m}\right)=\left(t, x_{1}, \ldots, x_{m}\right) .
$$

Then f^{L} is locally given by

$$
f^{L}:\left(t, x_{1}\right) \longmapsto\left(t, y_{1}\right)=\left(t, x_{1}\right)
$$

In particular, p is a non-singular point of X^{L}.
(2) Let $t_{0} \neq 0$ and $p \in f^{-1}\left(\operatorname{Reg}\left(B_{f}\right) \cap\left(t_{0} \times L\right)\right)$. Then there are local coordinate systems $\left(t, x_{1}, \ldots, x_{m}\right)$ and $\left(t, y_{1}, \ldots, y_{m}\right)$ around p in X and $q=f(p)$ in $\Delta \times \mathbb{P}^{m}$ such that (i) t is a local coordinate system in Δ around t_{0} and $\left(y_{1}, \ldots, y_{m}\right)$ is that in \mathbb{P}^{m}, (ii) L is locally given by the equation $y_{2}=\cdots=y_{m}=0$ and (iii) f is locally given by

$$
f:\left(t, x_{1}, x_{2}, \ldots, x_{m}\right) \longmapsto\left(t, y_{1}, y_{2}, \ldots, y_{m}\right)=\left(t, x_{1}^{e}, x_{2}, \ldots, x_{m}\right)
$$

Then f^{L} is locally given by

$$
f^{L}:\left(t, x_{1}\right) \longmapsto\left(t, y_{1}\right)=\left(t, x_{1}^{e}\right)
$$

In particular, p is a non-singular point of X^{L}. Moreover p is a ramification point of $f_{t_{0}}^{L}$ with the ramification index e.
(3) For $t \neq 0$, the branched covering

$$
f_{t}: X_{t} \longrightarrow \mathbb{P}^{m}
$$

gives a linear system on X_{t}. By Bertini's theorem, X_{t}^{L} is non-singular and globally irreducible. Hence, by the proof of (2),

$$
f_{t}^{L}: X_{t}^{L} \longrightarrow t \times L
$$

is a branched covering of degree $d=\operatorname{deg}(f)$.
This lemma shows that the singular locus $\operatorname{Sing}\left(X^{L}\right)$ of X^{L} is contained in $f^{-1}\left(0 \times\left(B_{0} \cap L\right)\right)$, which is a finite set. X^{L} is globally irreducible. Let

$$
\mu: \tilde{X}^{L} \longrightarrow X^{L}
$$

be the normalization of X^{L}. Since $\operatorname{Sing}\left(X^{L}\right)$ is a finite set, μ is a bijective holomorphic mapping. In fact, suppose that there are distinct points p_{1} and p_{2} in \tilde{X}^{L} such that

$$
p=\mu\left(p_{1}\right)=\mu\left(p_{2}\right) \in f^{-1}\left(0 \times\left(B_{0} \cap L\right)\right) .
$$

Then there are disjoint connected open neighborhoods W_{1} and W_{2} of p_{1} and p_{2} respectively such that

$$
\mu\left(W_{1}\right)=\mu\left(W_{2}\right)=W
$$

and W is connected open neighborhood of p in X^{L}. Since $f^{-1}\left(0 \times\left(B_{0} \cap L\right)\right)$ is a finite set, we may assume that

$$
f^{-1}\left(0 \times\left(B_{0} \cap L\right)\right) \cap W=\{p\}
$$

We may assume that $X_{t}^{L} \cap W$ is connected for non-zero t with $|t|$ sufficiently small. Hence $W-\{p\}$ is a connected 2-dimensional complex manifold. Since μ is the normalization of X^{L},

$$
W_{1}-\left\{p_{1}\right\}=W_{2}-\left\{p_{2}\right\}
$$

and

$$
\mu: W_{1}-\left\{p_{1}\right\}=W_{2}-\left\{p_{2}\right\} \longrightarrow W-\{p\}
$$

is biholomorphic, a contradiction. Thus μ is bijective. The composition

$$
f^{L} \cdot \mu: \tilde{X}^{L} \longrightarrow \Delta \times L
$$

is a degenerating family of finite branched coverings of $L=\mathbb{P}^{1}$, which we denote

$$
f^{L} \cdot \mu=\left\{f_{t}^{L}\right\}
$$

by abuse of notation.
Lemma 3. (1) Let $X_{0}=X_{01} \cup \cdots \cup X_{0 u}$ be the global irreducible decomposition of X_{0}. Then

$$
X_{0}^{L}=\left(X_{01} \cap X_{0}^{L}\right) \cup \cdots \cup\left(X_{0 u} \cap X_{0}^{L}\right)
$$

