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1. Introduction

The study of real hypersurfaces in complex projective space and complex
hyperbolic space has been an active field over the past three decades. Although
these ambient spaces might be regarded as the simplest afterthe spaces of constant
curvature, they impose significant restrictions on the geometry of their hypersurfaces.
For instance, they do not admit totally umbilical hypersurfaces and Einstein hypersur-
faces.

On the other hand, several important classes of real hypersurfaces in complex pro-
jective space have been constructed and investigated by many geometers. For instance,
H.B. Lawson investigated real hypersurfaces of constructed by Clifford minimal
hypersurfaces of +1 via Hopf fibration. R. Takagi [9] gave the list of homogeneous
real hypersurfaces of . Many geometers then study the geometry from the list
of Takagi and obtained various interesting geometric characterizations of homogeneous
real hypersurfaces in .

Another important class of real hypersurfaces in which contains the list of
R. Takagi is the class of Hopf hypersurfaces. Such hypersurfaces are real hypersur-
faces whose structure vectorξ is a principal curvature vector, where is the com-
plex structure andξ is the unit normal vector field. Examples and geometric charac-
terizations of Hopf hypersurfaces have also been obtained by various geometers. It is
known that in , is a homogeneous real hypersurface if and onlyif is a Hopf
hypersurface with constant principal curvatures [6, 9].

The study of real hypersurfaces in complex hyperbolic space has followed
developments in , often with similar results, but sometimeswith differences
(see [1, 7, 8] for more details).

It is well-known that real projective space and real hyperbolic space admit ample
hypersurfaces which are the Riemannian products of some Riemannian manifolds. It
is also well-known that 3 admits a complex hypersurface which is the Riemannian
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product of two complex projective lines. Moreover, it is proved in [3] that there exist
infinitely many real hypersurfaces, both in complex projective space and in complex
hyperbolic space, which are warped products of Riemannian manifolds.

In contrast with such properties we prove in this paper a fundamental general
property on real hypersurfaces; namely, there do not exist real hypersurfaces which are
Riemannian products of Riemannian manifolds, both in complex projective space and
complex hyperbolic space. More precisely, we prove the following.

Theorem. Every real hypersurface in a nonflat complex space form is irre-
ducible.

2. Preliminaries

If is a Riemannian manifold isometrically immersed in a Kaehler manifold ˜

with complex structure . Then the formulas of Gauss and Weingarten are given re-
spectively by

∇̃ = ∇ + σ( )(2.1)

∇̃ ξ = − ξ + ξ(2.2)

for vector fields , tangent to andξ normal to , where∇̃ denotes the
Riemannian connection oñ , σ the second fundamental form, the normal con-
nection, and the shape operator of iñ. The second fundamental form and the
shape operator are related by〈 ξ 〉 = 〈σ( ) ξ〉 where 〈 〉 denotes the inner
product on as well as oñ .

For a submanifold of a Kaehler manifold̃ , the equation of Gaussis given
by

(2.3)
( ; ) = ˜ ( ; ) + 〈σ( ) σ( )〉

− 〈σ( ) σ( )〉

for , , , tangent to , where and̃ denote the curvature tensors of and
˜ , respectively.

For the second fundamental formσ, we define its covariant derivativē∇σ with
respect to the connection on ⊕ ⊥ by

(2.4) (∇̄ σ)( ) = (σ( ))− σ(∇ ) − σ( ∇ )

The equation of Codazziis given by

(2.5) (˜ ( ) )⊥ = (∇̄ σ)( )− (∇̄ σ)( )

where (̃ ( ) )⊥ denotes the normal component of˜ ( ) .
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The Riemann curvature tensor of̃ (4 ) satisfies

(2.6)
˜ ( ; ) =

{

〈 〉 〈 〉 − 〈 〉 〈 〉 + 〈 〉 〈 〉

− 〈 〉 〈 〉 + 2〈 〉 〈 〉
}

A submanifold in a Kaehler manifold is calledpurely real if ( ) ∩ =
{0} for ∈ .

Here ˜ (4 ) denotes a complex -dimensional Kaehler manifold of constant
holomorphic sectional curvature 4 . Such Kaehler manifoldsare calledcomplex space
forms. It is known that the universal covering of a complete complex space form
˜ (4 ) is the complex projective -space (4 ), the complex Euclidean -space

C , or the complex hyperbolic space (4 ), according as> 0, = 0, or < 0.

