# THE STRUCTURE OF ALGEBRAIC EMBEDDINGS OF $\mathbb{C}^{2}$ INTO $\mathbb{C}^{3}$ (THE NORMAL QUARTIC HYPERSURFACE CASE. I) 

Tomoaki OHTA

(Received September 21, 1999)

## 1. Introduction

A polynomial mapping $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is called an algebraic embedding of $\mathbb{C}^{n}$ into $\mathbb{C}^{m}$ for $m>n \geq 1$ if $f$ is injective and if the image of $f$ is a smooth algebraic subvariety of $\mathbb{C}^{m}$. Let $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ be the group of algebraic automorphisms of $\mathbb{C}^{n}$. Here we consider the following conjecture:

Conjecture. Let $f: \mathbb{C}^{n} \hookrightarrow \mathbb{C}^{n+1}$ be an algebraic embedding. Then $f$ is equivalent to a linear embedding, that is, there exists an algebraic automorphism $\Phi$ of $\mathbb{C}^{n+1}$ such that $\Phi \circ f$ is a linear embedding.

For the case $n=1$, Abhyankar-Moh [1] and Suzuki [16] (cf. [17]) showed that the conjecture is true. For the cases $n \geq 2$, the conjectures are still unsolved, however Russell [14], [15] has obtained some sufficient conditions for the conjectures to be true from a view point of ring theory. On the other hand, our approach in this paper is geometric and different from his. We use a method of compactifications of $\mathbb{C}^{2}$.

From now on, we will consider the case $n=2$ only. Let $f: \mathbb{C}^{2} \hookrightarrow \mathbb{C}^{3}$ be an algebraic embedding. We identify $\mathbb{C}^{3}$ with an affine part of the complex projective threespace $\mathbb{P}^{3}$ in the standard way. We denote by $X_{f}$ the closure of the image of $f$ in $\mathbb{P}^{3}$ and put $Y_{f}:=X_{f} \backslash f\left(\mathbb{C}^{2}\right)$. By construction, we see that $Y_{f}$ is a hyperplane section of $X_{f}$ and that $X_{f} \backslash Y_{f}$ is biregular to $\mathbb{C}^{2}$, that is, $\left(X_{f}, Y_{f}\right)$ is a compactification of $\mathbb{C}^{2}$. We call $Y_{f}$ the boundary of the compactification. Our main purpose is, for the cases that the images of $f$ are of low degree, to write down explicitly, up to affine transformations of $\mathbb{C}^{3}$, defining equations of the images and to construct explicitly algebraic automorphisms of $\mathbb{C}^{3}$ linearizing the defining equations. This explicit way is very important for us not only to obtain examples but also to find geometric invariants and inductive methods. In this direction, in our previous paper [12] (cf. [4], [5]), we have showed that the conjecture is true when the degree of the image is less than or equal to three. For the case of degree three, we needed a so-called Nagata automorphism (cf. [11]) to linearize some embedding.

Next we consider the case of degree four. Then we have the following three possibilities: (1) $X_{f}$ is normal and it has at least a triple point; (2) $X_{f}$ is normal and it has no triple points; (3) $X_{f}$ is non-normal. In this paper, we will treat the case (1). The cases (2) and (3) will be dealt with elsewhere. Thus it suffices to consider compactifications $(X, Y)$ of $\mathbb{C}^{2}$ such that $X$ is a normal quartic hypersurface with at least a triple point in $\mathbb{P}^{3}$ and $Y$ is a hyperplane section of $X$. First we will determine the defining equations of such compactifications $(X, Y)$ by using the classification of minimal normal compactifications of $\mathbb{C}^{2}$ due to Morrow [10] and the notion of separation due to Ishii [6] and Ishii-Nakayama [7], which was introduced to classify normal quartic hypersurfaces in $\mathbb{P}^{3}$ with irrational singularities (cf. [3], [18]). Finally we will explicitly construct algebraic automorphisms of $\mathbb{C}^{3}$ which linearize the defining equations of the hypersurfaces $X \backslash Y$ of $\mathbb{C}^{3}$ by using a proposition of Russell [14]. Then we shall obtain a generalization and an analogue of a Nagata automorphism.

From now on to the end of this paper, we assume the following:

Assumption. Let $X$ be a normal quartic hypersurface with at least a triple point in $\mathbb{P}^{3}$ and $Y$ a hyperplane section of $X$ such that $X \backslash Y$ is biholomorphic to $\mathbb{C}^{2}$. Denote by $H$ the hyperplane in $\mathbb{P}^{3}$ with $Y=X \cap H$.

We define some notations as follows. Let $Y=\bigcup_{i=1}^{t} Y_{i}$ be the irreducible decomposition of $Y$. We put $\mathcal{Y}:=\left.H\right|_{X}$. We note that $\operatorname{Supp} \mathcal{Y}=Y$ and $\mathcal{O}_{H}\left(\left.X\right|_{H}\right) \cong \mathcal{O}_{\mathbb{P}^{2}}(4)$. We put $x:=\operatorname{Sing} X=\left\{x_{1}, \ldots, x_{m}\right\}$ for $m \geq 1$. We may assume that $x_{1}$ is a triple point of $X$. In $\S 2$, we shall see that $X$ has only one triple point. Let $l=\bigcup_{i} l_{i}$ be the union of lines in $X$ passing through $x_{1}$ which are not contained in $Y$, where the case $l=\emptyset$ is allowed. Let $\pi: M \rightarrow X$ be the minimal resolution of $X$ with exceptional set $E=\bigcup_{i=1}^{s} E_{i}:=\pi^{-1}(x)$, where each $E_{i}$ is irreducible. We denote by $\widehat{C}$ the proper transform of a curve $C$ in $X$ by $\pi$. Let $\sigma: \overline{\mathbb{P}^{3}} \rightarrow \mathbb{P}^{3}$ be the blowing-up at $x_{1}$ with exceptional divisor $\Delta$, which is isomorphic to $\mathbb{P}^{2}$. Let $\bar{X}$ be the proper transform of $X$ by $\sigma$. We put $\overline{\mathcal{E}}:=\left.\Delta\right|_{\bar{X}}$ and $\bar{E}=\bigcup_{i} \overline{E_{i}}:=\bar{X} \cap \Delta$, where each $\overline{E_{i}}$ is irreducible. We note that $\mathcal{O}_{\Delta}\left(\left.\bar{X}\right|_{\Delta}\right) \cong \mathcal{O}_{\mathbb{P}^{2}}(3)$. In $\S 2$, we shall show that $\bar{X}$ is normal and that there exists a birational morphism $\bar{\pi}: M \rightarrow \bar{X}$ such that $\pi=\left(\left.\sigma\right|_{\bar{X}}\right) \circ \bar{\pi}$ and such that $\bar{\pi}$ is the minimal resolution of $\bar{X}$. We may assume that, for each $\overline{E_{i}}, E_{i}$ is its proper transform by $\bar{\pi}$. Then our main results are the following:

Theorem 1. Let $(X, Y)$ be a pair satisfying Assumption. Then the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l}$ is one of the Fig. 1, where one denotes smooth rational curves with self-intersection numbers $0,(-1),(-2),(-3)$ and $(-4)$ by $\odot, \bullet, \circ, \triangle$ and $\square$ respectively and where each $\circ$ is an irreducible component of $E$.

Theorem 2. For each dual graph of $\widehat{Y} \cup E \cup \widehat{l}$ in Theorem 1, the defining equation of $(X, Y)$ is, up to automorphisms of $\mathbb{P}^{3}$, one of the following:
(I)

(III)


(IX)


(II)

(IV)

(VI)

(VIII)

(X)

(XII)

(XIV)


Fig. 1.
(I) $\quad X:\left(z_{2}^{3}\right) z_{3}+z_{0}^{4}+z_{2} F_{1}\left(z^{\prime} ; 1, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0$.
(II) $\quad X:\left(z_{2}^{3}\right) z_{3}+z_{0}^{3} z_{1}+z_{2} F_{1}\left(z^{\prime} ; 1,0, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0$.
(III) $X:\left(z_{2}^{3}\right) z_{3}+z_{0}^{2} z_{1}^{2}+z_{2} F_{1}\left(z^{\prime} ; 1,1, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0$.
(IV) $X:\left(z_{2}^{3}\right) z_{3}+z_{0}^{2} z_{1}\left(z_{0}+z_{1}\right)+z_{2} F_{1}\left(z^{\prime} ; 1,0, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0$.
(V) $\quad X:\left(z_{2}^{3}\right) z_{3}+z_{0} z_{1}\left(z_{0}^{2}+\beta z_{0} z_{1}+z_{1}^{2}\right)+z_{2} F_{1}\left(z^{\prime} ; 0,0, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0$.
(VI) $X: z_{0}\left(z_{0}^{2} z_{3}+\gamma z_{0} z_{1}^{2}+z_{1}^{3}\right)+z_{1} z_{2}^{3}+z_{2} F_{1}\left(z^{\prime} ; 0,0,0, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0$.
(VII) $X:\left(z_{1} z_{2}^{2}\right) z_{3}+z_{0}^{3} z_{1}+z_{2} F_{2}\left(z^{\prime} ; 1,1, \alpha_{3}, \alpha_{4}\right)=0$.
(VIII) $X:\left(z_{1} z_{2}^{2}\right) z_{3}+z_{0}^{2} z_{1}\left(z_{0}+z_{1}\right)+z_{2} F_{2}\left(z^{\prime} ; 1, \delta, \alpha_{3}, \alpha_{4}\right)=0$.
(IX) $\quad X:\left(z_{1} z_{2}^{2}\right) z_{3}+z_{0} z_{1}\left(z_{0}^{2}+\beta z_{0} z_{1}+z_{1}^{2}\right)+z_{2} F_{2}\left(z^{\prime} ; \alpha_{1}, 1, \alpha_{3}, \alpha_{4}\right)=0$.
(X) $\quad X:\left(z_{1}^{2} z_{2}\right) z_{3}+z_{0}^{3} z_{1}+z_{2} F_{3}\left(z^{\prime} ; 1, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=0$.
(XI) $\quad X:\left(z_{1}^{2} z_{2}\right) z_{3}+z_{0}^{2} z_{1}\left(z_{0}+z_{1}\right)+z_{2} F_{3}\left(z^{\prime} ; 1, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=0$.
(XII) $\quad X:\left(z_{1}^{2} z_{2}\right) z_{3}+z_{0} z_{1}\left(z_{0}^{2}+\beta z_{0} z_{1}+z_{1}^{2}\right)+z_{2} F_{3}\left(z^{\prime} ; 1, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=0$.
(XIII) $X:\left(z_{0}^{2}+z_{1} z_{2}\right) z_{2} z_{3}+\left(z_{0}^{2}+z_{1} z_{2}\right) F_{4}\left(z^{\prime \prime} ; \alpha_{1}, \alpha_{2}, \delta\right)+z_{0} z_{2}^{3}=0$.
(XIV) $X:\left(z_{0}^{2}+z_{1} z_{2}\right) z_{2} z_{3}+\left(z_{0}^{2}+z_{1} z_{2}\right) F_{4}\left(z^{\prime \prime} ; \alpha_{1}, \alpha_{2}, \delta\right)+z_{0} z_{2}^{3}=0$.

$$
\begin{aligned}
F_{1}\left(z^{\prime} ; \alpha_{1}, \ldots, \alpha_{7}\right) & :=\alpha_{1} z_{1}^{3}+\alpha_{2} z_{0}^{3}+\alpha_{3} z_{1}^{2} z_{2}+\alpha_{4} z_{0}^{2} z_{1}+\alpha_{5} z_{0}^{2} z_{2}+\alpha_{6} z_{0} z_{1}^{2}+\alpha_{7} z_{0} z_{1} z_{2} \\
F_{2}\left(z^{\prime} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) & :=\alpha_{1} z_{1}^{3}+\alpha_{2} z_{0} z_{2}^{2}+\alpha_{3} z_{0}^{2} z_{1}+\alpha_{4} z_{0} z_{1}^{2} \\
F_{3}\left(z^{\prime} ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) & :=\alpha_{1} z_{0} z_{2}^{2}+\alpha_{2} z_{1} z_{2}^{2}+\alpha_{3} z_{0}^{2} z_{1}+\alpha_{4} z_{0} z_{1} z_{2} \\
F_{4}\left(z^{\prime \prime} ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right) & :=\alpha_{1} z_{0}^{2}+\alpha_{2} z_{0} z_{1}+\alpha_{3} z_{1}^{2}
\end{aligned}
$$

where one denotes by $z=\left(z_{0}: z_{1}: z_{2}: z_{3}\right)$ a homogeneous coordinate system of $\mathbb{P}^{3}$ and puts $z^{\prime}:=\left(z_{0}: z_{1}: z_{2}\right)$ and $z^{\prime \prime}:=\left(z_{0}: z_{1}\right)$, where one takes $\left\{z_{2}=0\right\}$ as $H$, and where $\alpha_{i}, \beta, \gamma, \delta$ are complex parameters with the following conditions:
(1) $\beta \neq \pm 2$;
(2) $\delta \neq 0$;
(3) $\alpha_{2}^{2}-4 \alpha_{1} \delta=0$ for (XIII);
(4) $\alpha_{2}^{2}-4 \alpha_{1} \delta \neq 0$ for (XIV).

