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1. Introduction

The subject of this paper is a previously little studied object which we cidta
A lace of n components is represented by a disjoint unionmof arcs in the plane
which join n fixed points ton other fixed points. We take as the initial points of the
arcs the points (1 1) (2 1)..,(n, 1) and the final points of the arcs are (1, 0) (2 0),

..., (n,0) in some order.

There are several notions of equivalence of laces. Apart from the obvious notion
of isotopy in the plane there is a notion of 3-isotopy in which the interiors of the arcs
are allowed to move in the upper half space. There is also a notion of cobordism and
to each of the previous equivalences can be added a similar equivalence where the arcs
are allowed to lie in the extended Riemannian plane or sphere. Clearly isotopy implies
cobordism and, because the 3-isotopy has one extra dimensional freedom, it is weaker
than the cobordism.

Lemma 8. Cobordant laces are 3-isotopic.

Laces are a very natural generalisation of braids. Giveman -lace we can con-
struct ann -braid as follows: Consider the  -plane in which the lace lies as being the
horizontal planez = 0 in space with the -axis vertlcdh the upper half space add
vertical half lines with end pointsi,( ,1 0) and in the lower half space add vertical half
lines with end pointsi( 0 0). After a small isotopy the result is a braid with  strings.
Conversely given am -braid we can constructran -lace. Consider the braid as usual
with the strings running from top to bottom with the coordinate monotonic. Rotate
the braid about ther -axis so that the -axis becomesythe -axis (and the -axis be-
comes the {z)-axis). A projection gives a picture of a braid lying in the ¢ ) plane.
Starting from (one of) the bottom crossings push the over crossing string down the un-
dercrossing string to the bottom. Now repeat till all the crossings are eliminated. The
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1Although a lace will normally lie inR? = R? x {0}, we allow laces at other levels, typically in
R? x {1} when considering cobordism of laces.
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result is a special type of lace calledl@ver lacé, that is none of the arcs venture
into the regiony > 1. There is a bijection between braids and lower laces consisting
of the two above constructions.

Our initial interest in laces was due to the following group action. Cgt be the
group of automorphisms of the free group with  free generatgrs. ., x,, map-
ping eachx; to a conjugat@i_lx,w,. The groupC, has the following finite presenta-
tion:

(aij, 1 7j, 1<i,j<n|ajon = ooy, 065000 = 0o o),
oo = oy, for distineti, j, k, 1)

where «;; is defined bya;;(x;) = xj_lx,-xj and o;j(xx) = xi, for k 7 i. Elements ofC,

are calledbasis-conjugating automorphisni4].

The action ofoﬁ1 on ann -lacel is to replace thej -th compone#df by a con-
nected sum of; with the boundary of a regular neighborhood of the -th component
/; along a path not intersectingjin its interior.

One can easily see that this action respects the relations in the presentafipn of
provided the paths are well chosen. This action is well defined only up to the choice
of the paths. But the path choices are related by a cobordism involving two saddle
points. ThereforeC,, acts on cobordism classes of laces in the plane and on the sphere.
There are also actions of the braid group and of the framed braid group on pure laces.

Like braids, laces have closures which result in knots or links. The standard clo-
sure is to adjoin to a lace, semi-circular arcs in the lower half space fiom ( 0) to
(i,1). The result is a link with: bridgés The plat closure, or simply the plat, of a
2n-lace also results in a link with  bridges. Takea 2 -lace and adjoin  semi-circular
arcs in the upper half space fromi(2 1, 1) to (2, 1) ands semi-circular arcs in the
lower half space from (2-1, 0) to (2, 0). The link so obtained is the same as the plat
of the 2 -braid obtained by raising the endpoinfs (, /1) ,=,1.2, 2n vertically.

Theorem 7. A puren -lace has trivial closure if and only if it is in the orbit of
the trivial n-lace under the representative actions@f

Finally we prove the following theorem which is a variation of results due to
Otal [5, 6].