3. Proof of the theorem

Assume that is a real hypersurface of a complex space form (4 )of
constant holomorphic sectional curvature 4 with 6= 0. Suppose that is the
Riemannian product of two Riemannian manifolds, namely, =1 × 2 with 1 =
dim 1 ≥ 1 and 2 = dim 2 ≥ 1.

For = ( 1 2) ∈ = 1 × 2, we putD = ∩ ( ) for = 1, 2. Let

= { ∈ : dimD > 0}.
We need the following.

Lemma 3.1. Let = 1× 2 be a real hypersurface of a nonflat complex space
form ˜ (4 ). Then exactly one of the following two cases occurs:
(1) dim 1 = 1 or dim 2 = 1.
(2) ≥ 3 and eitherdim 1 = and dim 2 = −1 or dim 1 = −1 and dim 2 = .

Moreover, Case(2) occurs only when, restricted to some open dense subset of,

1 and 2 are both purely real submanifolds.

Proof of Lemma 3.1. Since is a real hypersurface of˜ (4 ), we have 1 +

2 = 2 − 1. Thus, we have 1 ≥ or 2 ≥ . If 1 = holds, then 2 = − 1.
Similarly, if 2 = , then 1 = − 1.

Clearly, Case (1) occurs if = 2. So, we may assume≥ 3. Now, let us as-
sume that 1 > . Then the dimension formula implies that1 = . Thus, there is a
nonempty connected open subset of on which the dimension ofD1 is a positive
constant. We shall work on instead of . Clearly, the restriction of D1 on is a
distribution on × 2. For simplicity, we denote this distribution also byD1.

Let be a unit vector field inD1 and a unit vector field in 2. Then we
have∇ = ∇ ( ) = 0. Thus, by the formulas of Gauss and Weingarten, we obtain

(3.1) σ( ) = ∇̃ ( ) = ∇̃ = σ( )
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Since σ( ) is tangent to , (3.1) gives

(3.2) σ( ) = σ( ) = 0 ∈ D1 ∈ 2

Because the sectional curvature of satisfies ( ) = 0, (2.3) and(3.2) imply

(3.3) 0 = ˜ ( ) + 〈σ( ) σ( )〉

where ˜ ( ) denotes the sectional curvature of the plane section∧ on ˜ (4 ).
Since , are orthonormal, they span a totally real plane, so that (2.6) and (3.3) give

(3.4) λ( )µ( ) = − 6= 0

for any unit vector ∈ D1 and unit vector ∈ 2, where σ( ) = λ( )ξ,
σ( ) = µ( )ξ and ξ is the unit normal vector field.

It follows from (3.4) thatλ( ) and µ( ) are independent of and , respec-
tively. Thus

(3.5) σ( ) = λ 〈 〉 ξ σ( ) = µ 〈 〉 ξ

for ∈ D1 and ∈ 2. Since 2 is totally geodesic in , (3.5) implies that2

is totally umbilical in ˜ (4 ). Hence, by applying a result of Chen and Ogiue [5], we
have either (a) dim 2 = 1 or (b) 2 is a real space form isometrically immersed in
˜ (4 ) as a totally real submanifold whose mean curvature vector 2 is perpendicular

to ( 2).
If dim 2 ≥ 2, then the mean curvature vector of2 is parallel toξ according

to (3.5). Thus, ( 2) ⊂ 1. Hence, we obtain

(3.6) ∇ + σ( ) = ∇ + σ( )

for , in 2. Since ∇ ∈ ( 2) ⊂ 1, (3.6) yields

(3.7) σ( ) = 0 ∈ 2

Therefore, by applying the equation of Gauss, we get

(3.8) 0 = ( ) = ˜ ( ) + 〈σ( ) σ( )〉

for unit vectors , in 2. Since , span a totally real plane for orthonormal
vectors , in 2, (3.5) and (3.8) imply

(3.9) λµ = 〈σ( ) σ( )〉 = − 6= 0

On the other hand, (3.8) gives

(3.10) λµ = 〈σ( ) σ( )〉 = − ˜ ( ) = −4
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Combining (3.9) and (3.10), we obtain = 0 which is a contradiction. Therefore, if

1 > , we must have 2 = 1. Consequently, exactly one of Case (1) or Case (2)
occurs.

Next, assume that Case (2) occurs. Suppose thatD1 contains a nonempty open
subset of . Then, by applying exactly the same argument as in Case (i) to
instead of , we conclude that2 = 1 which is a contradiction. Similarly,D2 does not
contain any nonempty open subset of . Consequently, when Case (2) occurs, then,
restricted some open dense subset of ,1 and 2 are purely real submanifolds. This
completes the proof of Lemma 3.1.