Remark. (1) We can obtain the types (II) and (VI) by considering two different hyperplane sections of a common quartic hypersurface. Indeed, we can summarize (II) and (VI) as follows:

$$
(\mathrm{II})+(\mathrm{VI}) \quad X:\left(z_{2}^{3}\right) z_{3}+z_{0}^{3} z_{1}+z_{2} F_{1}\left(z^{\prime} ; 1,0, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}\right)=0
$$

where $H=\left\{\lambda z_{0}+\mu z_{2}=0\right\}$ and $(\lambda: \mu) \in \mathbb{P}^{1}$ is a parameter. In (II) $+(\mathrm{VI})$, we obtain (II) if $\lambda=0$ and (VI) if $\lambda \neq 0$. This phenomenon can occur only for the pair of (II) and (VI).
(2) In Theorem 2, the singular loci $x=\operatorname{Sing} X$ are given as follows:

$$
\left.\begin{array}{rl}
(\mathrm{I}) \sim(\mathrm{IX}),(\mathrm{XII}),(\mathrm{XIV}) & x=\{(0: 0: 0: 1)\} . \\
(\mathrm{X}),(\mathrm{XI}) & x=\{(0: 0: 0: 1),(0: 1: 0: 0)\} \\
(\mathrm{XIII}) & x
\end{array}\right)=\left\{(0: 0: 0: 1),\left(1:-\frac{\alpha_{2}}{2 \delta}: 0: 0\right)\right\} .
$$

For all the cases, the point $(0: 0: 0: 1)$ is the (unique) triple point of $X$ and the rests are rational double points of $A_{*}$-type.
(3) In Theorems 1 and 2, the divisors $\overline{\mathcal{E}}=\left.\Delta\right|_{\bar{X}}$ and $\mathcal{Y}=\left.H\right|_{X}$ are given as follows:
(I) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $) . \mathcal{Y}=4 Y_{1}\left(Y_{1}:\right.$ line $)$.
(II) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $) . \mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$.
(III) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $) . \mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}:\right.$ line $)$.
(IV) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $) . \mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$.
(V) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $) . \mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$.
(VI) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $) . \mathcal{Y}=Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ cuspidal cubic $)$.
(VII) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line). $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$.
(VIII) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line $) . \mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$.
(IX) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line $) . \mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$.
(X) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line $) . \mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$.
(XI) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line $) . \mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$.
(XII) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line). $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}$ ( $Y_{i}:$ line $)$.
(XIII) $\overline{\mathcal{E}}=\overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{1}}:\right.$ line, $\overline{E_{2}}:$ conic $) . \mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}:\right.$ line $)$.
$(\mathrm{XIV}) \overline{\mathcal{E}}=\overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{1}}:\right.$ line, $\overline{E_{2}}:$ conic $) . \mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$.

Here we introduce some special subgroups of $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$. Let $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be two coordinate systems of $\mathbb{C}^{n}$. For an element $\left(a_{i j}\right)$ of the general linear group $G L(n, \mathbb{C})$ over $\mathbb{C}$ and $b_{1}, \ldots, b_{n} \in \mathbb{C}$, there exists an automorphism of $\mathbb{C}^{n}$ such that $x_{i}^{\prime}=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}(i=1, \ldots, n)$. This type of automorphism is called an affine transformation of $\mathbb{C}^{n}$. The set $A(n, \mathbb{C})$ of all affine transformations of $\mathbb{C}^{n}$ is a subgroup of $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$. For $c_{1}, \ldots, c_{n} \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}, p_{i} \in \mathbb{C}\left[x_{i+1}, \ldots, x_{n}\right](i=$ $1, \ldots, n-1)$ and $p_{n} \in \mathbb{C}$, there exists an automorphism of $\mathbb{C}^{n}$ such that $x_{i}^{\prime}=c_{i} x_{i}+p_{i}$ $(i=1, \ldots, n)$. This type of automorphism is called a de Jonquières automorphism of $\mathbb{C}^{n}$. The set $J(n, \mathbb{C})$ of all de Jonquières automorphisms of $\mathbb{C}^{n}$ is a subgroup of $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$. Let us denote by $J(n, \mathbb{C}) \vee A(n, \mathbb{C})$ the subgroup of $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ generated by $J(n, \mathbb{C})$ and $A(n, \mathbb{C})$.

Theorem 3. For each defining equation of $(X, Y)$ in Theorem 2, there exists an algebraic automorphism $\Phi$ of $\mathbb{C}^{3}$ which transforms the hypersurface $X \backslash Y$ of $\mathbb{P}^{3} \backslash H=$ $\mathbb{C}^{3}$ onto a hyperplane of $\mathbb{C}^{3}$. For the type (VI), one can take $\Phi=\Phi_{1} \circ \Psi$ with some $\Psi \in J(3, \mathbb{C}) \vee A(3, \mathbb{C})$. For the types $(\mathrm{X})$, (XI) and (XII), one can take $\Phi=\Phi_{2}$. For the other types, one can take $\Phi \in J(3, \mathbb{C}) \vee A(3, \mathbb{C})$. Here, for two coordinate systems $(x, y, z)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of $\mathbb{C}^{3}$, the automorphisms $\Phi_{1}$ and $\Phi_{2}$ of $\mathbb{C}^{3}$ are defined as follows:

$$
\begin{aligned}
& \Phi_{1}:\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=f_{1}(x, y)+x^{3} z \\
z^{\prime}=\left\{g_{1}\left(x, f_{1}(x, y)+x^{3} z\right)-y\right\} / x^{3},
\end{array}\right. \\
& \Phi_{1}^{-1}:\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=g_{1}(x, y)-x^{3} z \\
z^{\prime}=\left\{y-f_{1}\left(x, g_{1}(x, y)-x^{3} z\right)\right\} / x^{3},
\end{array}\right.
\end{aligned}
$$

where $f_{1}, g_{1} \in \mathbb{C}[x, y]$ with complex parameters $a_{i}$ are defined by

$$
\begin{aligned}
& f_{1}(x, y):=\left(1+a_{1} x+a_{2} x^{2}\right) y+\left(a_{3} x+a_{4} x^{2}\right) y^{2}+(x) y^{3} \\
& g_{1}(x, y):=\left\{1-a_{1} x+\left(-a_{2}+a_{1}^{2}\right) x^{2}\right\} y+\left\{-a_{3} x+\left(3 a_{1} a_{3}-a_{4}\right) x^{2}\right\} y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{-x+\left(2 a_{3}^{2}+4 a_{1}\right) x^{2}\right\} y^{3}+\left(5 a_{3} x^{2}\right) y^{4}+\left(3 x^{2}\right) y^{5} . \\
& \Phi_{2}:\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y+x f_{2}(x, y, z) \\
z^{\prime}=z-g_{2}(x, y, z),
\end{array}\right. \\
& \Phi_{2}^{-1}:\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y-x f_{2}(x, y, z) \\
z^{\prime}=z+h_{2}(x, y, z),
\end{array}\right.
\end{aligned}
$$

where $f_{2}, g_{2}, h_{2} \in \mathbb{C}[x, y, z]$ with complex parameters $a_{i j}$ are defined by

$$
\begin{aligned}
& f_{2}(x, y, z):=x z+\sum_{i, j \geq 0} a_{i j} x^{i} y^{j}, \\
& g_{2}(x, y, z):=\sum_{i \geq 0, j \geq 1} a_{i j}\left\{\sum_{k=1}^{j}\binom{j}{k} y^{j-k} x^{k} f_{2}^{k}\right\} x^{i} / x, \\
& h_{2}(x, y, z):=\sum_{i \geq 0, j \geq 1} a_{i j}\left\{\sum_{k=1}^{j}\binom{j}{k}\left(y-x f_{2}\right)^{j-k} x^{k} f_{2}^{k}\right\} x^{i} / x .
\end{aligned}
$$

Remark. (1) For the defining equation of $\Phi_{2}$, putting $a_{02}=1$ and $a_{i j}=0$ for $(i, j) \neq(0,2)$, then we obtain the following automorphism of $\mathbb{C}^{3}$ :

$$
\begin{aligned}
& \Phi_{N}:\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y+x\left(x z+y^{2}\right) \\
z^{\prime}=z-2 y\left(x z+y^{2}\right)-x\left(x z+y^{2}\right)^{2},
\end{array}\right. \\
& \Phi_{N}^{-1}:\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y-x\left(x z+y^{2}\right) \\
z^{\prime}=z+2 y\left(x z+y^{2}\right)-x\left(x z+y^{2}\right)^{2} .
\end{array}\right.
\end{aligned}
$$

The automorphism $\Phi_{N}$ is called a Nagata automorphism (cf. [11]). Hence we can regard $\Phi_{2}$ as a generalization of a Nagata automorphism.
(2) For the defining equation of $\Phi_{1}$, putting $a_{i}=0$ for any $i \geq 0$, we obtain a hypersurface $y+x\left(x^{2} z+y^{3}\right)=0$ in $\mathbb{C}^{3}$ and an automorphism of $\mathbb{C}^{3}$ which transforms this hypersurface onto a hyperplane of $\mathbb{C}^{3}$. This hypersurface is analogous to the hypersurface $y+x\left(x z+y^{2}\right)=0$, which is transformed onto a hyperplane of $\mathbb{C}^{3}$ by a Nagata automorphism. Thus we can regard $\Phi_{1}$ as an analogue of a Nagata automorphism.

As a consequence of Theorems 2 and 3, we obtain the following:
Theorem 4. Let $f: \mathbb{C}^{2} \hookrightarrow \mathbb{C}^{3}$ be an algebraic embedding. Assume that $X_{f}$ is a normal quartic hypersurface with at least a triple point. Then there exists an algebraic automorphism $\Phi$ of $\mathbb{C}^{3}$ such that $\Phi \circ f$ is a linear embedding.

Indeed, if one has such an algebraic embedding $f$, by Theorem $2,\left(X_{f}, Y_{f}\right)$ is, up to automorphisms of $\mathbb{P}^{3}$, one of the types (I) through (XIV) and, by Theorem 3, there exists an algebraic automorphism of $\mathbb{C}^{3}$ which transforms the hypersurface $f\left(\mathbb{C}^{2}\right)=$ $X_{f} \backslash Y_{f}$ of $\mathbb{C}^{3}$ onto a hyperplane of $\mathbb{C}^{3}$. Thus we obtain Theorem 4.

Notation.
$\omega_{V}$ : dualizing sheaf of $V$.
$K_{V}$ : canonical divisor on $V$.
$\left.D\right|_{V}$ : restriction of Cartier divisor $D$ to $V$.
$\mathfrak{m}_{V, v}:$ maximal ideal of $\mathcal{O}_{V, v}$.
mult $_{W} V$ : multiplicity of $V$ at general point of $W$.
Exc $\varphi$ : exceptional set of birational morphism $\varphi: V \rightarrow W$.
$b_{i}(V):=\operatorname{dim}_{\mathbb{R}} H^{i}(V ; \mathbb{R})$ : the $i$-th Betti number of $V$.
$(D \cdot C)_{V, v}:$ local intersection number of Cartier divisor $D$ and curve $C$ of $V$ at $v \in V$.
$\sim$ : linear equivalence.
$(V, v)$ : normal two-dimensional singularity.
$p_{g}(v)$ : geometric genus of $(V, v)$.
$p_{g}\left(v_{1}, \cdots, v_{m}\right):=\sum_{i=1}^{m} p_{g}\left(v_{i}\right)$.
$(-m)$-curve: smooth rational curve with self-intersection number $-m$.
$\odot$ : 0-curve.

- : ( -1 )-curve.
o: (-2)-curve.
$\triangle$ : (-3)-curve.
$\square$ : (-4)-curve.
${ }^{-m}:(-m)$-curve.