Theorem 16. Let ¢ be ann -lace whose closuréis a trivial n-component link.
There is an isotopy deformingto the plat of the trivial2n-braid such that the num-
ber of bridges is unchanged during the isotopy.

2Equivalent to thenormal dissection®f [1, p. 143].
3A 5-lace and its closure are shown in [1, Fig. 2.11b]
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Fig. 1.

2. Definition of laces and their various equivalences

2.1. Laces and their closures A lace ¢ is ann -tuple {i, ..., ¢,) of disjoint
simple arcs in thery -plan®&? = R? x {0} C R® such thatd/; = {(i, 1), (m¢(i), 0)} for
i=1,...,n, wherem, is a permutation of the s€tl, ..., n}, for some positive integer
n. Each arct; will be called acomponentbor, more precisely, theé th componenbf £.
A lace withn components will be called antlace The permutationr, will be called
the permutation typeof /. A lace whose permutation type is the identity permutation
will be called apure lace. A lace which lies in the region < 1 will be called alower
lace An oriented laceis a lace with each of its components oriented. Teferred
orientation on /¢ is the one which directs fromi,( 1) tarf(i), 0) for each component.
The i th spineof a lace is the segmert} x [0, 1] and thespine of an n-lace is the
union of thei -th spine foi =.1..,n. The closureof an n-lacel, denoted/, is the
union of simple closed curves in space obtained frotvy adding then semi-circles

{G,y,2) | y?+2°=1,z<0}, i=1,...,n.

Fig. 1 shows a pure 3-lace. The broken curves indicate the three semi-circles added for
the closure. Theplat closures or simply plats of a 2z -lace/ and a 2 -braidb  will be
denoted? and b, respectively.

2.2. Equivalences

2.2.1. Isotopy and=x-isotopy Two n-laces areisotopic if they are isotopic in
R? relative to the endpoints. Arivial lace is a lace which is isotopic to its spine.
For a x-isotopy we allow arcs to pass through the point at infinity. This is the same
as considering laces of?, the one-point compactification of they -plane. We will
denote the set of isotopy classes and the set-igbtopy classes ot -laces ds and
L}, respectively. Provided no confusion can result we will also call laces the elements
of L, and L} which they represent. We denote the subsefpf whose elements are
represented by lower laces WyL,

2.2.2. 3-isotopy Two n-laces are3-isotopicif they are isotopic inRS = R? x
[0, c0) relative to their endpoints. We will denote the set of 3-isotopy classes of -
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laces asL2. Pushing the interior of each component of a ldceff the xy-plane into
R3, we can represent the 3-isotopy class/oby a “string link”, again denoted by
L= (l,...,¥£,), satisfying the following conditions:

(1) 04 ={(,1,0), (me(i),0,0)}, fori =1,...,n.

(2) Thez coordinate of; has only one critical point, a local maximum.

2.2.3. Cobordism andx-cobordism Two n-laces? andm of the same permu-
tation type arecobordantif there exists a surfac& whose connected components are
n disjointly embedded locally-flat orientable surfaces ..., V, in R? x [0, 1] such
that, for eachi ,

(1) 4 x {0} = Vi nR? x {0},

(2) m; x {1} =V; NR2 x {1},

(3) aV; =4 x {0y um; x {1} U{(i, 1), (m¢(i), 0)} x [0, 1].

The word cobordismwill be used either to indicate the manifold , or the equiva-
lence relation “is cobordant to”. We will denote the set of cobordism classes of -
laces asLS . Allowing passages over the point at infinity, as instigotopy, we de-
fine x-cobordism We can interpret-cobordism as cobordism of laces §f. The set

of x-cobordism classes of -laces is denotedlfy.

ExampLE. In Fig. 3, (a}~(b) is an isotopy, (b)>(c) a cobordism, (¢}(d) a *-
isotopy and (a)>(d) a x-cobordism.
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Theorem 1. The obvious natural maps in the diagram below are all well defined
and surjective and the diagram is commutative.

