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ENRIQUES SURFACES COVERED BY JACOBIAN

KUMMER SURFACES

HISANORI OHASHI

Abstract. This paper classifies Enriques surfaces whose K3-cover is a fixed

Picard-general Jacobian Kummer surface. There are exactly 31 such surfaces.

We describe the free involutions which give these Enriques surfaces explicitly.

As a biproduct, we show that Aut(X) is generated by elements of order 2,

which is an improvement of the theorem of S. Kondo.

§1. Introduction

A K3 surface is a simply connected compact complex surface whose

canonical bundle is trivial. Every Enriques surface appears as a quotient of

a K3 surface by a fixed-point-free (shortly, free) involution. Theoretically,

to consider an Enriques surface is equivalent to consider the pair of the

covering K3 surface and the free involution. For example, the period map for

Enriques surfaces is constructed under this description. But the properties

of free involutions on a fixed K3 surface are rather unclear to us. The

existence is already a special property, their geometric realizations and the

isomorphism classes of the quotient Enriques surfaces are other problems.

For a fixed K3 surface X, two quotient Enriques surfaces are isomorphic

if and only if the two free involutions are conjugate in Aut(X). In [16] it is

shown that the number of the conjugacy classes of free involutions (and more

generally, of finite subgroups) are finite. There this number, i.e., the number

of isomorphism classes of quotient Enriques surfaces, is computed for K3

surfaces with Picard number ρ = 11 or for Kummer surfaces associated with

the product of two elliptic curves whose periods are very general.

The aim of this paper is to study fixed-point-free involutions on surfaces

studied in [11], [12]. Let C be a smooth projective curve of genus 2. Its

Jacobian variety J(C) is the abelian surface parametrizing divisor classes

on C of degree 0. The quotient surface J(C)/{±1J(C)} has 16 nodes and
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can be embedded into P3 as a quartic hypersurface. We call it the Kummer

quartic surface associated with C and denote by Km(J(C)) =: X. The

minimal desingularization Km(J(C)) =: X of Km(J(C)) is called the Ja-

cobian Kummer surface associated with C, which is a K3 surface. X is

Picard-general if the Picard number of X equals 17, the minimum possible

value. In what follows, X will always be a Picard-general Jacobian Kummer

surface except for Sections 2 and 4.

In [13], Mukai observed that there exist three kinds of free involutions

on X.

• A switch associated with an even theta characteristic β.

• A Hutchinson-Göpel (shortly HG) involution associated with a Göpel

tetrad G.

• A Hutchinson-Weber (shortly HW ) involution associated with a We-

ber hexad W .

Essentially these automorphisms date back more than a century, but

their freeness are found only recently in comparison. Mukai studied HG

involutions in connection with the numerically reflective involutions of En-

riques surfaces. Also he conjectured that these are the all free involutions on

X. In this paper we prove the following theorem and confirm the conjecture.

Theorem 1.1. On a Picard-general Jacobian Kummer surface X,

there are exactly 31 = 10+15+6 free involutions up to conjugacy in Aut(X).

10 are switches, 15 are HG involutions and 6 are HW involutions.

In [12], Kondo proved that Aut(X) is generated by 32 translations

and switches, 32 projections and correlations, 60 HG involutions, and 192

Keum’s automorphisms. One point of the proof was that 192 Keum’s au-

tomorphisms did not correspond in one-to-one way to the 192 facets of the

polyhedral cone introduced by Borcherds and Kondo. Moreover they had

infinite order while the others had order 2. In this respect, it can be ex-

pected that there exist 192 involutions which correspond in one-to-one way

to the 192 facets of the polyhedral cone and together with the 32 + 32 + 60

involutions they generate Aut(X). In fact, the HW involutions work well.

Theorem 1.2. Aut(X) is generated by the following involutions:

translations, switches, projections, correlations, HG involutions and HW

involutions.
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This is a biproduct of the proof of Theorem 1.1.

The proof of Theorem 1.1 is given in the following way. In Section 2 we

introduce an invariant of a free involution, called a patching subgroup, which

is a subgroup of ANS(X) = NS(X)∗/NS(X). This subgroup appears natu-

rally in the light of Nikulin’s theory of lattices [15]. Under some condition,

we can show the invariance of the patching subgroup under conjugations.

Section 3, Proposition 3.4 shows conversely two free involutions are conju-

gate if their patching subgroups are the same, when X is a Picard-general

Jacobian Kummer surface. Simultaneously we see that X has no more than

31 non-isomorphic Enriques quotients. These two Sections reduce the proof

of Theorem 1.1 to concrete computations of patching subgroups of free in-

volutions itemized above. The occurence of 31 distinct patching subgroups

shows Theorem 1.1. The computations are worked out in Sections 5–7.

The result shows that the generators of patching subgroups are expressed

in terms of the classical notions. It is summarized as follows.

In the switch case, let β be an even theta characteristic and σβ be the

switch. β corresponds to a pair of Rosenhain subgroups R1, R2. Then the

patching subgroup Γσβ
is cyclic of order 4 and generated by

H/4 +
∑

α∈R1

Nα/2.

Of course we obtain the same group after replacing R1 by R2 in this case.

In the HG involution case, let G be a Göpel tetrad and σG be the

HG involution. Then the patching subgroup ΓσG
is 2-elementary abelian of

order 4 and generated by

H/2 and
∑

α∈G

Nα/2.

We remark that this result of HG involution case also follows from the

computations of [13].

In the HW involution case, let W be a Weber hexad and σW be the

HW involution. Then the patching subgroup ΓσW
is cyclic of order 4 and

generated by

H/4 +
∑

α∈W

Nα/2.