We consider the Case (1) and Case (2) of Lemma 3.1 separately.

CASE (1). dim 2 = 1.

First, assume that ξ ∈ 1. If this occurs, we may choose an orthonormal frame

1 . . . 2 −1 on in such a way that1 . . . 2 −2 are tangent to 1, 2 −1 tangent
to 2 and 1 = ξ, 3 = 2 . . . 2 −3 = 2 −4, 2 −1 = 2 −2. Clearly, the distri-
bution D1 is spanned by 3 . . . 2 −3.

Using the formulas of Gauss and Weingarten together with∇ 2 −1 2 −1 =
∇ 2 −1 2 −2 = 0, we find−σ( 2 −1 2 −2) = ∇̃ 2 −1 2 −1 = σ( 2 −1 2 −1) which
implies

(3.11) σ( 2 −1 2 −2) = σ( 2 −1 2 −1) = 0

Hence, by the equation of Gauss, we obtain 0 = (2 −1 2 −2) = 4 which is a con-
tradiction. Hence, we haveξ /∈ 1.

Next, let us assume ξ ∈ 2. Then 1 is a holomorphic submanifold and2 is
a totally real submanifold of˜ (4 ). Thus, in this case, is a proper -product in
the sense of [2]. But it was proved in [2] that there exist no proper -products of
codimension one in any nonflat complex space form. Hence, we also have ξ /∈ 2.
Consequently, we obtain

(3.12) ξ = cosα 2 −2 + sinα 2 −1 sinα cosα 6= 0

where 2 −2 is a unit vector tangent to 1 and 2 −1 a unit vector tangent to 2. It
follows from (3.12) that

(3.13) 2 −1 = − sinαξ − cosα 2 −3

for some unit vector 2 −3 ∈ 1 with 〈 2 −3 2 −2〉 = 0.
Since 〈 2 −3 ξ〉 = −〈 2 −3 ξ〉 = 0, (3.13) gives

(3.14) 2 −3 = − sinα 2 −2 + cosα 2 −1
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Using (3.12) and (3.14), we find

(3.15) 2 −2 = − cosαξ − sinα 2 −3

Clearly, 2 −3, 2 −2, 2 −1, ξ span a complex 2-plane at each point∈
andD1 is the orthogonal complementary subspace of iñ (4 ).

Since 2 is totally geodesic in , (3.13) and the formulas of Gauss and Wein-
garten imply

(3.16)
σ( 2 −1) = ∇̃ 2 −1 = ∇̃ 2 −1

= −(cosα){( α)ξ +∇ 2 −3 + σ( 2 −3)} + sinα{( α) 2 −3 + }

for tangent to , where = ξ is the shape operator. Using (3.16), we obtain

( α) = −〈 2 −3〉 ∈(3.17)

Also, by taking the inner product of (3.16) with2 −2, we get

(3.18) 〈∇ 2 −3 2 −2〉 = tanα 〈 2 −2〉 − 〈 2 −1〉 ∈

Moreover, by taking the inner product of (3.16) with∈ D1, we find

(3.19) 〈∇ 2 −3 〉 = tanα 〈 〉 ∈ D1 ∈

In particular, if = 2 −1, (3.18) and (3.19) reduce respectively to

σ( 2 −1 2 −1) = (tanα)σ( 2 −1 2 −2)(3.20)

σ( 2 −1 ) = 0 ∈ D1(3.21)

We summarize the above results as the following.

Lemma 3.2. Let = −2
1 × 1

2 be a real hypersurface of a nonflat complex
space form (4 ). Then we have

α = −〈 2 −3〉(i)

〈∇ 2 −3 2 −2〉 = tanα 〈 2 −2〉 − 〈 2 −1〉(ii)

〈∇ 2 −3 〉 = tanα 〈 〉(iii)

σ( 2 −1 2 −1) = (tanα)σ( 2 −1 2 −2)(iv)

σ( 2 −1 ) = 0(v)

for ∈ D1, ∈ .
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For simplicity, we put =〈 〉. Using (i), we find

(∇̄ 2 −2σ)( 2 −3 2 −3)

=− ( 2 −2 2 −3α)ξ − 2
2 −2∑

=1

ω2 −3( 2 −2) 2 −3ξ
(3.22)

(∇̄ 2 −3σ)( 2 −2 2 −3) = −( 2 −3 2 −2α)ξ

−
2 −2∑

=1

ω2 −2( 2 −3) 2 −3ξ −
2 −2∑

=1

ω2 −3( 2 −3) 2 −2ξ
(3.23)

