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VECTOR SEMI-FREDHOLM TOEPLITZ OPERATORS

AND MEAN WINDING NUMBERS

DMITRY YAKUBOVICH

Abstract. For a continuous nonvanishing complex-valued function g on the

real line, several notions of a mean winding number are introduced. We give

necessary conditions for a Toeplitz operator with matrix-valued symbol G to

be semi-Fredholm in terms of mean winding numbers of detG. The matrix

function G is assumed to be continuous on the real line, and no other apriori

assumptions on it are made.

§1. Introduction and main result

Let C+ = {z ∈ C : Im z > 0} be the upper half-plane in the complex

plane C. Let 1 ≤ p < ∞. We recall that the classical Hardy space Hp(C+)

consists of analytic functions f in C+ such that

‖f‖
def
=

(
sup
y>0

∫

R

|f(x+ iy)|p dx

)1/p

is finite. It is a Banach space for any p as above. The space H∞(C+) is

defined as the Banach space of bounded analytic functions in C+. We refer

to the book [18] for an account of the theory of Hp spaces of the upper

half-plane and of the unit disc. Functions in Hp(C+) have non-tangential

boundary limit values on R, which permits us to identify Hp(C+) with a

closed subspace of Lp(R). We put Hp = Hp(C+), 1 ≤ p ≤ ∞.

For any function space Ψ, we denote by ΨR the set of its real elements

and by Ψr, Ψr×r, respectively, the spaces of r × 1 vector-valued functions

and of r × r matrix-valued functions with entries in Ψ. If A is a scalar

or matrix functional algebra, we denote by GA the set of all its invertible

elements.
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Let the natural number r be fixed and let G ∈ L∞
r×r(R). The vector

Toeplitz operator TG with the symbol G acts on the vector Hardy space H2
r

by the formula

(1.1) TGx = P+

(
G · x

)
, x ∈ H2

r ,

here P+ is the orthogonal projection of L2
r(R) onto its closed subspace H2

r .

A (bounded linear) operator K on a Banach space B is called normally

solvable [21], [28] if its image is closed. K is called a Φ+-operator (a Φ−-

operator) if it is normally solvable and dim KerK < ∞ (dim CokerK =

dimB/RangeK < ∞, respectively). We denote by Φ±(B) these classes of

operators on B. Operators in Φ+(B) ∪ Φ−(B) are called semi-Fredholm.

Operators in Φ(B) = Φ−(B) ∩ Φ+(B) are called Fredholm.

The index of a semi-Fredholm operator is defined by

IndK = dim KerK − dimCokerK;

its values are integers or ±∞. A semi-Fredholm operator is Fredholm if and

only if its index is finite.

Fredholm and semi-Fredholm operators have several important proper-

ties. For instance, the product of two Φ± operators is again a Φ± operator,

and the formula Ind(K1K2) = Ind(K1) + Ind(K2) holds for K1, K2 both in

Φ+(B) or in Φ−(B). We refer to [21], [28] for detailed expositions of the

theory of these classes and for applications.

We put Cb = Cb(R) to be the Banach space of all continuous uniformly

bounded functions on R with the supremum norm. Our paper is devoted to

finding necessary conditions for semi-Fredholmness and Fredholmness of TG
for the case whenG is an r×r matrix function, whose entries are in Cb. Such

questions appear naturally in connection with the Riemann-Hilbert problem

on the real line. This problem appears in many different situations, such

as various problems in mechanics of continuous media and hydrodynamics

[3], [8], [9], [29], [40], inverse scattering method for integrable equations [1],

linear control theory of systems with delays [16], convolution equations and

systems on finite intervals (see [13], [25], and others). The case of infinite

index often appears in these applications.

First we quote the following well-known result.

Theorem A. (see [13, Thm. 16.3(b)]) The condition |detG| ≥ ε > 0

is necessary for TG to be semi-Fredholm.
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We will always assume this condition to be fulfilled.

For a function G ∈ Cbr×r which has limits at ±∞, TG is semi-Fredholm

iff it is Fredholm, and a complete criterion for it is known (see [15] or [13]).

In a particular case, when G(−∞) = G(+∞), TG is Fredholm if and only if

|detG| ≥ ε > 0 on R, and

(1.2) IndTG = −winddetG,

where wind stands for the winding number (around the origin). So our main

concern is about symbols that have no limits at −∞ or at +∞.

