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1. Introduction

In 1975, Yau [9, p. 87] posed the problem of the classificatbrilat tori in the
unit 3-spheres®. Concerning this problem, the author established a metboddn-
structing all the flat tori inS® ([2]), and obtained some results on flat tori $8 ([1],

[3], [4], [B]). In this paper, using this method, we study risetric deformations of flat
tori isometrically immersed ins® with constant mean curvature, and we obtain the
classification of undeformable flat tori i°.

For positive constant®; and R, satisfying R + R5 = 1, let F :R? — S° be an
isometric immersion given by

X1 . X1 X2 . X2
1.1 F (x1, = | R{cos—, RySIn—, R, cos—, R,sin— |,
(1.1) (1, x2) ( 10085 Rusin -, Ro COS, Ra Rz)

and G, a lattice of R? defined by
(1.2) Go = {(2nRin1, 2w Rony) : n1,np € Z}.

If G is a lattice of R? such thatG C Gy, then we obtain a flat toruR?/G and an
isometric immersion

(1.3) F/G:R?/G — §3

with constant mean curvature. Conversely, every flat tosesnetrically immersed in
S with constant mean curvature is obtained in this way. Not the immersion
F/G is the composition of the covering maR?/G — R?/Go and the embedding
F/Go: R?/Go — S3. In [3] the author studied isometric deformations BfG,, and

proved the following theorem.

2000 Mathematics Subject ClassificatiorPrimary 53C42.
Partly supported by the Grant-in-Aid for Scientific Reseathe Ministry of Education, Science,
Sports and Culture, Japan, (No. 12640059).



104 Y. KITAGAWA

Theorem 1.1. If f,: R?/Go — S°, t € R, is a smooth one parameter family of
isometric immersions withyp = F /Gy, then for eacht € R there exists an isometry
A;: 8% — S% such thatf, = A, o fo.

This theorem says that every isometric deformationFofGy is trivial. On the
other hand, there are many latticés C Go such that the immersiorF /G is de-
formable. LetW.(n) and W_(n) be lattices ofR? defined by

(1.4) Wy (n) = {(2rRin1, 2rRony) : n1 £ ny € nZ} C Go.

Then we can show that i&; C W.(n) or G C W_(n) for some integem > 2, the
immersion F /G is deformable (Theorem 3.1). Here, we give the following rd&én.

DeriNnimioN.  For immersionsf;: M; — S% and fo: M, — S3, we write f1 = f>,
and we say ‘1 is congruent tof,” if there exist an isometrydA $% — $% and
a diffeomorphismp: M1 — M> such thatA o fi = f> o p. An isometric immer-
sion f : M — S% is said to bedeformableif it admits an isometric deformatiorf,
M — S3 (t € R, fo = f) such thatfy # fi.

The assertion of Theorem 3.1 leads us to the problem of findihghe lattices
G C Go such that the immersio¥ /G is deformable. In this paper we study this
problem, and prove the following theorem.

Theorem 1.2. Let G be a lattice ofR? such thatG C Go. Then the immersion
F/G is deformable if and only if there exists an integee> 2 such thatG C W.(n)
or G C W_(n).

Furthermore, as a corollary of this theorem, we obtain thHievidng classification
of undeformable flat tori isometrically immersed §3.

Theorem 1.3. Let f: M — S° be an isometric immersion of a flat torug  into
the unit spheres®. Then the following statements are equivalent.
(1) Every isometric deformation of s trivial.
(2) There exist positive constany and R, with R?+R3 = 1 such thatf is congruent
to the immersionF /G given by(1.3), where the latticeG satisfie& ¢ W.(n) and
G ¢ W_(n) for all integersn > 2.

RemarRk. Let G be a lattice ofR? generated by the following two vectors
u = (2nRiuq, 2w Rouy), v = (2r Ryvy, 2rRov2),  u;, v; € Z.

