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1. Introduction

The study of real hypersurfaces in complex projective sp@¢¥ and complex
hyperbolic spaceC H" has been an active field over the past tlgesdds. Although
these ambient spaces might be regarded as the simplesttladteapaces of constant
curvature, they impose significant restrictions on the getoymof their hypersurfaces.
For instance, they do not admit totally umbilical hyperaggfs and Einstein hypersur-
faces.

On the other hand, several important classes of real hypgacgs in complex pro-
jective space have been constructed and investigated by geometers. For instance,
H.B. Lawson investigated real hypersurfacesCap” constcutie Clifford minimal
hypersurfaces of"*! via Hopf fibration. R. Takagi [9] gave the list of homogeneous
real hypersurfaces o€ P* . Many geometers then study the gepnreim the list
of Takagi and obtained various interesting geometric atarizations of homogeneous
real hypersurfaces i@ P"

Another important class of real hypersurfacesd®” which aimst the list of
R. Takagi is the class of Hopf hypersurfaces. Such hypexsesf are real hypersur-
faces whose structure vectdr is a principal curvature vector, whete is the com-
plex structure and is the unit normal vector field. Examples and geometric atxara
terizations of Hopf hypersurfaces have also been obtailyedabhious geometers. It is
known that inC P" ,M is a homogeneous real hypersurface if and ibnlf is a Hopf
hypersurface with constant principal curvatures [6, 9].

The study of real hypersurfaces in complex hyperbolic spaég® has followed
developments inCpP" , often with similar results, but sometinveith differences
(see [1, 7, 8] for more details).

It is well-known that real projective space and real hypécbspace admit ample
hypersurfaces which are the Riemannian products of sommdRieian manifolds. It
is also well-known thatC P® admits a complex hypersurface which is the Riemannian
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product of two complex projective lines. Moreover, it is ped in [3] that there exist
infinitely many real hypersurfaces, both in complex prajectspace and in complex
hyperbolic space, which are warped products of Riemannianifoids.

In contrast with such properties we prove in this paper a dumehtal general
property on real hypersurfaces; namely, there do not egat ypersurfaces which are
Riemannian products of Riemannian manifolds, both in cempirojective space and
complex hyperbolic space. More precisely, we prove theo¥alg.

Theorem. Every real hypersurface in a nonflat complex space form ig-irr
ducible.

2. Preliminaries

If N is a Riemannian manifold isometrically immersed in a Kiaehmanifold M
with complex structure/ . Then the formulas of Gauss and Véeteg are given re-
spectively by

(2.1) VY = VyY +0(X, Y),
(2.2) Vx€ = —AcX + Dx¢

for vector fields X ,Y tangent tavn ang normal to N, whereV denotes the
Riemannian connection o/, o the second fundamental forn)  the normal con-
nection, andA the shape operator ¥f &h The second fundamental form and the
shape operator are related X, Y) = (o(X, Y), &), where( , ) denotes the inner
product onM as well as oM.

For a submanifoldv of a Kaehler manifoltt, the equation of Gausss given

by

R(X,Y;Z, W)=R(X,Y;Z, W)+ (o(X, W), o(Y, Z))

(2.3)
—(o(X, 2), o(Y, W))

for X, Y, Z, W tangent toM , wher® anft denote the curvature tensors f  and
M, respectively.

For the second fundamental form we define its covariant derivativ€o with
respect to the connection ¢dhM @& T+ M by

(2.4) (Vxo)(¥, Z) = Dx(o(¥, 2)) = o(VxY, Z) — o (¥, Vx 2).
The equation of Codazzs given by

(2.5) R(X, Y)2)* = (Vxo)(¥, Z) — (Vyo)(X, 2),

where R(X, Y)Z)* denotes the normal component B{X, Y)Z.
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The Riemann curvature tensor 8f"(4c) satisfies

RX,Y:Z, W)= c{ (X, W) (Y, Z) — (X, Z) (Y, W) + (JX, W) (JY, Z)
2.6
20 CUX,Z) TV, WY+ 2(X, JY) (JZ, W) }

A submanifold N in a Kaehler manifold is callggurely real if J(T,N) NT,N =
{0} for x € N.

Here M"(4c) denotes a complex -dimensional Kaehler manifold of tamts
holomorphic sectional curvaturec4 . Such Kaehler manif@ds calledcomplex space
forms It is known that the universal covering of a complete comp#pace form
M"(4c) is the complex projective: -spad&P” c(4 ), the complex Eeelitin -space
C", or the complex hyperbolic spad@H" ¢(4 ), accordingcas 0, ¢ =0, orc < 0.

