DEFORMABLE FLAT TORI IN \mathbf{S}^{3} WITH CONSTANT MEAN CURVATURE

To the memory of Professor Shukichi Tanno

Yoshihisa KITAGAWA

(Received August 20, 2001)

1. Introduction

In 1975, Yau [9, p. 87] posed the problem of the classification of flat tori in the unit 3 -sphere S^{3}. Concerning this problem, the author established a method for constructing all the flat tori in S^{3} ([2]), and obtained some results on flat tori in S^{3} ([1], [3], [4], [5]). In this paper, using this method, we study isometric deformations of flat tori isometrically immersed in S^{3} with constant mean curvature, and we obtain the classification of undeformable flat tori in S^{3}.

For positive constants R_{1} and R_{2} satisfying $R_{1}^{2}+R_{2}^{2}=1$, let $F: \mathbb{R}^{2} \rightarrow S^{3}$ be an isometric immersion given by

$$
\begin{equation*}
F\left(x_{1}, x_{2}\right)=\left(R_{1} \cos \frac{x_{1}}{R_{1}}, R_{1} \sin \frac{x_{1}}{R_{1}}, R_{2} \cos \frac{x_{2}}{R_{2}}, R_{2} \sin \frac{x_{2}}{R_{2}}\right), \tag{1.1}
\end{equation*}
$$

and G_{0} a lattice of \mathbb{R}^{2} defined by

$$
\begin{equation*}
G_{0}=\left\{\left(2 \pi R_{1} n_{1}, 2 \pi R_{2} n_{2}\right): n_{1}, n_{2} \in \mathbb{Z}\right\} . \tag{1.2}
\end{equation*}
$$

If G is a lattice of \mathbb{R}^{2} such that $G \subset G_{0}$, then we obtain a flat torus \mathbb{R}^{2} / G and an isometric immersion

$$
\begin{equation*}
F / G: \mathbb{R}^{2} / G \rightarrow S^{3} \tag{1.3}
\end{equation*}
$$

with constant mean curvature. Conversely, every flat torus isometrically immersed in S^{3} with constant mean curvature is obtained in this way. Note that the immersion F / G is the composition of the covering map $\mathbb{R}^{2} / G \rightarrow \mathbb{R}^{2} / G_{0}$ and the embedding $F / G_{0}: \mathbb{R}^{2} / G_{0} \rightarrow S^{3}$. In [3] the author studied isometric deformations of F / G_{0}, and proved the following theorem.

[^0]Theorem 1.1. If $f_{t}: \mathbb{R}^{2} / G_{0} \rightarrow S^{3}, t \in \mathbb{R}$, is a smooth one parameter family of isometric immersions with $f_{0}=F / G_{0}$, then for each $t \in \mathbb{R}$ there exists an isometry $A_{t}: S^{3} \rightarrow S^{3}$ such that $f_{t}=A_{t} \circ f_{0}$.

This theorem says that every isometric deformation of F / G_{0} is trivial. On the other hand, there are many lattices $G \subset G_{0}$ such that the immersion F / G is deformable. Let $W_{+}(n)$ and $W_{-}(n)$ be lattices of \mathbb{R}^{2} defined by

$$
\begin{equation*}
W_{ \pm}(n)=\left\{\left(2 \pi R_{1} n_{1}, 2 \pi R_{2} n_{2}\right): n_{1} \pm n_{2} \in n \mathbb{Z}\right\} \subset G_{0} \tag{1.4}
\end{equation*}
$$

Then we can show that if $G \subset W_{+}(n)$ or $G \subset W_{-}(n)$ for some integer $n \geq 2$, the immersion F / G is deformable (Theorem 3.1). Here, we give the following definition.

Definition. For immersions $f_{1}: M_{1} \rightarrow S^{3}$ and $f_{2}: M_{2} \rightarrow S^{3}$, we write $f_{1} \equiv f_{2}$, and we say " f_{1} is congruent to f_{2} " if there exist an isometry $A: S^{3} \rightarrow S^{3}$ and a diffeomorphism $\rho: M_{1} \rightarrow M_{2}$ such that $A \circ f_{1}=f_{2} \circ \rho$. An isometric immersion $f: M \rightarrow S^{3}$ is said to be deformable if it admits an isometric deformation f_{t} : $M \rightarrow S^{3}\left(t \in \mathbb{R}, f_{0}=f\right)$ such that $f_{0} \not \equiv f_{1}$.

The assertion of Theorem 3.1 leads us to the problem of finding all the lattices $G \subset G_{0}$ such that the immersion F / G is deformable. In this paper we study this problem, and prove the following theorem.

Theorem 1.2. Let G be a lattice of \mathbb{R}^{2} such that $G \subset G_{0}$. Then the immersion F / G is deformable if and only if there exists an integer $n \geq 2$ such that $G \subset W_{+}(n)$ or $G \subset W_{-}(n)$.

Furthermore, as a corollary of this theorem, we obtain the following classification of undeformable flat tori isometrically immersed in S^{3}.

Theorem 1.3. Let $f: M \rightarrow S^{3}$ be an isometric immersion of a flat torus M into the unit sphere S^{3}. Then the following statements are equivalent.
(1) Every isometric deformation of f is trivial.
(2) There exist positive constants R_{1} and R_{2} with $R_{1}^{2}+R_{2}^{2}=1$ such that f is congruent to the immersion F / G given by (1.3), where the lattice G satisfies $G \not \subset W_{+}(n)$ and $G \not \subset W_{-}(n)$ for all integers $n \geq 2$.

Remark. Let G be a lattice of \mathbb{R}^{2} generated by the following two vectors

$$
u=\left(2 \pi R_{1} u_{1}, 2 \pi R_{2} u_{2}\right), v=\left(2 \pi R_{1} v_{1}, 2 \pi R_{2} v_{2}\right), \quad u_{i}, v_{i} \in \mathbb{Z} .
$$

Then it is easy to see that the following statements are equivalent.
(1) $G \not \subset W_{+}(n)$ and $G \not \subset W_{-}(n)$ for all integers $n \geq 2$.
(2) g.c.d $\left(u_{1}+u_{2}, v_{1}+v_{2}\right)=$ g.c.d $\left(u_{1}-u_{2}, v_{1}-v_{2}\right)=1$.

The outline of this paper is as follows. In Section 2 we study the geometry of a flat torus $M_{\gamma} \subset S^{3}$ which is the inverse image under the Hopf fibration $S^{3} \rightarrow S^{2}$ of a closed curve γ in S^{2}. In Section 3 we show that if γ is an n-fold circle in $S^{2}(n \geq 2)$, then the flat torus $M_{\gamma} \subset S^{3}$ is deformable (Lemma 3.2). Using this lemma, we obtain Theorem 3.1. In Section 4 we prove Theorems 1.2 and 1.3. The key ingredient in the proof of Theorem 1.2 is Lemma 4.1 which is obtained by using a method developed in [2]. The assertion of Theorem 1.3 follows from the main result of [5] which states that every flat torus isometrically immersed in S^{3} with nonconstant mean curvature is deformable. In the final section we prove Theorem 5.1. This theorem, which is used in the proof of Lemma 3.2 , ensures the existence of certain deformation of an n-fold circle in S^{2} for $n \geq 2$.