Let BMO = BMOR be the space of real-valued functions on R of

bounded mean oscillation. We recall that BMO consists of those locally

integrable functions f on R that satisfy

(1.3) ‖f‖BMOR

def
= sup

J

1

|J |

∫

J

∣∣f − fJ
∣∣ ≤ C,

where the supremum is taken over all finite subintervals J of the real line

and fJ = 1
|J |

∫
J f is the mean of f on the interval J . We refer to [20] for an

exposition of the theory of these spaces.

Let C+(R) be the class of real continuous (nonstrictly) increasing func-

tions on R, and put

BMO+
R

=
{
u+ v : u ∈ BMOR, v ∈ C+(R)

}
,

BMO−
R

=
{
u− v : u ∈ BMOR, v ∈ C+(R)

}
.

The main result of the paper is as follows.

Theorem 1. Suppose that G ∈ Cbr×r.

(1) If TG ∈ Φ±(H2
r ), then arg detG ∈ BMO±

R
.

(2) If TG ∈ Φ(H2
r ), then arg detG ∈ BMOR.

In Section 3, we introduce a system of mean winding numbers of detG

and formulate and prove Theorems 2 and 3 (they will follow from Theorem

1 and can be considered as its applications). In Section 4, we discuss some

unresolved questions, related with our results.

Our principal motivation comes from the control theory. In a problem

about the complete controllability of delay equations it turned out to be

necessary to estimate the number

(1.4) inf
{
τ ∈ R : Te−iτxG(x) is onto

} def
= β(G)
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in terms of some computable characteristics of a matrix functionG ∈ GCbr×r.

The number β(G) has a meaning of the least time of complete controllability.

Theorems 2 and 3 permitted us to give a good estimate of this number. The

results on complete controllability were obtained jointly by the author and

Sjoerd Lunel and will be published elsewhere.

A great part of the recent book [19] by Dybin and Grudsky treats scalar

and matrix functions that are continuous on the real line. This book summa-

rized (and generalized) earlier work by these authors. Several novel tools are

used, such as the notion of a u-periodic function, where u is an inner func-

tion on C+, continuous on the real line. Other tools are a construction of an

inner function whose argument models an arbitrarily given increasing con-

tinuous function and the notion of a generalized factorization with infinite

index. These hard analysis tools permitted the authors to give a sufficient

condition for semi-Fredholmness (see [19, Theorem 5.10]). By applying this

result, Dybin and Grudsky get complete answers in cases of whirls at ±∞

with different asymptotic, such as power, logarithmic or exponential.

Earlier work on whirled symbols include the works by Govorov [22],

Ostrovsky [33], Monakhov, Semenko (see the book [29]) and others. The

approach of these authors was based on the theory of analytic functions of

completely regular growth. In various works, the behavior of the property

of Fredholmness under an orientation preserving homeomorphism of R have

been studied, see [7], [12], [19], [10] and others.

Various mean winding numbers were introduced in the work by Sara-

son [37] for symbols in QC and by Power [35] for slowly oscillating symbols.

For symbols of these classes, these mean winding numbers allow one to

formulate nice complete criteria for a Toeplitz operator to be Fredholm or

semi-Fredholm. We remark that a wider C∗-algebra of slowly oscillating

functions was considered in a recent paper by Sarason [39], where the max-

imal ideal space of this algebra was studied.

Necessary and sufficient conditions for a Toeplitz operator to be Fred-

holm and semi-Fredholm are also known if G belongs to various algebras

of symbols. For instance, classes PC of piecewise continuous symbols,

QC = L∞ ∩ VMO of quasicontinuous symbols, and PQC = alg(PC,QC)

have been studied both in scalar and matrix case.

Another well-studied cases are that of almost periodic and semi-almost

periodic symbols. For matrix symbols of these types, a great breakthrough

has been done recently by Böttcher, Karlovich and Spitkovsky, see [13].

Among other things, generalizations of the index formula (1.2) are known for
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these cases (see [15], [31], [32]). We refer to [14] for an alternative approach.

In [2], [5], [12], other classes of symbols are studied. In [6], a Fredholm

criterion and an index formula are given for vector Toeplitz operators, whose

(matrix) symbols belong to the Banach algebra, generated by semi-almost

periodic matrix functions and slowly oscillating matrix functions. See [26]

for a connection with the factorization and the Riemann-Hilbert problem.

For symbols in Cbr×r with no other assumptions, our knowledge is much

less complete. We refer to Subsections 2.26 and 4.73 in [15] and to [11] for

several relevant results. The criterion for surjectivity of a Toeplitz operator

with a nontrivial kernel, given in [23], can also be reformulated as a criterion

for a Toeplitz operator to belong to Φ+(H2) \ Φ(H2). Some additional

comments will be given at the end of the article.