is the global irreducible decomposition of X_{0}^{L}.
(2) Let $\operatorname{Sing}^{m-1}\left(X_{0}\right)$ be the union of global irreducible components of $\operatorname{Sing}\left(X_{0}\right)$ which are hypersurfaces of X_{0}. Then (i) Sing ${ }^{m-1}\left(X_{0}\right) \subset f_{0}^{-1}\left(B_{0}\right)$ and (ii) (Sing $\left.{ }^{m-1}\left(X_{0}\right)\right) \cap$ $X_{0}^{L}=\operatorname{Sing}\left(X_{0}^{L}\right)$.
(3) For a point $p \in \operatorname{Sing}\left(X_{0}^{L}\right)$, let

$$
\left(X_{0}\right)_{p}=Z_{1} \cup \cdots \cup Z_{v}
$$

be the local irreducible decompoition of X_{0} at p. Then the local irreducible decomposition of X_{0}^{L} at p is given by

$$
\left(X_{0}^{L}\right)_{p}=\left(Z_{1} \cap X_{0}^{L}\right) \cup \cdots \cup\left(Z_{v} \cap X_{0}^{L}\right) .
$$

Proof. (1) Let

$$
\mu_{j}: \hat{X}_{0 j} \longrightarrow X_{0_{j}}
$$

($1 \leq j \leq u$) be the normalization of $X_{0 j}$. By the proof of (1) of Lemma 2,

$$
f_{0 j} \cdot \mu_{j}: \hat{X}_{0 j} \longrightarrow 0 \times \mathbb{P}^{m} \quad\left(f_{0 j}=f_{0} \mid X_{0 j}\right)
$$

is a finite branched covering. By Bertini's theorem, $\left(f_{0 j} \cdot \mu_{j}\right)^{-1}(0 \times L)$ is a non-singular connected curve of $\hat{X}_{0 j}$. Hence $f_{0 j}^{-1}(0 \times L)$ is a global irreducible component of X_{0}^{L} and

$$
X_{0}^{L}=f_{0}^{-1}(0 \times L)=\bigcup_{j=1}^{u} f_{0 j}^{-1}(0 \times L)=\bigcup_{j=1}^{u}\left(X_{0 j} \cap X_{0}^{L}\right)
$$

is the irreducible decomposition of X_{0}^{L}.
(2) By (2) of Lemma 2, every component of $\operatorname{Sing}^{m-1}\left(X_{0}\right)$ is a global irreducible component R_{0} of $f_{0}^{-1}\left(B_{01}\right)$, where B_{01} is a global irreducible component of B_{0}. Let p be a point of $X_{0}^{L} \cap R_{0}$. Then p is clearly a singular point of X_{0}^{L}. Conversely, if p is a singular point of X_{0}^{L}, then $f_{0}(p)=q$ is on $L \cap B_{01}$ for an irreducible component B_{01} of B_{0}. Since L is a general line, every point on a global irreducible component R_{0} with $p \in R_{0}$ of $f_{0}^{-1}\left(B_{01}\right)$ is a singular point of X_{0}. Hence R_{0} is a component of Sing ${ }^{m-1}\left(X_{0}\right)$. This shows (i) and (ii) of (2).
(3) We use the same notation as in the proof of (1). Every Z_{k} is an open set of some $X_{0 j}$. Hence

$$
\mu_{j k}: \hat{Z}_{k}=\mu_{j}^{-1}\left(Z_{k}\right) \longrightarrow Z_{k} \quad\left(\mu_{j k}=\mu_{j} \mid \hat{Z}_{k}\right)
$$

is the normalization of Z_{k}. $\left(f_{0 j k} \cdot \mu_{j k}\right)^{-1}(0 \times L)$ is a non-singular connected curve of \hat{Z}_{k}, where $f_{0 j k}=f_{0 j} \mid Z_{k}$. Hence $f_{0 j k}^{-1}(0 \times L)=Z_{k} \cap X_{0}^{L}$ is a local irreducible component
of X_{0}^{L} at p and

$$
\left(X_{0}^{L}\right)_{p}=\left(Z_{1} \cap X_{0}^{L}\right) \cup \cdots \cup\left(Z_{v} \cap X_{0}^{L}\right)
$$

is the local irreducible decomposition of X_{0}^{L}. at p.
Now we refer a theorem of Zariski-van Kampen. Let B be a hypersurface of degree n in \mathbb{P}^{m}. Take a general point q_{0} in $\mathbb{P}^{m}-B$ and let

$$
\pi: \mathbb{P}^{m}-\left\{q_{0}\right\} \longrightarrow \mathbb{P}^{m-1}
$$

be the projection with the center q_{0}. Put

$$
\hat{\pi}=\pi \mid B: B \longrightarrow \mathbb{P}^{m-1}
$$

be the restriction. Let D be the branch locus of $\hat{\pi}$. A theorem of Zariski-van Kampen in this case can be described as follows (cf. Matsuno [7]).