The divisors H,Nα ∈ NS(X) and also the classical notions appeared here

will be defined in Section 4, where we recall the basic properties of Jacobian

Kummer surfaces. After fixing the basis of ANS(X), we can easily check that

there appear 31 distinct patching subgroups.
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Notation. We refer the readers to [15] for the basic properties of the

finite quadratic form (AL, bL, qL) associated with an even nondegenerate

lattice L. By definition, AL is the finite abelian group L∗/L, bL : AL×AL →
Q/Z is the symmetric bilinear form and qL : AL → Q/2Z is the quadratic

form, both naturally induced from that of L. Usually we denote finite forms

by (AL, qL), omitting bL, or only by AL.

The hyperbolic plane is denoted by U , the root lattices Al, Dm, En are

considered to be negative definite. The rank one lattice 〈2n〉 is also used in

this paper. On finite forms, u(2) is the associated form of the lattice U(2),

〈1/2n〉 is that of 〈2n〉. The set of generators {e, f} of u(2) satisfying

q(e) = q(f) = 0, b(e, f) = 1/2

is called the standard generator.

For a lattice T and k = Q, C we denote the scalar extension by Tk. If

T is a lattice and TC is equipped with a Hodge structure, then AutHodge(T )

is a subgroup of O(T ) whose elements preserve the Hodge decomposition.

§2. The method of counting

In this section X is any K3 surface. Let σ be a free involution on X.

The (−1)-eigenspace of the action of σ on NS(X) is denoted by K. Then it

is well-known that K is negative definite, contains no (−2)-element and the

primitive hull of K⊕TX in H2(X, Z) is isometric to U⊕U(2)⊕E8(2) =: N .

We choose a marking φ : K ⊕ TX → N for this isometry.

The nonzero global holomorphic 2-form ωX on X determines via φ a

point in D(N)/O(N), which is the period of the Enriques surface Y := X/σ,

where

D(N) := {Cω ∈ P(NC) | ω ∈ N ⊗ C, ω · ω = 0, ω · ω > 0}

is the (two copies of) bounded symmetric domain of type IV associated to

lattice N of signature (2, 10). Obviously this period is independent of the

choice of φ and the Torelli theorem of Enriques surfaces says that this point

determines the isomorphism class of Y uniquely.

Conversely given a primitive embedding φ : TX → N such that the

orthogonal complement K is free from (−2)-elements, by the surjectivity

there exists an Enriques surface Y whose period is exactly [φ(CωX)]. If

ρ(X) ≥ 12 then [10, Theorem 1] shows that X is isomorphic to the universal

double cover of Y . Even if ρ(X) ≤ 11 the same holds, whose proof is in [17].

Thus we have shown
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Proposition 2.1. There is a one-to-one correspondence between the

sets

{Enriques quotients of X}/(isomorphisms)

and






Primitive embeddings φ : TX → N
such that K = T⊥

X contains
no (−2)-elements







/

(Hodge isometries of N),

where for each φ we equip N with a Hodge structure induced from that of

TX by φ.

In the following, we identify K ⊕ TX with N by φ. By [15], there

are subgroups ΓK ⊂ AK and ΓTX
⊂ ATX

and a sign-reversing isometry

ϕ : ΓK
∼
→ ΓTX

such that N is the sublattice of KQ ⊕ TX,Q generated by K,

TX and {(x, ϕ(x)) | x ∈ ΓK}.

Definition 2.2. The patching subgroup Γσ of the free involution σ is

the inverse image of ΓTX
by the natural sign-reversing isometry ANS(X)

∼
→

ATX
.

Under a condition, Γσ is an invariant of a conjugacy class which is very

computable.

Proposition 2.3. If AutHodge(TX) = {± id}, then Γσ depends only on

the isomorphism class of the quotient Enriques surface.

Proof. By Proposition 2.1, conjugate free involutions induce on N an

isometric Hodge structure. Any Hodge isometry of N preserves K = ω⊥
X

and hence TX . Thus it induces ± id on TX and preserves the subgroup

ΓTX
.

Remark 2.4. The condition above is weak. It is true if ρ(X) is odd,

see [12, p. 597], or even if ρ(X) is even, it is true if X is very general in the

period domain ([16, Proposition 3.1]).

In general there are free involutions not conjugate each other but with

the same Γσ. However in the Picard-general Jacobian Kummer case, Γσ

completely classifies free involutions. This will be shown in the next section.

The computation of Γσ is done by



170 H. OHASHI

Lemma 2.5. Let σ, K as above. Then

Γσ = {[x] ∈ NS(X)∗/NS(X) | ∃[y] ∈ K∗/K, x− y ∈ NS(X)}.

Proof. Let ρ : ANS(X) → ATX
be the canonical isomorphism. Then

ρ([x]) = [z] is equivalent to x + z ∈ H2(X, Z). Since ΓTX
= {[z] ∈ T ∗

X/TX |
∃[y] ∈ K∗/K, y + z ∈ N},

Γσ = {[x] ∈ NS(X)∗/NS(X) | ρ([x]) ∈ ΓTX
}

= {[x] ∈ NS(X)∗/NS(X) | ∃[y] ∈ K∗/K, x− y ∈ NS(X)}.

This is what we need.

§3. Invariants of free involutions

Let C be a genus 2 curve, J(C) its Jacobian and Km(J(C)) = X the

associated Jacobian Kummer surface as in the Introduction. As is well-

known, J(C) contains C as a theta divisor:

Θ = {[p − p0] | p ∈ C} ⊂ J(C), p0 ∈ C.