Books [13], [15], [21], [26], [28], [31], [32] contain systematic expositions

of the spectral theory of Toeplitz operators, with different emphasis.

It is worth to note that recently, Toeplitz operators with symbols like

ours have been appeared in papers by Baranov, Havin, Makarov, Mashreghi,

Poltoratsky and others in relation with the Beurling-Malliavin theorem,

bases in de Branges spaces and related topics (see [4], [24], [27], and refer-

ences therein). It seems that the ideas and methods of these papers can be

applied to achieve a better understanding of semi-Fredholm Toeplitz oper-

ators with continuous symbols at least in the case of scalar symbols.

Acknowledgements. The author expresses his gratitude to the ref-

eree and the Editors, and also to M. Gamal and I. Spitkovsky for valuable

remarks and comments, which helped to improve the exposition.

§2. Proof of Theorem 1

First we need some facts and definitions.

Let 0 < α < 1. We put

Lipα,loc = {f ∈ Cb(R) : f |J ∈ Lipα(J) ∀J};

here J runs over all compact intervals in R and Lipα(J) is the Hölder-

Lipschitz class on J with the exponent α. Next, we will need the classes

Ca(C+) = {f ∈ C(clos C+) : f |C+ ∈ H∞},

Aα,loc = {f ∈ Ca(C+) : f |R ∈ Lipα,loc}.

A function f in Lipα,loc
r×r or in Aα,loc

r×r is invertible if and only if |det f | > ε > 0

on R (or on clos C+, respectively). Recall that a function g in H∞ is called
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inner if its modulus is equal to one a.e. on R. An analytic function g on

C+ is called outer if it has a form g(z) = exp(u(z) + iv(z)),

(u+ iv)(z) =
1

πi

∫ ∞

−∞

[
1

t− z
−

t

1 + t2

]
log k(t) dt + is,

where k > 0 a.e. on R, log k ∈ L1(R), and s is a real constant. We assume

u and v to be real-valued. These functions are harmonic in C+. They

have boundary limit values a.e. on R, which satisfy u|R = log k a.e. and

v|R = H(u|R), where H is the Hilbert transform on R.

Each function g in GH∞ is outer; in this case log k ∈ L∞(R). We refer

to [18], [20] for all these (classical) facts.

Let g be any function in GH∞. Then arg g(z) = s + v(z) is well de-

fined on C+ (up to an additive constant 2πn). We also see that the func-

tion arg g(z) has boundary limit values a.e. on R, which will be denoted

as arg g(x), x ∈ R. It follows from standard facts about BMO [20] that

arg g|R ∈ BMOR.

Definition. We define the class H∞
∗ as the set of functions f ∈ H∞

that have the form

f = g · h,

where g ∈ GH∞ and h is inner in C+ and has a continuous extension to R.

It is well-known that the set of points of discontunuity of an inner

function in C+ contains any limit point of its zeros and also any point in

the support of the singular inner measure, that defines the singular inner

factor of the function, see, for instance, [31, Chapter 3]. Therefore a function

h is inner of the above type if and only if it has the form

(2.1) h(z) = Ceiaz
∏

j

|z2
j + 1|

z2
j + 1

z − zj
z − z̄j

, z ∈ C+,

where |C| = 1, a > 0, and zj ∈ C+, |zj | → ∞. Take any positive continuous

function y = ψ(x) on R such that the subgraph

Γψ = {(x+ iy) : 0 < y < ψ(x)} ⊂ C+

does not contain the zeros zj of h. Then arg h(z) is well defined and con-

tinuous on Γψ ∪ R.



VECTOR SEMI-FREDHOLM TOEPLITZ OPERATORS 63

Definition. Let f ∈ H∞
∗ , and let g, h, Γψ be as above. We define the

argument arg f on Γψ ∪ R by

arg f = arg g + arg h.

So for f ∈ H∞
∗ , the argument arg f is well defined on Γψ (up to adding 2πn,

n ∈ Z). It is continuous on Γψ and its values on R exist almost everywhere

in the sense of nontangential limits.

Proposition 1. For any f ∈ H∞
∗ , arg f ∈ BMO+

R
.

Proof. For any f = g · h ∈ H∞
∗ as above, arg g ∈ BMOR and arg h is a

continuous increasing function.

Lemma 1. Let f ∈ H∞. Then f ∈ H∞
∗ if and only if there is a positive

function ψ ∈ C(R) and some ε > 0 such that |f | > ε on the subgraph Γψ.

Proof. If f ∈ H∞
∗ , then it is clear that f satisfies the above property.