3. Proof of the theorem

Assume thatM is a real hypersurface of a complex space foffn ¢ @8 )
constant holomorphic sectional curvature 4 with # 0. Suppose thatM is the
Riemannian product of two Riemannian manifolds, naméfy, Ni=x N, with n; =
dimN; > 1 andny, =dimN, > 1.

For x = (x1, x2) € M = N1 x Np, we putDi, =T, N; N J(T;N;) for j =1, 2. Let
U/ ={x € M:dimD}, > 0}.

We need the following.

Lemma 3.1. Let M = N3 x N, be a real hypersurface of a nonflat complex space
form M"(4c). Then exactly one of the following two cases occurs
(1) dimNy=1or dimN, = 1.
(2) n > 3 and eitherdim Ny =n anddim N, =n—1 or dimN; =n—1 and dim N, = n.
Moreover Case(2) occurs only whenrestricted to some open dense subsebof
N1 and N, are both purely real submanifolds.

Proof of Lemma 3.1. Since/ is a real hypersurfaceif(4c), we haven; +
np, = 2n — 1. Thus, we havei; > n or np, > n. If ny = n holds, thenn, = n — 1.
Similarly, if n, =n, thenny =n — 1.

Clearly, Case (1) occurs it = 2. So, we may assume 3. Now, let us as-
sume thatny > n. Then the dimension formula implies that' = M. Thus, there is a
nonempty connected open subget Asf  on which the dimensiddlds a positive
constant. We shall work ot/  instead #f . Clearly, the restmicof D on U is a
distribution onU x N,. For simplicity, we denote this distribution also B

Let X be a unit vector field ifD! and Z a unit vector field i N.. Then we
haveVzX =Vz(JX) = 0. Thus, by the formulas of Gauss and Weingarten, we obtai

(3.1) o(JX,Z)=V,(JX)=JIVzX = Jo(X, Z).
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Since Jo(X, Z) is tangent toM , (3.1) gives
(3.2) o(X,2)=0(JX,Z)=0, XeD' ZecTN..
Because the sectional curvature df  satistesy, 4 ) =0, (2.3)(arg) imply
(3.3) 0=K(X, Z) + (o(X, X), 0(Z, Z)),

where K (X, Z) denotes the sectional curvature of the plane seckionZ on M"(4c).
SinceX ,Z are orthonormal, they span a totally real plane, ab (th6) and (3.3) give

(3.4) AMX)u(2) = —c 70

for any unit vectorX € D! and unit vectorZ € TN,, where o(X, X) = MX)¢,
0(Z,2) = uw(Z2)¢ and ¢ is the unit normal vector field.

It follows from (3.4) that\(X) and u(Z) are independent ok and , respec-
tively. Thus

(3.5) o(X, X)=MX,X)¢,, o(Z,2)=u{Z,Z)¢

for X € D! and Z € T N,. Since N, is totally geodesic inM , (3.5) implies that,
is totally umbilical in #"(4c). Hence, by applying a result of Chen and Ogiue [5], we
have either (a) dinv, = 1 or (b) N, is a real space form isometrically immersed in
M"(4c) as a totally real submanifold whose mean curvature veliois perpendicular
to J(T'No).

If dim N, > 2, then the mean curvature vector &% is parallel to¢ according
to (3.5). Thus,/ TNz) C T N1. Hence, we obtain

(3.6) VyIW+o(Z, JW)=JV W+ Jo(Z, W)

for Z, W in TN,. SinceJVzW € J(TN,) C TN, (3.6) yields
(3.7) o(Z,JW)=0, Z,W &€ TNa.
Therefore, by applying the equation of Gauss, we get

(3.8) 0=K @, JW)=K(Z, IW)+(o(Z, Z), s(JW, IW))

for unit vectorsZ ,W inT' N,. SinceZ ,JW span a totally real plane for orthonormal
vectorsZ ,W inT N, (3.5) and (3.8) imply

(3.9) M=(0(Z,2),0(JW,JW)) =—c #0.
On the other hand, (3.8) gives

(3.10) M= (0(Z,2),0(JZ,JZ)) =—K(Z, ] Z) = —4c.
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Combining (3.9) and (3.10), we obtain = 0 which is a contraolic Therefore, if
n1 > n, we must haven, = 1. Consequently, exactly one of Case (1) or Case (2)
occurs.