From (2.6), (3.14) and (3.15) we find

(3.24) (˜ ( 2 −2 2 −3) 2 −3)⊥ = 0

Also, from (i) of Lemma 3.2, we also have

(3.25)

2 −2 2 −3α− 2 −2 2 −3α

=
2 −2∑

=1

{ω2 −2( 2 −3)− ω2 −3( 2 −2)} 2 −3

Therefore, by applying the equation of Codazzi and (3.22)–(3.25), we obtain

(3.26)
2 −2∑

=1

ω2 −3( 2 −3) 2 −2 =
2 −2∑

=1

ω2 −3( 2 −2) 2 −3

On the other hand, from Lemma 3.2 (iii), we have

(3.27)
ω2 −3( 2 −2) = (tanα) 2 −2

ω2 −3( 2 −3) = (tanα) 2 −3

Substituting (3.27) into (3.26), we get

(3.28) ω2 −2
2 −3( 2 −3) 2 −2 2 −2 = ω2 −2

2 −3( 2 −2) 2 −3 2 −2

We find from Lemma 3.2 (ii) and (3.28) that

(3.29) 2 −3 2 −1 2 −2 2 −2 = 2 −2 2 −1 2 −3 2 −2

We also have from Lemma 3.2 (i)

(∇̄ 2 −1σ)( 2 −3 2 −3) = −( 2 −1 2 −3α)ξ(3.30)
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(∇̄ 2 −3σ)( 2 −1 2 −3) = −( 2 −3 2 −1α)ξ

−
2 −2∑

=1

ω2 −3( 2 −3) 2 −1ξ
(3.31)

From (2.6), (3.13) and (3.14) we find

(3.32)
(

˜ ( 2 −1 2 −3) 2 −3
)⊥

= 0

Also, we have 2 −1 2 −3α− 2 −1 2 −3α = [ 2 −1 2 −3]α = 0. Thus, by the equation
of Codazzi and (3.30)–(3.32), we obtain

(3.33)
2 −2∑

=1

ω2 −3( 2 −3) 2 −1 = 0

Hence, by applying (v) of Lemma 3.2 and (3.33) we get

(3.34) ω2 −2
2 −3( 2 −3) 2 −2 2 −1 = 0

which is equivalent to

(3.35) 2 −2 2 −1{ 2 −3 2 −1− (tanα) 2 −3 2 −2} = 0

by (ii) of statement (ii) of Lemma 3.2.
It follows from (i) and (v) of Lemma 3.2 that

(∇̄ 2 −1σ)( 2 −3 2 −2) = −( 2 −1 2 −2α)ξ(3.36)

(∇̄ 2 −2σ)( 2 −1 2 −3) =− ( 2 −2 2 −1α)ξ

− ω2 −2
2 −3( 2 −2) 2 −2 2 −1ξ

(3.37)

From (2.6), (3.13)–(3.15) we find

(3.38)
(

˜ ( 2 −1 2 −2) 2 −3
)⊥

= − ξ

Since 2 −1 2 −2α− 2 −1 2 −3α = 0, the equation of Codazzi and (3.36)–(3.38) imply

(3.39) ϕω2 −2
2 −3( 2 −2) = − 6= 0 ϕ = 2 −2 2 −1

From (3.34), (3.35) and (3.39) we find2 −22 −1 6= 0 and

(3.40) ω2 −2
2 −3( 2 −3) = 0 2 −3 2 −1 = (tanα) 2 −3 2 −2

By substituting the second equation of (3.40) into (3.29), we find

(3.41) 2 −3 2 −2{ϕ− (tanα) 2 −2 2 −2} = 0
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Since we haveϕ − (tanα) 2 −2 2 −2 = ω2 −3
2 −2( 2 −2) 6= 0 from (3.39), we obtain

2 −3 2 −2 = 0 from (3.41). Thus, we also have2 −3 2 −1 = 0 by (3.40). Hence, by
(i) of Lemma 3.2, we also have2 −1α = 2 −2α = 0. Consequently, we have

(3.42) 2 −3 2 −2 = 2 −3 2 −1 = 2 −1α = 2 −2α = 0

We have from (3.36), (3.42) and Lemma 3.2 (i)

(3.43) (∇̄ 2 −1σ)( 2 −3 2 −2) = 0

On the other hand, from (i) and (v) of Lemma 3.2, (3.40) and (3.42), we have

(3.44) (∇̄ 2 −3σ)( 2 −1 2 −2) =( 2 −3ϕ)ξ

From (2.6), (3.13)–(3.15) we find

(3.45)
(

˜ ( 2 −1 2 −3) 2 −2
)⊥

= (1− 3 cos2α)ξ

Hence, by the equation of Codazzi and (3.43)–(3.45), we get

(3.46) 2 −3ϕ = (3 cos2α− 1)