Conversely, suppose |f | > ε > 0 on Γψ, for a certain positive function

ψ ∈ C(R). Let f = h · g be the inner - outer factorization of f , then

g ∈ GH∞. It follows that the inner function h = f/g satisfies an inequality

|h| > ε1 > 0 on Γψ, and consequently, it has a form (2.1), see [31, Chapter

3].

In many works on Toeplitz operators, the unit disc D = {z ∈ C : |z| < 1}

instead of the upper half-plane C+ is considered. If G ∈ L∞
r×r(T), where T =

∂D is the unit circle, then the same formula (1.1) defines a Toeplitz operator

T̂G on H2
r (D) (in this setting, P+ stands for the orthogonal projection of

L2
r(T) onto the vector Hardy space H2

r (D)). Let

ϕ(z) =
z − i

z + i

be the conformal mapping of C+ onto the unit disc D. The formula

TG = WT̂G◦ϕW
−1,

where W : H2
r (D) → H2

r is the unitary isomorphism, given by

(Wf)(z) = π−1/2 (z + i)−1
(
f ◦ ϕ

)
(z)
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shows that each vector Toeplitz operator on C+ is unitarily equivalent to a

vector Toeplitz operator on D, and vice versa, so there is no difference in

the study of Toeplitz operators in these two settings. The symbols on T

that correspond to symbols in Cbr×r by means of this construction have the

only discontinuity at the point 1.

By a result by Pousson [34] and Rabindranathan [36], each function G

in GL∞
r×r(R) can be factored as G = UGe, where Ge ∈ GH∞

r×r(C+) and U is

unitary-valued on R (see also [15, Thm. 6.13]). Then TG = TUTGe , and TGe

is invertible, so that Fredholmness or semi-Fredholmness of TG is equivalent

to the corresponding property of TU . For unitary symbols, the following

results hold.

Theorem B. Let U ∈ GL∞
r×r(R) be unitary-valued. Then

(i) TU is left-invertible if and only if dist(U,H∞
r×r(C+)) < 1.

(ii) TU is invertible if and only if dist(U,GH∞
r×r(C+)) < 1.

For a proof, see [17, Chap. VIII, Lemma 5.1], [15, Corollary 4.36]. We

refer to the work by Nakazi [30] for a study of possible spectra of (scalar)

Toeplitz operators with unimodular symbols.

We will also make use of the following properties.

Proposition 2. (1) Each selfadjoint matrix function K ∈ L∞
r×r(R)

such that K(x) ≥ εI > 0 on R has a factorization K(x) = G∗
e(x)Ge(x) on

R, where Ge ∈ GH∞
r×r(C+). This factorization is unique up to multiplying

Ge on the left by a constant unitary matrix.

(2) If the matrix K (as above) satisfies additionally K ◦ϕ ∈ Lipαr×r(T),

then Ge ◦ ϕ ∈ GAαr×r(clos D); here

Aα(clos D) = {f ∈ C(clos D) : f |D ∈ H∞(D), f |T ∈ Lipα(T)}.

For the property (1), see [26, Theorems 7.7 and 7.9]. The proof of (2)

is contained in [17, Chap. III, Corollary 2.1].

Lemma 2. Let G ∈ L∞
r×r(R). Then TG ∈ Φ+(H2

r ) if and only if TϕnG

is left invertible for some integer n ≥ 0.

Proof. It is more transparent to work with H2
r (D) instead of H2

r . Sup-

pose G = G(z) ∈ L∞
r×r(T) and T̂G ∈ Φ+; we have to check that there is

some integer n ≥ 0 such that T̂znG(z) is left invertible. By the assumption,
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the kernel Ker T̂G is finite dimensional; let x1, . . . , xm ∈ H2
r (D) be its basis.

Put

Ln =

{
(c1, . . . , cm) ∈ C

m : G ·
∑

j

cjxj ∈ z−nH2
−,r

}
, n ≥ 0,

where H2
−,r = L2

r(T) ⊖ H2
r (D). Then C

m = L0 ⊃ L1 ⊃ · · · ⊃ Ln ⊃ · · · .

Since
⋂∞

0 Lk = {0}, one has Ln = {0} for some n ≥ 0. If x ∈ Ker T̂znG(z),

then x =
∑m

j=1 cjxj for some coefficients cj and znGx ∈ H2
−,r, which implies

that c1 = · · · = cm = 0. Hence Ker T̂znG(z) = {0}. Since T̂znG = T̂GT̂zn is a

Φ+-operator with trivial kernel, it follows that it is left invertible.