Next, assume that Case (2) occurs. Suppose EHatontains a nonempty open
subsetV ofM . Then, by applying exactly the same argument asase (i) to V
instead ofU , we conclude thab = 1 which is a contradiction. Similarlyp? does not
contain any nonempty open subset @f . Consequently, whee (Zsoccurs, then,
restricted some open dense subsetof N, ,and N, are purely real submanifolds. This
completes the proof of Lemma 3.1. ]

We consider the Case (1) and Case (2) of Lemma 3.1 separately.
Case (1). dimN, = 1.

First, assume thaf¢ € T N;. If this occurs, we may choose an orthonormal frame

e1,...,e2,-1 ON M in such a way thaty, ..., ez_» are tangent tavy, e»,—1 tangent
to Ny andey = JE, es = Jea, ..., e2-3 = Jey_a, €2,—1 = Jez,_2. Clearly, the distri-
bution D! is spanned bys, ..., ez, 3.

Using the formulas of Gauss and Weingarten together wWith, ,ez,—1 =
Vey 1202 = 0, we find —o(e2,-1, €20-2) = J Vo, €201 = Jo(e2,—1, €2,-1) Which
implies

(311) 0—(6211717 621172) = 0—(6211717 621171) =0.

Hence, by the equation of Gauss, we obtain K =5, (1, €2,—2) = 4c which is a con-
tradiction. Hence, we havé¢ ¢ T Ny.

Next, let us assumd¢ € TN,. Then N is a holomorphic submanifold ani> is
a totally real submanifold ofi”(4c). Thus, in this casel is a prop€/R  -product in
the sense of [2]. But it was proved in [2] that there exist noper C R -products of
codimension one in any nonflat complex space form. Hence, 8@ aveJ¢ ¢ T N».
Consequently, we obtain

(3.12) JE& = cosaep,—2 + Sinaez,—1, Sinacosa # 0,

where ey, _» iS a unit vector tangent taV; and ez, a unit vector tangent tav,. It
follows from (3.12) that

(3.13) Jeg,—1 = —sina& — cosaey,_3

for some unit vectowr,,_3 € T Ny with (ez,_3, €2,—2) = 0.
Since (Jez,—3, &) = — {ean—3, JE) = 0, (3.13) gives

(3.14) Jeo_3 = —Sinaes,_2 + COSaes, 1.
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Using (3.12) and (3.14), we find
(3.15) Jey,_2 = —cosal — sinaey, 3.
Clearly, ez,—3, e2,_2, e2,—1, £ sSpan a complex 2-plan#&, at each paine M
and D! is the orthogonal complementary subspacefof — Tit"(4c).
Since N, is totally geodesic inM , (3.13) and the formulas of Gauss argnW

garten imply

Jo(V,ez-1) = JVyes 1=VyJes 1
= —(cosa){(Va)§ + Vyez,—3+0(V, ez-3)} +sina{(Va)ex 3+ AV},

(3.16)
for vV tangent toM , whered 2. is the shape operator. Using (3.16), we obtain
(3.17) (Va)y=—(AV,ep_3), VeTM.

Also, by taking the inner product of (3.16) wit#,_», we get
(3.18) (Vveu—_3,e2,_2) =tana (AV, ez,_2) — (AV,ez_1), V €TM.
Moreover, by taking the inner product of (3.16) withe D?, we find
(3.19) (Vvez,_3, X) =tana (AV,X), X eD' VverTMm.

In particular, if V =ey,_1, (3.18) and (3.19) reduce respectively to

(3.20) 0'(62,1_1, 62,1_1) = (tana)a(eg,,,_l, 62”_2),
(3.21) o(ezn_1,X)=0, X DL

We summarize the above results as the following.