We get from (2.4)

(3.47) (∇̄ 2 −3σ)( 2 −1 2 −1) = ( 2 −3 2 −12 −1)ξ

On the other hand, from (i) of Lemma 3.2 and (3.42), we have

(3.48) (∇̄ 2 −1σ)( 2 −3 2 −1) = 0

From (2.6), (3.13)–(3.15) we find

(3.49)
(

˜ ( 2 −3 2 −1) 2 −1
)⊥

= 3 sinα cosαξ

Hence, by the equation of Codazzi and (3.47)–(3.49), we get

(3.50) 2 −3 2 −12 −1 = 3 sinα cosα

We obtain from (iv) of Lemma 3.2, (3.46) and (3.50)

3 sinα cosα = 2 −3(ϕ tanα) = ϕ(sec2α) 2 −3α + (3 cos2α− 1) tanα

which implies

(3.51) 2 −3α =
ϕ

sinα cosα
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Applying statement (i) of Lemma 3.2 and (3.51), we have

(3.52) 2 −3 2 −3 = −
ϕ

sinα cosα

Therefore, by Lemma 3.2 (iv), (2.6), (3.13), (3.42), (3.52)and the equation of
Gauss, we get

0 = ( 2 −3 2 −1) = (1 + 3 cos2α) + 2 −3 2 −3 2 −1 2 −1 = 4 cos2α

which is a contradiction. Hence, Case (1) cannot occur.

CASE (2). ≥ 3, 1 = , and 2 = − 1. From Lemma 3.1, we know that,
restricted to an open dense subsetˆ of , 1 and 2 are purely real submanifolds of
˜ (4 ). We shall only work onˆ to derive a contradiction. Without loss of generality,

we may just simply assume thatˆ = .

Since dim 1 = and 1 is a purely real submanifold of̃ (4 ), ξ cannot be
tangent to 2 at every point ∈ = 1 × 2. Thus

(3.53) ξ = cosα 1 + sinα +1 cosα 6= 0

for some unit vectors 1 ∈ 1, +1 ∈ 2.
Let H = ∩ ( ) denote the maximal holomorphic subbundle of . Then

H is the orthogonal complementary subbundle of the complex line bundle spanned by
ξ, ξ. Put

(3.54) H = H ∩ = 1 2

Since ≥ 3, dim 1 = and dim 2 = − 1, we have rank(H1) = − 1 and
rank(H2) = − 1 or − 2 according as sinα = 0 or sinα 6= 0, respectively.

We need the following.

Lemma 3.3. In Case (2)we have the following.

σ( ) = 0 ∈ 2 ∈ H1(a)

σ( ) = 0 ∈ 1 ∈ H2(b)

〈 〉 = sinα 〈∇ +1 〉 ∈ H2(c)

where V is a vector in TM.

Proof. For vector fields inH1 and in 2, the formulas of Gauss and
Weingarten give∇ + σ( ) = σ( ), which implies formula (a). Similarly,
we have formula (b).
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For vector ∈ , we have− = ∇̃ ξ = ∇̃ ξ. Thus, from (3.53) we
obtain formula (c).

Let ∈ 1, ∈ 2 and , be any vectors in . Then we obtain from
the equation of Gauss that

(3.55) 0 = ˜ ( ) + 〈σ( ) σ( )〉 − 〈σ( ) σ( )〉

From (2.6) we have

(3.56)
˜ ( ) = {− 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉

+ 2〈 〉 〈 〉}

It follows from (a) and (b) of Lemma 3.3, (3.55) and (3.56) that

Lemma 3.4. In Case (2)we have the following.

〈σ( ) σ( )〉 = {〈 〉 〈 〉 − 〈 〉 〈 〉
+ 2〈 〉 〈 〉}

(d)

for , ∈ 1, ∈ 2, ∈ H1.

〈σ( ) σ( )〉 = {〈 〉 〈 〉 − 〈 〉 〈 〉
+ 2〈 〉 〈 〉}

(e)

for ∈ 1, , ∈ 2, ∈ H2.

CASE (2-a). ξ = 1 ∈ 1.