Conversely, suppose that T̂znG is left invertible for some n ≥ 0. Denote

by In the unit matrix of size n. Then TznG ∈ Φ+(H2
r ), and therefore T̂G =

T̂z−nIn T̂znG is also in Φ+(H2
r ).

Lemma 3. 1) Suppose that u1, u2 are real increasing functions on R

and u := u1 + u2 ∈ BMOR. Then u1, u2 ∈ BMOR.

2) BMO−
R
∩ BMO+

R
= BMOR.

Proof. 1) It is known [20] that, given a real-valued function f on R, if

the last inequality in (1.3) holds for some constant C, any finite interval J

in R and arbitrary real numbers fJ , then f belongs to BMOR.

For any finite interval J ⊂ R, one can find a point c = cJ ∈ J such that

u(x) ≤ uJ for x < cJ and u(x) ≥ uJ for x > cJ . There exist numbers α1J ,

α2J (depending on J) such that uk(cJ − 0) ≤ αkJ ≤ uk(cJ + 0) for k = 1, 2

and α1J + α2J = uJ . Then for any subinterval J ⊂ R,

∫

J
|u1(x) − α1J | dx+

∫

J
|u2(x) − α2J | dx =

∫

J
|u(x) − uJ | dx ≤ C|J |,

where C = ‖u‖BMOR
. It follows that u1, u2 ∈ BMOR.

2) If h = w1 − v1 = w2 + v2 ∈ BMO−
R
∩ BMO+

R
, where w1, w2 ∈ BMOR

and v1, v2 ∈ C+(R), then by part 1), v1, v2 ∈ BMOR because v1 + v2 ∈

BMOR. Hence BMO−
R
∩BMO+

R
⊂ BMOR. The inclusion relation BMOR ⊂

BMO−
R
∩ BMO+

R
is trivial.

The next lemma is not new; in fact, Spitkovsky gives in [41, Theorem

2] a more general result. We will give a proof for completeness.
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Lemma 4. Suppose that J is a finite open interval on the real line,

F,G ∈ GH∞
r×r(C+), and F ∗F = G∗G a.e. on J . Then there exists a neigh-

bourhood W of J in C and a bounded analytic r × r matrix function V on

W such that F = V G on W (and a.e. on J) and V is unitary-valued on J .

Proof. Put V = FG−1, then F = V G on C+ and a.e. on R and V is uni-

tary on J . We apply the symmetry principle to V . Since V ∈ GH∞
r×r(C+),

it is easy to prove that Ṽ (z) = V ∗−1(z̄) is an analytic continuation of V

onto the lower half-plane through the arc J .

Lemma 5. Every matrix function G ∈ Lipα,loc
r×r such that infR|detG| >

0 has a factorization G = UGe, where Ge, G
−1
e ∈ Aα,loc

r×r and U ∈ Lipα,loc
r×r is

unitary-valued.

Proof. Put K(x) = G∗(x)G(x), then K(x) ≥ ε1I > 0 on R. By the

above property (1), K can be factorized as K(x) = G∗
e(x)Ge(x), where

Ge ∈ GH∞
r×r(C+). Hence G = UGe, where U ∈ L∞

r×r.

Consider a sequence of matrix functions Kn such that Kn(x) = K(x)

on [−n, n], Kn(x) ≥ ε1I > 0 on R and Kn ◦ ϕ are in the Lipschitz class

Lipαr×r(T). By Proposition 2, we arrive at functions Gne ∈ GH∞
r×r(C+) such

that Gne ◦ϕ ∈ Aαr×r(D) and Kn = G∗
neGne on R. By Lemma 4, Ge = VnGne

on (−n, n), where Vn are unitary on (−n, n) and analytic in neighbourhoods

of these intervals. It follows that Ge, G
−1
e ∈ Aα,loc

r×r . Therefore U ∈ Lipα,loc
r×r .

Lemma 6. Suppose that H ∈ Cbr×r(R) and Ψ ∈ H∞(C+). Then for

any finite interval L on the real line we have

lim sup
y→0+

‖Ψ( · + iy) −H( · )‖L∞
r×r(L) ≤ ‖Ψ −H‖∞;

here ‖Ψ −H‖∞ = ‖Ψ −H‖L∞
r×r( R ).

Proof. Denote byH(z), z ∈ C+, the harmonic extension ofH by means

of the Poisson formula. Then for any y > 0,

‖Ψ( · + iy) −H( · + iy)‖L∞
r×r(L) ≤ ‖Φ −H‖∞.