Lemma 3.2. Let M = N} 2 x N3 be a real hypersurface of a nonflat complex
space formM”(4c). Then we have

® Va=—(AV,ey_3),

(i) (Vveu—3, exm—2) =tana (AV, ez _2) — (AV, ex—1),
(i) (Vvea—_3, X) =tana (AV, X),

(iv) o(ean—1, e2—1) = (tana)o(ezn—1, €2n—2),

(v) o(ezn-1, X) =0

for XeDY, verTMm.
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For simplicity, we puthsp =(Aea, ep). Using (i), we find

(Ves 20)(€20—3, €20-3)

3.22 n-2
(3.22) = — (ezn—2e21—300)§ — 2 Z wh,_s(€an—2)hjon—3E,

=

(Ve 50)(€2n—2. €20-3) = —(e2n_3€21200)E

(323) 2n—2 ) 2n—2 )
- Z W) o(e2n—3)hjon—3€ — Z W, a(e2n—3)hjon—2€.
j=1 =

From (2.6), (3.14) and (3.15) we find
(3.24) R(e21—2, €20-3)ez,—3)* = 0.
Also, from (i) of Lemma 3.2, we also have

€2, —2€2, 30 — €272 30

3.2 22 |
529 = Z {ws, _o(e2n—3) —wh, s(ezn—2)}hjon-s3.
=1

Therefore, by applying the equation of Codazzi and (3.2225), we obtain
2n—2 ) 2n—2 )
(3.26) Z w),_ale2n—3)hjon_2= Z wj,_a(e2n—2)hj 203
j=1 j=1
On the other hand, from Lemma 3.2 (iii), we have

(3.27) wh,_s(e2n—2) = (tana)h j 2,2,

wh,_a(e2n—3) = (tana)h; 2,—3.
Substituting (3.27) into (3.26), we get

(3.28) w322, 3)hon—22m—2 = WA " 2(e2n2) 20320 2.
We find from Lemma 3.2 (ii) and (3.28) that

(3.29) hon—320—1h2m—22—2 = hon—220-1h 23212
We also have from Lemma 3.2 (i)

(3.30) (Ves, 10) (€203, €20-3) = —(€20_1620_30)E,
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(Vep_s0)(€20-1, €2,-3) = —(e20—3e21—10)§
(3.31) =
- Z Wy, _3(€2n—3)hj 211§,
j=1
From (2.6), (3.13) and (3.14) we find
(3.32) (Rezn-1. e—s)ezn—s) " =0.

Also, we haveey, _1€2, 300 — e2,_1€2, 300 = [e2,_1, e2,—3]a = 0. Thus, by the equation
of Codazzi and (3.30)—(3.32), we obtain

2n—2
(3.33) > wh,_slezn-a)hjz-1=0.

=
Hence, by applying (v) of Lemma 3.2 and (3.33) we get
(3.34) w3 (ezn—3)h2n—220-1=0

which is equivalent to

(3.35) hon—220—1{h2,—32:—1 — (tana)hz, 32,2} = 0,

by (ii) of statement (ii) of Lemma 3.2.
It follows from (i) and (v) of Lemma 3.2 that

(3.36) (Vey 10)(€20-3, €20—2) = —(€20—1€20200)E,

(Vey_,0) (€201, €20—-3) = — (€2n—2e2,—10)¢

(3.37) -
— WA S (ean—2)han—220—1E.

From (2.6), (3.13)—(3.15) we find
(3.38) (R(ezn-1, e2—2)ezn—s)” = —c&.
Sinceey, _1e2,_200 — ez, 12,3 = 0, the equation of Codazzi and (3.36)—(3.38) imply
(3.39) w3 Hezm—2) = —c 0, ¢ =hp_22-1.
From (3.34), (3.35) and (3.39) we fingh, 22,1 # 0 and
(3.40) w3 2(e2,-3) =0, hou_320—1 = (taNQ)hr2y 32— 2.
By substituting the second equation of (3.40) into (3.29, fimd

(3.41) hg,,_gzl_g{(p — (tana)hz,l_zzn_z} =0.
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Since we havep — (tana)hz,—22,—2 = wa'"3(ez,—2) # O from (3.39), we obtain
hou—32.—2 = 0 from (3.41). Thus, we also have, 32,1 = 0 by (3.40). Hence, by
(i) of Lemma 3.2, we also have,, 1a = ey, _2a = 0. Consequently, we have
(3.42) hon—329—2 = hoy_32,-1 = €3,_10 = e, _2a = 0.

We have from (3.36), (3.42) and Lemma 3.2 (i)
(3.43) Voo 10)(€21-3, €21-2) = 0,

On the other hand, from (i) and (v) of Lemma 3.2, (3.40) andZB.we have
(3.44) (Voo s0)ean1, €n2) =(ean—s)E.
From (2.6), (3.13)—(3.15) we find
(3.45) (R(ez—1, €an-3)ean—2)" = c(1—3cog a)t.
Hence, by the equation of Codazzi and (3.43)—(3.45), we get
(3.46) ex_3p = c(3cog a — 1).