L, — L — L3

! I/
LS — LS~

The proof of Theorem 1 will be delayed until after Lemma 8. Notice that laces
which are equivalent under any of the above relations have the same permutation type.
Therefore we can define the setd., PL*, PL3, PLS, PLS* of equivalence classes

of pure n -laces and hence the same statement of Theorem 1 holds for the following
diagram.

PL, — PL;} — PL?

! L/
PLS — PLS*
3. Laces and braids

We regard braids as placed vertically with respect toithe -plane. More precisely,
an n-braidb is properly embedded ®? x [0, 1] with b = {(i,0,0), G, 0, 1)| i =
1,...,n}. Let B, denote the group of -braids in which the multiplicatioh is de-
fined by stackinga oveb with respect to the -coordinate and scaling the result to
be fitted inRR? x [0, 1]. Given ann -lacef, we construct am -braig(¢) by attaching
to ¢; the line segment joiningi( ,1 0) ta,(,0 1) and pushing the interior of the new
arc into the half spac®3, for i = 1,...,n. Note that3(¢) is uniquely determined by
£. This is essentially the same as adding vertical half lines as described in Section 1.
The braid 3(¢) will be called the braid type of. This functions : L, — B, has a
right inverse. : B, — L, whose image id.L,, . We will describeusing path braids
A path n -braid is defined to be a simple path : [0,n + 1] — [0,n + 1] x (=1, 1)
such thatb(0) = (0, 0), b(n + 1) = (» + 1, 0) andb(i) = (x(i), 0) for some permuta-
tion = = 7, of the set{l,...,n}. See Fig. 4 for an example when = 4. The two
pathn -braids are said to be equivalent if they are isotopic relative to the paints, ( 0),
i =0,...,n+1 Thetrivial pathn -braidt is defined byt(z) = (¢, 0) for ¢ € [0, n + 1].

Let IT, denote the set of equivalence classes of path -braids. First we establish a bi-
jection A : I, — LL,. Given a pathn -braich, let d, be the disc with boundary

{0} x[0,1]U[0,n+ 1] x {1} U{n + 1} x [0, 1] U b([O, n + 1]). For an example see the
shaded region in Fig. 4. Given a path -braid we can define a lowerN@geby join-

ing the points {, 1) tob(i) by a collection of disjoint simple paths properly embedded
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©. 0) @ (n+1,0)

(@) (b)

I

Fig. 6.

in dy, see Fig. 5(a). The construction af ! : LL, — I1, should be clear from Fig. 5.

Now we construct a bijectioq : 1, — B,. Given a pathn -braic, there is an
isotopy h, :[Qn +1]x R — [0,n + 1] x R such thath, (0 0) = (0 0)h, n( +,1 0) =
(n+1,0), for all 0< ¢t <1, andh1(b) =t wheret is the trivial path braid. Lej(b) be
the braid represented by(%,(i,0),7) | i =1,...,n, 0 <t < 1}. Conversely, suppose
ann-braidb is given. We may assume tlhat is contained jm (0 xRL) [0, 1]. Then
there is a 2-dis® which is properly embedded inf0 *E]x][0, 1], which contains
b and whose boundary is the union Af= {0} x {0} x [0, 1], I, = {n+1} x {0} x [0, 1],
I3 =0, 1]x {0} x {1} and a curve in they -plane. This curve represents the path braid
u~L(b). Fig. 6 shows a path 4-braid together with the corresponding 4-braid.

We define. to be the compositiom ~1. Given a braidb ,.(b) can be obtained
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X ol

Fig. 8.

by the process described in Section 1. See Fig. 6.