2. Hopf tori in S^{3}

In this section we study the geometry of a flat torus in S^{3} constructed by using the Hopf fibration $S^{3} \rightarrow S^{2}$. We start with the description of the Hopf fibration by using the group structure of S^{3}. Let $S U(2)$ be the group of all 2×2 unitary matrices with determinant 1. Its Lie algebra $\mathfrak{s u}(2)$ consists of all 2×2 skew Hermitian matrices of trace 0 . We define a positive definite inner product \langle,$\rangle on \mathfrak{s u}(2)$ by

$$
\langle u, v\rangle=-\frac{1}{2} \operatorname{trace}(u v), \quad u, v \in \mathfrak{s u}(2) .
$$

The inner product \langle,$\rangle is invariant under the adjoint action Ad: S U(2) \rightarrow \operatorname{Aut}(\mathfrak{s u}(2))$. We set

$$
e_{1}=\left[\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right], \quad e_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad e_{3}=\left[\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right] .
$$

Then $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis of $\mathfrak{s u}(2)$ such that

$$
\left[e_{1}, e_{2}\right]=2 e_{3},\left[e_{2}, e_{3}\right]=2 e_{1},\left[e_{3}, e_{1}\right]=2 e_{2}
$$

where [,] is the Lie bracket on $\mathfrak{s u}(2)$. For $i=1,2,3$, we denote by E_{i} the left invariant vector field on $S U(2)$ corresponding to e_{i}, and we endow $S U(2)$ with a biinvariant Riemannian metric \langle,$\rangle satisfying \left\langle E_{i}, E_{j}\right\rangle=\delta_{i j}$. Then $S U(2)$ is a Riemannian manifold isometric to the unit sphere S^{3}. Henceforth, we identify S^{3} with $S U(2)$. Let S^{2} be the unit sphere in $\mathfrak{s u}(2)$ given by $S^{2}=\{u \in \mathfrak{s u}(2):|u|=1\}$, and $p: S^{3} \rightarrow S^{2}$ the Hopf fibration given by

$$
p(a)=\operatorname{Ad}(a) e_{3} .
$$

The vector field E_{3} is tangent to the fibers of the Hopf fibration. For $X, Y \in T_{a} S^{3}$, it follows that

$$
\begin{gather*}
\left\langle p_{*} X, p_{*} Y\right\rangle=4\left\{\langle X, Y\rangle-\left\langle X, E_{3}\right\rangle\left\langle Y, E_{3}\right\rangle\right\} \tag{2.1}\\
p_{*}\left(D_{X} E_{3}\right)=-J\left(p_{*} X\right) \tag{2.2}
\end{gather*}
$$

where D denotes the Riemannian connection on S^{3}, and J denotes the almost complex structure on S^{2} defined by $J(v)=[u, v] / 2$ for $v \in T_{u} S^{2}$. We identify the unit tangent bundle of S^{2} with the subset $U S^{2} \subset S^{2} \times S^{2}$ defined by

$$
U S^{2}=\left\{(u, v) \in S^{2} \times S^{2}:\langle u, v\rangle=0\right\}
$$

Here, the canonical projection $p_{1}: U S^{2} \rightarrow S^{2}$ is given by $p_{1}(u, v)=u$. Furthermore, we define a double covering $p_{2}: S^{3} \rightarrow U S^{2}$ by

$$
p_{2}(a)=\left(\operatorname{Ad}(a) e_{3}, \operatorname{Ad}(a) e_{1}\right)
$$

Let $\gamma: \mathbb{R} \rightarrow S^{2}$ be a 2π-periodic regular curve in S^{2}. Using the Hopf fibration $p: S^{3} \rightarrow S^{2}$, we construct a 2 -dimensional torus M_{γ} and an immersion $f_{\gamma}: M_{\gamma} \rightarrow S^{3}$ by

$$
M_{\gamma}=\left\{\left(e^{i s}, a\right) \in S^{1} \times S^{3}: \gamma(s)=p(a)\right\}, \quad f_{\gamma}\left(e^{i s}, a\right)=a
$$

where S^{1} denotes the unit circle in \mathbb{C}. The immersion f_{γ} induces a flat Riemannian metric on M_{γ} (see [8]). So we obtain a flat torus M_{γ} and an isometric immersion

$$
f_{\gamma}: M_{\gamma} \rightarrow S^{3}
$$

The immersion f_{γ} is called the Hopf torus corresponding to γ.
In the rest of this section we describe the Riemannian structure of M_{γ} and the second fundamental form of f_{γ}. Let $L(\gamma)$ be the length of γ and $K(\gamma)$ the total geodesic curvature of γ, that is,

$$
L(\gamma)=\int_{0}^{2 \pi}\left|\gamma^{\prime}(s)\right| d s, \quad K(\gamma)=\int_{0}^{2 \pi} k_{\gamma}(s)\left|\gamma^{\prime}(s)\right| d s
$$

where $k_{\gamma}(s)$ denotes the geodesic curvature of $\gamma(s)$ given by

$$
k_{\gamma}(s)=\frac{\left\langle\gamma^{\prime \prime}(s), J\left(\gamma^{\prime}(s)\right)\right\rangle}{\left|\gamma^{\prime}(s)\right|^{3}}
$$

We now consider the curve $\hat{\gamma}: \mathbb{R} \rightarrow U S^{2}$ given by

$$
\begin{equation*}
\hat{\gamma}(s)=\left(\gamma(s), \frac{\gamma^{\prime}(s)}{\left|\gamma^{\prime}(s)\right|}\right) \tag{2.3}
\end{equation*}
$$

and denote by $I(\gamma)$ the element of the homology group $H_{1}\left(U S^{2}\right)$ represented by the closed curve $\hat{\gamma} \mid[0,2 \pi]$. Note that $H_{1}\left(U S^{2}\right) \cong \mathbb{Z}_{2}$. Let $c(s)$ be a lift of the curve $\hat{\gamma}(s)$ with respect to the double covering $p_{2}: S^{3} \rightarrow U S^{2}$. Since $p_{2}(-a)=p_{2}(a)$, we obtain

$$
c(s+2 \pi)=\left\{\begin{align*}
c(s) & \text { if } \quad I(\gamma)=0 \tag{2.4}\\
-c(s) & \text { if } \quad I(\gamma)=1
\end{align*}\right.
$$

We set

$$
\Omega(\gamma)= \begin{cases}K(\gamma) & \text { if } \quad I(\gamma)=0 \tag{2.5}\\ K(\gamma)+2 \pi & \text { if } \quad I(\gamma)=1\end{cases}
$$

and define $W(\gamma)$ to be the lattice of \mathbb{R}^{2} generated by the following two vectors

$$
\begin{equation*}
v_{1}=\left(\frac{L(\gamma)}{2}, \frac{\Omega(\gamma)}{2}\right), \quad v_{2}=(0,2 \pi) \tag{2.6}
\end{equation*}
$$