Hence rankNS(J(C)) ≥ 1 and rankNS(X) ≥ 17 holds. When we have the

equality, we call X Picard-general. In this case, since TJ(C) = U⊕2 ⊕ 〈−2〉

we have TX = U(2)⊕2 ⊕ 〈−4〉 and NS(X) = U ⊕D⊕2
4 ⊕D7.

For simplicity, we put T := TX . Suppose we are given a primitive

embedding of T into N such that the orthogonal complement is free from

(−2)-elements, as in Proposition 2.1. First we determine the orthogonal

complement.

Proposition 3.1. The lattice K = T⊥
X is isometric to E7(2).

Proof. Consider the unique embedding of N into the abstract K3 lat-

tice L. The orthogonal complement is denoted by M , M ≃ U(2) ⊕ E8(2).

By [15], we have the following isomorphism of discriminant quadratic forms:

(3.1) −qK ≃ (qM ⊕ qT |Γ⊥)/Γ

where Γ is the pushout (i.e. the graph) of a sign-reversing isometry of sub-

groups ΓM ⊂ AM and ΓT ⊂ AT .

For a finite quadratic form (A, q), we denote the quadratic form induced

on the 2-torsion subgroup A2 = {x ∈ A | 2x = 0} by (A2, q2). Note that

even if q is nondegenerate, q2 may be degenerate.
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In our equality (3.1), AM is 2-elementary, hence Γ is 2-elementary and

ΓT is contained in (AT )2. Put #Γ = 2a. This shows a ≤ 5 = l2(AT ), where

l2 denotes the number of minimal generators of the 2-Sylow subgroup of

AT .

Also it follows

(3.2) ((AM ⊕AT )2|Γ⊥)/Γ ⊂ (AM ⊕AT |Γ⊥)/Γ = AK ,

since Γ is 2-elementary. (AM ⊕ AT )2 has a radical of order 2 contained in

(AT )2. Since Γ is a graph, this radical is not contained in Γ. This shows

that #((AM ⊕ AT )2|Γ⊥) = 215−a. Thus the order of the left-hand-side of

(3.2) is 215−2a. Since K is of rank 7, we have 15−2a ≤ 7 and hence a = 4, 5.

We show that if a = 5 then K contains (−2)-elements and contradicts

the assumption. For this, first note that in this case ΓT = (AT )2 is uniquely

determined and the embedding of ΓT in AM ≃ u(2)⊕5 is unique up to

isomorphism by Witt’s theorem. So we can compute qK directly and get

qK ≃ u(2)⊕2 ⊕ 〈1/4〉. From this we see that there are inclusions K ⊂ K ′ ⊂
〈−1〉⊕7 such that K ′ is an even lattice, [K ′ : K] = 4 and [〈−1〉⊕7 : K ′] = 2.

By the definition of D7, K ′ ≃ D7. Consider the Dynkin diagram of D7

and take a subgraph isomorphic to A6 with vertices e1, . . . , e6 in this order.

Put f0 = 0, fj = e1 + · · · + ej , 1 ≤ j ≤ 6. Any difference of two of these

seven elements have self-intersection (−2). If K has no (−2)-elements, then

{fj}0≤j≤6 cannot be in the same residue class of K ′/K. Then we must have

[K ′ : K] ≥ 7 and contradiction.

Thus we obtain a = 4. From (3.2), we see that #(AK)2 ≥ 27. It follows

that K(1/2) is an integral (may be odd) lattice and det K(1/2) = −2.

By assumption, the minimal norm of the positive definite lattice K(−1/2)

is greater than 1. It follows from [3, p. 400, Table 15.8] that K(1/2) ≃
(〈−2〉⊥ in E8) ≃ E7.

The following nature of the lattice K = E7(2) will be used.

Lemma 3.2. The canonical homomorphism σ : O(K)→ O(qK) is sur-

jective.

Proof. The same property for the lattice E8(2) is known by [1]. We

reduce the lemma to this case. Firstly, we know the orders of the two groups.

By [2], #O(E7(2)) = #O(E7) = 210 · 34 · 5 · 7. On the other hand, we can

easily compute the order of O(qK) as #O(qK) = #O(u(2)⊕2 ⊕ 〈1/4〉) =

210 · 34 · 5 · 7 (c.f. Lemma 3.3). Thus it is enough to show that σ is injective.
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We take a (−4)-element r of E8(2) and identify K with r⊥. Obviously

g ∈ ker σ can be extended to an isometry g of E8(2) by defining g(r) = r.

It is clear that g acts on the discriminant AE8(2) trivially. It follows from

[1, Proposition 1.7] that g = ± id. Since g(r) = r, g = id.

Because (AK , qK) ≃ u(2)⊕3 ⊕ 〈1/4〉, the next lemma is also used.

Lemma 3.3. Let (A, q) = u(2)m ⊕ 〈1/4〉 be a finite quadratic form.

Then the action of O(q) on A decomposes A into 6 orbits. If we denote the

standard generator of one of u(2) by {e, f} and that of 〈1/4〉 by {g}, they

are as in the following table.

a representative length square

0 1 0
2g 1 1
e 22m − 1 0
e + f 22m − 1 1
g 22m + 2m 1/4
e + f + g 22m − 2m −3/4

In this table, for a representative x, the length is #(O(q) ·x) and the square

is q(x) ∈ Q/2Z.

The proof is given by induction on m and we omit it.

Now we are going to describe the latter set of Proposition 2.1, i.e., we

classify the Hodge structures on N induced from embeddings T ⊂ N as in

the proposition. We recall Definition 2.2, there is an isomorphism

(3.3) qN ≃ (qK ⊕ qT )|Γ⊥/Γ,

where Γ is the pushout of a sign-reversing isometry of subgroups ΓK ⊂ AK

and ΓT ⊂ AT . By Proposition 2.3, ΓT is an invariant of the Hodge structure.