Since H(x + iy) → H(x) as y → 0+ uniformly on compact subsets of the

real line, the result follows.
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Proof of Theorem 1. We prove part (1). Suppose G ∈ Cbr×r and TG ∈

Φ+(H2
r ). We have to prove that arg detG ∈ BMO+

R
. By Lemma 2, there

is some k > 0 such that TG1
is left invertible, where G1 = ϕkG. Since

arg detG = arg detG1 − kr argϕ and argϕ ∈ L∞(R) ⊂ BMOR, we have

only to prove that arg detG1 is in BMO+
R
. Let ‖TG1

x‖ ≥ ε‖x‖, x ∈ H2
r ,

where ε > 0, then for any G2 with ‖G1−G2‖∞ < ε, TG2
is also left invertible.

Take G2 = G1 +R such that G2 ∈ Lipα,loc
r×r and R ∈ Cbr×r has a small norm

‖R‖∞: ‖R‖∞ < ε′ < ε, where ε′ has to be chosen. Since

arg detG2 = arg detG1 + arg det(I +G−1
1 R),

it follows that arg detG2 − arg detG1 ∈ L∞(R) if we assume that

ε′ · ‖G−1
1 ‖∞ < 1. So it suffices to consider G2 instead of G.

By Lemma 5, we have a factorization G2 = UG2e, where U ∈ Lipα,loc
r×r

is unitary-valued and G2e ∈ GAα,loc
r×r . Then

TG2
= TU TG2e

.

Since T−1
G2e

= TG−1

2e
, we conclude that TU is left invertible. We apply Theo-

rem B and arrive at a function F ∈ H∞
r×r(C+) with ‖U −F‖∞ < 1−ε0 < 1.

Put Fy(x) = F (x+ iy), y > 0, L = Lρ = [−ρ, ρ], where ρ > 0. By Lemma

6,

(2.2) ‖I − U(x)−1Fy(x)‖L∞
r×r(Lρ) =

∥∥U(x) − Fy(x)
∥∥
L∞

r×r(Lρ)
< 1 − ε0

for x ∈ Lρ, y ∈ (0, δ), where δ = δ(ρ) > 0. It follows, in particular, that

there is a graph y = ψ(x) of a positive function ψ ∈ Cb(R) such that

‖I − U(x)−1F (x+ iy)‖ < 1 − ε0 for x+ iy ∈ Γψ.

It follows that arg detF is well defined on Γψ. By Lemma 1, detF belongs

to H∞
∗ (C+).

One can define a continuous branch of arg det
(
U(x)−1F (x + iy)

)
for

x + iy ∈ Γψ so that
∣∣arg det

(
U(x)−1F (x + iy)

)∣∣ < rπ/2. Therefore there

is a continuous branch of arg detF (x + iy), x+ iy ∈ Γψ such that its limit

values satisfy

∣∣arg detF (x) − arg detU(x)
∣∣ ≤ rπ

2
a.e. on R.



68 D. YAKUBOVICH

By Proposition 1, arg detF ∈ BMO+
R
. Hence arg detU ∈ BMO+

R
. Since

G2e ∈ GAα,loc
r×r (C+), it follows that detG2e ∈ GH∞(C+), so that arg detG2e

∈ BMOR. Finally, we deduce from the formula

arg detG2 = arg detU + arg detG2e

that arg detG2 ∈ BMO+
R
.

The case when TG ∈ Φ−(H2
r ) is obtained by considering G∗ instead of

G. The assertion (2) follows from (1) and Lemma 3.

I. M. Spitkovsky communicated to the author an outline of an alterna-

tive proof of Theorem 1, which is based on some properties of the trans-

plantation of the algebra H∞(D) + C(T) to the real line.

In connection with Theorems 1 and B, we mention for completeness the

following well-known result.

Theorem C. Let U ∈ GL∞
r×r(R) be unitary-valued. Then

(i) TU ∈ Φ+ if and only if dist(U,Cr×r +H∞
r×r(C+)) < 1.

(ii) T̂U ∈ Φ if and only if dist
(
U,G(Cr×r +H∞

r×r(C+))
)
< 1.

See [15, Corollary 4.37]. We refer to [15, Remark 4.38] for the connection

with Fredholmness.

§3. Mean winding numbers

Let H1
R

be the real Hardy space,

H1
R

=
{
Re f : f ∈ H1

}
=

{
u ∈ L1

R
(R) : Hu ∈ L1

R
(R)

}
.

We put ‖u‖H1

R

= ‖u‖L1 + ‖Hu‖L1 .

Definition. Consider the cone

Π =
{
η ∈ H1

R : η has a compact support on R,
∫ x
−∞ η ≤ 0 ∀x ∈ R

}
.