The function . can also be seen by the action of the braid generatgrs =
1,...,n—1, as an isotopy of the plane described below. &ebé a homeomorphism
of R? which is fixed outside the open rectangie—(1/2,i + 3/2) x (-1, 1) and is,
as indicated in Fig. 8, the result of rotating the segmeént [ % 1D} through 180
clockwise. We define right actions eff, on a path braicb and a lacel/ by the for-
mulae

g

o

(b)
()

o

b-of
l-o

€ —
i —0;

fori=1...,n—1, e=+1. These actions extend to an action of the braid grBup
€i €i. €iy

Letb =o,'0, - 0,". Then

€

€ —€; —€;
2 Tk — 3 i
i i =0 O O]

a(2) =t-b=t-0i€1il-a

Ub)=1-b=1-0;% 020  =5," 7. (1)
wheret is the trivial path braid and 1 the trivial -lace.
Now we define a binary operation on laces Wym) — ¢m := ¢ - 3(m), which
makes the following diagram commutative.
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Ln X Ln B Ln

Bxp | LB

Bn X Bn — Bn

Then L, together with the triviah -lace becomes a monoid contairpg as a
direct product factor by the following theorem. L&, denote the sulpsé(1) of
L,. Elements ofK, have a trivial associated braid and we call tipseudo trivial
laces.

Theorem 2. The sequence
B
1-K,—L,—B,—1

is a split exact sequence of monoids.

Proof. The result follows from the existence of a right inversef 5 as de-
scribed above. O

Corollary 3. L,=K, x LL, ¥ K, x B, where the product is
(k1, b1)(k2, b2) = (k1, b1b»).

If k; andk, are pseudo triviah -laces, their productgk, = k1. So the monoid
structure collapses the pseudo trivial laces by a projection. Finding more a&hout
seems an interesting problem.

4. Actions on laces by automorphism groups of free groups

C, is the group of basis-conjugating automorphisms of the free gigup  mvith
free generatorsy, ..., x,, mapping eachy; to a conjugateflxiw,-. C, has the fol-
lowing finite presentation:

(agjy 17 J, 1<i,j<n|oayjouj = oujaij, Q;jorjQix = QigxC;jCj,

aijo = oggoj, for distineti, j, k, 1)

where oy; is defined bya;;(x;) = xj‘lx,-xj and a;;(x;) = xi, for k # i. For a proof
see [4].

The action ofa,.“f.1 on ann -lace? is to replacel; by a connected sum of the
boundary of a regular neighborhood &fand¢; along a simple path. To be more pre-
cise, we start by choosing a path which satisfies:
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lr, l3

(- az1)1

b3 1

Flg 9. /- -az

(1) b;; is a smooth simple path from an interior point of the comporfgrid an

interior point of the component; not intersecting any other part &f

(2) b;; is attached to the right hand side ©f with respect to the preferred ori-

entation.

Also choose a regular neighbourhodtl  @fcontaining the interior ob;; in its
interior such that = N N¢; = 0N N¢; is a connected arc. Define

ONU/Z;\o ifk=j
(- i = i\ . j,
Cy Ifk;é]

The condition (2) makes the preferred orientation 6f ¢;;); coherent with the anti-
clockwise orientation oDN. To defineé-a;l, we replace the condition (2) by

(3) b;; is attached to the left hand side 6f with respect to the preferred orien-

tation,
and use the same formula foé‘-(al.;l)k’s. The condition (3) makes the preferred ori-
entation of €~a,.;1)k opposite to the anticlockwise orientation oivV.

One can easily see that this action respects the relations in the presentafipn of
provided the paths are well chosen. This action is well defined only up the choice
of the pathsb;; but the path choices are related by a cobordism involving two sad-
dle points. ThereforeC, acts oh¢ , and hence Idj¥. This fact is an interesting
geometric interpretation of the Yang-Baxter equation — because the relatiods of
are (not taking into consideration the evident commutativity relations) the Yang-Baxter
equations. The induced action 6f, is trivial drf, because one can lift the interior
of the disc N off thexy -plane intdR? and shrink the aré&)N \ 6 to § in the disc.
Later we will need to distinguish th€,,  actions on cobordism classes of laces from
the repetitions of the construction above along a specific choice of the paths . We
will call the latter arepresentative actiownf C,.