We will prove the converse. Namely, suppose we have two embeddings

T ⊂ N1 and T ⊂ N2 whose orthogonal complements are denoted by Ki.

For each embedding we have (Γi,ΓK,iΓT,i) and the equality (3.3). What we

want to show is

(∗) : ΓT,1 = ΓT,2 =⇒ N1 ≃ N2 (Hodge isometry).
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The argument goes as follows. Assume we could find an isometry σK :

AK1
→ AK2

such that the following commutes.

AK1
⊃ ΓK,1

∼
−−−−→ ΓT,1 ⊂ AT

σK





y

σK





y





y
id





y
id

AK2
⊃ ΓK,2

∼
−−−−→ ΓT,2 ⊂ AT

Then by Lemma 3.2 we can lift σK to σ′
K : K1

∼
→ K2 and the pair (σ′

K , idT )

can be lifted to an Hodge isometry N1
∼
→ N2. Thus it is enough to find σK .

By Proposition 3.1, [N : K ⊕ T ] = #Γ = 4. Thus there are two possi-

bilities of underlying groups of ΓK ≃ ΓT . We consider each case separately.

First we consider the case ΓT,i ≃ Z/4Z. The square of the generator

gT ∈ ΓT,1 = ΓT,2 is independent of the choice and there are two possibilities,

qT (gT ) = −1/4 or 3/4. Let (gK,i, gT ) ∈ Γi. We have qKi
(gK,i) = 1/4 or −3/4

respectively. By Lemma 3.3, in these cases we can find σK and (∗) is proved.

We find easily that there are 10 subgroups ΓT satisfying qT (gT ) = −1/4.

Also there are 6 with qT (gT ) = 3/4.

Second we consider the case ΓT ≃ Z/2Z⊕Z/2Z. The argument becomes

slightly complicated, but the conclusion is the same. To prove (∗) in this

case, first we show that Γi always contains a particular element. Here,

for a clear argument, we take generators gi and g′ of 〈1/4〉 ⊂ AKi
and

〈−1/4〉 ⊂ AT respectively. We denote an element of AKi
⊕AT by

(x, y; z,w) ∈ AKi
⊕AT ; x ∈ u(2)⊕3, y ∈ 〈1/4〉, z ∈ u(2)⊕2, w ∈ 〈−1/4〉.

Then the claim is that

(0, 2gi; 0, 2g
′) ∈ Γi.

In fact, since Γi is contained in (AKi
⊕AT )2, the radical element (0, 2gi; 0, 0)

of (AKi
⊕ AT )2 is in Γ⊥

i . Hence its residue class (0, 2gi; 0, 0) + Γi de-

termines an element of ANi
by the isomorphism (3.3). It is nonzero be-

cause qKi
(2gi) = 1. Since ANi

is nondegenerate, there exists an element

(x, y; z,w)+Γi ∈ ANi
with (0, 2gi; 0, 0)·(x, y; z,w) = 1/2. It follows y = ±gi.

Further since (qKi
⊕ qT )(x, y; z,w) ∈ Z, it follows w = ±g′, i.e., there exists

an element in Γ⊥
i of the form (x,±gi; z,±g′). Since the residue class of this

element is of order 2 in ANi
, we have that (0, 2gi; 0, 2g

′) ∈ Γi.

Let ΓT,1 = ΓT,2 = 〈2g′, α〉. Replacing α by α + 2g′ if necessary, we can

assume qT (α) = 0. Let (βi, α) ∈ Γi, qKi
(βi) = 0. By Lemma 3.3, we can
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find σK : AK1

∼
→ AK2

which takes β1 to β2. This σK must take 2g1 to 2g2,

so we have now proved (∗). There are 15 possible ΓT in this case.

In summary, we have obtained the following.

Proposition 3.4. Let X be a Picard-general Jacobian Kummer sur-

face. Then free involutions σ1, σ2 are conjugate if and only if the patching

subgroups Γσ1
, Γσ2

coincide. There exist (at most) 31 = 10 + 15 + 6 free

involutions.

The existence of 31 free involutions is assured by concrete constructions

in the following sections.

§4. The (16)6 configuration on a Jacobian Kummer surface

In this section we recall and prepare notations concerning the divisors on

Jacobian Kummer surfaces. The content of this section is known, references

are [11], [12], [4].

The index set. Let C be a smooth projective curve of genus 2. It is a

double cover of P1 which ramifies at 6 Weierstrass points {p1, . . . , p6} ⊂ C.

Here we should notice the linear equivalence

pi + pj + pk − pl − pm − pn ∼ 0

for an arbitrary permutation {i, j, k, l,m, n} of {1, . . . , 6}. The set of theta

characteristics of C is by definition

S(C) = {D ∈ Pic(C) | 2D ∼ KC}.

They are divided into odd theta characteristics {[pi] | i = 1, . . . , 6} and

even ones {[pi + pj − pk] | i, j, k are distinct each other}. There are 16

theta characteristics.

The Jacobian variety J(C) consists of divisor classes of degree 0 on C.

We denote by J(C)2 the set of sixteen 2-torsion points of J(C). Then

J(C)2 = {0} ∪ {[pi − pj] | i 6= j}.

These 16 + 16 = 32 divisor classes naturally correspond to partitions of

the set {1, . . . , 6} into two subsets in the following way.

[pi] ∈ S(C)←→ {i} ∪ {i}c.

[pi + pj − pk] ∈ S(C)←→ {i, j, k} ∪ {i, j, k}c.

[pi − pj ] ∈ J(C)2 ←→ {i, j} ∪ {i, j}
c.