Then it is easy to see that the following statements are alguit
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(1) G ¢ Wi(n) and G ¢ W_(n) for all integersn > 2.
(2) g.cduytuz, vi+wvy)=g.c.dluy —uz, vy —vy) =1

The outline of this paper is as follows. In Section 2 we study geometry of a flat
torus M, C $* which is the inverse image under the Hopf fibratish — 2 of a
closed curvey in S2. In Section 3 we show that i is ann -fold circle inS? (n > 2),
then the flat torus\, C 5% is deformable (Lemma 3.2). Using this lemma, we obtain
Theorem 3.1. In Section 4 we prove Theorems 1.2 and 1.3. Thenigedient in the
proof of Theorem 1.2 is Lemma 4.1 which is obtained by usingethod developed
in [2]. The assertion of Theorem 1.3 follows from the mainutesf [5] which states
that every flat torus isometrically immersed §ii with nonconstant mean curvature is
deformable. In the final section we prove Theorem 5.1. Theoitam, which is used
in the proof of Lemma 3.2 , ensures the existence of certaforehation of ann -fold
circle in §2 for n > 2.

2. Hopf tori in S*

In this section we study the geometry of a flat torussSth constructed by using
the Hopf fibrationS® — $2. We start with the description of the Hopf fibration by
using the group structure of. Let SU(2) be the group of all X 2 unitary matrices
with determinant 1. Its Lie algebrai(2) consists of all % 2 skew Hermitian matrices
of trace 0. We define a positive definite inner prodyct) on su(2) by

(u,v) = —% trace¢iv ) u,v € su(2).
The inner product , ) is invariant under the adjoint action AU (2} Aut(su(2)).
We set

€2 —

R I S i

Then{e1, es, e3} is an orthonormal basis afu(2) such that
le1, e2] = 2e3, [e2, €3] = 2e1, [e3, e1] = 2e,

where [ , ] is the Lie bracket osu(2). Fori = 1, 2, 3, we denote by; the left
invariant vector field onSU (2) corresponding & , and we endfiw 2) with a bi-
invariant Riemannian metri¢ , ) satisfying (E;, E;) = ¢;;. ThenSU (2) is a Rieman-
nian manifold isometric to the unit sphes&. Henceforth, we identifys® with SU(2).
Let $2 be the unit sphere imsu(2) given by S = {u € su(2) : |[u| = 1}, and
p: S — 82 the Hopf fibration given by

p(a) = Ad(a)es.
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The vector fieldEz is tangent to the fibers of the Hopf fibration. F&t Y € 7,53, it
follows that

@) (pX. oY) = 4{(X. V) — (X, E3) (V. E3)).
(2.2) p«(DxE3) = —J(p«X),

where D denotes the Riemannian connectionSénandJ denotes the almost complex
structure onS? defined byJ ¢ ) =, v J2 for v € T,S%. We identify the unit tangent
bundle of $? with the subset/S? C 52 x 52 defined by

US?={(u,v) € §? x §2: (u,v) =0}.

Here, the canonical projectiop;: US? — 5?2 is given by p1(u, v) = u. Furthermore,
we define a double covering,: S° — U S? by

p2(a) = (Ad(a)es, Ad(a)er).

Let v: R — S$2 be a 2r-periodic regular curve ins?. Using the Hopf fibration
p: $3 — §2, we construct a 2-dimensional torug, and an immersiory, : M., — S3

by
M, ={(e",a) € S* x $* 1 y(s) = p(a)}.  fy(e"*.a)=a,

where S* denotes the unit circle ifC. The immersionf, induces a flat Riemannian
metric on M., (see [8]). So we obtain a flat torug, and an isometric immersion

M, — s3,

The immersionf, is called theHopf torus corresponding toy.

