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THE ABSOLUTE GALOIS GROUP OF THE FIELD OF

TOTALLY S-ADIC NUMBERS

DAN HARAN, MOSHE JARDEN and FLORIAN POP

Abstract. For a finite set S of primes of a number field K and for σ1, . . . , σe ∈

Gal(K) we denote the field of totally S-adic numbers by Ktot,S and the fixed

field of σ1, . . . , σe in Ktot,S by Ktot,S(σ). We prove that for almost all σ ∈

Gal(K)e the absolute Galois group of Ktot,S(σ) is the free product of F̂e and

a free product of local factors over S.

Introduction

The Inverse Galois Problem asks whether every finite group is realizable

over Q. Although this has been shown to be true for many finite groups,

including the symmetric and alternating groups (Hilbert), we are still very

far from the solution of the problem. One could ask, more generally, what

is the structure of the absolute Galois group of Q. Here we do not even

have a plausible conjecture.

However, we do know the structure of the absolute Galois group of

certain distinguished algebraic extensions of Q, or, more generally, of a

countable Hilbertian field K. We fix a separable closure Ks and an algebraic

closure K̃ of K and let Gal(K) = Gal(Ks/K) be the absolute Galois group

of K. Our goal is to explore the absolute Galois groups of large algebraic

extensions of K having interesting diophantine or arithmetical properties.

Our study is motivated by two earlier results. By the free generators

theorem Gal(Ks(σ)) is, for almost all σ ∈ Gal(K)e, the free profinite group

F̂e on e generators (Jarden [FrJ, Thm. 18.5.6]). On the other hand, if K is

a global field and S1 is a finite set of primes of K, then the absolute Galois

group Gal(Ktot,S1) of the maximal S1-adic extension of K is a free product
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of local groups (Pop [Pop4, Thm. 3]). In this work we simultaneously gen-

eralize both results and prove that Gal(Ks(σ) ∩ Ktot,S1) is, for almost all

σ ∈ Gal(K)e, the free product of F̂e and a free product of local groups.

Here is a detailed account of our result.

The main theorem

For each e-tuple σ = (σ1, . . . , σe) ∈ Gal(K)e we denote the fixed field

in Ks (resp. K̃) of σ1, . . . , σe by Ks(σ) (or K̃(σ) if char(K) = 0). We know

that for almost all σ ∈ Gal(K)e the field Ks(σ) is PAC [FrJ, Thm. 18.6.1]

and Gal(Ks(σ)) ∼= F̂e [FrJ, Thm. 18.5.6]. Here “almost all” is meant in the

sense of the Haar measure of Gal(K)e and we say that a field M is PAC

if every absolutely irreducible variety V defined over M has an M -rational

point. The PAC property of the field Ks(σ) implies that if w is a nontrivial

valuation of Ks(σ), then the Henselian closure of Ks(σ) at w is Ks [FrJ,

Cor. 11.5.5].

To bring valuations into the game we consider a finite set S1 of absolute

values of K. For each v ∈ S1 let K̂v be a completion of K at v. Then K̂v is

C, R, a finite extension of Qp, or a finite extension of Fp((t)) for some prime

number p. The latter case does not occur if char(K) = 0. The case where

the completion is C is uninteresting in each of the following results, so we

assume K̂v 6= C for each v ∈ S1. Assume all of the K̂v ’s are contained in a

common field. For each v ∈ S1 set Kv = K̃ ∩ K̂v. Then Kv is a real closure

of K at v or a Henselian closure of K at v.

First consider the field

M ′ = Ks(σ) ∩
⋂

v∈S1

Kρv
v

where (σ,ρ) ∈ Gal(K)e+|S1| are taken at random. Then

Gal(M ′) ∼= F̂e ∗
∏

∗
v∈S1

Gal(Kρv
v )

where
∏

∗ and ∗ denote free products in the sense explained after the Main

Theorem. (See [Gey, Thm. 4.1] for e = 0 and [Jar2, Thm. 21.3] in the

general case.)

Next we assume that char(K) = 0 and that the absolute values in S1

are independent and consider the maximal totally S1-adic extension of

K:

Ktot,S1 =
⋂

v∈S1

⋂

ρ∈Gal(K)

Kρ
v .
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Finally we “dig deeper” to reach the field Ktot,S1(σ) = K̃(σ) ∩ Ktot,S1.

Then for almost all σ the field Ktot,S1(σ) is pseudo-S1-closed (Propo-

sition 12.3). This means that every absolutely irreducible variety V de-

fined over Ktot,S1(σ) with a simple Kρ
v -rational point for all v and ρ has

a Ktot,S1(σ)-rational point. It follows that Gal(Ktot,S1(σ)) is relatively

projective with respect to the set {Gal(Kρ
v ) | v ∈ S1, ρ ∈ Gal(K)} [HJPb,

Proposition 4.1]. Thus, each finite embedding problem for Gal(Ktot,S1(σ))

which has a local weak solution for each subgroup Gal(Kρ
v ) has a global

weak solution. This is a basic ingredient in the proof of the main result of

this work:

Main Theorem. Let K be a countable Hilbertian field of characteris-

tic 0, e ≥ 0 an integer, and S1 a finite set of independent absolute values

of K. Then for almost all σ ∈ Gal(K)e and for each v ∈ S1 there exists a

closed subset Rv of Gal(K) such that

(1) Gal(Ktot,S1(σ)) = Gal(K̃(σ)) ∗
∏

∗
v∈S1

∏

∗
ρ∈Rv

Gal(Kρ
v ),

and Rv is a system of representatives of Gal(Ktot,S1(σ))\Gal(K), and {Kρ
v |

ρ ∈ Rv} is a closed system of representatives of the Gal(Ktot,S1(σ))-orbits

of {Kρ
v | ρ ∈ Gal(K)}.