0 ∈ J(C)2 ←→ ∅ ∪ {1, . . . , 6},
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where the complement is taken in the set {1, . . . , 6}. We denote these par-

titions by exhibiting one of the subsets, surrounded by [ ]. For example,

p1−p2 corresponds to [12] = [3456], p1+p2−p3 corresponds to [123] = [456],

etc. [∅] is denoted by [0]. In this notation, we see that the symmetric dif-

ference of subsets α, β of {1, . . . , 6} corresponds to addition or difference in

Div(C) as follows.

[α ⊖ β] = [α]− [β] if [α], [β] ∈ S(C),

[α ⊖ β] = [α] + [β] otherwise.

When we use a partition [α] as an index, [ ] will be omitted.

The (16)6 configuration. The sixteen theta divisors on J(C) corre-

sponding to β ∈ S(C) are

Θβ = {[p − β] ∈ J(C) | p ∈ C}.

The sixteen nodes {nα ∈ X | α ∈ J(C)2} on X = J(C)/{±1} are the

images of α ∈ J(C)2. On the minimal desingularization X of X , nα is

blown up to give a smooth rational curve Nα on X. The tropes Tβ ⊂ X and

Tβ ⊂ X are the strict transforms of Θβ. Hence we obtain 32 (−2)-curves

{Nα, Tβ}α,β on X. The incidence relation between these divisors is called

the (16)6 configuration. It is given explicitly by

(Nα, Nα′) = −2δα,α′ , (Tβ, Tβ′) = −2δβ,β′ ,

(Nα, Tβ) = 1⇐⇒ α + β ∈ {[1], [2], [3], [4], [5], [6]}.

A permutation of the set {Nα, Tβ}α,β which preserves the incidence

relation above is called an automorphism. Nikulin [14] showed that the

automorphism group is isomorphic to (Z/2Z)5 ⋊S6, where (Z/2Z)5 consists

of automorphisms induced from translations by elements of J(C)2 ∪ S(C)

and S6 acts on the index set {1, . . . , 6}. We took our notations as above

because this S6-action is best seen.

Translations with respect to α ∈ J(C)2 are geometrically realized on

J(C). They induce automorphisms tα of X. These are the translations in

the classical terms. In the next section we will see that translations with

respect to β ∈ S(C) are also geometrically realized by σβ ∈ Aut(X). These

σβ are the switches. On the other hand, in general the action of S6 cannot

be lifted to an automorphism of X.
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Remark . In [11] (in the reference) and [12], the notations are a little

different. To adjust notations of [12] to ours, first we regard p0 of [12] as

our p6. Then the correspondence is as in below.

[12] N0 Ni Nij T0 Ti Tij

ours N0 Ni6 Nij T6 Ti Tij6

Lemma 4.1. ([12]) For β ∈ S(C), let Λ(β) := {α ∈ J(C)2 | (Nα, Tβ) =

1}. Then the divisor class of

H = 2Tβ +
∑

α∈Λ(β)

Nα

is independent of β and coincides with the pullback of the hyperplane section

by the morphism X → X ⊂ P3.

Lemma 4.2. ([12]) Assume that X is Picard-general.

1. NS(X) is generated over Z by {Nα, Tβ}α,β .

2. {H,Nα}α is an orthogonal basis of NS(X)Q over Q.

3. A generator set of the discriminant group ANS(X) is given by

e1 = (N26 + N12 + N36 + N13)/2, f1 = (N16 + N12 + N46 + N24)/2,

e2 = (N26 + N12 + N46 + N14)/2, f2 = (N16 + N12 + N36 + N23)/2,

g = H/4 + (N0 + N16 + N26 + N12)/2.

Special subsets of nodes. Lastly we mention several special subsets

of nodes of X. See also [4]. We identify the set of nodes with J(C)2 which is

a 4-dimensional vector space over F2. We have then the symplectic bilinear

form

([α], [α′]) 7−→ #(α ∩ α′) mod 2,

where we regard α, α′ as subsets of {1, . . . , 6}.

A 2-dimensional subspace G is called Göpel if it is totally isotropic

with respect to this bilinear form. The translations of Göpel subgroups are

called Göpel tetrads. There are 60 Göpel tetrads. A 2-dimensional subspace

R which is not Göpel is called Rosenhain and its translations Rosenhain

tetrads. There are 80 Rosenhain tetrads. A Weber hexad is a set with 6

elements which can be written as the symmetric difference of a Göpel tetrad
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and a Rosenhain tetrad. It can be shown that every Weber hexad is of one

of the following forms

(4.1) {0, ij, jk, kl, lm,mi} or {ij, jk, ki, il, jm, kn}

according to whether it contains 0 or not. There are 192 Weber hexads.

In the following sections, we introduce automorphisms using these spe-

cial subsets.

§5. Switches

Switches are one kind of automorphisms found by F. Klein [8]. The

freeness in even cases is an easy consequence of the description of [9], al-

though it is implicit there. Let β ∈ S(C). For a smooth point a ∈ X, which

means that the preimage of a in J(C) is {a,−a}, the divisors ta(Θβ) and

t−a(Θβ) intersect at two points, which is of the form

ta(Θβ) ∩ t−a(Θβ) = {b,−b}.

The switch is defined by σβ : a 7→ b.

More theoretically, these switches are defined as the composite of the

Gauss map

G : P3 ⊃ X 99K X
∗
⊂ (P3)∗,

which maps a smooth point a to TaX, and the projective linear isomorphism

Fβ : X
∗
−→ X,

defined for each β. See [9].

σβ is a birational involution of X. Hence it induces an involution of X,

which we denote by the same σβ. We can easily check that σβ interchanges

Nα with Tα+β for ∀α ∈ J(C)2.

Proposition 5.1. For an even theta characteristic β, σβ is a free in-

volution on X.