In the rest of this section we describe the Riemannian strecof M, and the
second fundamental form of,. Let L(y) be the length ofy and K ) the total
geodesic curvature of, that is,

27 27
Lo)= [ WOlds Ke)= [ kO s
wherek (s) denotes the geodesic curvatureydf) given by

1" , J !
K (5) = 9l (S|)y’(s§|73(S))>'

We now consider the curve: R — U S? given by

(2.3) ﬂ”:@®W%&)
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and denote byl ) the element of the homology groufi:(U S?) represented by the
closed curvey [0, 2r]. Note that H1(U S?) = Z,. Let c(s) be a lift of the curvey(s)
with respect to the double covering: S — US?. Since pa(—a) = p2(a), we obtain

) cels) if I(y)=0,

(2.4) clo+2m) = {—c(s) it 1(y)=1
We set

(K@) if 1(7)=0,

(2.5) @0) = {K(V) +2r if I(y) =1,

and defineW 1) to be the lattice ofR? generated by the following two vectors

(2.6) vy = (#, @) ,  v2=(0, 2r).

Then the Riemannian structure 8f,, is given by the following
Lemma 2.1. The flat torusM., is isometric toR2/W ().

To establish the lemma we consider the coveringR? — M., defined by

(2.7) (s, 7) = (", 7(s) exp(res)).

where y(s) is a curve inS® such thatp {4(s)) = v(s) and (y(s), E3) = 0. Then it
follows from (2.1) that|y'(s)| = | p«7'(s)| = 2|7/(s)|. So we obtain

1
(2.8) 0 gy = ZIW’(S)Ist2+dTZ,

where g, denotes the Riemannian metric od,. Let p: R2 — R? be a diffeomor-

phism given by
1/,
o) = (5 [ Holds. 7).
0

and ® :R? — M., a covering map defined by

(2.9) ® (x1, x2) = p(p~H(x1. x2)).

Since p*(dx2+dx3) = p*g,, the map® is a Riemannian covering, and so the assertion
of Lemma 2.1 follows from the lemma below.

Lemma 2.2. For x, x’ € R?, ®&(x) = ®(x') if and only if x’ —x € W(7).
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Proof. We setx (s, 7) andx’ = p(s’, 7). Then we obtain
(2.10) O () =€, Yls)explres)), (') = (', F(s') exples)).
Since p ¢ 6 )) =p §(s)), there exists a real valued functigi{s) such that
(2.11) ¢ 6) =(s) expu(s)es).
On the other hand, it follows from [4, Lemma2.2] that the &urs) satisfies
—1 ./ _ 1 /
(2.12) c6)c'(s) = 51 ()l(ez * ky(s)es)-

Since (y7X(s)7/(s), e3) = 0, (2.11) and (2.12) imply/'(s) = (1/2)k-(s)|7/(s)|. Hence

27
(2.13) s +20) =)= [ SN Ol ds = 3K )
Using (2.4), (2.5), (2.11) and (2.13), we obtajfs + 27) = (s) exp{—(1/2)2(v)es}.
So it follows from (2.10) that® X ) =b X’) if and only if there existn;, m, € Z

satisfying
/ / my
(2.14) s'—s=2mm, T —T= 79(7) + 2mom.
Sincex’ — x ={(1/2) f;l [v/(s)|ds, 7" — 7}, we see that (2.14) is equivalent to
= (M m
¥ —x= (FL0), FR0)+2mar).
This completes the proof. U

We now deal with the second fundamental form of the immersipnaz, — S3.
Let £ be a unit normal vector field of,, such that

p*g(eisv Cl) = 2n(s), (eisv a) € M ’

wheren §) =J ¢'(s))/|7'(s)|, and leth. denote the second fundamental form of the
immersion £, with respect tog. Then

Lemma 2.3. ¢*hy = (1/2)k-(s)]7/(s)|?ds? — |¥'(s)| dsd.
Proof. We set

Y

0
f:f,yc;(p’ X = :8_{—"
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Since (v, E3) =0, it follows from [2, Lemma 3.3] that
p«(DxX) = p(D77) = Vv,
where V denotes the Riemannian connection $m Hence (2.1) implies