## 2. Preliminaries

In this section, we shall describe fundamental properties of a pair $(X, Y)$ satisfying Assumption in $\S 1$. We use the same notation as that in $\S 1$. Let $Y=\bigcup_{i=1}^{t} Y_{i}$ be the irreducible decomposition of $Y$. We denote by $\operatorname{deg} Y_{i}$ the degree of $Y_{i}$ as a plane curve of $H \cong \mathbb{P}^{2}$. We put $\mathcal{Y}:=\left.H\right|_{X}=\sum_{i=1}^{t} k_{i} Y_{i}$, where $\sum_{i=1}^{t} k_{i} \operatorname{deg} Y_{i}=4$. We put $x:=$ Sing $X=\left\{x_{1}, \ldots, x_{m}\right\}$ for $m \geq 1$. We may assume that $x_{1}$ is a triple point of $X$. Let $\pi: M \rightarrow X$ be the minimal resolution of $X$ with exceptional set $E=\bigcup_{i=1}^{s} E_{i}:=$ $\pi^{-1}(x)$, where each $E_{i}$ is irreducible. Let $\Gamma$ be a smooth hyperplane section of $X$ with $\Gamma \cap x=\emptyset$ and $H_{\Gamma}$ a hyperplane in $\mathbb{P}^{3}$ such that $\Gamma=X \cap H_{\Gamma}$. We denote by $\widehat{C}$ the proper transform of a curve $C$ in $X$ by $\pi$. We set $A:=\widehat{Y} \cup E$. Here we note that $\omega_{X}=\mathcal{O}_{X}$ and $x \subset Y$ and that $M \backslash A$ is biholomorphic to $\mathbb{C}^{2}$. By Kodaira [8] and Ramanujam [13], we see that $X \backslash Y$ and $M \backslash A$ are biregular to $\mathbb{C}^{2}$ and, in particular, that $X$ and $M$ are rational surfaces. Then we obtain the following:

Proposition 2.1 ([12]). (i) $H_{0}(X, \mathbb{Z}) \cong H_{0}(Y, \mathbb{Z})=\mathbb{Z}$.
(ii) $\quad H_{1}(X, \mathbb{Z}) \cong H_{1}(Y, \mathbb{Z})=0$.
(iii) $H_{2}(X, \mathbb{Z}) \cong H_{2}(Y, \mathbb{Z})=\bigoplus_{i=1}^{t} \mathbb{Z} . Y_{i}$.
(iv) $\quad H_{3}(X, \mathbb{Z}) \cong H_{3}(Y, \mathbb{Z})=0$.
(v) $H^{1}\left(X, \mathcal{O}_{X}\right)=0$.
(vi) $p_{g}(x)=1$.
(vii) $X$ is not a cone.
(viii) $\operatorname{gcd}\left(\operatorname{deg} Y_{1}, \ldots, \operatorname{deg} Y_{t}\right)=1$.
(ix) $\operatorname{mult}_{p} X \leq \sum_{i=1}^{t} k_{i} \operatorname{mult}_{p} Y_{i}(\forall p \in Y=X \cap H)$.

Remark. (1) We note that $Y$ is connected by (i) and that $Y$ cannot have any cycles, that is, each $Y_{i}$ is a rational curve without nodes by (ii). If $Y$ contains more than two lines, then $Y$ consists of lines which meet only at one point. Indeed, this follows since $Y$ cannot have any cycles and each $Y_{i}$ is a plane curve.
(2) Since $p_{g}(x)=1$ and $x_{1}$ is a triple point, we obtain $p_{g}\left(x_{1}\right)=1$, that is, $x_{1}$ is a minimally elliptic singular point. If $x$ contains at least two points, then $x \backslash\left\{x_{1}\right\}$ consists of rational double points. Hence $x_{1}$ is a unique triple point of $X$. By Artin [2] and Laufer [9], we obtain $K_{M} \sim \pi^{*} K_{X}-Z \sim-Z$ and $Z^{2}=-3$, where $Z$ is the fundamental cycle of $\pi^{-1}\left(x_{1}\right)$.

Next we consider the projection from $x_{1}$ and the blowing-up at $x_{1}$ to investigate the compactification $(X, Y)$. We denote by $N$ the number of lines in $X$ through $x_{1}$. Since $X$ is not a cone by Proposition 2.1(vii), we obtain $0 \leq N<+\infty$. Let $L$ be the union of these lines and $l$ the closure of $L \backslash Y$, where the case $l=\emptyset$ is allowed. Let $l=\bigcup_{i} l_{i}$ be the irreducible decomposition of $l$. Let $\sigma: \overline{\mathbb{P}^{3}} \rightarrow \mathbb{P}^{3}$ be the blowing-up at $x_{1}$ with exceptional divisor $\Delta$, which is isomorphic to $\mathbb{P}^{2}$. Then we have $\left.\sigma\right|_{\overline{\mathbb{P}^{3}} \backslash \Delta}$ : $\overline{\mathbb{P}^{3}} \backslash \Delta \cong \mathbb{P}^{3} \backslash\left\{x_{1}\right\}$ and $\left.\mathcal{O}_{\overline{\mathbb{P}^{3}}}(\Delta)\right|_{\Delta} \cong \mathcal{O}_{\mathbb{P}^{2}}(-1)$. We denote by $\bar{V}$ the proper transform of a subvariety $V$ of $\mathbb{P}^{3}$ by $\sigma$. We set $\bar{x}:=\operatorname{Sing} \bar{X}$ and $\bar{E}=\bigcup_{i} \overline{E_{i}}:=\bar{X} \cap \Delta$, where each $\overline{E_{i}}$ is irreducible. We put $\overline{\mathcal{E}}:=\left.\Delta\right|_{\bar{X}}=\sum_{i} e_{i} \overline{E_{i}}$ with $\sum_{i} e_{i} \operatorname{deg} \overline{E_{i}}=3$, where $\operatorname{deg} \overline{E_{i}}$ is the degree of $\overline{E_{i}}$ as a plane curve of $\Delta \cong \mathbb{P}^{2}$. Since $\left.\sigma\right|_{\bar{X} \backslash \bar{E}}: \bar{X} \backslash \bar{E} \cong X \backslash\left\{x_{1}\right\}$, we can easily see that $(\bar{X}, \bar{Y} \cup \bar{E})$ is a compactification of $\mathbb{C}^{2}$. Then we note that $\bar{x} \subset \bar{Y} \cup \bar{E}$ and $\omega_{\bar{X}}=\mathcal{O}_{\bar{X}}(-\mathcal{E})$ and that $\bar{Y} \cup \bar{E}$ does not have any cycles.

Let $\psi: \mathbb{P}^{3} \cdots \rightarrow \mathbb{P}^{2}$ be the projection from $x_{1}$ and $\bar{\psi}: \overline{\mathbb{P}^{3}} \rightarrow \mathbb{P}^{2}$ the resolution of indeterminacy of $\psi$. We put $\bar{V}^{*}:=\bar{\psi}(\bar{V}),{\overline{E_{i}}}^{*}:=\bar{\psi}\left(\overline{E_{i}}\right)$ and $\bar{E}^{*}:=\bigcup_{i}{\overline{E_{i}}}^{*}$. Here we note that $\left.\bar{\psi}\right|_{\Delta}: \Delta \cong \mathbb{P}^{2}$ and that $\bar{\Gamma}^{*}$ is a smooth plane quartic curve. Since $\operatorname{deg}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)=$ $\operatorname{deg} X-\operatorname{mult}_{x_{1}} X=1$, we see that $\left.\bar{\psi}\right|_{\bar{X}_{*}}: \bar{X} \rightarrow \mathbb{P}^{2}$ is a birational morphism. In particular, we obtain $\left.\bar{\psi}\right|_{\bar{X} \backslash \bar{L}}: \bar{X} \backslash \bar{L} \cong \mathbb{P}^{2} \backslash L^{*}, \bar{x} \subset \bar{L}$ and $x \subset L$. Since $\bar{H}^{*}$ is a line in $\mathbb{P}^{2}$ containing $\bar{Y}^{*}$, we have either that $Y^{*}$ consists of finite points or that $Y^{*}$ is a line. Since $\bar{\Gamma} \cap \bar{E}$ is empty and each irreducible component of $\bar{L}$ meets both of $\bar{\Gamma}$ and $\bar{E}$, we obtain $\bar{\Gamma}^{*} \cap \bar{E}^{*}=\bar{L}^{*}=\left(\left.\bar{\psi}\right|_{\bar{X}}\right)\left(\operatorname{Exc}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)\right)$. Then we obtain the following:


Fig. 2.
Proposition 2.2 ([12]). (i) $0<N<+\infty, N=b_{2}(\bar{X})-1$.
(ii) $\operatorname{mult}_{q} \bar{X} \leq \sum_{i} e_{i} \operatorname{mult}_{q} \overline{E_{i}}(\forall q \in \bar{E}=\bar{X} \cap \Delta)$.
(iii) $\bar{X}$ is a normal hypersurface with at most rational double points of $A_{*}$-type.
(iv) There exists a birational morphism $\bar{\pi}: M \rightarrow \bar{X}$ such that it is the minimal resolution of $\bar{X}$ and satisfies the commutative diagram in Fig. 2.
(v) If $\gamma$ is a line in $X$ through $x_{1}$, then $\widehat{\gamma}$ is a ( -1 )-curve in $M$ and $\bar{x} \cap \bar{\gamma}$ consists of at most one rational double point of $A_{*}$-type. Moreover, if $\bar{x} \cap \bar{\gamma} \neq \emptyset$, then the weighted dual graph of $\widehat{\gamma} \cup \bar{\pi}^{-1}(\bar{x} \cap \bar{\gamma})$ is a linear tree $\bullet — — — \cdots \multimap$.
(vi) $\bar{Y}^{*}$ consists of finite points if and only if each irreducible component of $Y$ is a line through $x_{1}$. Then there exists a line $\overline{E_{j_{1}}} \subset \bar{E}$ in $\Delta \cong \mathbb{P}^{2}$ such that $\bar{H}^{*}={\overline{E_{j_{1}}}}^{*}$ and $\mathcal{Y}=\sum_{i=1}^{t}\left(\bar{\Gamma}^{*} \cdot{\overline{E_{j_{1}}}}^{*}\right)_{\mathbb{P}^{2}, Y_{i}}{ }^{*} \cdot Y_{i}$.
(vii) $\bar{Y}^{*}$ is a line if and only if $Y=Y_{1} \cup Y_{2}$ where $Y_{1}$ is a line through $x_{1}$ and where $Y_{2}$ is not a line through $x_{1}$. Then one has the following:
(a) $\bar{H}^{*}=\bar{Y}^{*}=\bar{Y}_{2}{ }^{*}$;
(b) $\bar{Y}^{*} \not \subset \bar{E}^{*}$ and $\bar{Y}^{*} \cup \bar{E}^{*}$ does not have any cycles;
(c) if $E^{*}$ contains a line in $\mathbb{P}^{2}$, then $E^{*}$ consists of lines in $\mathbb{P}^{2}$.

Proof. It suffices to show (vi) since we obtain all the assertions except (vi) by Ohta [12]. The first claim in (vi) is obvious. Let us consider the second one in (vi). Since the morphism $\left.\bar{\psi}\right|_{\bar{X}}: \bar{X} \rightarrow \mathbb{P}^{2}$ is surjective, there exists a line $\overline{E_{j_{1}}} \subset \bar{E}$ in $\Delta \cong \mathbb{P}^{2}$ such that $\bar{H}^{*}={\overline{E_{j_{1}}}}^{*}$. For the intersection divisor $\mathcal{Y}=\left.H\right|_{X}=\sum_{i=1}^{t} k_{i} Y_{i}$ of $X$, we show
 $\left\{P_{i}\right\}:=Y_{i} \cap C(1 \leq i \leq t)$. Since $\left.\left(\left.X\right|_{H}\right)\right|_{C}=\left.\left(\left.X\right|_{H_{\Gamma}}\right)\right|_{C}$, we obtain $\Gamma \cap C=\left\{P_{1}, \ldots, P_{t}\right\}$ and $\sum_{i=1}^{t}\left(\left.X\right|_{H} \cdot C\right)_{H, P_{i}} \cdot P_{i}=\sum_{i=1}^{t}\left(\left.X\right|_{H_{\Gamma}} \cdot C\right)_{H_{\Gamma}, P_{i}} \cdot P_{i}$ as Weil divisors of $C \cong \mathbb{P}^{1}$. By noting that $\left.X\right|_{H}=\sum_{i=1}^{t} k_{i} Y_{i}$ and that $\left(\left.\bar{\psi}\right|_{\overline{H_{\Gamma}}}\right) \circ\left(\left.\sigma\right|_{H_{\Gamma}^{-}}\right)^{-1}: H_{\Gamma} \cong \overline{H_{\Gamma}} \cong \mathbb{P}^{2}$ and $\bar{C}^{*}=\bar{H}^{*}={\overline{E_{j_{1}}}}^{*}$, we get $k_{i}=\left(\left.X\right|_{H} \cdot C\right)_{H, P_{i}}=(\Gamma \cdot C)_{H_{\Gamma}, P_{i}}=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{j_{1}}}}^{*}\right)_{\mathbb{P}^{2}, Y_{i}}{ }^{*}(1 \leq i \leq t)$. Thus we obtain (vi).

Remark. By (iv), we may assume that, for each $\overline{E_{i}}, E_{i}$ is the proper transform of $\overline{E_{i}}$ by $\bar{\pi}$. We also note that, for a curve $C$ in $X, \widehat{C}$ coincides with the proper transform of $\bar{C}$ by $\bar{\pi}$.

Now we introduce a notion of separation from Ishii [6] and Ishii-Nakayama [7].

This notion was introduced to classify normal quartic hypersurfaces in $\mathbb{P}^{3}$ with irrational singularities (cf. [3], [18]). Here we shall show only the existence and the uniqueness of separation.