Theorem 9 (Zariski-van Kampen).

$$
\begin{aligned}
& \pi_{1}\left(\mathbb{P}^{m}-B, q_{0}\right) \\
& \quad=\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{n} \cdots \gamma_{1}=1, \theta\left(\delta_{k}\right) \gamma_{j}=\gamma_{j}(1 \leq j \leq n, 1 \leq k \leq s)\right\rangle
\end{aligned}
$$

where γ_{j} are lassos as in Fig. 2 on $\pi^{-1}\left(q_{0}\right)$, the line deleted the point $\left\{q_{0}\right\}, \delta_{k}$ are the generators of $\pi_{1}\left(\mathbb{P}^{m-1}-D, r_{0}\right)$ for a reference point $r_{0} \in \mathbb{P}^{m-1}-D$, and $\theta\left(\delta_{k}\right)$ are the braid monodromy along δ_{k}.

This theorem shows in particular that the monodromy $\Phi_{f_{t}}$ of f_{t} is equal to the monodromy $\Phi_{f_{t}}^{L}$ of f_{t}^{L} for a general line L passing through q_{0}. Hence, we conclude by Theorems 4, 5, 6 and Lemma 3 that topologically, the central fiber X_{0} can be determined by the central branched divisor B_{0} and by the monodromy $\Phi_{t}=\Phi_{f_{t}}$, where $t \in \Delta^{*}$ is a fixed point.

Remark. If $\operatorname{deg} B_{0}=\operatorname{deg} B_{t}(t \neq 0)$, then there is a surjective homomorphism

$$
\pi_{1}\left(\mathbb{P}^{m}-B_{0}, q_{0}\right) \longrightarrow \pi_{1}\left(\mathbb{P}^{m}-B_{t}, q_{0}\right) \longrightarrow 0
$$

(see Zariski [14]). In this case, X_{0} is irreducible and

$$
\operatorname{dim} \operatorname{Sing}\left(X_{0}\right) \leq m-2
$$

Hence degenerations such that

$$
\operatorname{dim} \operatorname{Sing}\left(X_{0}\right)=m-1
$$

happen only if $\operatorname{deg} B_{0}<\operatorname{deg} B_{t}(t \neq 0)$, that is, only if B_{0} has a multiple component as a divisor.

References

[1] J.S. Birman: Braids, Links, and Mapping Class Group, Ann. Math. Studies, 82, Princeton, 1974.
[2] A. Dimca: Singurarities and Topology of Hypersurfaces, Berlin-Heidelberg-New York, SpringerVerlag, 1992.
[3] R.H. Fox: Covering spaces with singularities, Lefschetz Symposium, Princeton Univ. Press (1957), 243-262.
[4] H. Grauert and R. Remmert: Komplexe Räume, Math. Ann. 136 (1958), 245-318.
[5] F. Klein: Gesammelte Mathematische Abhandlungen, Band III, Berlin-Heidelberg-New York, Springer-Verlag, 1973.
[6] Y. Matsumoto, J.M. Montesinos-Amilibia: Pseudoperiodic homeomorphisms and degenerations of Riemann surfaces, Bull. AMS, 30 (1994), 70-75.
[7] T. Matsuno: On a theorem of Zariski-Van Kampen type and its applications, Osaka J. Math. 32 (1995), 645-658.
[8] M. Namba: Families of Meromorphic Functions on Compact Riemann Surfaces, Lec. Notes in Math. 767, Springer, 1979.
[9] M. Namba: Branched Coverings and Algebraic Functions, Pitman Research Note in Math. 161, Longman, 1987.
[10] M. Namba: Degenerationg families of meromorphic functions, Proc. Internat. Conf. "Geometry and Analysis in Several Complex Variables", Kyoto Univ., (1997) RIMS Kokyuroku 1058 (1998), 77-94.
[11] L. Schneps (editor): The Grothendieck Theory of Dessins d'Enfants, Lec. Notes 200, London Math. Soc., Cambridge Univ. Press, 1994.
[12] N. Steenrod: The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
[13] B. Wajnryb: Orbits of Hurwitz action for coverings of a sphere with two special fibers, Indag. Mathem., N.S. 7 (1996), 549-558.
[14] O. Zariski: Collected papers, Vol. III, 1978.

Makoto Namba and Maki Takai
Department of Mathematics
Osaka University
Toyonaka City, 560-0043, Japan
e-mail: namba@math.wani.osaka-u.ac.jp;
takai@gaia.math.wani.osaka-u.ac.jp