5. Lace links

A link in R® or in $2 will be called alace link if it is the closure of a pure lace.
In fact, a lace link is a link whose bridge index is equal to the number of components.
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@i, 1) @i,1)
/ v \
(i. 0) (i.0)

sign = +1 Fig. 10. sign=—1

Let ¢ be a puren -lace. Suppose that the -th spine interseetth the compo-

nents¢;,, ..., ¢, in this order from {, 0) to i 1) with signs,,...,¢;, determined
as indicated in Fig. 10 where the arrows indicate the preferred orientation;Let
denote the unreduced Wonqi"l a;‘ in the lettersas, ..., a,. Then the link group

Gy =m(R3\ 2) has Wirtinger presentation
(ar, ..., ay | a; = )\i_la,-/\,-, i=1...,n)

where eachy; corresponds to the meridiary,of

x-isotopies may change the unreduced wakdsbut the presentation is unchanged
because the only possible changesJinby x-isotopies are insertions afjaj‘l or
a;*a; and left or right multiplications by; or;*. Notice that); is a longitude of
the component;.

Proposition 4. A lace link which is a homology boundary link is a trivial link.

Proof. Let/ be a puren -lace whose closufeis a homology boundary link.
Then there is an epimorphism @f, onto a rankn free groug, [8]. If is not a
trivial link, then the groupG, is a proper factor group of,, . Since a free group of
finite rank is Hopfian, this is impossible. O

Corollary 5. Let V be a cobordism or &-cobordism between two laces. Then
oV is a trivial link.

Proof. Notice that by an isotop§V can be made into a link with one maximum
for each component and so is a lace link and also a boundary link. By Proposition 4,
it is a trivial link. Il

Corollary 6. The closure of gpure) lace which is cobordant ok-cobordant to
a trivial lace is the trivial link.

Proof. The boundary of a cobordism between a pure fae@ad a trivial lace is
the same as the closufe Therefore by Corollary 5¢ is trivial. ]
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Fig. 11.

Theorem 7. A puren -lace has trivial closure if and only if it is in the orbit of
the trivial n-lace under the representative actions@f

Proof. The sufficiency is obvious since the representative action does not change
the link type of the closures.

Let ¢ be a puren -lace whose closure is the trivial link. By isotopies and by rep-
resentative actions of,, , we will deforhto its spine, component by component.

Suppose?; is the first component which is not deformed to its spine. Since the
group G, must be a free group, the workll is constructed from a power af; by
inserting the wordsz;a; * or a; 'a;, for some;j =1...,n, repeatedly. For each sub-

word of the forma;a; Lor a;laj, there corresponds a pair of intersections of the -th

spine and(;. Let § be the segment of the -th spine cut by the pair. Then there are no

other intersections on. Let ¢’ be the arc or?; which is cut by the same points. Then

dU ¢ is a simple closed curve bounding a diBc . Iletbe obtained by replacing;

by ¢ = (£; \ 6")Ud which is pushed off thé -th spine. If the digz2  contains no com-

ponent of¢’, then the changé — ¢ is an isotopy. If¢;, ..., ¢; are the components

of ¢ contained inD , the’ = ¢-(«,; - - - o, ;) Wheree is —1 if the anticlockwise ori-

entation ondU¢’ is coherent with the preferred orientation f and 1 otherwise. This

representative action can be performed along any disjoint paths ifside . Now we re-

place ¢ by ¢/ and continue this process until the woikgd becomes a word im; and

ai_l. By an isotopy as indicated in Fig. 11, we can make the sum of the powers of

in ); into zero. By similar processes as above, we can deforsn that); becomes

the empty word. If the dis®’ bounded by/; and thei -th spine contains no compo-

nents of¢ then we use isotopy to deforthinto its spine and proceed to the ( + 1)-st

component. If there are any components inside we can perform a representative

action of C,, as above to replack by its spine and proceed to the next component.
]
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Fig. 12.
Lemma 8. Cobordant laces ares-isotopic.