Then the Riemannian structure of M_{γ} is given by the following
Lemma 2.1. The flat torus M_{γ} is isometric to $\mathbb{R}^{2} / W(\gamma)$.
To establish the lemma we consider the covering $\varphi: \mathbb{R}^{2} \rightarrow M_{\gamma}$ defined by

$$
\begin{equation*}
\varphi(s, \tau)=\left(e^{i s}, \quad \bar{\gamma}(s) \exp \left(\tau e_{3}\right)\right) \tag{2.7}
\end{equation*}
$$

where $\bar{\gamma}(s)$ is a curve in S^{3} such that $p(\bar{\gamma}(s))=\gamma(s)$ and $\left\langle\bar{\gamma}^{\prime}(s), E_{3}\right\rangle=0$. Then it follows from (2.1) that $\left|\gamma^{\prime}(s)\right|=\left|p_{*} \bar{\gamma}^{\prime}(s)\right|=2\left|\bar{\gamma}^{\prime}(s)\right|$. So we obtain

$$
\begin{equation*}
\varphi^{*} g_{\gamma}=\frac{1}{4}\left|\gamma^{\prime}(s)\right|^{2} d s^{2}+d \tau^{2} \tag{2.8}
\end{equation*}
$$

where g_{γ} denotes the Riemannian metric on M_{γ}. Let $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a diffeomorphism given by

$$
\rho(s, \tau)=\left(\frac{1}{2} \int_{0}^{s}\left|\gamma^{\prime}(s)\right| d s, \tau\right)
$$

and $\Phi: \mathbb{R}^{2} \rightarrow M_{\gamma}$ a covering map defined by

$$
\begin{equation*}
\Phi\left(x_{1}, x_{2}\right)=\varphi\left(\rho^{-1}\left(x_{1}, x_{2}\right)\right) \tag{2.9}
\end{equation*}
$$

Since $\rho^{*}\left(d x_{1}^{2}+d x_{2}^{2}\right)=\varphi^{*} g_{\gamma}$, the map Φ is a Riemannian covering, and so the assertion of Lemma 2.1 follows from the lemma below.

Lemma 2.2. For $x, x^{\prime} \in \mathbb{R}^{2}, \Phi(x)=\Phi\left(x^{\prime}\right)$ if and only if $x^{\prime}-x \in W(\gamma)$.

Proof. We set $x=\rho(s, \tau)$ and $x^{\prime}=\rho\left(s^{\prime}, \tau^{\prime}\right)$. Then we obtain

$$
\begin{equation*}
\Phi(x)=\left(e^{i s}, \quad \bar{\gamma}(s) \exp \left(\tau e_{3}\right)\right), \quad \Phi\left(x^{\prime}\right)=\left(e^{i s^{\prime}}, \quad \bar{\gamma}\left(s^{\prime}\right) \exp \left(\tau^{\prime} e_{3}\right)\right) \tag{2.10}
\end{equation*}
$$

Since $p(c(s))=p(\bar{\gamma}(s))$, there exists a real valued function $\mu(s)$ such that

$$
\begin{equation*}
c(s)=\bar{\gamma}(s) \exp \left(\mu(s) e_{3}\right) \tag{2.11}
\end{equation*}
$$

On the other hand, it follows from [4, Lemma2.2] that the curve $c(s)$ satisfies

$$
\begin{equation*}
c(s)^{-1} c^{\prime}(s)=\frac{1}{2}\left|\gamma^{\prime}(s)\right|\left(e_{2}+k_{\gamma}(s) e_{3}\right) \tag{2.12}
\end{equation*}
$$

Since $\left\langle\bar{\gamma}^{-1}(s) \bar{\gamma}^{\prime}(s), e_{3}\right\rangle=0$, (2.11) and (2.12) imply $\mu^{\prime}(s)=(1 / 2) k_{\gamma}(s)\left|\gamma^{\prime}(s)\right|$. Hence

$$
\begin{equation*}
\mu(s+2 \pi)-\mu(s)=\int_{0}^{2 \pi} \frac{1}{2} k_{\gamma}(s)\left|\gamma^{\prime}(s)\right| d s=\frac{1}{2} K(\gamma) \tag{2.13}
\end{equation*}
$$

Using (2.4), (2.5), (2.11) and (2.13), we obtain $\bar{\gamma}(s+2 \pi)=\bar{\gamma}(s) \exp \left\{-(1 / 2) \Omega(\gamma) e_{3}\right\}$. So it follows from (2.10) that $\Phi(x)=\Phi\left(x^{\prime}\right)$ if and only if there exist $m_{1}, m_{2} \in \mathbb{Z}$ satisfying

$$
\begin{equation*}
s^{\prime}-s=2 m_{1} \pi, \quad \tau^{\prime}-\tau=\frac{m_{1}}{2} \Omega(\gamma)+2 m_{2} \pi \tag{2.14}
\end{equation*}
$$

Since $x^{\prime}-x=\left\{(1 / 2) \int_{s}^{s^{\prime}}\left|\gamma^{\prime}(s)\right| d s, \tau^{\prime}-\tau\right\}$, we see that (2.14) is equivalent to

$$
x^{\prime}-x=\left(\frac{m_{1}}{2} L(\gamma), \frac{m_{1}}{2} \Omega(\gamma)+2 m_{2} \pi\right)
$$

This completes the proof.

We now deal with the second fundamental form of the immersion $f_{\gamma}: M_{\gamma} \rightarrow S^{3}$. Let ξ be a unit normal vector field of f_{γ} such that

$$
p_{*} \xi\left(e^{i s}, a\right)=2 n(s), \quad\left(e^{i s}, a\right) \in M_{\gamma}
$$

where $n(s)=J\left(\gamma^{\prime}(s)\right) /\left|\gamma^{\prime}(s)\right|$, and let h_{γ} denote the second fundamental form of the immersion f_{γ} with respect to ξ. Then

Lemma 2.3. $\quad \varphi^{*} h_{\gamma}=(1 / 2) k_{\gamma}(s)\left|\gamma^{\prime}(s)\right|^{2} d s^{2}-\left|\gamma^{\prime}(s)\right| d s d \tau$.

Proof. We set

$$
f=f_{\gamma} \circ \varphi, \quad X=\frac{\partial f}{\partial s}, \quad Y=\frac{\partial f}{\partial \tau}
$$

Since $\left\langle\bar{\gamma}^{\prime}, E_{3}\right\rangle=0$, it follows from [2, Lemma 3.3] that

$$
p_{*}\left(D_{X} X\right)=p_{*}\left(D_{\bar{\gamma}^{\prime}} \bar{\gamma}^{\prime}\right)=\nabla_{\gamma^{\prime}} \gamma^{\prime},
$$

where ∇ denotes the Riemannian connection on S^{2}. Hence (2.1) implies

$$
\begin{align*}
h_{\gamma}\left(\frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial s}\right) & =\left\langle D_{X} X, \xi(\varphi)\right\rangle=\frac{1}{4}\left\langle p_{*}\left(D_{X} X\right), p_{*} \xi(\varphi)\right\rangle \tag{2.15}\\
& =\frac{1}{4}\left\langle\nabla_{\gamma^{\prime}} \gamma^{\prime}, 2 n\right\rangle=\frac{1}{2}\left\langle\gamma^{\prime \prime}, n\right\rangle=\frac{1}{2} k_{\gamma}\left|\gamma^{\prime}\right|^{2}
\end{align*}
$$

Since $Y(s, \tau)=E_{3}(f(s, \tau))$, it follows from (2.2) that $p_{*}\left(D_{X} Y\right)=p_{*}\left(D_{X} E_{3}\right)=$ $-J\left(p_{*} X\right)=-J\left(\gamma^{\prime}\right)$. Hence

$$
\begin{align*}
h_{\gamma}\left(\frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial \tau}\right) & =\left\langle D_{X} Y, \xi(\varphi)\right\rangle=\frac{1}{4}\left\langle p_{*}\left(D_{X} Y\right), p_{*} \xi(\varphi)\right\rangle \tag{2.16}\\
& =\frac{1}{4}\left\langle-J\left(\gamma^{\prime}\right), 2 n\right\rangle=-\frac{1}{2}\left|\gamma^{\prime}\right| .
\end{align*}
$$