We get from (2.4)
(3.47) Vers0) (€201 €21-1) = (e21—3h21—120-1)E.

On the other hand, from (i) of Lemma 3.2 and (3.42), we have
(3.48) (Vey 10) (€203, €2,-1) = 0.
From (2.6), (3.13)—(3.15) we find
(3.49) (R(ezn—3, €an_1)ezn_1)" = 3 sina cosac.
Hence, by the equation of Codazzi and (3.47)—(3.49), we get
(3.50) e21_3h2,_12,_1 = 3¢ Sina CoSa.

We obtain from (iv) of Lemma 3.2, (3.46) and (3.50)

3¢ sina cosar = e, _3(ptana) = o(se? a)ez, _sa + c(3cog a — 1) tana

which implies

(3.51) €300 =  sina cosa.
¥
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Applying statement (i) of Lemma 3.2 and (3.51), we have
Cc .
(3.52) how_32.-3= — Sinacosa.

Therefore, by Lemma 3.2 (iv), (2.6), (3.13), (3.42), (3.5#)d the equation of
Gauss, we get

0=K(ezn 3 €2_1)=c(1+3c08a)+ho, 32 3ho 12,1 =4c coa,

which is a contradiction. Hence, Case (1) cannot occur.

Case (2). n > 3,n1 =n, andnpy = n — 1. From Lemma 3.1, we know that,
restricted to an open dense subsedf M, N, and N, are purely real submanifolds of
M"(4c). We shall only work on to derive a contradiction. Without loss of generality,
we may just simply assume that = M.

Since dimV; = n and N; is a purely real submanifold off"(4c), J¢ cannot be
tangent toN, at every pointx € M = N1 x No. Thus

(3.53) J& = cosae; + Sinae,+1, COSa #0

for some unit vectorg;, € TNy, e,+1 € T No.

Let H =TM n J(T M) denote the maximal holomorphic subbundle’a#f . Then
‘H is the orthogonal complementary subbundle of the complex lundle spanned by
&, JE. Put

(3.54) H =HNTN;, j=1, 2
Sincen > 3, dimN; = n and dimN, = n — 1, we have rankf') = n — 1 and
rank(H?) =n — 1 or n — 2 according as sia = 0 or sina # 0, respectively.

We need the following.

Lemma 3.3. In Case (2)we have the following.

(a) 0(Z,JX)=0, ZeTN, X eH,
(b) o(Y,JW)=0, Y TNy, WeH>
() (AV,JW) =sina (Vyeu1, W), W € H?

where V is a vector in TM.

Proof. For vector fieldsX irH* and Z in TN,, the formulas of Gauss and
Weingarten giveVzJ X +o(Z, JX) = Jo(Z, X), which implies formula (a). Similarly,
we have formula (b).
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For vectorV € TM, we have—JAV = JVy¢ = VyJE Thus, from (3.53) we
obtain formula (c). ]

Let X € TNy, Z € TN, andU ,V be any vectors ifM . Then we obtain from
the equation of Gauss that

(3.55) 0=R(Z,U,V,X)+(o(Z, X),o(U, V)) — (o(Z, V), o(U, X)).
From (2.6) we have

R(Z, UV, X)=c{—{(Z,V)(U,X)+{(JU, V) (JZ,X)+(Z,JV) (JU, X)

(3.56) +2(Z, JU) (JV, X)}.

It follows from (a) and (b) of Lemma 3.3, (3.55) and (3.56)ttha

Lemma 3.4. In Case (2)we have the following.

(0(Z, X), o(V, JY)) =c{(X, V)(Z,JY) = (V,Y) (JZ, X)

(d)
+2(X,Y)(Z,JV)}
for X, Ve TNy, Z€ TN, Y € HL

(0(X, Z), o(W, T P)) =c{(Z, W) (X, JP) — (W, P) (J X, Z)

(e)
+2(Z, P) (X, JW)}
for X e TNy, Z, W € TNy, P € H2

Case (2-a). J&=e1 € TNs.