Definition 2.3 ([6], [7]). Let ( $S, C, D$ ) be a triplet consisting of a nonsingular projective surface $S$, a smooth curve $C$ on $S$ and an effective anti-canonical divisor $D$ of $S$. Assume that $C$ is not a component of $D$. Let $\rho: T \rightarrow S$ be a birational morphism from a nonsingular projective surface $T$ and $C_{T}, D_{T}$ effective divisors of $T$. $\left(T, C_{T}, D_{T}\right)$ is said to be a separation of $(S, C, D)$, if the following conditions are satisfied:
(i) $K_{T}+C_{T} \sim \rho^{*}\left(K_{S}+C\right)$.
(ii) $K_{T}+D_{T} \sim 0$.
(iii) $C_{T} \leq \rho^{*}(C), D_{T} \leq \rho^{*}(D)$.
(iv) $\operatorname{Supp}\left(C_{T}\right) \cap \operatorname{Supp}\left(D_{T}\right)=\emptyset$.

Proposition 2.4 ([6], [7]). Separation exists uniquely.
Proof. If $\operatorname{Supp}(C) \cap \operatorname{Supp}(D)$ is empty, then the identity $S \rightarrow S$ is a separation. Hence we may assume that $\operatorname{Supp}(C) \cap \operatorname{Supp}(D) \neq \emptyset$. Let $\rho_{1}: T_{1} \rightarrow S$ be the blowingup at a point $P_{1} \in \operatorname{Supp}(C) \cap \operatorname{Supp}(D)$ and $B_{1}$ the exceptional divisor. We consider $C_{T_{1}}:=\rho_{1}^{*}(C)-B_{1}$ and $D_{T_{1}}:=\rho_{1}^{*}(D)-B_{1}$. We note that $C_{T_{1}}$ is the proper transform of $C$ and $\left(C_{T_{1}} \cdot D_{T_{1}}\right)=(C \cdot D)-1$. If $\operatorname{Supp}\left(C_{T_{1}}\right) \cap \operatorname{Supp}\left(D_{T_{1}}\right) \neq \emptyset$, then we blow up at a point $P_{2} \in \operatorname{Supp}\left(C_{T_{1}}\right) \cap \operatorname{Supp}\left(D_{T_{1}}\right)$, and similarly we can define $C_{T_{2}}$ and $D_{T_{2}}$. Thus, by continuing this procedure, we finally get a separation.

Conversely, let $\left(T, C_{T}, D_{T}\right)$ be a separation of $(S, C, D)$ and $\rho: T \rightarrow S$ the birational morphism. We note that $\rho$ is a composite of blowing-ups. By Definition 2.3(i) and (iii), $C_{T}$ is the proper transform of $C$ in $T$ and hence it is a smooth curve isomorphic to $C$. Let $\operatorname{Exc} \rho=\bigcup_{i=1}^{r} B_{i}$ be the decomposition into connected components. We denote by $n_{i}$ the number of irreducible components of $B_{i}$ and put $P_{i}:=\rho\left(B_{i}\right)$. Let $\gamma$ be a $\rho$-exceptional curve. Since $C_{T}$ and $D_{T}$ are $\rho$-nef, by the adjunction formula, $\gamma$ is either a $(-1)$-curve with $\left(C_{T} \cdot \gamma\right)=\left(D_{T} \cdot \gamma\right)=1$ or a $(-2)$-curve with $\left(C_{T} \cdot \gamma\right)=\left(D_{T} \cdot \gamma\right)=0$. Hence the weighted dual graph of $B_{i}$ is one vertex $\bullet$ or a


By Definition 2.3(i),(ii),(iii) and the negative definiteness of the intersection matrix of $\operatorname{Exc} \rho$, there exists an effective divisor $B$ with $\operatorname{Supp}(B)=\operatorname{Exc} \rho$ such that
(1) $K_{T} \sim \rho^{*} K_{S}+B$;
(2) $\rho^{*} C=C_{T}+B$;
(3) $\rho^{*} D=D_{T}+B$.

Then we obtain $\rho_{*}\left(C_{T}\right)=C, \rho_{*}\left(D_{T}\right)=D$ and $\operatorname{Supp}(C) \cap \operatorname{Supp}(D)=\left\{P_{1}, \ldots, P_{r}\right\}$. By noting $(C \cdot D)=\left(\rho^{*} C \cdot \rho^{*} D\right)=\left(C_{T} \cdot B\right)$ and by computing the intersection numbers of $B$ and its irreducible components, we get $(C \cdot D)_{P_{i}}=n_{i}(1 \leq i \leq r)$. Hence $\rho$ is obtained


Fig. 3.
by $(C \cdot D)_{P_{i}}$ times blowing-ups at the points which are on the proper transforms of $C$ and are infinitely near $P_{i}$ for each $1 \leq i \leq r$. Since $(C \cdot D)_{P_{i}}(1 \leq i \leq r)$ depend only on the triplet $(S, C, D), \rho$ and $T$ are unique. Since $C_{T}$ is the proper transform of $C$ by $\rho, C_{T}$ is also unique. Hence, by (2) and (3), $B$ and $D_{T}$ are also unique. Thus we obtain the uniqueness of separation.

Here we return to our situation. Since $\pi^{*} \mathfrak{m}_{X, x_{1}} \cong \mathcal{O}_{M}(-Z)$ by Laufer [9], we have that $Z=\bar{\pi}^{*}\left(\left.\Delta\right|_{\bar{X}}\right)=\bar{\pi}^{*}(\overline{\mathcal{E}})$ and $Z \leq(\bar{\pi})^{*}(\bar{\psi} \mid \bar{X})^{*}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)^{*}(\overline{\mathcal{E}})$. From this, we easily see that the triplet $(M, \widehat{\Gamma}, Z)$ with birational morphism $\left(\left.\bar{\psi}\right|_{\bar{X}}\right) \circ \bar{\pi}: M \rightarrow \mathbb{P}^{2}$ is a (unique) separation of the triplet $\left(\mathbb{P}^{2}, \bar{\Gamma}^{*},\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})\right.$ ). Since Proposition 2.1 (iii) also holds for the compactification $(M, A)$ of $\mathbb{C}^{2}$, by using the Noether formula, we obtain $b_{2}(\widehat{Y})+$ $b_{2}(E)=b_{2}(M)=10-K_{M}^{2}=13$. Thus $\widehat{Y} \cup E$ consists of thirteen irreducible components and $\left(\left.\bar{\psi}\right|_{\bar{X}}\right) \circ \bar{\pi}: M \rightarrow \mathbb{P}^{2}$ is a composite of twelve blowing-ups. Hence, if we know the shape of the divisor $\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})$ and the intersection of $\bar{\Gamma}^{*}$ and $\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})$, then we can obtain the process of the twelve blowing-ups and the weighted dual graph of $\widehat{Y} \cup E \cup$ $\widehat{l} \cup \widehat{\Gamma}$ by using the construction of separation in the proof of Proposition 2.4.

In the last part of this section, we prepare a proposition to write down the defining equation of $(X, Y)$. First we put $\tau:=(\bar{\psi} \mid \bar{X}) \circ \bar{\pi}$ and $\phi:=\pi \circ \tau^{-1}$. Then we obtain the commutative diagram in Fig. 3. Let $\widehat{\Lambda}$ be the linear system associated to $\pi: M \rightarrow X$. Then $\Lambda:=\tau_{*} \widehat{\Lambda}$ is the linear system associated to $\phi: \mathbb{P}^{2} \cdots \rightarrow X$. Let $\mathbb{M}_{\Lambda}$ and $\mathbb{M}_{\widehat{\Lambda}}$ be the $\mathbb{C}$-vector spaces associated to $\Lambda$ and $\widehat{\Lambda}$ respectively. We note that $\operatorname{dim} \Lambda=\operatorname{dim} \widehat{\Lambda}=$ 3. Let $H_{i}(0 \leq i \leq 3)$ be four general hyperplanes in $\mathbb{P}^{3}$ such that $x_{1} \in H_{0}, H_{1}, H_{2}$ and $x_{1} \notin H_{3}$. We can take $H_{\Gamma}$ as $H_{3}$. We put $L_{i}:=\bar{H}_{i}{ }^{*}(0 \leq i \leq 2)$. Let $\left(w_{0}: w_{1}: w_{2}\right)$ and $\left(z_{0}: z_{1}: z_{2}: z_{3}\right)$ be homogeneous coordinate systems of $\mathbb{P}^{2}$ and $\mathbb{P}^{3}$ respectively. By considering suitable automorphisms of $\mathbb{P}^{2}$ and $\mathbb{P}^{3}$, we may assume that $x_{1}=(0$ : $0: 0: 1), H_{i}=\left\{z_{i}=0\right\}(0 \leq i \leq 3)$ and $L_{j}=\left\{w_{j}=0\right\}(0 \leq j \leq 2)$. Then we note that $H=\left\{c_{0} z_{0}+c_{1} z_{1}+c_{2} z_{2}=0\right\}$ and $\bar{H}^{*}=\left\{c_{0} w_{0}+c_{1} w_{1}+c_{2} w_{2}=0\right\}$ for some $\left(c_{0}: c_{1}: c_{2}\right) \in \mathbb{P}^{2}$. Let $F$ and $G$ be the homogeneous polynomials of $w_{0}, w_{1}, w_{2}$ of degree four and three which define the divisors $\bar{\Gamma}^{*}$ and $\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})$ respectively.

Proposition 2.5 ([12]). (i) $\widehat{\Lambda}=|\widehat{\Gamma}|$ and $\mathbb{M}_{\widehat{\Lambda}}$ is spanned by sections corresponding to the divisors $\pi^{*}\left(\left.H_{i}\right|_{X}\right)(0 \leq i \leq 3)$.
(ii) $\Lambda \subset\left|\bar{\Gamma}^{*}\right|=\left|\mathcal{O}_{\mathbb{P}^{2}}(4)\right|$ and $\mathbb{M}_{\Lambda}$ is spanned by sections corresponding to the divisors
$L_{i}+\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})(0 \leq i \leq 2)$ and $\bar{\Gamma}^{*}$. In particular, the birational map $\phi$, the image $X$ and the boundary $Y$ are given as follows:

$$
\begin{aligned}
& \phi:\left\{\begin{array}{l}
z_{0}=w_{0} G\left(w_{0}, w_{1}, w_{2}\right) \\
z_{1}=w_{1} G\left(w_{0}, w_{1}, w_{2}\right) \\
z_{2}=w_{2} G\left(w_{0}, w_{1}, w_{2}\right) \\
z_{3}=F\left(w_{0}, w_{1}, w_{2}\right)
\end{array}\right. \\
&\left\{\begin{array}{l}
X: F\left(z_{0}, z_{1}, z_{2}\right)-z_{3} G\left(z_{0}, z_{1}, z_{2}\right)=0 \\
Y: F\left(z_{0}, z_{1}, z_{2}\right)-z_{3} G\left(z_{0}, z_{1}, z_{2}\right)=0, c_{0} z_{0}+c_{1} z_{1}+c_{2} z_{2}=0
\end{array}\right.
\end{aligned}
$$

## 3. Determination of Boundaries

In this section, we shall give a proof of Theorem 1 . Let $(X, Y)$ be a pair satisfying Assumption in $\S 1$. We use the same notation as that in $\S 1$ and $\S 2$. First we obtain classifications of the divisors $\mathcal{Y}$ and $\overline{\mathcal{E}}$ as follows:

Proposition 3.1. There exist the following seven possibilities for the divisor $\mathcal{Y}$ :
(i) $\mathcal{Y}=4 Y_{1}\left(Y_{1}:\right.$ line $)$. In this case, $x \subset Y_{1}$ and $x=\left\{x_{1}\right\}$ or $\left\{x_{1}, A_{*}\right\}$.
(ii) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$. In this case, $x \subset Y_{1}$ and $x=\left\{x_{1}\right\}$ or $\left\{x_{1}, A_{*}\right\}$.
(iii) $\mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}\right.$ : line $)$. In this case, $Y_{1} \cap Y_{2}=\left\{x_{1}\right\}$ and $x \cap Y_{i}=\left\{x_{1}\right\}$ or $\left\{x_{1}, A_{*}\right\}(i=1,2)$.
(iv) $\mathcal{Y}=2 Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ conic $)$. In this case, $Y_{1}$ and $Y_{2}$ meet tangentially to the second order at $x_{1}$, and $x \subset Y_{1}$ and $x=\left\{x_{1}\right\}$ or $\left\{x_{1}, A_{*}\right\}$.
(v) $\mathcal{Y}=Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ cuspidal cubic $)$. In this case, $Y_{1}$ and $Y_{2}$ meet tangentially to the third order at $x_{1}$, and $x=\left\{x_{1}\right\}=\operatorname{Sing} Y_{2}$.
(vi) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$. In this case, $Y_{1}, Y_{2}$ and $Y_{3}$ meet only at $x_{1}$, and $x \subset Y_{1}$ and $x=\left\{x_{1}\right\}$ or $\left\{x_{1}, A_{*}\right\}$.
(vii) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$. In this case, $Y_{1}, Y_{2}, Y_{3}$ and $Y_{4}$ meet only at $x_{1}$, and $x=\left\{x_{1}\right\}$.