Since the integral curves of the vector field E_{3} are geodesics in S^{3}, we see that $D_{Y} Y=$ 0 . Hence

$$
\begin{equation*}
h_{\gamma}\left(\frac{\partial \varphi}{\partial \tau}, \frac{\partial \varphi}{\partial \tau}\right)=\left\langle D_{Y} Y, \xi(\varphi)\right\rangle=0 \tag{2.17}
\end{equation*}
$$

The assertion of Lemma 2.3 follows from (2.15)-(2.17).
Using (2.8) and Lemma 2.3, we obtain

$$
\begin{equation*}
\left|H_{\gamma}(\varphi(s, \tau))\right|=\left|k_{\gamma}(s)\right|, \tag{2.18}
\end{equation*}
$$

where H_{γ} denotes the mean curvature vector field of the immersion f_{γ}.

3. Isometric deformations of $\boldsymbol{F} / \boldsymbol{G}$

Let $W_{ \pm}(n)$ denote the lattices of \mathbb{R}^{2} defined by (1.4). In this section we show the following theorem.

Theorem 3.1. Let G be a lattice of \mathbb{R}^{2} such that $G \subset G_{0}$. If $G \subset W_{+}(n)$ or $G \subset W_{-}(n)$ for some integer $n \geq 2$, the isometric immersion F / G given by (1.3) is deformable.

To establish the theorem above we need some lemmas. For each integer $n \geq 1$, let $\gamma: \mathbb{R} \rightarrow S^{2}$ be a 2π-periodic regular curve defined by

$$
\begin{equation*}
\gamma(s)=(\cos \theta \cos n s) e_{1}+(\cos \theta \sin n s) e_{2}+(\sin \theta) e_{3}, \tag{3.1}
\end{equation*}
$$

where θ is a constant such that

$$
\begin{equation*}
\frac{R_{2}^{2}-R_{1}^{2}}{2 R_{1} R_{2}}=\tan \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2} \tag{3.2}
\end{equation*}
$$

Note that the geodesic curvature of γ satisfies

$$
\begin{equation*}
k_{\gamma}(s)=\tan \theta \tag{3.3}
\end{equation*}
$$

We now consider the Hopf torus $f_{\gamma}: M_{\gamma} \rightarrow S^{3}$ corresponding to γ. Then

Lemma 3.2. The immersion f_{γ} is deformable for $n \geq 2$.

Proof. Since $n \geq 2$, it follows that there exists a smooth one parameter family of 2π-periodic regular curves $\gamma_{t}: \mathbb{R} \rightarrow S^{2}, t \in \mathbb{R}$, such that $\gamma_{0}=\gamma$ and

$$
\begin{gather*}
L\left(\gamma_{t}\right)=L(\gamma), \quad K\left(\gamma_{t}\right)=K(\gamma) \tag{3.4}\\
k_{\gamma_{t}}(0) \neq \tan \theta \quad \text { for all } \quad t \neq 0 \tag{3.5}
\end{gather*}
$$

The existence of γ_{t} as above will be established in the final section (Theorem 5.1). Let $\bar{\gamma}_{t}: \mathbb{R} \rightarrow S^{3}, t \in \mathbb{R}$ be a smooth one parameter family of curves in S^{3} such that $p\left(\bar{\gamma}_{t}(s)\right)=\gamma_{t}(s)$ and $\left\langle\bar{\gamma}_{t}^{\prime}(s), E_{3}\right\rangle=0$, and $\Phi_{t}: \mathbb{R}^{2} \rightarrow M_{\gamma_{t}}$ the Riemannian covering map defined in the same way as (2.9). Then, by Lemma $2.2, \Phi_{t}$ induces the isometry

$$
\tilde{\Phi}_{t}: \mathbb{R}^{2} / W\left(\gamma_{t}\right) \rightarrow M_{\gamma_{t}}
$$

Since $I\left(\gamma_{t}\right)=I(\gamma)$, it follows from (3.4) that $W\left(\gamma_{t}\right)=W(\gamma)$. So, by setting $f_{t}=$ $f_{\gamma_{t}} \circ \tilde{\Phi}_{t} \circ \tilde{\Phi}_{0}^{-1}$, we obtain a smooth one parameter family of isometric immersions $f_{t}: M_{\gamma} \rightarrow S^{3}, t \in \mathbb{R}$, such that $f_{0}=f_{\gamma}$. Let H_{t} denote the mean curvature vector field of f_{t}. Then it follows from (2.18) and (3.5) that there exists a point $a \in M_{\gamma}$ such that $\left|H_{1}(a)\right| \neq|\tan \theta|$. On the other hand, (3.3) implies that $\left|H_{0}(x)\right|=|\tan \theta|$ for all $x \in M_{\gamma}$. Hence $f_{0} \not \equiv f_{1}$, and so the immersion f_{γ} is deformable.

Lemma 3.3. The immersions $F / W_{+}(n)$ and $F / W_{-}(n)$ are deformable for $n \geq 2$.

Proof. We first note that $F / W_{+}(n) \equiv F / W_{-}(n)$. So, by Lemma 3.2, it is sufficient to show that $f_{\gamma} \equiv F / W_{+}(n)$. Let $\Phi: \mathbb{R}^{2} \rightarrow M_{\gamma}$ be the Riemannian covering defined by (2.9), and $\tilde{f}_{\gamma}: \mathbb{R}^{2} \rightarrow S^{3}$ an isometric immersion given by $\tilde{f}_{\gamma}=f_{\gamma} \circ \Phi$. We denote by \tilde{h} the second fundamental form of the immersion \tilde{f}_{γ}. Then it follows from Lemma 2.3 and (3.3) that

$$
\begin{equation*}
\tilde{h}=2 \tan \theta d x_{1}^{2}-2 d x_{1} d x_{2} \tag{3.6}
\end{equation*}
$$

Let T be an isometry of \mathbb{R}^{2} given by

$$
T\left(x_{1}, x_{2}\right)=\left(R_{2} x_{1}+R_{1} x_{2},-R_{1} x_{1}+R_{2} x_{2}\right) .
$$

Then it follows from (3.2) and (3.6) that

$$
T^{*} \tilde{h}=\frac{R_{2}}{R_{1}} d x_{1}^{2}-\frac{R_{1}}{R_{2}} d x_{2}^{2}
$$

Hence the isometric immersions $\tilde{f}_{\gamma} \circ T: \mathbb{R}^{2} \rightarrow S^{3}$ and $F: \mathbb{R}^{2} \rightarrow S^{3}$ have the same second fundamental form. So it follows from the fundamental theorem of the theory of surfaces that there exists an isometry $A: S^{3} \rightarrow S^{3}$ satisfying

$$
\begin{equation*}
\tilde{f}_{\gamma} \circ T=A \circ F . \tag{3.7}
\end{equation*}
$$

On the other hand, (3.1) implies

$$
L(\gamma)=2 n \pi \cos \theta, \quad K(\gamma)=2 n \pi \sin \theta, \quad I(\gamma)= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}
$$