(8¢ Oy
v

08 02) = (DX o) = 5 (D X). 9.6

1 1 1

= Z <V’Y/fy/’ 2n> = E <’7N’ I’l> = Ek’)’|fy/|2‘

Since Y §,7) = E3(f(s,7)), it follows from (2.2) that p.(DxY) = p.(DxE3) =
—J(p«X) =—J(v). Hence

dp 0 1
h, <8_f’ 8_f) = (DxY,£(¢)) = 7 (P+(DxY), p-£(9))

(2.15)

(2.16)

=2 (620 = 5|

Since the integral curves of the vector figld are geodesics is®, we see thatDyY =
0. Hence

dp dp\ _ -
The assertion of Lemma 2.3 follows from (2.15)—(2.17). O

Using (2.8) and Lemma 2.3, we obtain

(2.18) |Hy (p(s, T))| = [k (5)]

where H,, denotes the mean curvature vector field of the immergipn

3. Isometric deformations of F /G

Let W4(n) denote the lattices dR? defined by (1.4). In this section we show the
following theorem.

Theorem 3.1. Let G be a lattice ofR? such thatG C Go. If G C W.(n) or
G C W_(n) for some integen > 2, the isometric immersior¥ /G given by(1.3) is
deformable.

To establish the theorem above we need some lemmas. For e@gerin > 1,
let v: R — S? be a 2r-periodic regular curve defined by

(3.1) ~(s) = (cosd cosns p; + (Cosh sinns Jez + (Sind)es,
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whered is a constant such that

R2_R2
2" M —ang, T <<l

2 .
(3.2 2R1R> 2 2

Note that the geodesic curvature pfsatisfies

(3.3) ky(s) = tand.

We now consider the Hopf torug,: M., — $* corresponding toy. Then
Lemma 3.2. The immersionf, is deformable fom > 2.

Proof. Sincen > 2, it follows that there exists a smooth one parameter family
of 2r-periodic regular curves;: R — S2, t € R, such thaty, = and

(3.4) L(v) = L(y), K(n)=K(0),
(3.5) k. (0) # tang for all ¢ #O.

The existence ofy, as above will be established in the final section (Theoren). 5.1
Let v,: R — S%, t € R be a smooth one parameter family of curvesSthsuch that
P(V(s)) = v(s) and (7/(s), E3) = 0, and®, :R? — M., the Riemannian covering map
defined in the same way as (2.9). Then, by Lemma @.2, indueesstimetry

&)t: RZ/W(’}Q) — M’Yl'

Since I ¢,) = I(7), it follows from (3.4) thatW §,) = W(y). So, by settingf, =
fy © ®, o d~>51, we obtain a smooth one parameter family of isometric iminass
fi + M, — S3 t € R, such thatfy = f,. Let H, denote the mean curvature vector
field of f;. Then it follows from (2.18) and (3.5) that there égis pointa € M,
such that|H;(a)| # |tand|. On the other hand, (3.3) implies thgly(x)| = | tand| for

all x € M,,. Hence fy # f1, and so the immersiorf,, is deformable. ]

Lemma 3.3. The immersiong'/W.(n) and F/W_(n) are deformable fom > 2.

Proof. We first note tha¥’/W.(n) = F/W_(n). So, by Lemma 3.2, it is suf-
ficient to show thatf, = F/W.(n). Let ®:R? — M, be the Riemannian covering
defined by (2.9), andf,: R? — $° an isometric immersion given by, = f, o ®. We
denote byh the second fundamental form of the immersign Then it follows from
Lemma 2.3 and (3.3) that

(3.6) h = 2tand dx? — 2dx; dxs.
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Let 7 be an isometry oRR? given by
T(x1,x2) = (R2x1+ R1x2, —R1x1 + R2x2).