Proof. We note that the divisor $\mathcal{Y}$ is a plane quartic curve. By Proposition 2.1(ii) and (viii), we see that $\mathcal{Y}$ is not an irreducible quartic and that $Y=\operatorname{Supp} \mathcal{Y}$ does not have any cycles. Hence we obtain the above seven cases for the divisor $\mathcal{Y}$. By Proposition 2.1(ix) and 2.2(v), we get the position and the number of elements of the singular locus $x$. Thus we complete the proof.

Proposition 3.2. There exist the following five possibilities for the divisor $\overline{\mathcal{E}}$ :
(i) $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $)$. In this case, $\bar{x} \cap \Delta \subset \overline{E_{1}}$.
(ii) $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}:\right.$ line $)$. In this case, $\bar{x} \cap \Delta \subset \overline{E_{1}}$.
(iii) $\overline{\mathcal{E}}=\overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{1}}:\right.$ line, $\overline{E_{2}}:$ conic $)$. In this case, $\overline{E_{1}}$ and $\overline{E_{2}}$ meet tangentially to the second order at a point, and $\bar{x} \cap \Delta \subset \overline{E_{1}} \cap \overline{E_{2}}$.
(iv) $\overline{\mathcal{E}}=\overline{E_{1}}+\overline{E_{2}}+\overline{E_{3}}\left(\overline{E_{i}}:\right.$ line $)$. In this case, $\overline{E_{1}}, \overline{E_{2}}$ and $\overline{E_{3}}$ meet only at one point,
and $\bar{x} \cap \Delta \subset \overline{E_{1}} \cap \overline{E_{2}} \cap \overline{E_{3}}$.
(v) $\overline{\mathcal{E}}=\overline{E_{1}}\left(\overline{E_{1}}:\right.$ cuspidal cubic $)$. In this case, $\bar{x} \cap \Delta \subset \operatorname{Sing} \overline{E_{1}}$.

Proof. We note that the divisor $\overline{\mathcal{E}}$ is a plane cubic curve. Since $\bar{E}=\operatorname{Supp} \overline{\mathcal{E}}$ does not have any cycles, we obtain the above five cases for the divisor $\overline{\mathcal{E}}$. By Proposition 2.2(ii), we have the position of $\bar{x} \cap \Delta$ in $\bar{E}$. Thus we have the assertion.

From now on, we will investigate the five cases for the divisor $\overline{\mathcal{E}}$ in Proposition 3.2. For each case, we will determine the intersection of $\bar{\Gamma}^{*}$ and $\bar{E}^{*}$ and get the weighted dual graph of $A$ by using separation. Next we will transform the smooth compactification $(M, A)$ of $\mathbb{C}^{2}$ into a minimal normal compactification $\left(M^{\prime}, A^{\prime}\right)$ of $\mathbb{C}^{2}$ by blowing-up and blowing-down in the boundary $A$ repeatedly. Then the weighted dual graph of $A^{\prime}$ must be a linear tree of smooth rational curves by Ramanujam [13] (cf. [10], [12]). Here a smooth compactification $(S, C)$ of $\mathbb{C}^{2}$ is said to be minimally normal if the pair satisfies the following two conditions:
(1) the curve $C=\bigcup_{i} C_{i}$, which is the irreducible decomposition, has at most ordinary double points;
(2) if $C_{j}$ is a ( -1 )-curve, then there exist at least three irreducible components of $C$ which are different from $C_{j}$ and intersect $C_{j}$.
3.1. The case $\overline{\mathcal{E}}=3$ line. Let $\overline{\mathcal{E}}=3 \overline{E_{1}}\left(\overline{E_{1}}:\right.$ line $)$ be the restriction of $\Delta$ to $\bar{X}$. Then we have the following two cases:
(1) $\bar{Y}^{*}$ consists of finite points;
(2) $\bar{Y}^{*}$ is a line.

### 3.1.1. The case $\bar{Y}^{*}$ consists of finite points.

Lemma 3.3. (i) $\bar{H}^{*}=\bar{E}_{1}{ }^{*}$.
(ii) Any lines in $X$ passing through $x_{1}$ are contained in $Y$.
(iii) $\bar{\Gamma}^{*} \cap \bar{E}^{*}=\bar{Y}^{*}$ (at most four points).

Proof. By Proposition 2.2(i) and (vi), we obtain the assertions easily.
Proposition 3.4. For the case $\bar{Y}^{*}$ consists finite points, one has the following five possibilities:
(i) $\mathcal{Y}=4 Y_{1}\left(Y_{1}:\right.$ line $)$. In this case, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=4$.
(ii) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$. In this case, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=1$.
(iii) $\mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}:\right.$ line $)$. In this case, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{i}}=2(i=1,2)$.
(iv) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$. In this case, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\overline{Y_{1}}}{ }^{*}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{i}}{ }^{*}=1 \quad(i=$ 2, 3).
(v) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$. In this case, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{i}}{ }^{*}=1(i=1,2,3,4)$.

Moreover, for the cases (i), (ii), (iii), (iv) and (v), one obtains the weighted dual graphs of $\widehat{Y} \cup E$ of type (I), (II), (III), (IV) and (V) in Theorem 1 respectively.

Proof. By Proposition 2.2(vi) and Lemma 3.3(iii) and by using separation, we have the assertions.
3.1.2. The case $\overline{\boldsymbol{Y}}^{*}$ is a line. By Proposition 2.2(vii), we note that $Y=Y_{1} \cup Y_{2}$ where $Y_{1}$ is a line through $x_{1}$ and where $Y_{2}$ is not a line through $x_{1}$ and that $\bar{H}^{*}=$ $\bar{Y}^{*}=\bar{Y}_{2}{ }^{*}$. Then we obtain the following:

Lemma 3.5. (i) ${\overline{Y_{2}}}^{*} \neq{\overline{E_{1}}}^{*},{\overline{Y_{1}}}^{*}={\overline{Y_{2}}}^{*} \cap{\overline{E_{1}}}^{*}$.
(ii) There exists only one line $l_{1}$ in $X$ through $x_{1}$ such that $l_{1} \not \subset Y$.
(iii) $\bar{l}_{1}{ }^{*} \subset{\overline{E_{1}}}^{*} \backslash{\overline{Y_{1}}}^{*}$.
(iv) $\bar{\Gamma}^{*} \cap \bar{E}^{*}={\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$ (exactly two points).

Proof. (i) Since $\left.\bar{\psi}\right|_{\bar{X}}: \bar{X} \rightarrow \mathbb{P}^{2}$ is a birational morphism, we obtain ${\overline{Y_{2}}}^{*} \neq{\overline{E_{1}}}^{*}$. Since $Y_{1}$ is a line in $H$ through $x_{1}$, we obtain ${\overline{Y_{1}}}^{*}=\bar{H}^{*} \cap{\overline{E_{1}}}^{*}={\overline{Y_{2}}}^{*} \cap{\overline{E_{1}}}^{*}$.
(ii) By Proposition 2.2(i), we obtain the assertion easily.
(iii) Since $l_{1}$ is a line through $x_{1}$ and $l_{1} \not \subset H$, we obtain ${\overline{l_{1}}}^{*} \subset{\overline{E_{1}}}^{*} \backslash \bar{H}^{*}={\overline{E_{1}}}^{*} \backslash{\overline{Y_{1}}}^{*}$.
(iv) As mentioned before Proposition 2.2, we obtain $\bar{\Gamma}^{*} \cap \bar{E}^{*}=\left(\left.\bar{\psi}\right|_{\bar{X}}\right)\left(\operatorname{Exc}\left(\left.\bar{\psi}\right|_{\bar{X}}\right)\right)=$ ${\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$.

Proposition 3.6. For the case $\bar{Y}^{*}$ is a line, one has the following:
(i) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=\left(\bar{\Gamma}^{*} \cdot{\overline{Y_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$.
(ii) $\mathcal{Y}=Y_{1}+Y_{2}\left(Y_{1}:\right.$ line, $Y_{2}:$ cuspidal cubic $)$, where $Y_{1}$ and $Y_{2}$ meet tangentially to the third order at $x_{1}$ and $x=\left\{x_{1}\right\}=\operatorname{Sing} Y_{2}$.
Moreover, one obtains the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l}$ of type (VI) in Theorem 1.

Proof. Since $\bar{\Gamma}^{*} \cap \bar{E}^{*}={\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$, we obtain the following three cases:
(1) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{{\overline{Y_{1}}}^{*}}=1$, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}=3$.
(2) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=2$.
(3) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{{\overline{Y_{1}}}^{*}}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}=1$.
(1) In this case, we note that $1 \leq\left(\bar{\Gamma}^{*} \cdot{\overline{Y_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*} \leq 3$. By using separation, we obtain the weighted dual graph of $\widehat{Y}_{2} \cup E_{1} \cup \operatorname{Exc}((\bar{\psi} \mid \bar{X}) \circ \bar{\pi})=\widehat{Y} \cup E \cup \widehat{l_{1}}$ in Fig. 4. Since $\widehat{Y} \cup E$ is the simple normal crossing boundary curve of a smooth compactification of $\mathbb{C}^{2}$, by contracting suitable $(-1)$-curves in $\widehat{Y} \cup E$ successively, we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction.
(2) In this case, we note that $\left(\bar{\Gamma}^{*} \cdot{\overline{Y_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$. Similarly to the case (1), we obtain the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l_{1}}$ in Fig. 5, and we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction.
(3) In this case, we note that $\left(\bar{\Gamma}^{*} \cdot{\overline{Y_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$. By using separation, we obtain the


Fig. 4.


Fig. 5.
weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l_{1}}$ of type (VI) in Theorem 1. At the same time, by looking at the process of the separation, we know that $3=\left(\widehat{\Gamma} \cdot \widehat{Y}_{2}\right)_{M}=\left(\Gamma \cdot Y_{2}\right)_{X}$ and, in particular, that $Y_{2}$ is a cuspidal cubic.
3.2. The case $\overline{\mathcal{E}}=\mathbf{2 l i n e}+$ line. Let $\overline{\mathcal{E}}=2 \overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{i}}\right.$ : line) be the restriction of $\Delta$ to $\bar{X}$. We set $\{P\}:={\overline{E_{1}}}^{*} \cap{\overline{E_{2}}}^{*}$. Then we have the following two cases:
(1) $\bar{Y}^{*}$ consists of finite points;
(2) $\bar{Y}^{*}$ is a line.
3.2.1. The case $\overline{\boldsymbol{Y}}^{*}$ consists of finite points.

Lemma 3.7. (i) $\bar{H}^{*}={\overline{E_{1}}}^{*}$ or ${\overline{E_{2}}}^{*}$.
(ii) There exists only one line $l_{1}$ in $X$ through $x_{1}$ such that $l_{1} \not \subset Y$.
(iii) ${\overline{l_{1}}}^{*} \neq\{P\}$.
(iv) $\bar{\Gamma}^{*} \cap \bar{E}^{*}=\bar{Y}^{*} \cup \bar{l}_{1}{ }^{*}$ (at most five points).

Proof. Similarly to Lemma 3.5, we obtain the assertions.
Lemma 3.8. Assume that $\bar{H}^{*}={\overline{E_{1}}}^{*}$. Then one obtains the following:
(i) ${\overline{l_{1}}}^{*} \subset{\overline{E_{2}}}^{*} \backslash\{P\},\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=1$.
(ii) There exists a unique irreducible component $Y_{i_{1}}$ of $Y$ such that ${\overline{Y_{i_{1}}}}^{*}=\{P\}$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\overline{Y_{i_{1}}}}{ }^{*}=3$.
(iii) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\overline{{T_{1}}_{1}}}{ }^{*}=1$.
(iv) $\mathcal{Y}=Y_{i_{1}}+\sum_{i \neq i_{1}} k_{i} Y_{i}$.

Proof. We have ${\overline{l_{1}}}^{*} \subset{\overline{E_{2}}}^{*} \backslash\{P\}$ clearly. Since $x \cap l_{1}=\left\{x_{1}\right\}$ and $\bar{x} \cap \Delta \subset \overline{E_{1}}$, we know by Proposition 2.2(v) that $\bar{x} \cap \overline{l_{1}}=\emptyset$ and $\overline{l_{1}}$ is a ( -1 )-curve in $\bar{X} \backslash \bar{x}$. Since $\left(\bar{\Gamma} \cdot \overline{l_{1}}\right)_{\bar{X}}=\left(\overline{E_{2}} \cdot \bar{l}_{1}\right)_{\bar{X}}=1$, we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}^{*}}=1$. Thus we have (i). By (i) and Lemma 3.7(iv), we obtain (ii). By (ii) and Proposition 2.2(vi), we obtain (iii) and (iv).