In this case, we get sinα = 0 from (3.53) and

(3.57) H = { ∈ : 〈 1〉 = 0} H2 = 2

Hence we obtain from (c) of Lemma 3.3 that

(3.58) σ( ) = 0 ∈ ∈ 2

If σ( 1) = 0 for all ∈ 2, then from the equation of Gauss we have

(3.59) 〈σ( ) σ( 1 1)〉 = −

for any unit vector ∈ 2. From (3.59) we obtain 11 6= 0 andσ( ) = σ( )
for any unit vectors , ∈ 2. Since 2 is totally geodesic in = 1 × 2, this
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implies that 2 is totally umbilical in ˜ (4 ). Because dim 2 ≥ 2, a result of [5]
implies that 2 is a totally real submanifold in˜ (4 ) such thatξ is perpendicular to

( 2). Hence, by applying (3.55) and the equation of Gauss, we obtain

〈σ( ) σ( )〉 = −4 and 〈σ( ) σ( )〉 = −

for orthonormal vectors , in 2. Clearly, this is impossible, since 6= 0 and
σ( ) = σ( ). Hence,σ( ξ) 6= 0 for some ∈ 2. Therefore, by apply-
ing (e) of Lemma 3.4, we obtain

(3.60) σ( ) = 0 for ∈ H ∈ H1

Let 2 be an unit vector inH1. Then there exist aθ ∈ R and unit vectors 3 ∈ H1,

+1 ∈ 2 with 〈 2 3〉 = 0 such that

(3.61) 2 = cosθ 3 + sinθ +1 sinθ 6= 0

When = 3, (3.61) gives〈 2 +1〉 = 〈 2 1〉 = 0. Thus, (3.61) implies that

(3.62) 3 = − cosθ 2 + sinθ η sinθ 6= 0

whereη = +2 is a unit vector in 2 with 〈 +2 +1〉 = 0.
When ≥ 4, (3.61) implies

(3.63) 3 = − cosθ 2 + sinθ η

where η = cosγ 4 + sinγ +2, γ ∈ R with sinγ 6= 0, 4 is a unit vector inH1 with
〈 4 2〉 = 〈 4 3〉 = 0 and +2 is a unit vector in 2 with 〈 +2 +1〉 = 0.

From (3.61), (3.62) and (3.63), we get

η = − sinθ 3 + cosθ +1(3.64)

+1 = − sinθ 2 − cosθ η(3.65)

Applying (3.60) with = ∈ {2 . . . } and = 3 and (3.62)–(3.63), we
have

(3.66) cosθ 2 − sinθ(cosγ 4 + sinγ +2) = 0

Notice that cosγ = 0 and sinγ = 1 when = 3.
On the other hand, from Lemma 3.3 (b) with = ,∈ {2 . . . } and =

+1, we find

(3.67) sinθ 2 + cosθ(cosγ 4 + sinγ +2) = 0
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Combining (3.66) and (3.67), we obtain22 = · · · = 2 = 0.
Also, from (3.60) with = = 2 and (3.61), we get cosθ 23 + sinθ 2 +1 = 0.

Therefore, 2 +1 = 0. Hence, by applying the equation of Gauss again, we obtain0 =
( 2 +1) = ˜ ( 2 +1) = (1 + 3 sin2 θ) which is a contradiction, since 6= 0.

CASE (2-b). ξ = cosα 1 + sinα +1, sinα cosα 6= 0.

Since 1 is perpendicular to 1 and +1, there existγ ∈ R, unit vectors 2 ∈ H1

and +2 ∈ H2 such that

(3.68) 1 = − cosαξ + sinα η η = cosγ 2 + sinγ +2

From (3.68) we find

(3.69) η = − sinα 1 + cosα +1 +1 = − sinαξ − cosα η

Clearly, ξ, 1, +1, η span a complex vector subbundleL of rank 2. It is easy to verify
that ζ = − sinγ 2 + cosγ +2 is a unit vector perpendicular toL. Moreover, it is easy
to see that

(3.70) H1 = { ∈ 1 : 〈 1〉 = 0} H2 = { ∈ 2 : 〈 +1〉 = 0}

Assume sinγ = 0. Then we may choose2 such that

(3.71)

1 = − cosαξ + sinα 2

2 = − sinα 1 + cosα +1

+1 = − sinαξ − cosα 2

We get, from Lemma 3.3 (a) with =2 and = +1, +2, and (3.71), that

(3.72) +1 +1 = (tanα) 1 +1 +1 +2= (tanα) 1 +2

Also from Lemma 3.4 (d) , we get

(3.73) 1 +1σ( 1 2) 6= 0 2 +1σ( 1 2) = 1 +2σ( 1 2) = 0

which imply 2 +1 = 1 +2 = 0. Hence, by applying (3.72), we get+1 +2 = 0. There-
fore, by applying the equation of Gauss, we find

0 = ˜ ( 1 +2 +1 +2) = 1 +1 +2 +2

If 1 +1 = 0, then (3.72) yields +1 +1 = 0. Hence, by the equation of Gauss, we
get 0 = ( 1 +1) = ˜ ( 1 +1) = , which is a contradiction.