Then it follows from (3.2) and (3.6) that
~ R R
T*h=-2 dxi — =1 dx3.
R1 R>

Hence the isometric immersiong, o 7: R? — $° and F :R? — $° have the same
second fundamental form. So it follows from the fundamemitglorem of the theory
of surfaces that there exists an isometry $%:— $° satisfying

(3.7 },YOT:AOF.
On the other hand, (3.1) implies

0 if nis even
1 if nis odd

L(y) = 2nwcosh, K(y)=2nrwsing, I(y) = {

So, by (2.6), the latticéV ~) is generated by

vy = (nwcosh, nmsing+nw), vo=(0, 2n).
Hence we obtaiV ~) = {n1&1 + n2&, : n1 +ny € nZ}, where

& =(mcosf, wsing —x), & =(mcosh, wsing + ).

By (3.2) the vectorg; and & can be written as

fl = 27TR]_(R2, —R]_), fg = 27TR2(R1, Rz).
This shows that" W.(n)) = W(v), and so it follows from Lemma 2.2 that there exists
a diffeomprphism7 : R?/W.(n) — M, satisfying® o T = T o ¢, wheregq denotes
the canonical projection oR? onto R?/W.(n). Therefore (3.7) implies thaf, o T =
Ao F/W.(n). U

By the lemma above the assertion of Theorem 3.1 follows frbenfollowing

Lemma 3.4. Let W be a lattice ofR? such thatW C Go and the immersion
F/W is deformable. Then for each lattiG@ C W the immersionF /G is deformable.

Proof. By the assumption, the isometric immersiBriW : R2/W — $% admits
an isometric deformatiorf, R?/W — S§° such thatfy # f1. Then the mean curvature
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vector field of f; , denoted by, , satisfies

3.8) {|Ho(x)| = |RZ — R?|/2R,R, for all x € R?/W,

|Hi(a)| # |R3 — R?|/2R1R, for some a € R?/W.
We now consider the canonical projectign R?/G — R?/W and an isometric defor-
mation of F/G given by f, = f; o g. Then (3.8) implies thatfy, # f1, and so the

immersion F /G is deformable. O

4. Proof of main theorems

In this section we give the proof of Theorems 1.2 and 1.3. @ensthe map
0. Gog — Go defined by

o(2rRin1, 2w Rony) = (2rRiny, 2w Rony).
The following lemma is the key ingredient in the proof of Them 1.2.

Lemma 4.1. Let G be a lattice ofR? such thatG C Gg. If F,: R2 — §3, ¢ € R,
is a G -invariant isometric deformation of the immersiéh then the deformatior; is
o(G)-invariant.

Proof. Letv € G. Then it is sufficient to show that

(4.1) F,(x +o(v)) = F,(x) forall reR.

Since F, :R? — $° is an isometric immersion, it follows from [7] that there st& a
diffeomorphism7;, :R? — R? such that

(4.2) 0:T|=1, h OT,.0T,)=0 for i=1 2

where i, denotes the second fundamental formFpf . We may asdumhahie map
(t, s1, s2) — T,(s1, s2) is smooth and

(4.3) 7:(Q 0)=(Q 0) To(s1, s2) = (Rals1 — s2), Ra(s1 + 52)).

By (4.2) we obtaind10-T, = (0, 0). So it follows from7, (0 0) = (D 0) that
(4.4) Ti 61, s2) = T (51, 0) + 7;(0, 52).

We set

(4.5) (1(6). 12(t)) = T, X(v),  z(r) = T, (11(r), O).
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Thenv =Tp(/1(0), I2(0)) = (R1(/2(0) — 12(0)), R2(11(0) +12(0))), and so we obtain
v +o(v) = 2z(0).

Since F, isG -invariant, the relation above implies
(4.6) Fix +o(v)) = Fi(x + 22(0)).
Let p,: R> — R?/G be a covering given by, = o T,, where p :R? — R?/G
denotes the canonical projection. Singev ( p=, (0 0), it foBofrom (4.3) and (4.5)
that p; (1(¢), [2(¢)) = p;(0, 0). So there exists a diffeomorphispt R? — R? such that

proy = pand (0, 0) = (1(2), l2(r)). Then T, (p(s1, s2)) — Ti(s1,52) € G, and so it
follows from (4.5) that

(4.7) T; (p(s1, 52)) = Ty (s1, 52) + v.