In this case, we get sim=0 from (3.53) and
(3.57) H={VeTM: (X, e))=0}, H2=TNy.
Hence we obtain from (c) of Lemma 3.3 that
(3.58) o(V,JW)=0, VeTM, WeTN,.
If 0(Z,e1) =0 for all Z € TN,, then from the equation of Gauss we have
(3.59) (0(Z, Z),0(e1, €1)) = —c

for any unit vectorZ € T N,. From (3.59) we obtairk;; # 0 ando(Z, Z) = o(W, W)
for any unit vectorsZ W € T N,. Since N> is totally geodesic inM N1 x N, this



132 B.-Y. GHEN AND S. MAEDA

implies that N, is totally umbilical in A"(4c). Because dimV, > 2, a result of [5]
implies thatN; is a totally real submanifold id4"(4c) such that¢ is perpendicular to
J(T' N2). Hence, by applying (3.55) and the equation of Gauss, waimbt

(0(Z,2),0(JZ,JZ)) =—4c and (c(W,W),0(JZ,JZ)) = —c
for orthonormal vectorsZz W i’ N,. Clearly, this is impossible, since # 0 and
o(Z,Z) = o(W, W). Hence,o(Z, J§) # O for someZ € T N,. Therefore, by apply-
ing (e) of Lemma 3.4, we obtain

(3.60) o(V,JY)=0 forV eH, Y eH.

Let ¢, be an unit vector ir{. Then there exist & € R and unit vectors; € H1,
en+1 € TNy with {(e5, e3) =0 such that

(3.61) Jez = cosfes + sinfe,+1, sSing # 0.
Whenn =3, (3.61) givesgJey, e,+1) = (Jez, e1) = 0. Thus, (3.61) implies that
(3.62) Jez = —cosfey +sinfn, sing #0,

wheren = ¢,+, is a unit vector inT N, with {e,+2, ¢,+1) = 0.
Whenn > 4, (3.61) implies

(3.63) Jez = — cosbey + sinf 1,
wheren = cosyes + Sinvye,+2, ¥ € R with siny # 0, e4 is a unit vector inH* with
(ea, €2) = (es, e3) = 0 ande,+» is a unit vector inT N, with (e,+2, e,+1) = 0.

From (3.61), (3.62) and (3.63), we get

(3.64) Jn = —sinfez + cosfe, 1,
(3.65) Je,+1 = —Sinfey — coshn.

Applying (3.60) withV =e;, j € {2,...,n} andY =es and (3.62)—(3.63), we
have

(3.66) cohy; — sinf(cosyha;j + sinyh j,+2) = 0.
Notice that cos =0 and siny =1 whenn =3.
On the other hand, from Lemma 3.3 (b) with e j,€ {2,...,n} and W =

e,+1, we find

(3.67) Simdhy; + c0sH(COSYh4j + SiNYh ju+2) = 0.



HyPERSURFACESIN NONFLAT COMPLEX SPACE FORMS 133

Combining (3.66) and (3.67), we obtai3, = --- = hy, =0.

Also, from (3.60) withV =Y =e, and (3.61), we get ca@hisz + Sinfhy,+ = 0.
Therefore,hy,+1 = 0. Hence, by applying the equation of Gauss again, we olftain
K(e2, e,+1) = K (€2, e4+1) = c(1 + 3sirf §) which is a contradiction, since # 0.

Case (2-b). J& = cosaer + Sinae,+1, Sinacosa # 0.

Since Je; is perpendicular t@; ande,+1, there existy € R, unit vectorses € H?!
and e, € H2 such that

(3.68) Jeyp = —cosa +sinan, n=C0Syez +SiNye, 2.
From (3.68) we find
(3.69) Jn = —sinae; + cOSwe,+1, Jeu+1 = —SiNag — cosan.

Clearly, &, e1, e,+1, n Span a complex vector subbundleof rank 2. It is easy to verify
that ¢ = —sinye, + C0Sye,+2 IS a unit vector perpendicular t6. Moreover, it is easy
to see that

(3.70) HY={X € TN1:(X,e1) =0}, H*={Z € TNy :(Z, eq+1) = 0}.
Assume sirny = 0. Then we may choose, such that

Jey = — cosaf + sinaey,
(3.71) Jey = — Ssinaey + CcoSwe,+1,
Je,+1 = —sinag — cosaes.

We get, from Lemma 3.3 (a) witk & and Z =e,+1, e,+2, and (3.71), that
(3.72) hpsine1 = (@A A1+, pa +2= (tANQ) A1, 2.