So, by (2.6), the lattice $W(\gamma)$ is generated by

$$
v_{1}=(n \pi \cos \theta, \quad n \pi \sin \theta+n \pi), \quad v_{2}=(0,2 \pi)
$$

Hence we obtain $W(\gamma)=\left\{n_{1} \xi_{1}+n_{2} \xi_{2}: n_{1}+n_{2} \in n \mathbb{Z}\right\}$, where

$$
\xi_{1}=(\pi \cos \theta, \pi \sin \theta-\pi), \quad \xi_{2}=(\pi \cos \theta, \quad \pi \sin \theta+\pi)
$$

By (3.2) the vectors ξ_{1} and ξ_{2} can be written as

$$
\xi_{1}=2 \pi R_{1}\left(R_{2},-R_{1}\right), \quad \xi_{2}=2 \pi R_{2}\left(R_{1}, \quad R_{2}\right)
$$

This shows that $T\left(W_{+}(n)\right)=W(\gamma)$, and so it follows from Lemma 2.2 that there exists a diffeomprphism $\bar{T}: \mathbb{R}^{2} / W_{+}(n) \rightarrow M_{\gamma}$ satisfying $\Phi \circ T=\bar{T} \circ q$, where q denotes the canonical projection of \mathbb{R}^{2} onto $\mathbb{R}^{2} / W_{+}(n)$. Therefore (3.7) implies that $f_{\gamma} \circ \bar{T}=$ $A \circ F / W_{+}(n)$.

By the lemma above the assertion of Theorem 3.1 follows from the following
Lemma 3.4. Let W be a lattice of \mathbb{R}^{2} such that $W \subset G_{0}$ and the immersion F / W is deformable. Then for each lattice $G \subset W$ the immersion F / G is deformable.

Proof. By the assumption, the isometric immersion $F / W: \mathbb{R}^{2} / W \rightarrow S^{3}$ admits an isometric deformation $f_{t}: \mathbb{R}^{2} / W \rightarrow S^{3}$ such that $f_{0} \not \equiv f_{1}$. Then the mean curvature
vector field of f_{t}, denoted by H_{t}, satisfies

$$
\left\{\begin{array}{l}
\left|H_{0}(x)\right|=\left|R_{2}^{2}-R_{1}^{2}\right| / 2 R_{1} R_{2} \quad \text { for all } \quad x \in \mathbb{R}^{2} / W \tag{3.8}\\
\left|H_{1}(a)\right| \neq\left|R_{2}^{2}-R_{1}^{2}\right| / 2 R_{1} R_{2} \quad \text { for some } \quad a \in \mathbb{R}^{2} / W
\end{array}\right.
$$

We now consider the canonical projection $q: \mathbb{R}^{2} / G \rightarrow \mathbb{R}^{2} / W$ and an isometric deformation of F / G given by $\bar{f}_{t}=f_{t} \circ q$. Then (3.8) implies that $\bar{f}_{0} \not \equiv \bar{f}_{1}$, and so the immersion F / G is deformable.

4. Proof of main theorems

In this section we give the proof of Theorems 1.2 and 1.3. Consider the map $\sigma: G_{0} \rightarrow G_{0}$ defined by

$$
\sigma\left(2 \pi R_{1} n_{1}, 2 \pi R_{2} n_{2}\right)=\left(2 \pi R_{1} n_{2}, 2 \pi R_{2} n_{1}\right)
$$

The following lemma is the key ingredient in the proof of Theorem 1.2.
Lemma 4.1. Let G be a lattice of \mathbb{R}^{2} such that $G \subset G_{0}$. If $F_{t}: \mathbb{R}^{2} \rightarrow S^{3}, t \in \mathbb{R}$, is a G-invariant isometric deformation of the immersion F, then the deformation F_{t} is $\sigma(G)$-invariant.

Proof. Let $v \in G$. Then it is sufficient to show that

$$
\begin{equation*}
F_{t}(x+\sigma(v))=F_{t}(x) \quad \text { for all } \quad t \in \mathbb{R} \tag{4.1}
\end{equation*}
$$

Since $F_{t}: \mathbb{R}^{2} \rightarrow S^{3}$ is an isometric immersion, it follows from [7] that there exists a diffeomorphism $T_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\left|\partial_{i} T_{t}\right|=1, \quad h_{t}\left(\partial_{i} T_{t}, \partial_{i} T_{t}\right)=0 \quad \text { for } \quad i=1,2 \tag{4.2}
\end{equation*}
$$

where h_{t} denotes the second fundamental form of F_{t}. We may assume that the map $\left(t, s_{1}, s_{2}\right) \mapsto T_{t}\left(s_{1}, s_{2}\right)$ is smooth and

$$
\begin{equation*}
T_{t}(0,0)=(0,0), \quad T_{0}\left(s_{1}, s_{2}\right)=\left(R_{1}\left(s_{1}-s_{2}\right), R_{2}\left(s_{1}+s_{2}\right)\right) \tag{4.3}
\end{equation*}
$$

By (4.2) we obtain $\partial_{1} \partial_{2} T_{t}=(0,0)$. So it follows from $T_{t}(0,0)=(0,0)$ that

$$
\begin{equation*}
T_{t}\left(s_{1}, s_{2}\right)=T_{t}\left(s_{1}, 0\right)+T_{t}\left(0, s_{2}\right) \tag{4.4}
\end{equation*}
$$

We set

$$
\begin{equation*}
\left(l_{1}(t), l_{2}(t)\right)=T_{t}^{-1}(v), \quad z(t)=T_{t}\left(l_{1}(t), 0\right) \tag{4.5}
\end{equation*}
$$

Then $v=T_{0}\left(l_{1}(0), l_{2}(0)\right)=\left(R_{1}\left(l_{1}(0)-l_{2}(0)\right), R_{2}\left(l_{1}(0)+l_{2}(0)\right)\right)$, and so we obtain

$$
v+\sigma(v)=2 z(0) .
$$

Since F_{t} is G-invariant, the relation above implies

$$
\begin{equation*}
F_{t}(x+\sigma(v))=F_{t}(x+2 z(0)) . \tag{4.6}
\end{equation*}
$$

Let $p_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / G$ be a covering given by $p_{t}=p \circ T_{t}$, where $p: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / G$ denotes the canonical projection. Since $p(v)=p(0,0)$, it follows from (4.3) and (4.5) that $p_{t}\left(l_{1}(t), l_{2}(t)\right)=p_{t}(0,0)$. So there exists a diffeomorphism $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $p_{t} \circ \varphi=p_{t}$ and $\varphi(0,0)=\left(l_{1}(t), l_{2}(t)\right)$. Then $T_{t}\left(\varphi\left(s_{1}, s_{2}\right)\right)-T_{t}\left(s_{1}, s_{2}\right) \in G$, and so it follows from (4.5) that

$$
\begin{equation*}
T_{t}\left(\varphi\left(s_{1}, s_{2}\right)\right)=T_{t}\left(s_{1}, s_{2}\right)+v \tag{4.7}
\end{equation*}
$$