We now consider an immersiof, : R2 — $3 defined byF, = F, o 7,. Then, by (4.2),
we see that the immersioR, is a FAT. Here, we refer the reader to [2, p. 460] for
the definition of FAT. Furthermore, it follows from (4.7) th&; o ¢ = F,. Therefore,
[2, Theorem 2.3] implies

(4.8) (51, 52) = (51 +[1(7), 52 + [2(2)).

In particular, we obtainF;(sy + [1(r), s2 + I2(r)) = Fi(s1, 52), and so it follows from [2,
Theorem 3.9, Lemma 5.5] that

(4.9) Fy(s1+ 204(1), 52) = Fy(s1, 52).

On the other hand, combining (4.7) and (4.8), we obtain
(4.10) T 61+ (1), s2 +12(2)) = Ti(s1, 52) * v.
Using (4.4), (4.5) and (4.10), we see that

Ty (s1+ (1), s2) = T, (s1 + 1a(t), [2(¢)) + T;(O, s2) — T,(0, I2(1))
= Ty(s1, 52) + v — T,(0, I2(2)) = T;(s1, 52) + z(t).

This impliesT; 61 + 2/1(¢), s2) = Ti(s1, s2) + 2z(¢), and so it follows from (4.9) that
(4.11) Fik+2Z()=Ft)

By (4.6) and (4.11), we see that (4.1) follows from the asserthatz ¢ ) =z (0) for
all r € R. To establish this assertion, suppose that there existach thatz ) # z(0).
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Since the set of all points ¢ (§ R? is not countable, there existsc R such thatz ¢ )

is not contained in the countable 4ef2,{x/2n :x € G}. Let f,: R?/G — S° be an
immersion defined by the relatiofi, o p = F,, and {y,}2, a sequence ifiR?/G given

by y, = p(21z(@)). Then it follows from (4.11) tha¥, yf, ) . ¥t ). Furtherm® as
2nz(a) ¢ G for all n > 1, we obtainy,, # y, (m # n). So, using the fact thaf,

is locally injective, we see that the sequerfog }°2;, has no convergent subsequence.
This contradicts the fact thak?/G is compact. Hence we obtains () = (0) for all
t €R. U

We now recall the lattice®v,(n) given by (1.4), and for each lattioc8 C Gy we
consider the lattice

G+o(G)={u+o(v):u,vedG}.

Then we obtain

Lemma 4.2. Let G be a lattice ofR? such thatG C Go. If G ¢ W.(n) and
G ¢ W_(n) for all integersn > 2, thenG + o(G) = Go.

Proof. SinceG +r(G) C Gy, it is sufficient to show thaGo C G +o(G). Let u
andv be generators of the lattice . Sincev € Gy, we can write as

u = (2rRiu1, 2rRouz), v = (2nRyvy, 20 Rov2), u;, v; € Z.

For each integem > 2, using the assumptio@ ¢ W.(n), we see that there exist
k, I € Z such that the integet  does not divideu; ¢+ us) + [(v1 + v2), and son is
not a common divisor fow; +u, and vy + v,. Hence the greatest common divisor for
uy +uy and vy + vy is equal to 1. Similarly, using the assumption tiiatz W_(n) for

all n > 2, we see that the greatest common divisor#or u, and vy — vy is equal to
1. Hence there exisb g r, s € Z such that

(4.12) plurtuz)+qrtv) =1 rlus—uz)+s(vr—v2) =1
We now consider the elementsb € G given by

a=pu+tqv, b=ru-+sv.
Then it follows from (4.12) that

b — (ruz +svy)(a + o(a)) = (27 Ry, 0),
a — (pu1+qui)(b — o (b)) = (0, 2rRy,).

So the latticeG +0(G) contains (ZR1,0) and (Q ZR,). HenceGy C G + o(G).
O
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Lemma 4.3. Let G be a lattice ofR? such thatG C Go. If G+0(G) = Go, then
every isometric deformation df /G is trivial.