Proposition 3.9. Assume that $\bar{H}^{*}={\overline{E_{1}}}^{*}$. Then one obtains the following three cases:
(i) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}:\right.$ line $)$. In this case, $\bar{Y}_{2}^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=1$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{I}_{1}}{ }^{*}=1$.
(ii) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$. In this case, $\bar{Y}_{3}{ }^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{3}}{ }^{*}=1$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{3}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\overline{1}^{*}}{ }^{*}=1$.
(iii) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$. In this case, $\bar{Y}_{4}{ }^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{i}}{ }^{*}=1(i=1,2,3,4)$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{4}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=1$.
Moreover, for the cases (i), (ii) and (iii), one obtains the weighted dual graphs of $\widehat{Y} \cup$ $E \cup \hat{l}$ of type (VII), (VIII) and (IX) in Theorem 1 respectively.

Proof. By Lemma 3.8 and by using separation, we obtain the assertions.
Lemma 3.10. Assume that $\bar{H}^{*}={\overline{E_{2}}}^{*}$. Then one obtains the following:
(i) ${\overline{l_{1}}}^{*} \subset{\overline{E_{1}}}^{*} \backslash\{P\},\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=1$.
(ii) There exists a unique irreducible component $Y_{i_{1}}$ of $Y$ such that ${\overline{Y_{i_{1}}}}^{*}=\{P\}$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\overline{Y_{\bar{L}_{1}}}}{ }^{*}=3$.
(iii) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\overline{Y_{1}}}{ }^{*}=1$.
(iv) $\mathcal{Y}=Y_{i_{1}}+\sum_{i \neq i_{1}} k_{i} Y_{i}$.

Proof. By using (i), we obtain (ii),(iii) and (iv) easily. Hence it suffices to show (i). First we have ${\overline{l_{1}}}^{*} \subset{\overline{E_{1}}}^{*} \backslash\{P\}$ clearly. Now we note that $1 \leq\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}} \leq 4$. We assume that $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}^{*}}=2$ (resp. 3, 4). Similarly to the proof of Proposition 3.6, we obtain the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l}_{1}$ and we get the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ in Fig. 6(a) (resp. (b), (c)), where we denote by $E_{1}^{\prime}$ and $E_{2}^{\prime}$ the proper transforms of $E_{1}$ and $E_{2}$ respectively. However, these graphs are not linear trees. This is a contradiction. Thus we ob$\operatorname{tain}\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=1$.

Proposition 3.11. Assume that $\bar{H}^{*}={\overline{E_{2}}}^{*}$. Then one obtains the following three cases:


Fig. 6.
(i) $\mathcal{Y}=3 Y_{1}+Y_{2}\left(Y_{i}\right.$ : line $)$. In this case, ${\overline{Y_{2}}}^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\overline{1}^{*}}=1$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=1$.
(ii) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$. In this case, $\bar{Y}_{3}{ }^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{3}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}^{*}}=1$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{3}}{ }^{*}=1$.
(iii) $\mathcal{Y}=Y_{1}+Y_{2}+Y_{3}+Y_{4}\left(Y_{i}:\right.$ line $)$. In this case, ${\overline{Y_{4}}}^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{4}}{ }^{*}=3,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{I}_{1}}=1$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{i}{ }^{*}}=1(i=1,2,3,4)$.
Moreover, for the cases (i), (ii) and (iii), one obtains the weighted dual graphs of $\widehat{Y} \cup$ $E \cup \hat{l}$ of type (X), (XI) and (XII) in Theorem 1 respectively.

Proof. By Lemma 3.10 and by using separation, we have the assertions.
3.2.2. The case $\overline{\boldsymbol{Y}}^{*}$ is a line. By Proposition 2.2 (vii), we note that $Y=Y_{1} \cup Y_{2}$ where $Y_{1}$ is a line through $x_{1}$ and where $Y_{2}$ is not a line through $x_{1}$ and that $\bar{H}^{*}=$ $\bar{Y}^{*}={\overline{Y_{2}}}^{*}$. Since $\left.\bar{\psi}\right|_{\bar{X}}: \bar{X} \rightarrow \mathbb{P}^{2}$ is a birational morphism, we also note that $\bar{Y}_{2}{ }^{*} \neq$ ${\overline{E_{1}}}^{*},{\overline{E_{2}}}^{*}$. Then we obtain the following:

Lemma 3.12. (i) ${\overline{Y_{2}}}^{*}$ is a line through $P$.
(ii) ${\overline{Y_{1}}}^{*}=\{P\}$.
(iii) There exist exactly two lines $l_{1}$ and $l_{2}$ in $X$ through $x_{1}$ such that $l_{1}, l_{2} \not \subset Y$.
(iv) ${\overline{l_{i}}}^{*} \subset \bar{E}^{*} \backslash\{P\}(i=1,2)$.
(v) $\bar{\Gamma}^{*} \cap \bar{E}^{*}={\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*} \cup \bar{l}_{2}{ }^{*}$ (exactly three points).

Proof. By Proposition 2.2(vii), $\bar{Y}^{*} \cup \bar{E}^{*}={\overline{Y_{2}}}^{*} \cup{\overline{E_{1}}}^{*} \cup{\overline{E_{2}}}^{*}$ does not have any cycles. Hence $\bar{Y}_{2}{ }^{*}$ passes through the intersection point $P$ of ${\overline{E_{1}}}^{*}$ and ${\overline{E_{2}}}^{*}$. This shows (i). Similarly to Lemma 3.5, we obtain (ii),(iii),(iv) and (v) easily.


Fig. 7.


Fig. 8.
Proposition 3.13. The case $\bar{Y}^{*}$ is a line cannot occur.
Proof. We obtain the following three cases:
(1) ${\overline{l_{1}}}^{*},{\overline{l_{2}}}^{*} \subset{\overline{E_{2}}}^{*} \backslash\{P\}$.
(2) ${\overline{l_{1}}}^{*} \subset{\overline{E_{1}}}^{*} \backslash\{P\},{\overline{l_{2}}}^{*} \subset{\overline{E_{2}}}^{*} \backslash\{P\}$.
(3) ${\overline{l_{1}}}^{*},{\overline{l_{2}}}^{*} \subset{\overline{E_{1}}}^{*} \backslash\{P\}$.
(1) In this case, we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{i}}{ }^{*}=1$ for $i=1,2$ since $\bar{x} \cap \overline{l_{i}}=\emptyset$. Hence we have $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=2$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$. By Lemma 3.12(v), we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)=$ $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$. This is a contradiction.
(2) In this case, we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{L}_{2}}=1$ since $\bar{x} \cap \overline{l_{2}}=\emptyset$. We also obtain $\left(\bar{\Gamma}^{*}\right.$. \left.${\overline{E_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=3$, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=3$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{Y_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$. Similarly to the proof of Proposition 3.6, we obtain the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l_{1}} \cup \widehat{l_{2}}$ in Fig. 7, and we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction.
(3) In this case, we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=4$ by Lemma $3.12(\mathrm{v})$. Hence we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{I}_{1}}{ }^{*}+\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{I}_{2}}{ }^{*}=3$. We may assume that $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=2$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{L}_{2}}{ }^{*}=1$. Then we note that $\left(\bar{\Gamma}^{*} \cdot{\overline{Y_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=1$. Similarly to the case (2), we obtain the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l_{1}} \cup \widehat{l_{2}}$ in Fig. 8, and we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction.
3.3. The case $\overline{\mathcal{E}}=$ line + conic. Let $\overline{\mathcal{E}}=\overline{E_{1}}+\overline{E_{2}}\left(\overline{E_{1}}:\right.$ line,$\overline{E_{2}}$ : conic $)$ be the restriction of $\Delta$ to $\bar{X}$. Then ${\overline{E_{1}}}^{*}$ and ${\overline{E_{2}}}^{*}$ meet tangentially to the second order at one point, which is denoted by $P$. By Proposition 2.2(vi) and (vii), we know that $\bar{Y}^{*}$ consists of finite points and $\bar{H}^{*}=\bar{E}_{1}{ }^{*}$.

Lemma 3.14. (i) There exists only one line $l_{1}$ in $X$ through $x_{1}$ such that $l_{1} \not \subset$ $Y$.
(ii) ${\overline{l_{1}}}^{*} \subset{\overline{E_{2}}}^{*} \backslash\{P\}$.
(iii) $\bar{\Gamma}^{*} \cap \bar{E}^{*}=\bar{Y}^{*} \cup{\overline{l_{1}}}^{*}$ (at most five points).
(iv) $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{1}}=1,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{P}=7$.
(v) There exists a unique irreducible component $Y_{i_{1}}$ of $Y$ such that ${\overline{Y_{1}}}^{*}=\{P\}$.
(vi) $\left(\bar{\Gamma}^{*} \cdot \bar{E}_{1}{ }^{*}\right)_{P}=2$.
(vii) $\mathcal{Y}=2 Y_{i_{1}}+\sum_{i \neq i_{1}} k_{i} Y_{i}$.

Proof. Similarly to Lemma 3.3, we obtain (i),(ii) and (iii) easily. Since we can obtain (v) and (vii) by using (iv) and (vi), it suffices to show (iv) and (vi).
(iv) Since $\bar{x} \cap \overline{l_{1}}=\emptyset$, similarly to the proof of Lemma 3.8(i), we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{1}{ }^{*}}=1$. By using (iii), we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{P}=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)-\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=8-1=7$.
(vi) Let $\tau:\left(\mathbb{P}^{2}\right)^{\prime} \rightarrow \mathbb{P}^{2}$ be the blowing-up at $P$ with exceptional curve $e$. Let $\left(\bar{\Gamma}^{*}\right)^{\prime}$ and $\left({\overline{E_{i}}}^{*}\right)^{\prime}$ be the proper transforms of $\bar{\Gamma}^{*}$ and ${\overline{E_{i}}}^{*}$ by $\tau$ respectively. Here we note that ${\overline{E_{1}}}^{*},{\overline{E_{2}}}^{*}$ and $e$ meet only at one point, which is denoted by $P^{\prime}$, and that each pair of them meets transversally at $P^{\prime}$. By using (iv), we obtain $\left(\left(\bar{\Gamma}^{*}\right)^{\prime} \cdot\left({\overline{E_{2}}}^{*}\right)^{\prime}\right)_{\left(\mathbb{P}^{2}\right)^{\prime}, P^{\prime}}=6$, that is, $\left(\bar{\Gamma}^{*}\right)^{\prime}$ and $\left({\overline{E_{2}}}^{*}\right)^{\prime}$ meet tangentially to the sixth order at $P^{\prime}$. Hence $\left(\bar{\Gamma}^{*}\right)^{\prime}$ and $\left({\overline{E_{1}}}^{*}\right)^{\prime}$ meet transversally at $P^{\prime}$. Thus we obtain $\left(\left(\bar{\Gamma}^{*}\right)^{\prime} \cdot\left({\overline{E_{1}}}^{*}\right)^{\prime}\right)_{P^{\prime}}=1$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{P}=2$.

Proposition 3.15. One obtains the following two cases:
(i) $\mathcal{Y}=2 Y_{1}+2 Y_{2}\left(Y_{i}:\right.$ line $)$. In this case, $\bar{Y}_{1}{ }^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{{\overline{Y_{1}}}^{*}}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=2$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=7,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{I}_{1}}{ }^{*}=1$.
(ii) $\mathcal{Y}=2 Y_{1}+Y_{2}+Y_{3}\left(Y_{i}:\right.$ line $)$. In this case, $\bar{Y}_{1}^{*}=\{P\}$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{2}}{ }^{*}=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{3}}{ }^{*}=1$,
$\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{{\overline{Y_{1}}}^{*}}=7,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{\bar{l}_{1}}{ }^{*}=1$.
Moreover, for the cases (i) and (ii), one obtains the weighted dual graphs of $\widehat{Y} \cup E \cup \hat{l}$ of type (XIII) and (XIV) in Theorem 1 respectively.

Proof. By Lemma 3.14 and by using separation, we obtain the assertions.
3.4. Non-existence of the case $\overline{\mathcal{E}}=$ line + line + line. Let $\overline{\mathcal{E}}=\overline{E_{1}}+\overline{E_{2}}+\overline{E_{3}}\left(\overline{E_{i}}\right.$ : line) be the restriction of $\Delta$ to $\bar{X}$. Here we note that $\overline{E_{1}}, \overline{E_{2}}$ and $\overline{E_{3}}$ meet only at one point. We set $\{P\}:=\operatorname{Sing} \bar{E}^{*}$. Then we have the following two cases:
(1) $\bar{Y}^{*}$ consists of finite points;
(2) $\bar{Y}^{*}$ is a line.