Similarly, if +2 +2 = 0, then the equation of Gauss gives 0 = (1 +2) =
˜ ( 1 +2) = , which is also a contradiction. Consequently, we obtain sin γ 6= 0.
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Next, we assume cosγ = 0. Then we may choose +2 such that

(3.74)

1 = − cosαξ + sinα +2

+1 = − sinαξ − cosα +2

+2 = − sinα 1 + cosα +1

Using (b) of Lemma 3.3 with = and = +2 and (3.74), we get

(3.75) +1 = (tanα) 1 = 1 . . .

Also from Lemma 3.4 (e) and (3.74), we get

(3.76)
1 +1σ( +1 +2) 6= 0

2 +1σ( +1 +2) = 1 +2σ( +1 +2) = 0

which imply 2 +1 = 1 +2 = 0. Hence, by applying (3.75), we get12 = 0. Thus, by
the equation of Gauss, we find 0 =̃( +1 2 1 2) = 1 +1 22.

If 1 +1 = 0, then (3.75) yields 11 = 0. Hence, by the equation of Gauss, we get
0 = ( 1 +1) = ˜ ( 1 +1) = , which is a contradiction.

Similarly, if 22 = 0, then by 2 +1 = 0 and the equation of Gauss we get
0 = ˜ ( 2 +1) = , which is also a contradiction. Consequently, we obtain cosγ 6= 0.
Consequently, in Case (2-b), we have sinγ cosγ sinα cosα 6= 0.

CASE (2-b-i). = 3. In this case, for each unit vector3 in H1 perpendicular
to 2, 3 is perpendicular to bothL and ζ. Since 3, ζ are orthonormal vectors, they
span the orthogonal complementary complex distributionL⊥ of L, so that we may
thus choose 3 such that

(3.77) 3 = − sinγ 2 + cosγ 5 cosγ 6= 0

Hence, we also have

(3.78) 5 = − sinγ sinα 1− cosγ 3 + sinγ cosα 4

From (3.68), (3.69), and (3.78) we get

(3.79) 2 = − cosγ sinα 1 + sinγ 3 + cosγ cosα 4

Applying (a) of Lemma 3.3, (3.77) and (3.79), we have

(sinα) 1 − (tanγ) 3 − (cosα) 4 = 0(3.80)

55 = −(tanγ) 25(3.81)
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Similarly, from (b) of Lemma 3.3 with =5 and (3.78), we find

(tanγ sinα) 1 + 3 − (tanγ cosα) 4 = 0 = 1 2 3(3.82)

We have from (d) of Lemma 3.4

(3.83) 〈σ( ) ξ〉 = {δ 〈 〉 − δ 〈 〉 + 2δ 〈 〉 }

for , = 1, 2, 3; = 2, 3; = 4, 5.
We find from (3.68), (3.69), (3.77)–(3.79) and (3.83), that

(3.84)

14σ( 1 2) = cosγ cosαξ 6= 0

25σ( 1 2) = 2 sinγ sinαξ 6= 0

14σ( 1 3) = 14σ( 2 3) = 0

15σ( 1 3) = 24σ( 2 3) = 35σ( 1 3) = 0

From the first two equations of (3.84), we get14, 25 6= 0 and

25 = 2(tanγ tanα) 14(3.85)

Moreover, from the remaining equations of (3.84) we get

15 = 24 = 34 = 35 = 0(3.86)

σ( 1 3) = σ( 2 3) = 0(3.87)

Applying σ( 1 3) = 0, (3.86) and (3.82) with = 2, we find

(3.88) 12 = 23 = 0

Using σ( 2 3) = 0, we find

(3.89) 25 = (tanγ) 22

By (3.89) and the equation of Gauss, we get 0 = (2 5) = + 22 55− 2
25. Thus,

by applying (3.81) and (3.89), we obtain 2225 = . Hence, from (3.81), (3.89) and the
second equation of (3.84), we find

(3.90) 25 =

√

2 22 =

√

2
cotγ 55 = −

√

2
tanγ > 0

We get from (3.85) and (3.90)