Proof. Letf, :R?2/G — $3, t € R, be an isometric deformation of /G. Then
we obtain aG -invariant isometric deformation 6f  given By fro p, wherep
denotes the canonical projection Bf onto R?/G. Since G +0(G) = Gy, it follows
from Lemma 4.1 that eacli; i6¢-invariant, and so we obtain

Fi/Go:R?/Go— S3, teR

which is an isometric deformation of the embeddiAgGo: R?/Go — S3. Then The-
orem 1.1 implies that for eachc R there exists an isometryt, $2 — $° satisfying
F,/Go = A, o (F/Gy). Let ¢: R?/G — R?/G, denote the canonical projection. Since
fi =(F,/Go) o g, we obtain

Ao fo=A,0(F/Go)og =(F,/Go)ogq = fi.
Hence the isometric deformatiofi s trivial. ]

Proof of Theorem 1.2. To establish Theorem 1.2, it is suffici® show the
converse of Theorem 3.1. Suppose tldatz W.(n) and G ¢ W_(n) for all integers
n > 2. Then it follows from Lemmas 4.2 and 4.3 that every isorcetleformation
of F/G is trivial. In particular, the isometric immersioA/G is not deformable. This
shows the converse of Theorem 3.1. ]

Proof of Theorem 1.3. By Lemmas 4.2 and 4.3, it is easy to sat (&) =
(1). We now show that (1} (2). Recall the main result of [5] which states that ev-
ery flat torus isometrically immersed i§° with nonconstant mean curvature is de-
formable. Hence, the assumption (1) implies that the meawatwre of the immer-
sion f: M — S% must be constant. So there exist positive const&itand R, with
R? + R3 = 1 such thatf is congruent to the immersiéiyG given by (1 3). Then
F/G is not deformable, and so it follows from Theorem 1.2 that ldiéice G satis-
fiesG ¢ Wi(n) and G ¢ W_(n) for all integersn > 2. [l

5. Deformations of circles in $?

For each 2-periodic regular curvey(s) in S2, we recall the following notation.

2m 2m
L(y) = /O W) ds. K(7)= /O ke (5)7/(5)] ds.
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wherek,(s) denotes the geodesic curvaturedf) given by

2 , J !
K (5) = 9l (Sl)v’(sgll(sm'

In this section we prove the following theorem which was usedhe proof of
Lemma 3.2.

Theorem 5.1. For each integem > 2, let v: R — $? be a2r-periodic regular
curve defined byy(s) = (cosf cosns 1 + (cosd sinns Jez + (Sinf)esz, whered is a con-
stant satisfying—7/2 < 6 < w/2. Then there exists a smooth one parameter family of
2r-periodic regular curvesy,: R — 2, —§ < t < 6, such that
(1) =7
(2) L(v)=L(), K(v) = K(),

(3) k4, (0) # tand for all ¢ 7 0.

We first show the following lemma which proves the assertibMtoeorem 5.1 in
the case ob = 0.

Lemma 5.2. For each integern > 2, let a: R — S2 be a 2r-periodic regular
curve defined byy(s) = (cosns p; + (sinns ). Then there exists a smooth one param-
eter family of2r-periodic regular curvesy,: R — S2, —e < r < ¢, such that
1) a=aq,

(2) L) = L(a), K() = K(a),
(3) k., (0) Z0 for all ¢+ #0.

Proof. Letwvi(s) and v2(s) be 2r-periodic functions defined by
(5.1) vi(s) = coss, wvo(s)=cosms, where m =2 +1
For eachx =1, x2) € R?, we consider the curvg, R — S? given by

2 2
gx(s) = cos <Z Xi v (s)) a(s) +sin <Z Xiv; (s)> es.

i=1 =1
Note thatg, § +Z) =¢.(s), and
4o(s) = afs), where o =(0 0)

So there exists an open neighborhoéd  of the origin R_Z such that for eaclr € V
the curveq, is regular. We consider the smooth functibnk: V — R given by

_ 2n _ 27
L) =Lig,) = /O g0s) ds. K(x) = K(g,) = /O ko, (5)]4(s) ds.
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Sincev; ¢ +m) = —v;(s), we obtain|g.(s + 7)| = |g.(s)] and k,, & +7) = —kg, (s).
Therefore
(5.2) K(x)=0.