We now consider an immersion $\tilde{F}_{t}: \mathbb{R}^{2} \rightarrow S^{3}$ defined by $\tilde{F}_{t}=F_{t} \circ T_{t}$. Then, by (4.2), we see that the immersion \tilde{F}_{t} is a FAT. Here, we refer the reader to [2, p. 460] for the definition of FAT. Furthermore, it follows from (4.7) that $\tilde{F}_{t} \circ \varphi=\tilde{F}_{t}$. Therefore, [2, Theorem 2.3] implies

$$
\begin{equation*}
\varphi\left(s_{1}, s_{2}\right)=\left(s_{1}+l_{1}(t), s_{2}+l_{2}(t)\right) . \tag{4.8}
\end{equation*}
$$

In particular, we obtain $\tilde{F}_{t}\left(s_{1}+l_{1}(t), s_{2}+l_{2}(t)\right)=\tilde{F}_{t}\left(s_{1}, s_{2}\right)$, and so it follows from [2, Theorem 3.9, Lemma 5.5] that

$$
\begin{equation*}
\tilde{F}_{t}\left(s_{1}+2 l_{1}(t), s_{2}\right)=\tilde{F}_{t}\left(s_{1}, s_{2}\right) \tag{4.9}
\end{equation*}
$$

On the other hand, combining (4.7) and (4.8), we obtain

$$
\begin{equation*}
T_{t}\left(s_{1}+l_{1}(t), s_{2}+l_{2}(t)\right)=T_{t}\left(s_{1}, s_{2}\right)+v \tag{4.10}
\end{equation*}
$$

Using (4.4), (4.5) and (4.10), we see that

$$
\begin{aligned}
T_{t}\left(s_{1}+l_{1}(t), s_{2}\right) & =T_{t}\left(s_{1}+l_{1}(t), l_{2}(t)\right)+T_{t}\left(0, s_{2}\right)-T_{t}\left(0, l_{2}(t)\right) \\
& =T_{t}\left(s_{1}, s_{2}\right)+v-T_{t}\left(0, l_{2}(t)\right)=T_{t}\left(s_{1}, s_{2}\right)+z(t) .
\end{aligned}
$$

This implies $T_{t}\left(s_{1}+2 l_{1}(t), s_{2}\right)=T_{t}\left(s_{1}, s_{2}\right)+2 z(t)$, and so it follows from (4.9) that

$$
\begin{equation*}
F_{t}(x+2 z(t))=F_{t}(x) . \tag{4.11}
\end{equation*}
$$

By (4.6) and (4.11), we see that (4.1) follows from the assertion that $z(t)=z(0)$ for all $t \in \mathbb{R}$. To establish this assertion, suppose that there exists t_{0} such that $z\left(t_{0}\right) \neq z(0)$.

Since the set of all points $z(t) \in \mathbb{R}^{2}$ is not countable, there exists $a \in \mathbb{R}$ such that $z(a)$ is not contained in the countable set $\bigcup_{n=1}^{\infty}\{x / 2 n: x \in G\}$. Let $f_{a}: \mathbb{R}^{2} / G \rightarrow S^{3}$ be an immersion defined by the relation $f_{a} \circ p=F_{a}$, and $\left\{y_{n}\right\}_{n=1}^{\infty}$ a sequence in \mathbb{R}^{2} / G given by $y_{n}=p(2 n z(a))$. Then it follows from (4.11) that $f_{a}\left(y_{m}\right)=f_{a}\left(y_{n}\right)$. Furthermore, as $2 n z(a) \notin G$ for all $n \geq 1$, we obtain $y_{m} \neq y_{n}(m \neq n)$. So, using the fact that f_{a} is locally injective, we see that the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ has no convergent subsequence. This contradicts the fact that \mathbb{R}^{2} / G is compact. Hence we obtain $z(t)=z(0)$ for all $t \in \mathbb{R}$.

We now recall the lattices $W_{ \pm}(n)$ given by (1.4), and for each lattice $G \subset G_{0}$ we consider the lattice

$$
G+\sigma(G)=\{u+\sigma(v): u, v \in G\} .
$$

Then we obtain
Lemma 4.2. Let G be a lattice of \mathbb{R}^{2} such that $G \subset G_{0}$. If $G \not \subset W_{+}(n)$ and $G \not \subset W_{-}(n)$ for all integers $n \geq 2$, then $G+\sigma(G)=G_{0}$.

Proof. Since $G+\sigma(G) \subset G_{0}$, it is sufficient to show that $G_{0} \subset G+\sigma(G)$. Let u and v be generators of the lattice G. Since $u, v \in G_{0}$, we can write as

$$
u=\left(2 \pi R_{1} u_{1}, 2 \pi R_{2} u_{2}\right), \quad v=\left(2 \pi R_{1} v_{1}, 2 \pi R_{2} v_{2}\right), \quad u_{i}, \quad v_{i} \in \mathbb{Z}
$$

For each integer $n \geq 2$, using the assumption $G \not \subset W_{+}(n)$, we see that there exist $k, l \in \mathbb{Z}$ such that the integer n does not divide $k\left(u_{1}+u_{2}\right)+l\left(v_{1}+v_{2}\right)$, and so n is not a common divisor for $u_{1}+u_{2}$ and $v_{1}+v_{2}$. Hence the greatest common divisor for $u_{1}+u_{2}$ and $v_{1}+v_{2}$ is equal to 1 . Similarly, using the assumption that $G \not \subset W_{-}(n)$ for all $n \geq 2$, we see that the greatest common divisor for $u_{1}-u_{2}$ and $v_{1}-v_{2}$ is equal to 1. Hence there exist $p, q, r, s \in \mathbb{Z}$ such that

$$
\begin{equation*}
p\left(u_{1}+u_{2}\right)+q\left(v_{1}+v_{2}\right)=1, \quad r\left(u_{1}-u_{2}\right)+s\left(v_{1}-v_{2}\right)=1 . \tag{4.12}
\end{equation*}
$$

We now consider the elements $a, b \in G$ given by

$$
a=p u+q v, \quad b=r u+s v .
$$

Then it follows from (4.12) that

$$
\begin{aligned}
b-\left(r u_{2}+s v_{2}\right)(a+\sigma(a)) & =\left(2 \pi R_{1}, 0\right), \\
a-\left(p u_{1}+q v_{1}\right)(b-\sigma(b)) & =\left(0,2 \pi R_{2}\right) .
\end{aligned}
$$

So the lattice $G+\sigma(G)$ contains $\left(2 \pi R_{1}, 0\right)$ and $\left(0,2 \pi R_{2}\right)$. Hence $G_{0} \subset G+\sigma(G)$.

Lemma 4.3. Let G be a lattice of \mathbb{R}^{2} such that $G \subset G_{0}$. If $G+\sigma(G)=G_{0}$, then every isometric deformation of F / G is trivial.