Proof. LetV be a cobordism between two -ladeandm . There is an orien-
tation preserving homeomorphist : R> — R? such that¢(4;) is the i -th spine and
o(i,1)=(, 1), fori =1,...,n. Theng(m) is a lace which is cobordant to the trivial
lace ¢(¢) with cobordisme x idjp 1j(V). According to Corollary 6¢(m) has the trivial
closure. As in the proof of Theorem 7, we can perform a series of representative ac-
tions of C, on¢(m) with a suitable choice of paths to deform it into the trivial lace.
Performing the same sequence of these representative actioms on , using the preim-
ages of the paths under, we get a lace which is isotopic to ]

To see that the converse of Lemma 8 is false, we consider the 24aamed ¢ of
Fig. 12. Suppose there is a cobordidrp of the first components of and ¢'. Then
0Vy has linking number 1 with the relative 1-c€l(1, 0)} x [0, 1] which is a part of
any cobordismV, of the second components éfand ¢’. ThereforeV; and V, cannot
be disjoint and hencé and ¢’ are not cobordant.

Proof of Theorem 1. The only difficult fact to check is the commutativity of the
triangle. By Lemma 8, we know that there is a well-defined surjectign — L2.
Since passages of arcs through the point at infinity can be realized by 3-isotopies, the
above map factors thought*. O

DeriniTion.  Let ¢ and m be twon -laces. We define— m as the link obtained
by taking the union ofn and the string link obtained by pushing the interiat ioto
R3. So for example — 1 is ¢, the closure off.

Theorem 9. Let ¢ and m be twon -laces with the same permutation type. The
following are equivalent
(1) ¢ andm are 3-isotopic.
(2) ¢—m is the trivial n-component link.
(3) ¢ andm are in the same orbit of th€, representative actions.
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Proof. (1»-(2) Since/ andm are 3-isotopic, the link6 — m andm — m are
equivalent. Obviously the latter is the -component trivial link.
(2)=(3) Let ¢ be a homeomorphism d&? which is isotopic to the identity map and
which maps the -th component of into the -th spine. Thhern, ¢(¢) — ¢(m) and
qT(Z) are all equivaleritlinks. Since/—m is the trivial n -component linkp(¢) is in the
orbit of the trivial lace¢(m) underC, representative actions, according to Theorem 7.
If we apply to? the same representative actions to maké into the trivial lace along
the preimages of the arcs used (), under¢, then we must get the lace
(3)=(1) This is clear. ]

Corollary 10. L§/C, = L? and PLS/C, = PL3.

Corollary 11. A pure n -lace is3-isotopic to the trivialn -lace if and only if its
closure is the trivialn -component link.

Theorem 12. A strongly slicé lace link is a trivial link.

Proof. Let¢ be a puren -lace whose closure is concordant to the trivial link.
Since the lower central series quotients are invariants of link concord@hgé€G ),
is isomorphic toF,/(F,),, for all ¢ [9]. Having n generatorsG, is isomorphic to
F, [3, p. 346]. Since only trivial links have fundamental group of their complement
free, ¢ is trivial. (]

6. Braid actions and plats

6.1. More group actions We introduce two more group actions on pure laces.
These actions permute and rotate the spines. Now consider the following example.

ExavpLE. The two 3-laces given in Fig. 13 as string links have the same clo-
sures. But they are not 3-isotopic. For each case, consider the loop obtained by the
third component together with the third spine in the complement of the first and sec-
ond components. In the case (b), the loop is not contractible. In fact, this loop is the
commutator of the two meridians, which are free generators of the fundamental group
of the exterior of the first and second components.