### 3.4.1. The case $\overline{\boldsymbol{Y}}^{*}$ consists of finite points.

Lemma 3.16. (i) One may assume that $\bar{H}^{*}={\overline{E_{1}}}^{*}$.
(ii) There exist two lines $l_{1}$ and $l_{2}$ in $X$ through $x_{1}$ such that $l_{1}, l_{2} \not \subset Y$.
(iii) $\bar{l}_{i}^{*} \neq\{P\}(i=1,2)$.
(iv) One may assume that ${\overline{l_{1}}}^{*} \subset{\overline{E_{2}}}^{*} \backslash\{P\}$ and $\bar{l}_{2}{ }^{*} \subset{\overline{E_{j}}}^{*} \backslash\{P\}(j=2$ or 3$)$.
(v) $\bar{\Gamma}^{*} \cap \bar{E}^{*}=\bar{Y}^{*} \cup \bar{l}_{1}^{*} \cup \bar{l}_{2}{ }^{*}$ (at most six points).
(vi) $\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{l}_{i}^{*}}=1(i=1,2)$.

Proof. Similarly to Lemma 3.14, we obtain the assertions.
Proposition 3.17. The case $\bar{Y}^{*}$ consists of finite points cannot occur.
Proof. Since $1 \leq \sum_{Q \in{\overline{E_{2}}}^{*} \backslash\{P\}}\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{Q} \leq 2$ by Lemma 3.16(iv) and (vi), we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{2}}}^{*}\right)_{P} \geq 2$. Hence we know by using Lemma 3.16 (iii) and (v) that $P \in \bar{\Gamma}^{*}$ and that there exists a unique irreducible component $Y_{i_{1}}$ of $Y$ such that ${\overline{Y_{i}}}^{*}=\{P\}$. We note that $\sum_{i=1}^{2}\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{l}_{i}^{*}}=2$ and

$$
\sum_{i \neq i_{1}}\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{Y}_{i}}{ }^{*}=\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)-\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{{\overline{i_{1}}}^{*}} \leq 4-1=3 .
$$

Then we obtain

$$
\begin{aligned}
12=\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right) & =\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{P}+\sum_{i=1}^{2}\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{l}_{i}}+\sum_{i \neq i_{1}}\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{Y}_{i}} \\
& \leq\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{P}+5
\end{aligned}
$$

Hence we obtain $\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{P} \geq 7$. On the other hand, at most one of ${\overline{E_{1}}}^{*},{\overline{E_{2}}}^{*}$ and ${\overline{E_{3}}}^{*}$ meets $\bar{\Gamma}^{*}$ tangentially at $P$. Hence we obtain $\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{P}=\sum_{i}\left(\bar{\Gamma}^{*} \cdot{\overline{E_{i}}}^{*}\right)_{P} \leq 4+1+1=6$. This is a contradiction.
3.4.2. The case $\overline{\boldsymbol{Y}}^{*}$ is a line. By Proposition 2.2 (vii), we note that $Y=Y_{1} \cup Y_{2}$ where $Y_{1}$ is a line through $x_{1}$ and where $Y_{2}$ is not a line through $x_{1}$ and that $\bar{H}^{*}=$ $\bar{Y}^{*}=\bar{Y}_{2}{ }^{*}$. Then, similarly to Lemma 3.16 , we obtain the following:

Lemma 3.18. (i) ${\overline{Y_{2}}}^{*}$ is a line through $P$.
(ii) ${\overline{Y_{1}}}^{*}=\{P\}$.
(iii) There exist exactly three lines $l_{1}, l_{2}$ and $l_{3}$ in $X$ through $x_{1}$ such that $l_{1}, l_{2}, l_{3} \not \subset Y$.
(iv) ${\overline{l_{i}}}^{*} \subset \bar{E}^{*} \backslash\{P\}(i=1,2,3)$. One may assume that ${\overline{l_{1}}}^{*} \subset{\overline{E_{1}}}^{*} \backslash\{P\}$.
(v) $\bar{\Gamma}^{*} \cap \bar{E}^{*}={\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*} \cup{\overline{l_{2}}}^{*} \cup{\overline{l_{3}}}^{*}$ (exactly four points).
(vi) $\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{l}_{i}^{*}}=1(i=1,2,3)$.


Fig. 9.

## Proposition 3.19. The case $\bar{Y}^{*}$ is a line cannot occur.

Proof. By Lemma 3.18(vi), we obtain $\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{P}=\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)-\sum_{i=1}^{3}\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{\bar{l}_{i}}=9$. On the other hand, we obtain $\left(\bar{\Gamma}^{*} \cdot \bar{E}^{*}\right)_{P}=\sum_{i=1}^{3}\left(\bar{\Gamma}^{*} \cdot \bar{E}_{i}^{*}\right)_{P} \leq 4+1+1=6$. This is a contradiction.
3.5. Non-existence of the case $\overline{\mathcal{E}}$ is a cuspidal cubic. Let $\overline{\mathcal{E}}=\overline{E_{1}}\left(\overline{E_{1}}\right.$ : cuspidal cubic) be the restriction of $\Delta$ to $\bar{X}$. We put $\{P\}:=\operatorname{Sing} \bar{E}_{1}{ }^{*}$. By Proposition 2.2(vi), we see that $\bar{Y}^{*}$ is a line. By Proposition 2.2(vii), we note that $Y=Y_{1} \cup Y_{2}$ where $Y_{1}$ is a line through $x_{1}$ and where $Y_{2}$ is not a line through $x_{1}$ and that $\bar{H}^{*}=$ $\bar{Y}^{*}=\bar{Y}_{2}{ }^{*}$. Then we obtain the following:

Lemma 3.20. (i) There exists only one line $l_{1}$ in $X$ through $x_{1}$ such that $l_{1} \not \subset$ $Y$.
(ii) $\bar{\Gamma}^{*} \cap \bar{E}^{*}={\overline{Y_{1}}}^{*} \cup \bar{l}_{1}{ }^{*}$ (exactly two points).
(iii) $P \in{\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$.

Proof. Similarly to Lemma 3.18, we obtain (i) and (ii). Hence it suffices to show (iii). Now we have the following two cases:
(1) $P \notin{\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$;
(2) $P \in{\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$.

We assume that $P \notin{\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$. Then we easily obtain $\left({\overline{Y_{2}}}^{*} \cdot{\overline{E_{1}}}^{*}\right)=\left({\overline{Y_{2}}}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=3$, $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{l}_{1}{ }^{*}}=1$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{\bar{Y}_{1}}{ }^{*}=11$. Since we know the intersection of $\bar{\Gamma}^{*},{\overline{E_{1}}}^{*}$ and ${\overline{Y_{2}}}^{*}$, we obtain by using separation the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l_{1}}$. We note that $\widehat{Y} \cup E$ is the boundary curve of a smooth compactification of $\mathbb{C}^{2}$ which is not simple normal crossing. By applying the blowing-ups three times on $\operatorname{Sing} E_{1}$, we obtain the weighted dual graph of the simple normal crossing boundary of a smooth compactification of $\mathbb{C}^{2}$ in Fig. 9, where we denote by $\left(\widehat{Y}_{1}\right)^{\prime},\left(\widehat{Y}_{2}\right)^{\prime},\left(\widehat{l_{1}}\right)^{\prime}$ and $\left(E_{1}\right)^{\prime}$ the proper transforms of $\widehat{Y}_{1}, \widehat{Y}_{2}, \widehat{l}_{1}$ and $E_{1}$ respectively. By contracting suitable ( -1 )-curves in this boundary successively, we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction. Hence we obtain $P \in{\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}$.


Fig. 10.
We define a point $Q$ by $\{P, Q\}:={\overline{Y_{1}}}^{*} \cup{\overline{l_{1}}}^{*}=\bar{\Gamma}^{*} \cap{\overline{E_{1}}}^{*}$. Then we have the following two cases:
(1) The intersection of $\bar{\Gamma}^{*}$ and ${\overline{E_{1}}}^{*}$ at $P$ is tangential.
(2) The intersection of $\bar{\Gamma}^{*}$ and ${\overline{E_{1}}}^{*}$ at $P$ is not tangential.

Proposition 3.21. The case $\overline{\mathcal{E}}$ is a cuspidal cubic cannot occur.
Proof. (1) We assume that the intersection of $\bar{\Gamma}^{*}$ and $\bar{E}_{1}{ }^{*}$ at $P$ is tangential. Then we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{P}=3$ and $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{Q}=9$. Now we assume that ${\overline{l_{1}}}^{*}=\{Q\}$. Since $\bar{x} \cap \overline{l_{1}}=\emptyset$, by Proposition 2.2(v), $\bar{l}_{1}$ is a ( -1 )-curve in $\bar{X} \backslash \bar{x}$. Since $\left(\bar{\Gamma} \cdot \bar{l}_{1}\right)_{\bar{X}}=$ $\left(\overline{E_{1}} \cdot \bar{l}_{1}\right)_{\bar{X}}=1$, we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{Q}=1$. This is a contradiction. Hence we obtain ${\overline{Y_{1}}}^{*}=$ $\{Q\}$. From this and by Proposition $2.2($ vii $)$, we obtain $\left({\overline{Y_{2}}}^{*} \cdot{\overline{E_{1}}}^{*}\right)=\left({\overline{Y_{2}}}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{Q}=3$, that is, ${\overline{Y_{2}}}^{*}$ and ${\overline{E_{1}}}^{*}$ meet only at $Q$ tangentially to the third order. Similarly to the proof of Lemma 3.20, we obtain the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l_{1}}$ and, by applying the blowing-up at a certain point of $E_{1}$, we obtain the weighted dual graph of the simple normal crossing boundary of a smooth compactification of $\mathbb{C}^{2}$ in Fig. 10, where we denote by $\left(\widehat{Y}_{1}\right)^{\prime},\left(\widehat{Y}_{2}\right)^{\prime},\left(\widehat{l_{1}}\right)^{\prime}$ and $\left(E_{1}\right)^{\prime}$ the proper transforms of $\widehat{Y}_{1}, \widehat{Y}_{2}, \widehat{l}_{1}$ and $E_{1}$ respectively. By contracting suitable ( -1 )-curves in this boundary successively, we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction.
(2) We assume that the intersection of $\bar{\Gamma}^{*}$ and ${\overline{E_{1}}}^{*}$ at $P$ is not tangential. Then we obtain $\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{P}=2,\left(\bar{\Gamma}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{Q}=10$ and, similarly to (1), $\bar{Y}_{1}{ }^{*}=\{Q\}$. By Proposition 2.2 (vii), we obtain $\left({\overline{Y_{2}}}^{*} \cdot{\overline{E_{1}}}^{*}\right)=\left({\overline{Y_{2}}}^{*} \cdot{\overline{E_{1}}}^{*}\right)_{Q}=3$, that is, $\bar{Y}_{2}{ }^{*}$ and ${\overline{E_{1}}}^{*}$ meet only at $Q$ tangentially to the third order. Similarly to the proof of (1), we obtain the weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l}_{1}$ and, by applying the blowing-ups twice on a certain point of $E_{1}$, we obtain the weighted dual graph of the simple normal crossing boundary of a smooth compactification of $\mathbb{C}^{2}$ in Fig. 11, where we denote by $\left(\widehat{Y}_{1}\right)^{\prime},\left(\widehat{Y_{2}}\right)^{\prime},\left(\widehat{l_{1}}\right)^{\prime}$ and $\left(E_{1}\right)^{\prime}$ the proper transforms of $\widehat{Y}_{1}, \widehat{Y}_{2}, \widehat{l}_{1}$ and $E_{1}$ respectively. By contracting suitable $(-1)$-curves in this boundary successively, we obtain the weighted dual graph of the boundary of a minimal normal compactification of $\mathbb{C}^{2}$ which is not a linear tree. This is a contradiction.


Fig. 11.