Also from Lemma 3.4 (d) , we get
(3.73) hip+10(e1, Je2) 70,  ho,s10(e1, Je2) = hy,o0(eq, Jex) =0

which imply h2,4+41 = h1,42 = 0. Hence, by applying (3.72), we gét+1,42 = 0. There-
fore, by applying the equation of Gauss, we find

0= R(ela €n+2, €n+1; €n +2) = hln+1hn +2 +2

If hi,41 =0, then (3.72) yields:,+1,+1 = 0. Hence, by the equation of Gauss, we
get 0 =K €1, en+1) = K(e1, en+1) = ¢, Which is a contradiction.

Similarly, if h,+2,+2 = 0, then the equation of Gauss gives 0 K ey, €,+2) =
K (e1, en+2) = ¢, Which is also a contradiction. Consequently, we obtainys# 0.
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Next, we assume ces= 0. Then we may choose,., such that

Jey = —cosal + sinae, 2,
(3.74) Jeyi1 = —Sinaé — cosae,+2,

Jepr2 = — sinaeg + COSae, 1.
Using (b) of Lemma 3.3 witlt =; andV &, and (3.74), we get
(3.75) hjpe1 = (tana)hy;, j=1,...,n.
Also from Lemma 3.4 (e) and (3.74), we get

(3.76) h1n+10(€n+1, Jens2) 70,
hon+10(en+1, J €n+2) = hiy420(en+1, Jen+2) = 0,

which imply hy,+1 = h1,+2 = 0. Hence, by applying (3.75), we geét, = 0. Thus, by
the equation of Gauss, we find OR{e,+1, €2, €1, €2) = h1ps1h 22

If hy,+41 =0, then (3.75) yieldsi;; = 0. Hence, by the equation of Gauss, we get
0=K(e1, en+1) = f((el, eqn+1) = ¢, Which is a contradiction.

Similarly, if hy; = 0, then byhs,+1 = 0 and the equation of Gauss we get
0 = K(e2, ey+1) = ¢, Which is also a contradiction. Consequently, we obtaignc# O.
Consequently, in Case (2-b), we have $80sy sina cosa # 0.

Cask (2-b-i). n = 3. In this case, for each unit vectes in H* perpendicular
to ez, e3 is perpendicular to botlC and (. Sincees, ¢ are orthonormal vectors, they
span the orthogonal complementary complex distributibh of £, so that we may
thus choosers such that
(8.77) Jez = —sinye, + cOSyes, cosy # 0.

Hence, we also have

(3.78) Jes = — siny sinae; — COSyes + Siny COSaey.
From (3.68), (3.69), and (3.78) we get

(3.79) Jez = — coSy Sinaey + Sinyes + COSy COSaey.

Applying (a) of Lemma 3.3, (3.77) and (3.79), we have

(3.80) (sina)hy — (tany)hs — (cosa)hs =0,
(381) hss = —(tanv)h25.
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Similarly, from (b) of Lemma 3.3 withW =5 and (3.78), we find
(3.82) (tanysina)hy; +hj3 — (tanycosa)hja =0, j=1 2 3
We have from (d) of Lemma 3.4
(3.83) hit (o(ej, Jex), &) = c{dij (er, Jex) — dji (ei, Jer) + 20 {es, Jej) }

fori, j=1,2,3;k =2,3;t =4, 5.
We find from (3.68), (3.69), (3.77)—(3.79) and (3.83), that

hy4o(e1, Jez) = ¢ COSycosal # 0,

h , Jeo) = 2c sinysin 0,
(3.84) 250(e1, Jea) = 2c siny sinag #

hi4o(e1, Jes) = hyso(ez, Jez) =0,

hlsa(el, J63) = h240(62, J€3) = h350’(€1, Je3) =0.
From the first two equations of (3.84), we deiy, 45 # 0 and
(3.85) hos = 2(tany tana)hyg.

Moreover, from the remaining equations of (3.84) we get

(3.86) his = ha4 = h3s = h3s =0,
(3.87) o(e1, Jes) = o(ez, Jes) = 0.

Applying o(e1, Jes) =0, (3.86) and (3.82) witly =2, we find
(3.88) h12=hy3=0.

Using o(ez, Je3) = 0, we find
(3.89) has = (tany)hoo.

By (3.89) and the equation of Gauss, we get R =;, {5) = ¢ +hoohss—h3s. Thus,
by applying (3.81) and (3.89), we obtaik% = c. Hence, from (3.81), (3.89) and the
second equation of (3.84), we find

C C C
(3.90) hog = \/;, hoo = \/;CO'[’}/, hsg = —\/;tanw, c>0.