Theorem 2. Let G be an r × r matrix function in Cbr×r.

(1) If TG ∈ Φ−(H2
r ), there is a constant C > 0 such that for any η in Π,

∫

R

η(x)
(
arg detG

)
(x) dx ≤ C‖η‖H1

R

.

(2) If TG ∈ Φ+(H2
r ), there is a constant C > 0 such that for any η in Π,

∫

R

η(x)
(
arg detG

)
(x) dx ≥ −C‖η‖H1

R

.
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It is well known that
∫

R
η = 0 for any function η in H1

R
, see [20, Chapter

III]. Hence the above integrals do not depend on the additive constant in

arg detG.

As a consequence, we obtain that if TG ∈ Φ(H2
r ), then

∣∣∣∣
∫

R

η(x)
(
arg detG

)
(x) dx

∣∣∣∣ ≤ C‖η‖H1

R

, η ∈ Π.

In the scalar case, this inequality follows from the Widom-Devinatz theorem

(Theorem B), together with the Fefferman duality theorem, and takes place

for all η ∈ H1
R

(the integral is to be understood in the sense of the duality

H1
R

– BMOR).

Definition. Let η ∈ Π, η 6≡ 0 be fixed, and let G ∈ Cbr×r. Define the

upper and the lower mean winding numbers of detG (associated with η) by

wη(G) = lim
T→+∞

sup
y∈R

1

T

∫

R

η
(x− y

T

)
· arg detG(x) dx,

wη(G) = lim
T→+∞

inf
y∈R

1

T

∫

R

η
(x− y

T

)
· arg detG(x) dx.

Theorem 3. (1) If TG ∈ Φ+(H2
r ), then wη(G) 6= −∞;

(2) If TG ∈ Φ−(H2
r ), then wη(G) 6= +∞.

One can also define simpler characteristics

w̃η(G) = lim
T→+∞

1

T

∫

R

η
( x
T

)
· arg detG(x) dx

and the number w
∼
η(G), defined as the corresponding lower limit. One has

wη(G) ≤ w
∼
η(G) ≤ w̃η(G) ≤ wη(G), so that Theorem 3 implies the same

assertions for w
∼
η(G), w̃η(G).

Consider a scalar G ∈ Cb(R), |G| > ε > 0 on R. If argG has finite limits

at ±∞, then w̃η(G) = w
∼
η(G) = K · argG

∣∣+∞

−∞
, where K =

∫ +∞
0 η(x) dx.

One also has wη(G) = L ·
(
argG

∣∣+∞

−∞

)
+
, wη(G) = L ·

(
argG

∣∣+∞

−∞

)
−
, where

L = supy∈R

∫ +∞
y η, y+ = max(y, 0), y− = min(y, 0). So in this case all

these winding numbers have a simple sense. For these symbols, each of the

conditions TG ∈ Φ−(H2), TG ∈ Φ+(H2), TG ∈ Φ(H2) is equivalent to the

requirement argG
∣∣+∞

−∞
6= ±π,±3π,±5π, etc. (see, for instance, [15] or [21,

Ch. 9]).



70 D. YAKUBOVICH

Corollary 1. Let α > 0, and define generalized winding numbers

wη,α(G) = lim
T→+∞

sup
y∈R

1

T 1+α

∫

R

η
(x− y

T

)
· (arg detG)(x) dx,

wη,α(G) = lim
T→+∞

inf
y∈R

1

T 1+α

∫

R

η
(x− y

T

)
· (arg detG)(x) dx.

(1) If TG ∈ Φ+(H2
r ), then wη,α(G) ≥ 0;

(2) If TG ∈ Φ−(H2
r ), then wη,α(G) ≤ 0.

This follows immediately from Theorem 3.

In particular, the function ηα = 1+α
2

(
χ[0,1] − χ[−1,0]

)
is in Π. The

corresponding upper winding number is given by

(3.1) wα(G) = lim
T→+∞

1 + α

2T 1+α
sup
y∈R

[∫ T+y

y
−

∫ y

y−T

]
arg detG(x) dx.

Let us define similarly the lower winding number wα(G), by taking infy∈R

and the corresponding lower limit. Corollary 1 holds, in particular, for these

characteristics of G. If r = 1, G(x) = exp
(
iγ(sign x) · |x|α

)
, and 0 < α ≤ 1,

then wα(G) = wα(G) = γ.

In fact, we could take instead of T 1+α any function ρ(T ) such that

ρ(T ) > 0, T/ρ(T ) → 0 as T → +∞ in the above definitions of generalized

winding numbers.