Sinceg, :R — S?is a geodesic, the origin € R? is a critical point for the smooth

function L. The Hessian ofL at the critical pointo is given by

&L
8)6,' (9)6]

27
©=1 [ 06)56) = (o) ) s

So it follows from (5.1) that

2L ()_1—n2 9L ()_m2—112 0°L
0x10x1 o™ n " Ox10x2

(5.3) (o) =0.

8)628)62 o) =

Sincen > 1 andm = 2 +1, the index ol at the critical pointo is equal te-1.
Hence the Lemma of Morse [6, p. 6] implies that there existsaall coordinate sys-
tem (y1, y2) in a neighborhoody of the origin  such that

(5.4) L(x) = L(0) — y1(x)? + y2(x)%,  y1(0) = y2(0) = 0.

For a sufficiently smalk > 0, let x (¢) = (x1(¢), x2(¢)), —€ < t < ¢, be a smooth curve
in U defined by

(5.5) yilx(@)) =1, yax(0)) =1,

and we consider the smooth one parameter family ofp&riodic regular curves
iR — $2, —e <t < e given by, = gy(». Then it follows from (5.2), (5.4) and
(5.5) that

a0 =¢, =, L(w)=Lx@)=L), K(v)=K(x())=0.

This implies the assertions (1) and (2). Since the geodesicature ofq, satisfies
ke, = {a, J(al)) /| |3, we obtain

o(t)
n2co(x1(t) + x2(1))

(5.6) ko, (0) =

where o(t) = n? cosr1(r) + x2(t)) sin(x1(¢) + x2(1)) — x1(t) — m?x2(¢). Note that
(5.7 ©(0) =0, ¢'(0) = (?* — 1x1(0) + (n* — m?)x5(0).
Differentiating the relationL(x(¢)) = L(0) and using (5.3), we obtain

(5.8) (2 — )x1(0)? + (n® — m?)x5(0)* = 0.
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If ©'(0) =0, it follows from (5.7) and (5.8) that;(0) = x5(0) = 0 which is a contra-
diction. Hencey'(0) # 0. So the assertion (3) follows from (5.6). [l

Proof of Theorem 5.1. Lef,: R — §2, —e <t < ¢, be a smooth one parameter
family of 2z-periodic regular curves satisfying the conditions (1)-¢8 Lemma 5.2,
andn, a unit normal vector field along, given byn, 6 ) =J @/(s))/|c;(s)|. Consider
the curvey,: R — 52 given by ,(s) = (cosf) o (s) + (sinf)n,(s). Then it follows from
the relationn/(s) = —kq, (s)a)(s) that

(5.9) ~/(s) = (cosh — kq, (s) Sind)a,(s).
Sincek,,(s) =0 and co¥ > 0, there exists a positive numbérsuch that
cost — kq,(s)sind > 0 for |t] <.

So it follows thaty,: R — §2, =6 < t < 4, is a smooth one parameter family of
2m-periodic regular curves. Hence it is sufficient to show ttie family ~, satisfies
(1)—(3) of Theorem 5.1. Using (1) of Lemma 5.2, we obtayfs) = e3. This implies
the assertion (1). On the other hand, the geodesic curvafusg satisfies

sind + k,, (s) cosd

(5.10) ko (s) = coSt) — kg, (s)SiNG

By (5.9) and (5.10) we obtain
L(v;) =cosfL(«;) — sinfK(c,), K(v,)=sin0L(c,)+ CcOSOK ().

So the assertion (2) follows from (2) of Lemma 5.2. Furthemmousing (3) of
Lemma 5.2 and (5.10), we see thiat(0) # tang for all + 7 0. This implies the asser-
tion (3). [l
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