Proof. Suppose a smooth point a ∈ X is a fixed point of σβ. This is

equivalent to ta(Θβ)∩t−a(Θβ) = {a,−a} and it is necessary that a ∈ ta(Θβ),

0 ∈ Θβ. This is untrue if β is even.

On the other hand, the divisor Nα is disjoint from Tα+β , so σβ has no

fixed points.
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Remark . (1) The proof above does not use the assumption of being

Picard-general. Thus switches for even theta characteristics are always free

involutions.

(2) The fixed point set of a switch for an odd theta characteristic is a

curve of genus 5, named after Humbert.

Let σβ be a free switch. In the following computation, we take the case

β = [123] for simplicity. We can obtain the result for other cases by the

action of S6. Let K be the (−1)-eigenspace of the action of σ123 on NS(X)

as in Section 2.

Proposition 5.2. For Picard-general X, K is generated over Z by the

following elements.

f = N15 − T146, e2 = T145 −N16, e3 = N45 − T6, e4 = T123 −N0,

e5 = N12 − T3, e6 = T124 −N34, e7 = N24 − T134,

e1 = −(1/2)(f + 2e2 + 3e3 + 4e4 + 3e5 + 2e6 + e7).

Proof. We can check that {f, e2, . . . , e7} spans a sublattice of K iso-

morphic to A7(2). We now show e1 ∈ NS(X). Modulo NS(X),

e1 ≡ (f + e3 + e5 + e7)/2

≡ (N15 + N45 + N12 + N24)/2 + (T146 + T6 + T3 + T134)/2

= (N15 + N45 + N12 + N24)/2

+

(

H

2
· 4−

1

2

∑

α∈Λ([146])∪Λ([6])∪Λ([3])∪Λ([134])

Nα

)

/2

= (N15 + N45 + N12 + N24)/2 + H −
1

4

∑

α∈J(C)2−{[15],[45],[12],[24]}

2Nα

≡
∑

α∈J(C)2

Nα/2.

The blow up Ĵ(C) of J(C) at points of J(C)2 is the double cover of X

branched exactly over
⋃

α Nα. Thus e1 ∈ NS(X) follows.

Then it is easy to check that {e1, e2, . . . , e7} spans a sublattice of K

isomorphic to E7(2). By Proposition 3.1, they coincide.

Proposition 5.3. The patching subgroup of σ123 is the cyclic group

generated by the element [x = H/4 + (N0 + N12 + N23 + N31)/2] ∈ ANS(X).
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Proof. The facts x ∈ NS(X)∗ and y := −(e1+e5+e7)/4+e5/2+e6/2 ∈
K∗ are easily checked. We use Lemma 2.5. We first check x− y ∈ NS(X).

This is because

y = (1/8)(f + 2e2 + 3e3 + 4e4 + 5e5 + 6e6 − e7)

= H/4− (N14 + N24 + N34 + N56)/2

and

x− y = (1/2)(N0 + N12 + N23 + N31 + N14 + N24 + N34 + N56)

≡ T123 − T4 ≡ 0.

Thus [x] ∈ Γσ123
. Then since [x] is of order 4 in ANS(X) and #Γσ123

= 4,

Γσ123
is generated by [x].

Observation. In the expression of [x], {n0, n12, n23, n31} is a Rosen-

hain subgroup defined in Section 4. The class of −x can be written as

[H/4+ (N0 +N45 +N56 +N64)/2], where {n0, n45, n56, n64} is also a Rosen-

hain subgroup. In general, for an even theta characteristic β, the 6-set Λ(β)

(see Lemma 4.1) can be uniquely written in the form R1 ⊖ R2 where Ri are

Rosenhain subgroups. In our case β = [123], R1 = {n0, n12, n23, n31} and

R2 = {n0, n45, n56, n64}.

Proposition 5.4. The patching subgroup of σβ for general β is gener-

ated by [H/4+(
∑

α∈R Nα)/2] where R is one of the two Rosenhain subgroups

corresponding to β.

Proof. When β = [123], this is Proposition 5.3. Since the action of S6

is compatible with the observation above, the general case follows.

By Proposition 5.4, we can write down the generator of the patching

subgroup of the switch σβ for all β. We use the notations of Lemma 4.2.

β [123] [124] [125] [126] [134]

e1 + f2 + g e2 + f1 + g e1 + f1 + e2 + f2 + g g f1 + f2 + g

β [135] [136] [145] [146] [156]

f1 + g e1 + g f2 + g e2 + g e1 + e2 + g

Since all these are distinct each other, we see that the ten switches are not

conjugate each other in Aut(X) if X is Picard-general.
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§6. Hutchinson’s involutions associated with Göpel tetrads

These automorphisms appear in [7]. The generic freeness is found by

J. H. Keum in [10]. We briefly recall the construction. Let G be a Göpel

tetrad. If we choose G as the reference points of the homogeneous coordi-

nates of P3, the equation of X becomes

A(x2t2 + y2z2) + B(y2t2 + z2x2) + C(z2t2 + x2y2) + Dxyzt

+ E(yt + zx)(zt + xy) + G(zt + xy)(xt + yz) + H(xt + yz)(yt + zx) = 0,

for suitable scalars A, . . . ,H. σG is the Cremona involution

(x, y, z, t) 7−→ (1/x, 1/y, 1/z, 1/t).

For a translation t = tα, we have σt(G) = tσGt, so that we can restrict

ourselves to the case G is a Göpel subgroup. But any Göpel subgroup

is of the form {n0, nij , nkl, nmn} hence up to S6 we can assume G0 =

{n0, n12, n34, n56}. By [11], the induced action of σG0
on NS(X) is given by

Nα ←→ H −N0 −N12 −N34 −N56 + Nα, for α = [0], [12], [34], [56]

T1 ←→ T2, T3 ←→ T4, T5 ←→ T6,

T134 ←→ T234, T123 ←→ T124, T125 ←→ T126.