One can deform the lace in Fig. 13(a) to the one in (b) by these actions. These
actions give one more step toward the classification of lace links by laces.

6.1.1. The action of the groupB, of n-braids This action permutes the initial
and end points of the lace components. betbe one of the standard generators of
B,. Then/ © o; is the result of the isotopy oR? which rotates the segments { +

4In the strong sense, i.e., as ordered oriented links. This is true without the condition (2).
Sconcordant to a trivial link.
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Aty A0

(a) (b)
Fig. 13.

6@0’,‘

Fig. 14.

1] x {0, 1} through 180 and which is fixed outside a regular neighborhood of the
segments. The rotation is anticlockwise ani[ +1J1} and clockwise oni[i +1k
{0}. So the action is a combination of the lower actibno; considered in Section
3 and a similar but opposite action at the top. In Fig. 14, the change on the region
between the horizontal lines =0 = 1 is shown together with the endpoints of
laces.

6.1.2. The action of the groupFB, of the framed n-braids The groupFB,
of the framedn -braids is the semi-direct produgt x Z" with the action of B, on
Z" given by b - (m1,...,m,) = (Mr,),--.,Mxr,m) Wherem, is the permutation of
{1,...,n} determined by» in the usual way.

Now we look at the action of"'B, on laces. The action of the standard basis el-
emente; = (0...,0,1,0...,0) of Z" is the result of an isotopy oR? rotating the
i-th spine through 180 clockwise with the outside of a regular neighborhood of the
i-th spine fixed. This action results in reversing the preferred orientation on the -th
component.

The action of the framed braid generatgr permutes the components of the laces
in a way slightly different from the action of the braid group described above. This
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14 / ‘
lo (l'dB”, e,-)
Fig. 15.
l
{o (0[, idZn)
Fig. 16.

action is the result of an isotopy @2 which switches around the -th and ( + 1)-st

spines as in Fig. 16 keeping them upright throughout the isotopy and fixing the outside
of an open disc containing the two spines.

6.2. Plats of trivial braids Otal's results in [5, 6] imply that given any two
n bridge presentations of a trivial knot or a rational link, one can be isotoped to the
other without changing the number of bridges during the isotopy. We show the same
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for trivial links.

Lemma 13. Let b be a2n-braid whose pIatE is the trivial n-component link.
Then there exist embedded disBs i 51, ..., n, with the following properties
(1) UdD; = b.
(2) Each D; has no critical points with respect to the -coordinate function.
(3) Fori 7 j, D;ND; consists of finitely many disjoint ribbon intersections which are
located in distinct horizontal levels of the -coordinate function.

Proof. Letb, be the path 2 -braid ifiR? x {0} corresponding td . Consider the
2-disc D which gives the correspondence betwéen f@nith Section 3. See Fig. 6.
Inside D, there exish 2-discg i, = 1.,n, disjointly embedded iR =[0®2 +
1] x R x [0, 1] with

Od; = byi_1 Uby UbL U2 —1,2i]x {(0, 1)}

where b; is thej -th string ob and) is the subarc ofb, joining the bottom end

points of by;_; and by;. We may chooseD so that it does not have critical points in

the z-coordinate. Then thé ’s also do not have critical points inzthe -coordinate.
Let ¢ = ¢’ x idp 1y where¢’ is a homeomorphism dR? isotopic toidg. mapping

[2i — 1, 211 x {0} into thei -th spine and outside a regular neighborhood Jof;[2i —

1, 2]x {0} by an affine map. By hypothesis the lag@U(J;-,;([2i —1, 2 ]x {(0, 1)}))

is a string link representing the 3-isotopy class of the -la¢eb;). It must be no-

ticed that the lacep(Ubl) has a trivial closure. Therefore by Theorem 7, there is a

sequence of: -laced, ..., (? from ¢(Ub) to a trivial lace such that* is obtained

from ¢! by a representative action aﬁjlk along a pattp;, ; . To perform a represen-

tative action ofafjll, we need to take a regular neighbourhaéd of E?l containing the

interior of the pathb;,;, in its interior such that; = Nlrw?l = 8Nm€?1 is a connected

arc. Then/}, = 9N U (9 \ 61 and £} = (9 for j # j1. We will replaced;, by the disc,

again denoted;,, obtained fromd;, UN; by pushing intV;)Uint(é;) into R3. We may

choose the new/;, so that it has no critical points in the -coordinate and such that

di, Nd;, is a ribbon intersection contained in the level eFfor some 0< ¢; < 1.