## 4. Construction of Linearizing Automorphisms

In this section, we shall prove Theorems 2 and 3 . For each weighted dual graph of $\widehat{Y} \cup E \cup \widehat{l}$ of type (I) through (XIV) in Theorem 1, we know by its proof the shape of the divisor $\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})$ and the intersection of the divisors $\bar{\Gamma}^{*}$ and $\left(\left.\bar{\psi}\right|_{\bar{X}}\right)_{*}(\overline{\mathcal{E}})$. Hence, by Proposition 2.5 , we can write down the defining equation of $(X, Y)$ of the same type as in Theorem 2. Next we construct an automorphism of $\mathbb{C}^{3}$ which transforms the hypersurface $X \backslash Y$ of $\mathbb{C}^{3}$ onto a hyperplane of $\mathbb{C}^{3}$ which shows Theorem 3. It suffices to consider the defining equations of ( $X, Y$ ) of type (VI), (X), (XI) and (XII). Indeed, for the other types, we can easily construct such automorphisms, which are elements of the subgroup $J(3, \mathbb{C}) \vee A(3, \mathbb{C})$ of $\operatorname{Aut}\left(\mathbb{C}^{3}\right)$. Here we denote by $(x, y, z)$ a coordinate system of $\mathbb{C}^{3}$ and by $\operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z]$ the group of $\mathbb{C}$-algebra isomorphisms of the polynomial ring of three variables $x, y$ and $z$ over $\mathbb{C}$. Then we obtain the natural group isomorphism $\operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z] \xrightarrow{\sim} \operatorname{Aut}\left(\mathbb{C}^{3}\right), \sigma \mapsto \Phi_{\sigma}$, where $\Phi_{\sigma}$ is defined by

$$
\Phi_{\sigma}:\left\{\begin{array}{l}
x^{\prime}=\sigma(x) \\
y^{\prime}=\sigma(y) \\
z^{\prime}=\sigma(z) .
\end{array}\right.
$$

In the following, we shall mainly describe elements of $\operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z]$.
4.1. The type (VI). For this type, it suffices to consider the following hypersurface of $\mathbb{C}^{3}$ :

$$
\left(1+a_{1} x+a_{2} x^{2}\right) y+\left(a_{3} x+a_{4} x^{2}\right) y^{2}+x y^{3}+x^{3} z+a_{5} x^{2}=0
$$

where $a_{i}$ are complex parameters. After performing the two coordinate transformations $x^{\prime}:=x, y^{\prime}:=y+a_{5} x^{2}, z^{\prime}:=z$ and $x^{\prime \prime}:=x^{\prime}, y^{\prime \prime}:=y^{\prime}, z^{\prime \prime}:=z^{\prime}+p\left(x^{\prime}, y^{\prime}\right)$ where $p\left(x^{\prime}, y^{\prime}\right)$ is a suitable polynomial of $x^{\prime}$ and $y^{\prime}$, we obtain the following hypersurface $S_{1}$ of $\mathbb{C}^{3}$ :

$$
S_{1}:\left(1+a_{1} x+a_{2} x^{2}\right) y+\left(a_{3} x+a_{4} x^{2}\right) y^{2}+x y^{3}+x^{3} z=0
$$

where $a_{i}$ are complex parameters. Hence it suffices to construct an automorphism of $\mathbb{C}^{3}$ which transforms $S_{1}$ onto a hyperplane of $\mathbb{C}^{3}$. According to Proposition 2.2 in Rus-
sell [14], we define $\mathbb{C}$-algebra homomorphisms $\sigma_{1}, \tau_{1}: \mathbb{C}[x, y, z] \rightarrow \mathbb{C}[x, y, z]$ as follows:

$$
\begin{aligned}
& \sigma_{1}:\left\{\begin{array}{l}
\sigma_{1}(x):=x \\
\sigma_{1}(y):=f_{1}(x, y)+x^{3} z \\
\sigma_{1}(z):=\left\{g_{1}\left(x, \sigma_{1}(y)\right)-y\right\} / x^{3},
\end{array}\right. \\
& \tau_{1}:\left\{\begin{array}{l}
\tau_{1}(x):=x \\
\tau_{1}(y):=g_{1}(x, y)-x^{3} z \\
\tau_{1}(z):=\left\{y-f_{1}\left(x, \tau_{1}(y)\right)\right\} / x^{3},
\end{array}\right.
\end{aligned}
$$

where $f_{1}, g_{1} \in \mathbb{C}[x, y]$ are defined by

$$
\begin{aligned}
f_{1}(x, y):= & \left(1+a_{1} x+a_{2} x^{2}\right) y+\left(a_{3} x+a_{4} x^{2}\right) y^{2}+(x) y^{3}, \\
g_{1}(x, y):= & \left\{1-a_{1} x+\left(-a_{2}+a_{1}^{2}\right) x^{2}\right\} y+\left\{-a_{3} x+\left(3 a_{1} a_{3}-a_{4}\right) x^{2}\right\} y^{2} \\
& +\left\{-x+\left(2 a_{3}^{2}+4 a_{1}\right) x^{2}\right\} y^{3}+\left(5 a_{3} x^{2}\right) y^{4}+\left(3 x^{2}\right) y^{5} .
\end{aligned}
$$

Proposition 4.1. $\sigma_{1}, \tau_{1} \in \operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z]$ and $\sigma_{1}^{-1}=\tau_{1}$. In particular, the automorphism $\Phi_{\sigma_{1}}$ transforms $S_{1}$ onto a hyperplane of $\mathbb{C}^{3}$ and $\Phi_{\sigma_{1}}^{-1}=\Phi_{\tau_{1}}$.

Proof. First we check that $\sigma_{1}$ and $\tau_{1}$ can be defined as $\mathbb{C}$-algebra endomorphisms of $\mathbb{C}[x, y, z]$. Now we get the following equalities by computing directly:

$$
\begin{equation*}
f_{1}\left(x, g_{1}(x, y)\right) \equiv g_{1}\left(x, f_{1}(x, y)\right) \equiv y \quad \bmod \left(x^{3}\right) . \tag{1}
\end{equation*}
$$

By using (1), we obtain

$$
\begin{align*}
f_{1}(x, y) & \equiv f_{1}(x, y)+x^{3} z \equiv \sigma_{1}(y) \\
& \equiv f_{1}\left(x, g_{1}\left(x, \sigma_{1}(y)\right)\right) \quad \bmod \left(x^{3}\right) \tag{2}
\end{align*}
$$

By using (2) and (1) again, we obtain

$$
\begin{aligned}
y & \equiv g_{1}\left(x, f_{1}(x, y)\right) \equiv g_{1}\left(x, f_{1}\left(x, g_{1}\left(x, \sigma_{1}(y)\right)\right)\right) \\
& \equiv g_{1}\left(x, \sigma_{1}(y)\right) \quad \bmod \left(x^{3}\right) .
\end{aligned}
$$

Similarly, we obtain $y \equiv f_{1}\left(x, \tau_{1}(y)\right) \bmod \left(x^{3}\right)$. Thus we see that both of $\sigma_{1}(z)$ and $\tau_{1}(z)$ are polynomials of $x, y, z$ and hence we can define $\sigma_{1}$ and $\tau_{1}$ as $\mathbb{C}$-algebra endomorphisms of $\mathbb{C}[x, y, z]$. Since we can easily check $\sigma_{1} \tau_{1}(x)=\tau_{1} \sigma_{1}(x)=x$, $\sigma_{1} \tau_{1}(y)=\tau_{1} \sigma_{1}(y)=y$ and $\sigma_{1} \tau_{1}(z)=\tau_{1} \sigma_{1}(z)=z$, we obtain $\sigma_{1}, \tau_{1} \in \operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z]$ and $\sigma_{1}^{-1}=\tau_{1}$.
4.2. The types (X), (XI) and (XII). For these types, it suffices to consider the following hypersurface $S_{2}$ of $\mathbb{C}^{3}$ :

$$
S_{2}: y+x\left(x z+\sum_{i, j \geq 0} a_{i j} x^{i} y^{j}\right)=0
$$

where $a_{i j}$ are complex parameters. Now we construct an automorphism of $\mathbb{C}^{3}$ which transforms $S_{2}$ onto a hyperplane of $\mathbb{C}^{3}$. We define $\mathbb{C}$-algebra homomorphisms $\sigma_{2}, \tau_{2}$ : $\mathbb{C}[x, y, z] \rightarrow \mathbb{C}[x, y, z]$ as follows:

$$
\left.\begin{array}{l}
\sigma_{2}:\left\{\begin{array}{l}
\sigma_{2}(x):=x \\
\sigma_{2}(y):=y+x f_{2}(x, y, z) \\
\sigma_{2}(z)
\end{array}:=z-g_{2}(x, y, z),\right.
\end{array}\right\} \begin{aligned}
& \tau_{2}(x):=x \\
& \tau_{2}(y):=y-x f_{2}(x, y, z) \\
& \tau_{2}(z):=z+h_{2}(x, y, z),
\end{aligned}
$$

where $f_{2}, g_{2}, h_{2} \in \mathbb{C}[x, y, z]$ are defined by

$$
\begin{aligned}
& f_{2}(x, y, z):=x z+\sum_{i, j \geq 0} a_{i j} x^{i} y^{j}, \\
& g_{2}(x, y, z):=\sum_{i \geq 0, j \geq 1} a_{i j}\left\{\sum_{k=1}^{j}\binom{j}{k} y^{j-k} x^{k} f_{2}^{k}\right\} x^{i} / x, \\
& h_{2}(x, y, z):=\sum_{i \geq 0, j \geq 1} a_{i j}\left\{\sum_{k=1}^{j}\binom{j}{k}\left(y-x f_{2}\right)^{j-k} x^{k} f_{2}^{k}\right\} x^{i} / x .
\end{aligned}
$$

Proposition 4.2. $\sigma_{2}, \tau_{2} \in \operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z]$ and $\sigma_{2}^{-1}=\tau_{2}$. In particular, the automorphism $\Phi_{\sigma_{2}}$ transforms $S_{2}$ onto a hyperplane of $\mathbb{C}^{3}$ and $\Phi_{\sigma_{2}}^{-1}=\Phi_{\tau_{2}}$.

Proof. For any $j \geq 1$, we note that $x$ divides $\sum_{k=1}^{j}\binom{j}{k} y^{j-k} x^{k} f_{2}^{k}$ and $\sum_{k=1}^{j}\binom{j}{k}(y-$ $\left.x f_{2}\right)^{j-k} x^{k} f_{2}^{k}$. Therefore $g_{2}$ and $h_{2}$ are polynomials of $x, y, z$ and, in particular, $\sigma_{2}$ and $\tau_{2}$ can be defined as $\mathbb{C}$-algebra endomorphisms of $\mathbb{C}[x, y, z]$. Here we can check the equalities $\sigma_{2}\left(f_{2}\right)=\tau_{2}\left(f_{2}\right)=f_{2}$ by direct computation. By using these equalities, we can easily get $\sigma_{2} \tau_{2}(x)=\tau_{2} \sigma_{2}(x)=x, \sigma_{2} \tau_{2}(y)=\tau_{2} \sigma_{2}(y)=y$ and $\sigma_{2} \tau_{2}(z)=\tau_{2} \sigma_{2}(z)=z$. Hence we obtain $\sigma_{2}, \tau_{2} \in \operatorname{Aut}_{\mathbb{C}} \mathbb{C}[x, y, z]$ and $\sigma_{2}^{-1}=\tau_{2}$.

Acknowledgements. The author would like to express his hearty gratitude to Professor Mikio Furushima for his invaluable advices and encouragement. Furthermore, the author is grateful to the referee for his suggestions and corrections.

## References

[1] S.S. Abhyankar and T.T. Moh: Embeddings of the line in the plane, J. reine angew. Math. 276 (1975), 148-166.
[2] M. Artin: On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[3] A.I. Degatyarev: Classification of surfaces of degree four having a nonsimple singular point, Math. USSR Izvestiya, 35 (1990), 607-627.
[4] M. Furushima: On minimal compactifications of $\mathbb{C}^{2}$, Math. Nachr. 186 (1997), 115-129.
[5] M. Furushima: Errata to the paper "On minimal compactifications of $\mathbb{C}^{2}$ ", Math. Nachr. 193 (1998), 255.
[6] Y. Ishii: Classification of normal quartic surfaces, Master's thesis, Dept. of Math. Sci. Univ. Tokyo (1993).
[7] Y. Ishii and N. Nakayama: Classification of normal quartic surfaces with irrational singularities, preprint.
[8] K. Kodaira: Holomorphic mappings of polydiscs into compact complex manifolds, J. Diff. Geom. 6 (1971), 33-46.
[9] H.B. Laufer: On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[10] J. Morrow: Minimal normal compactifications of $\mathbb{C}^{2}$, Proc. Conf. Comp. Anal., Rice Univ. Studies, 59 (1973), 163-187.
[11] M. Nagata: Polynomial rings and affine spaces, Reg. Conf. Series in Mathematics 37, American Mathematical Society, 1978.
[12] T. Ohta: The structure of algebraic embeddings of $\mathbb{C}^{2}$ into $\mathbb{C}^{3}$ (the cubic hypersurface case), Kyushu J. Math. 53 (1999), 67-106.
[13] C.P. Ramanujam: A topological characterization of the affine plane as an algebraic variety, Ann. Math. 94 (1971), 69-88.
[14] P. Russell: Simple birational extensions of two dimensional affine rational domains, Compositio Math. 33 (1976), 197-208.
[15] P. Russell: Sufficiently homogeneous closed embeddings of $\mathbb{A}^{n-1}$ into $\mathbb{A}^{n}$ are linear, Can. J. Math. 48 (1996), 1286-1295.
[16] M. Suzuki: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace $\mathbb{C}^{2}$, J. Math. Soc. Japan, 26 (1974), 241-257.
[17] M. Suzuki: Affine plane curves with one place at infinity, Ann. Inst. Fourier (Grenoble), 49 (1999), 375-404.
[18] T. Takahashi, K. Watanabe and T. Higuchi: On the classification of quartic surfaces with a triple point. I, II., Sci. Rep. Yokohama Nat. Univ. Sect. I, 29 (1982), 47-70, 71-94.

Graduate School of Mathematics
Kyushu University
Hakozaki 6-10-1, Higashi-ku
Fukuoka, 812-8581, Japan
e-mail: ohta@math.kyushu-u.ac.jp
Current address:
Kyushu Kyoritsu University
Jiyugaoka, Yahatanishi-ku
Kitakyushu, 807-8585, Japan
e-mail: tohta@kyukyo-u.ac.jp