Corollary 2 of Theorem 3. Suppose G is in GCa,r×r(C+) or in

GCa,r×r(C−), where C− = {z ∈ BC : Im z < 0}. Then for any α > 0,

wα(G) = wα(G) = 0.

Indeed, in both cases T−1
G = TG−1 , hence TG ∈ Φ(H2

r ), and we can

apply Corollary 1.

Corollary 3 of Theorem 3. Let G ∈ GCbr×r(R), and define w1(G)

by (3.1) and β(G) by (1.4). Then β(G) ≥ w1(G)/r.

Indeed, if Te−iτxG is onto, then it is a Φ−-operator, which implies that

w1(e
−iτxG) = w1(G) − rτ ≤ 0.

We remark that if G is a semi-almost periodic r × r matrix function

such that G,G−1 ∈ Cbr×r(R), then detG is a scalar semi-almost periodic
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function, and detG has almost periodic representatives (detG)±∞ at +∞

and −∞, respectively (see [13, Theorem 1.21]). These representatives, by

the Bohr mean motion theorem have the form

(detG)±∞(x) = eiκ±xeg±(x),

where κ± are mean motions of detG(x) at ±∞ and functions g± are almost

periodic (see, for instance, [13, Thm. 2.25]). In this case,

w1(G) = min(κ−,κ+), w1(G) = max(κ−,κ+),

w
∼

1(G) = w̃1(G) =
κ− + κ+

2
.

If r = 1, complete criteria of Fredholmness, as well as the calculation of the

Fredholm index are known since the work by Sarason [38]. It follows, in par-

ticular, that in this case Te−iτxG(x) is not right-invertible if τ < max(κ−,κ+)

and is right-invertible if τ > max(κ−,κ+). Hence β(G) = max(κ−,κ+). So

Corollary 3 of Theorem 3 gives an exact estimate for the case of scalar

semi-almost periodic functions.

The study of the almost periodic and semi-almost periodic matrix cases

depends on the existence of some special factorizations of G. If these fac-

torizations exist, then complete criteria for Fredholmness and formulas for

the index are available, see [13, Ch. 10 and §19.6].

Proof of Theorem 2. By Theorem 1, it only has to be proved that if

f ∈ BMO+
R
, then

∫

R

f(x)η(x) dx ≥ −C‖η‖H1

R

for all η ∈ Π.

This inequality follows from the Fefferman duality H1
R

– BMOR (see [20])

in the case when f ∈ BMOR. Now let f be nondecreasing, and take any

function η ∈ Π. Suppose that supp η ⊂ I, where I is a finite interval.

Approximate f in L∞(I) by a sequence of nondecreasing step functions

{fn} of the form

fn = Cn +
∑

k

αnk χ(−∞,ank],

where Cn, ank ∈ R and αnk are negative. Then
∫

R
ηfn ≥ 0 for all n, hence∫

R
ηf ≥ 0.

We obtain the result by combining these two cases.
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Proof of Theorem 3. Let ηT,y(x) = η
(x−y

T

)
. Since H(ηT,y) = (Hη)T,y,

it follows that ‖ηT,y‖H1

R

= T‖η‖H1

R

. So the assertions follow directly from

Theorem 2.

§4. Some related questions

Problem 1. Give a real variable characterization of classes BMO±
R
.

The next two questions are certainly known for specialists for a long

time, however, complete answers are not known.

Problem 2. 1) Let r = 1, and let G ∈ C(R), argG ∈ C+(R),

limx→±∞ argG(x) = ±∞. What additional conditions guarantee that TG ∈

Φ+(H2
r )?

2) What can be said in this respect for the matrix case r > 1?

Sufficient conditions for r = 1 are given in [11] and in [19, Theorem

5.10]. As it follows from the construction of Lemma 4.9 in [11], there are

symbols G of the above type such that TG is not semi-Fredholm. See also

[22, Theorem 28.2 and Section 32] for related counter-examples.

The book [19] also contains results about the matrix valued case. At

least for the scalar case, it seems that more complete answers can be found.

Problem 3. Suppose that TG ∈ Φ+(H2
r ). Can one give some esti-

mates of IndTG in terms of some explicit real variable characteristics of

arg detG?

Problem 4. Suppose that η1, η2 ∈ Π. When can one assert that

wη1(G) 6= +∞ implies that wη2(G) 6= +∞ for all G ∈ Cbr×r(R) with

|detG| > ε > 0 on R? Is there a “universal” function η0 ∈ Π such that

for any G as above, wη0(G) 6= +∞ implies that wη(G) 6= +∞ for all η ∈ Π?
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