We repeat this process so that the -th ribbon intersection lies in the deve} with

0 < ¢ <e¢jgforj=2.. p Then we obtain discg; i =,1..,n satisfying

conditions similar to (1)—(3). Now leD; 2~ (d;). Then we are done. O

Theorem 14. A 2n-plat presentation of am -component trivial link can be made
into the plat of the trivial2n-braid by the following three local moves together with
the 2n-braid relations.



LACES: A GENERALISATION OF BRAIDS 267

ne Il XK =TT K = [T

My M> M3

Proof. Letb be a2 -braid whose pIEtis a trivial n-component link. Then there
exist discsD; ,i = 1...,n, satisfying (1)—(3) in Lemma 13. Suppose that the ribbon
intersections lie in the levels =%, where 0< e; < --- < ¢, < 1. ThenUD; is
isotopic in R? x [0, 1] relative to R? x [0, 1] to a braid ofn bands with horizontal
ribbon intersections. Then the move$,, M, and M3 can be applied on the top of
the braid to obtain a trivial braid of bands. ]

Remarks. 1. Consider the moves?;, M), M5, M} and M%’ shown below. We
observe that the move&; and M; are equivalent up to braid relations. Likewigé
and M4, My and MJ’, M; and M4 are pairwise equivalent. But the moves#, and
M} are not equivalent unless the mod# is allowed.

=l XK =TT XK= T

M; M; M,

XK=

1"
M2

P =[]

"
M2

2. The movesM; and M3 on trivial 2n-braids give rise to braids of bands, which

are the same as framed -braids. Therefore these moves correspond to framed braid
actions on laces. On the other hand tfg-moves corresponds to the braid group ac-
tions on laces.

Looking at the changes on braids corresponding the mayesM, and M3, we
easily have

Corollary 15. The plat of a2n-braid represents the triviah -component link if
and only if the2n-braid is an element of the subgroup 8, generated by the fol-
lowing elements.

Q) 091, i=1,...,n
(2) 0202105405, i =1 ...,n—1 e==%1
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The subgroup ofB,, mentioned in Corollary 15 can be seen as the braid group of
n-bands with horizontal ribbon intersections as described in the proof of Theorem 14.

Theorem 16. Let ¢ be ann -lace whose closuréis a trivial n-component link.
There is an isotopy deformingto the plat of the trivial2n-braid such that the num-
ber of bridges is unchanged during the isotopy.

Proof. Let/ be a puren -lace whose closure is a trivial link. Then we can choose
a string link ¢/ = U¢] representing the 3-isotopy class ©fuch that/; is the union of
two arcs with no critical points in the -coordinate joining £1, 0) to ¢, +1, 1) and
the segmen{i} x [-1, 1] x {1}. Let ¢ be as in the proof of Lemma 13. Them(¢')
is a 2 -plat with the bottom segments missing. As in the proof of Theorem 14, we can
find ann -braid of bands with horizontal ribbon intersections bounding this 2 -plat. To
make then -braid of bands inte  straight bands, we consider the upside-down version
of the movesM;, M, and M3 on its bottom. Applyings, these moves correspond to
the B, actions and thé'B, actions. The number of bridges is unchanged under these
moves. ]

Corollary 17. A puren -lace whose closure is the trivial link can be transformed
into the trivial n-lace by theB, actions and thEB,  actions.
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