Proposition 6.1. The (−1)-eigenspace K of σG0
is generated over Z

by the following elements.

g = N0 + N12 + N34 + N56 −H,

e5 = T1 − T2, e1 = T3 − T4, e7 = T5 − T6,

f = T134 − T234, e3 = T123 − T124, h = T125 − T126,

e2 = (1/2)(f + g + h− e3), e4 = (1/2)(f − e1 − e3 − e5),

e6 = (1/2)(f + h− e5 − e7).

Proof. e1, e3, e5, e7, f, g, h ∈ K generate a sublattice of K isomorphic

to A1(2)
⊕7. It is easy to see that e2, e4, e6 ∈ NS(X). For example, modulo

NS(X),

e2 ≡ (1/2)(H + N0 + N12 + N34 + N56

+ T123 + T124 + T125 + T126 + T134 + T234)

= 2H + N0 − (1/2)
∑

α∈J(C)2

Nα.
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and as in Section 5 e2 ∈ NS(X). e4, e6 are similar.

Then we see that e1, . . . , e7 span a lattice isomorphic to E7(2).

Proposition 6.2. The patching subgroup of σG0
is 2-elementary abeli-

an and generated by

x = (N0 + N12 + N34 + N56)/2, and y = H/2.

Proof. This proposition is proved in the same way as Proposition 5.3.

The corresponding element in K∗/K is x′ = (e1+e3)/2, y′ = (e1+e5+e7)/2

and we can check x− x′, y − y′ ∈ NS(X). Then we use Lemma 2.5.

By the S6-symmetry, we obtain the following.

Proposition 6.3. For any Göpel subgroup G, we have ΓσG
= 〈H/2,

(1/2)
∑

α∈G Nα〉.

More generally, using the translation relation σt(G) = tσGt, the genera-

tor above is valid for any Göpel tetrad.

There are 15 Göpel subgroups. Under the notations of Lemmas 4.1 and

4.2, we deduce the following table.

The tetrad Patching element corresponding to x

[0] + [12] + [34] + [56] e1 + f1 + e2 + f2
[0] + [12] + [35] + [46] f1 + e2

[0] + [12] + [36] + [45] e1 + f2
[0] + [13] + [24] + [56] e1 + f1 + 2g
[0] + [13] + [25] + [46] e1 + f1 + f2 + 2g
[0] + [13] + [26] + [45] f2
[0] + [14] + [23] + [56] e2 + f2 + 2g
[0] + [14] + [25] + [36] f1 + e2 + f2 + 2g
[0] + [14] + [26] + [35] f1
[0] + [15] + [23] + [46] e1 + e2 + f2 + 2g
[0] + [15] + [24] + [36] e1 + f1 + e2 + 2g
[0] + [15] + [26] + [34] f1 + f2
[0] + [16] + [23] + [45] e1

[0] + [16] + [24] + [35] e2

[0] + [16] + [25] + [34] e1 + e2

Since all these are distinct each other, we see that the 15 Hutchinson invo-

lutions are not conjugate each other in Aut(X) if X is Picard-general.
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Remark . In [13] it is shown that if (C,G) is bielliptic, then the invo-

lution σG cannot be defined.

§7. Hutchinson’s involutions associated with Weber hexads

These automorphisms appear in [5], [6]. The freeness is found in [4].

We fix a Weber hexad W . Then the linear system L = |OX(2) −W | with

the assigned base points at W defines an another quartic model XW of X

in P4,

XW : s1 + · · ·+ s5 = 0, λ1/s1 + · · ·+ λ5/s5 = 0,

where λi are nonzero constants.

σW is the Cremona involution

σW : (s1, . . . , s5) 7−→ (λ1/s1, . . . , λ5/s5),

preserving XW . It is free if X is Picard-general [4]. For any translation

t = tα, we have σt(W ) = tσW t as in the Hutchinson case. Hence we can

assume that the Weber hexad doesn’t contain n0. Then recalling (4.1) in

Section 4, we have only one Weber hexad W0 = {n12, n23, n31, n14, n25, n36}
up to the action of S6. In the following we discuss this case.

Lemma 7.1. ([4]) σW0
interchanges the following 10 pairs of smooth

rational curves.

(N0, T123), (N56, T1), (N46, T2), (N45, T3), (N15, T124),

(N16, T134), (N24, T125), (N26, T146), (N34, T136), (N35, T236).

Proposition 7.2. The (−1)-eigenspace K of σW0
is generated over Z

by the following elements.

e1 = T2 −N46, e2 = N15 − T124, e3 = T1 −N56,

e4 = N0 − T123, e5 = T3 −N45, e6 = N34 − T136,

e7 = N23 −N56 −N34 −N24 − T134 − T124.

Proof. By computing the determinant, we can see that 10 divisors

(7.1) N0 + T123, . . . ,N35 + T236

from Lemma 7.1 span over Q the invariant sublattice. e1, . . . , e6 ∈ K is

easy. e7 ∈ K follows from the fact that e7 is orthogonal to all of the divisors

in (7.1). Then e1, . . . , e7 spans the lattice E7(2) ≃ K.
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Remark . The action of σW on NS(X) is very complicated, but essen-

tially we can write down this action using the proposition above. In fact we

find the following.

Let W be a general Weber hexad. The “degree 1 part” W1 of W is the

set
{

β ∈ S(C)

∣

∣

∣

∣

(

Tβ,
∑

α∈W

Nα

)

= 1

}

.