(3.91) 14 =

√

2
√

2
cotγ cotα



136 B.-Y. CHEN AND S. MAEDA

Using 35 = 0, (3.90), and the equation of Gauss for (3 5), we find

(3.92) 33 =
√

2 (1 + 3 cos2 γ) cotγ

It follows from (3.79) with = 3 and (3.86) that13 = −(cotγ cscα) 33. Hence,
by (3.92) we obtain

(3.93) 13 = −
√

2 (1 + 3 cos2 γ) cot2 γ cscα

Applying (3.79) and the first equation in (3.84), we get

(3.94) 14(− cosγ sinα 11 + sinγ 13 + cosγ cosα 14) = cos2 γ cosα

Combining (3.94) with (3.82) with = 1, we find

(3.95) 14(− sinα 11 + cosα 14) = cosγ cosα

Substituting (3.91) into (3.95), we obtain

(3.96) 11 =

√

2
√

2
(cot2α cotγ − 8 sinγ cosγ)

Substituting (3.91), (3.93) and (3.96) into (3.82) with = 1,we find

(
(1 + 3 cos2 γ) cot2 γ + 2 sin2α sin2 γ

)
= 0

which is a contradiction. Consequently, we have proved thatevery real hypersurface in
a nonflat space form˜ (4 ) is irreducible if ≤ 3.

CASE (2-b-ii). ≥ 4.

In this case, we have

1 = − cosαξ + sinα(cosγ 2 + sinγ +2)(3.97)

+1 = − sinαξ − cosα(cosγ 2 + sinγ +2)(3.98)

where sinα cosα sinγ cosγ 6= 0 and 2 ∈ H1, +2 ∈ H2. Moreover, at each point
∈ , the vectorsξ, 1, +1, η = cosγ 2 + sinγ +2 span a complex 2-planeL ⊂
˜ (4 ).
Since 2 is perpendicular toξ, 2 +2, we obtain from (3.97) and (3.98) that

(3.99) 2 = − cosγ sinα 1 + sinγ cosδ 3 + cosγ cosα +1 + sinγ sinδ +3

for someδ ∈ R, unit vector 3 ∈ H1 with 〈 2 3〉 = 0, and unit vector +3 ∈ H2 with
〈 +2 +3〉 = 0. From (3.97)–(3.99) we get

(3.100) +2 = − sinγ sinα 1− cosγ cosδ 3 + sinγ cosα +1− cosγ sinδ +3
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If sin δ = 0, then (3.99) and (3.100) reduce to (3.79) and (3.78), respectively. In
this case, we also have 3 = − sinγ 2 + cosγ +2 with cosγ 6= 0 from (3.97), (3.98),
and (3.99). Hence, in this case the exact same argument as in Case (2-b-i) yields a
contradiction. Thus, we have sinδ 6= 0.

If cosδ = 0, then (3.97)–(3.100) reduce to

2 = − cosγ sinα 1 + cosγ cosα +1 + sinγ +3(3.101)

+2 = − sinγ sinα 1 + sinγ cosα +1− cosγ +3(3.102)

Hence, by (3.97), (3.98), and (3.101), we find

(3.103) +3 = − sinγ 2 + cosγ +2

Using (3.97), (3.98), and Lemma 3.4 (d) with =∈ 1, = 1, = 2, and
= +1, +2, we find

(3.104)
+1σ( 1 2) = δ1 cosγ cosα ξ

+3σ( 1 2) = δ1 sinγ ξ = 1 2

Equations of (3.104) implyσ( 1 2) 6= 0 and 2 +1 6= 0, 2 +3 6= 0. Hence, by the
equation of Gauss, we get 0 =̃( 2 +2; +1 +3). On the other hand, from (2.6),
(3.100), (3.101), and (3.102) we get

˜ ( 2 +2; +1 +3) = cosα 6= 0

which is a contradiction. Hence, we must have sinδ cosδ 6= 0 also.
Finally, from (3.97), (3.99), and Lemma 3.4 (d), we get

(3.105)
+2σ( 1 2) = 2 δ2 sinγ sinα ξ

+3σ( 1 2) = δ1 sinγ sinα ξ

for = 1, 2, 3. From (3.105) we obtain3 +2 = 3 +3 = 0 Hence, by the equation of
Gauss, we get 0 =̃ ( 3 +2; +3 +2).

On the other hand, from (2.6), (3.98), and (3.100), we get

˜ ( 3 +2; +3 +2) = 3 cos2 γ cosδ sinδ 6= 0

which is a contradiction. Therefore, Case (2-b) is also impossible. Consequently, the
real hypersurface must be irreducible.
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