Proof. Let $f_{t}: \mathbb{R}^{2} / G \rightarrow S^{3}, t \in \mathbb{R}$, be an isometric deformation of F / G. Then we obtain a G-invariant isometric deformation of F given by $F_{t}=f_{t} \circ p$, where p denotes the canonical projection of \mathbb{R}^{2} onto \mathbb{R}^{2} / G. Since $G+\sigma(G)=G_{0}$, it follows from Lemma 4.1 that each F_{t} is G_{0}-invariant, and so we obtain

$$
F_{t} / G_{0}: \mathbb{R}^{2} / G_{0} \rightarrow S^{3}, \quad t \in \mathbb{R}
$$

which is an isometric deformation of the embedding $F / G_{0}: \mathbb{R}^{2} / G_{0} \rightarrow S^{3}$. Then Theorem 1.1 implies that for each $t \in \mathbb{R}$ there exists an isometry $A_{t}: S^{3} \rightarrow S^{3}$ satisfying $F_{t} / G_{0}=A_{t} \circ\left(F / G_{0}\right)$. Let $q: \mathbb{R}^{2} / G \rightarrow \mathbb{R}^{2} / G_{0}$ denote the canonical projection. Since $f_{t}=\left(F_{t} / G_{0}\right) \circ q$, we obtain

$$
A_{t} \circ f_{0}=A_{t} \circ\left(F / G_{0}\right) \circ q=\left(F_{t} / G_{0}\right) \circ q=f_{t} .
$$

Hence the isometric deformation f_{t} is trivial.
Proof of Theorem 1.2. To establish Theorem 1.2, it is sufficient to show the converse of Theorem 3.1. Suppose that $G \not \subset W_{+}(n)$ and $G \not \subset W_{-}(n)$ for all integers $n \geq 2$. Then it follows from Lemmas 4.2 and 4.3 that every isometric deformation of F / G is trivial. In particular, the isometric immersion F / G is not deformable. This shows the converse of Theorem 3.1.

Proof of Theorem 1.3. By Lemmas 4.2 and 4.3, it is easy to see that (2) \Rightarrow (1). We now show that (1) \Rightarrow (2). Recall the main result of [5] which states that every flat torus isometrically immersed in S^{3} with nonconstant mean curvature is deformable. Hence, the assumption (1) implies that the mean curvature of the immersion $f: M \rightarrow S^{3}$ must be constant. So there exist positive constants R_{1} and R_{2} with $R_{1}^{2}+R_{2}^{2}=1$ such that f is congruent to the immersion F / G given by (1.3). Then F / G is not deformable, and so it follows from Theorem 1.2 that the lattice G satisfies $G \not \subset W_{+}(n)$ and $G \not \subset W_{-}(n)$ for all integers $n \geq 2$.

5. Deformations of circles in S^{2}

For each 2π-periodic regular curve $\gamma(s)$ in S^{2}, we recall the following notation.

$$
L(\gamma)=\int_{0}^{2 \pi}\left|\gamma^{\prime}(s)\right| d s, \quad K(\gamma)=\int_{0}^{2 \pi} k_{\gamma}(s)\left|\gamma^{\prime}(s)\right| d s
$$

where $k_{\gamma}(s)$ denotes the geodesic curvature of $\gamma(s)$ given by

$$
k_{\gamma}(s)=\frac{\left\langle\gamma^{\prime \prime}(s), J\left(\gamma^{\prime}(s)\right)\right\rangle}{\left|\gamma^{\prime}(s)\right|^{3}} .
$$

In this section we prove the following theorem which was used in the proof of Lemma 3.2.

Theorem 5.1. For each integer $n \geq 2$, let $\gamma: \mathbb{R} \rightarrow S^{2}$ be a 2π-periodic regular curve defined by $\gamma(s)=(\cos \theta \cos n s) e_{1}+(\cos \theta \sin n s) e_{2}+(\sin \theta) e_{3}$, where θ is a constant satisfying $-\pi / 2<\theta<\pi / 2$. Then there exists a smooth one parameter family of 2π-periodic regular curves $\gamma_{t}: \mathbb{R} \rightarrow S^{2},-\delta<t<\delta$, such that
(1) $\gamma_{0}=\gamma$,
(2) $L\left(\gamma_{t}\right)=L(\gamma), K\left(\gamma_{t}\right)=K(\gamma)$,
(3) $k_{\gamma_{t}}(0) \neq \tan \theta$ for all $t \neq 0$.

We first show the following lemma which proves the assertion of Theorem 5.1 in the case of $\theta=0$.

Lemma 5.2. For each integer $n \geq 2$, let $\alpha: \mathbb{R} \rightarrow S^{2}$ be a 2π-periodic regular curve defined by $\alpha(s)=(\cos n s) e_{1}+(\sin n s) e_{2}$. Then there exists a smooth one parameter family of 2π-periodic regular curves $\alpha_{t}: \mathbb{R} \rightarrow S^{2},-\epsilon<t<\epsilon$, such that
(1) $\alpha_{0}=\alpha$,
(2) $L\left(\alpha_{t}\right)=L(\alpha), K\left(\alpha_{t}\right)=K(\alpha)$,
(3) $k_{\alpha_{t}}(0) \neq 0$ for all $t \neq 0$.

Proof. Let $v_{1}(s)$ and $v_{2}(s)$ be 2π-periodic functions defined by

$$
\begin{equation*}
v_{1}(s)=\cos s, \quad v_{2}(s)=\cos m s, \quad \text { where } \quad m=2 n+1 \tag{5.1}
\end{equation*}
$$

For each $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, we consider the curve $q_{x}: \mathbb{R} \rightarrow S^{2}$ given by

$$
q_{x}(s)=\cos \left(\sum_{i=1}^{2} x_{i} v_{i}(s)\right) \alpha(s)+\sin \left(\sum_{i=1}^{2} x_{i} v_{i}(s)\right) e_{3} .
$$

Note that $q_{x}(s+2 \pi)=q_{x}(s)$, and

$$
q_{o}(s)=\alpha(s), \quad \text { where } \quad o=(0,0) .
$$

So there exists an open neighborhood V of the origin $o \in \mathbb{R}^{2}$ such that for each $x \in V$ the curve q_{x} is regular. We consider the smooth functions $\bar{L}, \bar{K}: V \rightarrow \mathbb{R}$ given by

$$
\bar{L}(x)=L\left(q_{x}\right)=\int_{0}^{2 \pi}\left|q_{x}^{\prime}(s)\right| d s, \quad \bar{K}(x)=K\left(q_{x}\right)=\int_{0}^{2 \pi} k_{q_{x}}(s)\left|q_{x}^{\prime}(s)\right| d s .
$$

Since $v_{i}(s+\pi)=-v_{i}(s)$, we obtain $\left|q_{x}^{\prime}(s+\pi)\right|=\left|q_{x}^{\prime}(s)\right|$ and $k_{q_{x}}(s+\pi)=-k_{q_{x}}(s)$. Therefore

$$
\begin{equation*}
\bar{K}(x)=0 \tag{5.2}
\end{equation*}
$$

Since $q_{o}: \mathbb{R} \rightarrow S^{2}$ is a geodesic, the origin $o \in \mathbb{R}^{2}$ is a critical point for the smooth function \bar{L}. The Hessian of \bar{L} at the critical point o is given by

$$
\frac{\partial^{2} \bar{L}}{\partial x_{i} \partial x_{j}}(o)=\frac{1}{n} \int_{0}^{2 \pi}\left(v_{i}^{\prime}(s) v_{j}^{\prime}(s)-n^{2} v_{i}(s) v_{j}(s)\right) d s
$$

So it follows from (5.1) that

$$
\begin{equation*}
\frac{\partial^{2} \bar{L}}{\partial x_{1} \partial x_{1}}(o)=\frac{1-n^{2}}{n} \pi, \quad \frac{\partial^{2} \bar{L}}{\partial x_{2} \partial x_{2}}(o)=\frac{m^{2}-n^{2}}{n} \pi, \quad \frac{\partial^{2} \bar{L}}{\partial x_{1} \partial x_{2}}(o)=0 . \tag{5.3}
\end{equation*}
$$