W1 consists of 6 elements. We have a natural bijection µ : W →W1 defined

by (Nα, Tµ(α)) = 1. On the other hand, for α 6∈ W , we have the unique

decomposition

W = G ⊖ R, G ∩R = {nα}.

Let R⊥ be the 2-dimensional affine subspace of J(C)2 which is orthogonal

to R and contains nα. Then R⊖R⊥ is a Rosenhain hexad, i.e., R⊖R⊥ is of

the form Λ(β) for some β ∈ S(C). This defines a bijection µ′ : J(C)2−W →
S(C)−W1, α 7→ µ′(α) = β. Using these data, the action of σW is as follows.

σW (Nα) = 3H −
(

∑

α∈J(C)2

Nα

)

/2−
(

∑

α∈W

Nα

)

− Tµ(α), if α ∈W.

σW (Nα) = Tµ′(α), if α 6∈W.

σW (H) = 9H −
(

∑

α∈J(C)2

Nα

)

− 4
(

∑

α∈W

Nα

)

.

Proposition 7.3. The patching subgroup of σW0
is cyclic and gener-

ated by

x = (3/4)H + (1/2)(N12 + N23 + N31 + N14 + N25 + N36).

Proof. The corresponding element in K∗/K is

y =
1

4
e1 +

1

2
e2 +

1

2
e4 +

3

4
e5 +

1

4
e7,

and we check x− y ∈ NS(X).

By the S6-symmetry and the translation relation, we obtain

Proposition 7.4. For general W , the patching subgroup of σW is

ΓσW
=

〈

(3/4)H +
(

∑

α∈W

Nα

)

/2

〉

.
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There are 12 Weber hexads modulo translations. One more relation is

hidden in the remark above. For α 6∈W , we have the unique decomposition

W = G ⊖ R, G ∩ R = {nα}. Let R⊥ be the orthogonal complement of R

at nα and let W⊥
α be the Weber hexad G ⊖ R⊥. Then σW and σW⊥

α
are

conjugate, related by σW⊥
α

= σµ′(α)σW σµ′(α). Modulo this relation, we have

6 Weber hexads. Under the notations of Lemmas 4.1 and 4.2, their patching

subgroups are as follows.

Weber hexad patchings

[12] + [23] + [31] + [14] + [25] + [36] e1 + f1 + e2 + g

[12] + [13] + [23] + [24] + [15] + [36] f1 + e2 + f2 + g

[23] + [13] + [12] + [34] + [25] + [16] e2 + f2 + g

[24] + [23] + [34] + [14] + [25] + [36] e1 + f1 + f2 + g

[25] + [23] + [35] + [54] + [21] + [36] e1 + e2 + f2 + g

[26] + [23] + [36] + [64] + [25] + [13] e1 + f1 + g

Thus we see that there are 6 HW involutions that are not conjugate each

other in Aut(X) if X is Picard-general.

Remark . (1) In a forthcoming paper we will be able to determine when

σW is not free.

(2) The 6 conjugacy classes of HW involutions are naturally “dual” to

the 6 Weierstrass points, in the sense that the S6 action on both factors

through an outer automorphism. Details are as follows. There are 20 Weber

hexads W which don’t contain n0 and conjugate each other. Writing W

uniquely as W = G ⊖ R with G ∩ R = {n0}, we can associate with such

W the Göpel subgroup G. But a Göpel subgroup G = {n0, nij, nkl, nmn} is

determined just by the “syntheme” (ij)(kl)(mn) ∈ S6. Thus we obtain 20

synthemes from the conjugacy class. The fact is that there appear only 10

synthemes, and the synthemes not appearing here form a “total”, which is

the classical description of the dual of the 6-set {1, . . . , 6}.
(3) The method of this paper is applicable to the case of Picard-general

quartic Hessian surfaces of [4]. In this case we have exactly one Enriques

quotient.

Proof of Theorem 1.2. Let N ′ be the group generated by 16 translations

tα, 16 switches σβ, 16 projections pα, 16 correlations pβ, 60 HG involutions

σG, 192 HW involutions σW . The theorem follows from the following lemma

as in [12, Lemma 7.3].
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Lemma 7.5. Let φ be an isometry of NS(X) that preserves the ample

cone. Then there exists a g ∈ N ′ such that gφ ∈ Aut(D′).

Proof. Let w′ = 2H −
∑

Nα/2 be the projection of the Weyl vector

w. Let v = φ(w′) and let g ∈ N ′ be an element that attains the minimum

min{(g(v), w′) | g ∈ N ′}. If r is the Leech root corresponding to [12, Lemma

4.6, Case (0), (1), (2)], then as in [12] we have (r′, g(v)) > 0.

If r is the Leech root corresponding to [12, Lemma 4.6, Case (3)], then

it corresponds to some Weber hexad W and [12, Remark 6.3, (1)] can be

rewritten as

4r′ = 3H − 2
∑

α∈W

Nα.

Using Proposition 7.2 and its Remark, we have

σW (w′) = w′ + 8r′.

Thus, we have

(g(v), w′) ≤ (g(v), σ−1
W (w′)) = (g(v), w′) + 8(g(v), r′),

(g(v), r′) > 0.

Hence g(v) ∈ D′.

Remark . Unfortunately, Aut(X) cannot be generated only by the sub-

set

S = {tα, σβ , σG, σW | α ∈ J(C)2, β ∈ S(C),

G: Göpel tetrad, W : Weber hexad},

introduced in this paper. It is easy to see that for any element ϕ written as

a product of elements in S, we have (w′, ϕ(w′)) ∈ 4Z. But the projection

pα have (w′, pα(w′)) = 26.
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