We get from (3.85) and (3.90)

(3.91) hig = ﬁ cot~y cota.

22



136 B.-Y. GHEN AND S. MAEDA
Using i35 = 0, (3.90), and the equation of Gauss fres, ¢s5), we find
(3.92) haz = v/2c (1 + 3cod~) coty.

It follows from (3.79) with j = 3 and (3.86) that;3 = —(coty csca)hss. Hence,
by (3.92) we obtain

(3.93) h13= —V2c (1 +3c0d~) cof v csca.
Applying (3.79) and the first equation in (3.84), we get

(3.94) h14(— €OSY Sinahiy + Sinyh13 + COSY COSai14) = ¢ COS ~ COSa.
Combining (3.94) with (3.82) withj =1, we find

(3.95) h14(— Sinahig + COSah14) = ¢ COSY COSa.

Substituting (3.91) into (3.95), we obtain

(3.96) hy1 = % (cof a coty — 8siny cosy).

22
Substituting (3.91), (3.93) and (3.96) into (3.82) with =wle find

((1+3cody)coty +2sirf asirfy)c=0

which is a contradiction. Consequently, we have proved ¢vaty real hypersurface in
a nonflat space formd1"(4c) is irreducible ifn < 3.
Cast (2-b-ii)). n > 4.

In this case, we have

(3.97) Je1 = — cosaf + sina(Cosye; + Sinyep+2),
(3.98) Jey+1 = —sina€ — cosa(Cosye, + Sinye,+2),

where simcosasinycosy # 0 ande; € H2, e,+2 € H2 Moreover, at each point
x € M, the vectorsg, e, e,+1, N = COSyesz + Sinvye,+2 Span a complex 2-plang, C
T, M"(4c).

Since Je, is perpendicular t&, ez, e,+2, We obtain from (3.97) and (3.98) that

(3.99) Jep = — COSy Sinaey + Sinvy COSdes + COSy COSae,+1 + SiN7y Sinde,+3

for someé € R, unit vectores € H* with (ez, e3) = 0, and unit vectoe,.3 € H? with
(en+2, en+3) = 0. From (3.97)—(3.99) we get

(3.100)  Jeu+2 = —siny sinaey — COSy COSdes + SiNy COSae,+1 — COSY SiNde,+3.
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If sind =0, then (3.99) and (3.100) reduce to (3.79) and (3.78),ewsgly. In
this case, we also havées = — sinye, + coSye,+2 With cosy # 0 from (3.97), (3.98),
and (3.99). Hence, in this case the exact same argument aase @-b-i) yields a
contradiction. Thus, we have sirZ 0.

If cosé =0, then (3.97)—(3.100) reduce to

(3.101) Jez = — cOSy Sinaey + COSy COSae,+1 + SiNYye, 43,
(3.102) Je,+2 = —siny sinae; + Sin-y COSae,+1 — COSYE,43.

Hence, by (3.97), (3.98), and (3.101), we find
(3.103) Jen+3 = — SiN-yey + COSye 42

Using (3.97), (3.98), and Lemma 3.4 (d) with eFec TN1, V =e1, Y =€, and
Z = ey+1, ens+2, We find

(3.104) hjn+10(e1, Jez) = cdyj COSy cOSa &,
| hinssoles, Jed) = chyysiny €, j=1 2

Equations of (3.104) implhy(e1, Jeo) # 0 andhz,+1 # 0, ho,+3 # 0. Hence, by the
equation of Gauss, we get 0 R(ez, ¢,+2; en+1, €,+3). On the other hand, from (2.6),
(3.100), (3.101), and (3.102) we get

k(€2, €n+2; €n+1, en+3) = ¢ COS 7£ 0’

which is a contradiction. Hence, we must havedsionss # 0 also.
Finally, from (3.97), (3.99), and Lemma 3.4 (d), we get

(3.105) hjusa0(e1, J e2) = 2cba; sinysinag,
| hjn+3o(e1, Jez) = cdyj sinysina g

for j =1, 2, 3. From (3.105) we obtaihg,+2 = h3,+3 = 0. Hence, by the equation of
Gauss, we get 0 R(es, €,+2; €n+3, €,+2)-
On the other hand, from (2.6), (3.98), and (3.100), we get

R(e3, €n+2; €ns3, €n+2) = 3¢ €O yCcOSISING # 0,

which is a contradiction. Therefore, Case (2-b) is also issjfle. Consequently, the
real hypersurface must be irreducible. ]
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