Since $n>1$ and $m=2 n+1$, the index of \bar{L} at the critical point o is equal to -1 . Hence the Lemma of Morse [6, p. 6] implies that there exists a local coordinate system $\left(y_{1}, y_{2}\right)$ in a neighborhood U of the origin o such that

$$
\begin{equation*}
\bar{L}(x)=\bar{L}(o)-y_{1}(x)^{2}+y_{2}(x)^{2}, \quad y_{1}(o)=y_{2}(o)=0 . \tag{5.4}
\end{equation*}
$$

For a sufficiently small $\epsilon>0$, let $x(t)=\left(x_{1}(t), x_{2}(t)\right),-\epsilon<t<\epsilon$, be a smooth curve in U defined by

$$
\begin{equation*}
y_{1}(x(t))=t, \quad y_{2}(x(t))=t \tag{5.5}
\end{equation*}
$$

and we consider the smooth one parameter family of 2π-periodic regular curves $\alpha_{t}: \mathbb{R} \rightarrow S^{2},-\epsilon<t<\epsilon$ given by $\alpha_{t}=q_{x(t)}$. Then it follows from (5.2), (5.4) and (5.5) that

$$
\alpha_{0}=q_{o}=\alpha, \quad L\left(\alpha_{t}\right)=\bar{L}(x(t))=\bar{L}(o), \quad K\left(\alpha_{t}\right)=\bar{K}(x(t))=0 .
$$

This implies the assertions (1) and (2). Since the geodesic curvature of α_{t} satisfies $k_{\alpha_{t}}=\left\langle\alpha_{t}^{\prime \prime}, J\left(\alpha_{t}^{\prime}\right)\right\rangle /\left|\alpha_{t}^{\prime}\right|^{3}$, we obtain

$$
\begin{equation*}
k_{\alpha_{t}}(0)=\frac{\varphi(t)}{n^{2} \cos ^{2}\left(x_{1}(t)+x_{2}(t)\right)} \tag{5.6}
\end{equation*}
$$

where $\varphi(t)=n^{2} \cos \left(x_{1}(t)+x_{2}(t)\right) \sin \left(x_{1}(t)+x_{2}(t)\right)-x_{1}(t)-m^{2} x_{2}(t)$. Note that

$$
\begin{equation*}
\varphi(0)=0, \quad \varphi^{\prime}(0)=\left(n^{2}-1\right) x_{1}^{\prime}(0)+\left(n^{2}-m^{2}\right) x_{2}^{\prime}(0) . \tag{5.7}
\end{equation*}
$$

Differentiating the relation $\bar{L}(x(t))=\bar{L}(o)$ and using (5.3), we obtain

$$
\begin{equation*}
\left(n^{2}-1\right) x_{1}^{\prime}(0)^{2}+\left(n^{2}-m^{2}\right) x_{2}^{\prime}(0)^{2}=0 . \tag{5.8}
\end{equation*}
$$

If $\varphi^{\prime}(0)=0$, it follows from (5.7) and (5.8) that $x_{1}^{\prime}(0)=x_{2}^{\prime}(0)=0$ which is a contradiction. Hence $\varphi^{\prime}(0) \neq 0$. So the assertion (3) follows from (5.6).

Proof of Theorem 5.1. Let $\alpha_{t}: \mathbb{R} \rightarrow S^{2},-\epsilon<t<\epsilon$, be a smooth one parameter family of 2π-periodic regular curves satisfying the conditions (1)-(3) of Lemma 5.2, and n_{t} a unit normal vector field along α_{t} given by $n_{t}(s)=J\left(\alpha_{t}^{\prime}(s)\right) /\left|\alpha_{t}^{\prime}(s)\right|$. Consider the curve $\gamma_{t}: \mathbb{R} \rightarrow S^{2}$ given by $\gamma_{t}(s)=(\cos \theta) \alpha_{t}(s)+(\sin \theta) n_{t}(s)$. Then it follows from the relation $n_{t}^{\prime}(s)=-k_{\alpha_{t}}(s) \alpha_{t}^{\prime}(s)$ that

$$
\begin{equation*}
\gamma_{t}^{\prime}(s)=\left(\cos \theta-k_{\alpha_{t}}(s) \sin \theta\right) \alpha_{t}^{\prime}(s) \tag{5.9}
\end{equation*}
$$

Since $k_{\alpha_{0}}(s)=0$ and $\cos \theta>0$, there exists a positive number δ such that

$$
\cos \theta-k_{\alpha_{t}}(s) \sin \theta>0 \quad \text { for } \quad|t|<\delta
$$

So it follows that $\gamma_{t}: \mathbb{R} \rightarrow S^{2},-\delta<t<\delta$, is a smooth one parameter family of 2π-periodic regular curves. Hence it is sufficient to show that the family γ_{t} satisfies (1)-(3) of Theorem 5.1. Using (1) of Lemma 5.2, we obtain $n_{0}(s)=e_{3}$. This implies the assertion (1). On the other hand, the geodesic curvature of γ_{t} satisfies

$$
\begin{equation*}
k_{\gamma_{t}}(s)=\frac{\sin \theta+k_{\alpha_{t}}(s) \cos \theta}{\cos \theta-k_{\alpha_{t}}(s) \sin \theta} . \tag{5.10}
\end{equation*}
$$

By (5.9) and (5.10) we obtain

$$
L\left(\gamma_{t}\right)=\cos \theta L\left(\alpha_{t}\right)-\sin \theta K\left(\alpha_{t}\right), \quad K\left(\gamma_{t}\right)=\sin \theta L\left(\alpha_{t}\right)+\cos \theta K\left(\alpha_{t}\right)
$$

So the assertion (2) follows from (2) of Lemma 5.2. Furthermore, using (3) of Lemma 5.2 and (5.10), we see that $k_{\gamma_{t}}(0) \neq \tan \theta$ for all $t \neq 0$. This implies the assertion (3).

References

[1] K. Enomoto, Y. Kitagawa and J.L. Weiner: A rigidity theorem for the Clifford tori in S^{3}, Proc. A.M.S. 124 (1996), 265-268.
[2] Y. Kitagawa: Periodicity of the asymptotic curves on flat tori in S^{3}, J. Math. Soc. Japan, 40 (1988), 457-476.
[3] Y. Kitagawa: Rigidity of the Clifford tori in S^{3}, Math. Z., 198 (1988), 591-599.
[4] Y. Kitagawa: Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan, 47 (1995), 275-296.
[5] Y. Kitagawa: Isometric deformations of a flat torus in the 3-sphere with nonconstant mean curvature, Tohoku Math. J. 52 (2000), 283-298.
[6] J. Milnor: Morse theory, Princeton University Press, Princeton, NJ, 1963.
[7] J.D. Moore: Isometric immersions of space forms in space forms, Pacific J. Math., 40 (1972), 157-166.
[8] U. Pinkall: Hopf tori in S^{3}, Invent. math., 81 (1985), 379-386.
[9] S.T. Yau: Submanifolds with constant mean curvature II, Amer. J. Math., 97 (1975), 76-100.

Department of Mathematics
Utsunomiya University Utsunomiya 321-8505, Japan e-mail: kitagawa@cc.utsunomiya-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 53C42.
 Partly supported by the Grant-in-Aid for Scientific Reseach, The Ministry of Education, Science, Sports and Culture, Japan, (No. 12640059).