Here we use the notation H\G with G a profinite group and H a closed

subgroup for the space {Hg | g ∈ G} of all right cosets of G modulo H.

The inner free product in (1) is meant here in the sense of Haran-Melnikov

([Har], [Mel]): First, the intersection of distinct factors is trivial, secondly,

each continuous function

ϕ0 :
⋃

v∈S1

⋃

ρ∈Rv

Gal(Kρ
v ) −→ B

into a profinite group B whose restriction to each of the groups Gal(Kρ
v ) is a

homomorphism uniquely extends to a continuous homomorphism ϕ :
∏

∗ v∈S1
∏

∗ ρ∈Rv
Gal(Kρ

v )→ B.

Sketch of proof

The proof of the main theorem applies a blend of local and global prop-

erties of the field M = Ktot,S1(σ) and its absolute Galois group. In addition

to the local fields Kv, v ∈ S1, we consider also K0 = K̃(σ) as a local field
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of M and write S0 = {0} and S = S0 ·∪ S1. The common feature of the

groups Gal(Kv), v ∈ S1, and Gal(K0) is that they are all finitely generated.

Beyond that they are of a different nature. Here are the main properties of

the fields Kv, v ∈ S1, that enter in the proof of the main theorem:

(2a) The groups Gal(Kv), v ∈ S1, can be recognized group theoretically (up

to conjugation and inclusion) by “big quotients” in each free product

of the form F̂ ∗
∏

∗
n
i=1Gi, where F̂ is a free finitely generated profi-

nite group and each Gi is isomorphic to Gal(Kv) for some v ∈ S1

(Data 7.1).

(2b) If Kv is algebraically closed in a field F and Gal(F ) ∼= Gal(Kv), then

Kv is an elementary subfield of F (a combination of results of Efrat-

Koenigsmann-Pop and Ax-Kochen-Ershov-Prestel-Roquette).

(2c) For each v ∈ S1 the space of Gal(M)-orbits of Gv = {Gal(Kρ
v ) | ρ ∈

Gal(K)} is isomorphic to the Cantor middle third set, in particular it

has no isolated points.

The main properties of K0 used in the proof are the following:

(3a) Gal(K0) is a finitely generated free profinite group.

(3b) K0 is pseudo algebraically closed over each set H ∩ A where H is a

Hilbert subset of Kr and A is a nonempty S1-adically open subset of

Kr (Definition 9.3).

In addition to the relative projectivity of the group Gal(M) drawn from

the PS1C property of M , we also apply the following consequence of being

PS1C:

(4) Each finite split embedding problem over M can be regularly solved

over M(t), where t is transcendental over M .

We keep track of the local groups of Gal(M) by considering the “group

pile” G = (Gal(M),Gal (M,v))v∈S , where Gal (M, 0) is the Gal(M)-orbit of

Gal(K0) and Gal (M,v) is the Gal(K)-orbit of Gal(Kv). Finite group piles,

A = (A,Av)v∈S , are modeled after finite quotients of G (Section 3). The key

step in the proof of the main theorem is proving that each “self-generated”

“rigid” finite embedding problem

(5) (ϕ : G→ A, α : B→ A)
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of group piles which splits group theoretically is solvable. Without loss

A = Gal(N/M) is a Galois group over M . Using (4) and (2b) we find a

finite Galois extension P of M(t) which solves the group theoretic problem

attached to (5) and such that the local structure of Gal(P/M(t)) associated

with S1 is isomorphic to that of B. Using a theorem of Efrat, we are able

to choose B0 ∈ B0 such that α(B0) = ϕ(Gal(K0)) and B is generated by

B0 and all of the groups belonging to B1. Let P0 be the fixed field in P of

the subgroup of Gal(P/M(t)) corresponding to B0. Then, we may assume

that B = Gal(P/M(t)). An application of Hilbertianity, (2a), (3b), and

the rigidity assumption (Section 4) gives a homomorphism γ : Gal(M) →
Gal(P/M(t)) which commutes with restrictions such that γ(Gal(K0)) =

Gal(P/P0) and γ(Gal (M,v)) = Bv for each v ∈ S1. By assumption, the

local groups generate Gal(P/M(t)), so γ is surjective (Proposition 11.1).

We note that the use of property (3) and the Hilbertianity of K follows

[FHV] which proves the main theorem in the special case where e = 0 and

all of the Kv with v ∈ S1 are real closed fields.

Now, for each v ∈ S1 we choose a homeomorphic image Tv of the Cantor

middle third set and construct a free product GT = F̂e ∗
∏

v∈S1

∏

t∈Tv
GT,t

with GT,t ∼= Gal(Kv) (Proposition 11.1). We prove that each finite self-

generated embedding problem for group piles associated with GT is solvable

(Proposition 5.3(h)). The same holds for Gal(M) (Proposition 11.1). It

follows by an Iwasawa like argument (Proposition 6.3), that Gal(M) ∼=
Gal(GT ). Consequently, Gal(M) is a free product of its local groups.

Positive characteristic

The proof of the main theorem we have just described does not work

in positive characteristic p. Here the completions of the local fields Kv are

finite extensions of Fp((t)), so the groups Gal(Kv) are not finitely generated.

Another problem is that no analog for the Ax-Kochen-Ershov theorem is

known in characteristic p.

The special case of the main theorem where e = 0 was proved by the

third author in all characteristics in a unified way [Pop4]. The unified proof

is indirect. In order to prove that Gal(Ktot,S1) is a product of local groups

one chooses a Galois extension N ofK inKtot,S1 which is PS1C and properly

contained in Ktot,S1. For example∗ one may choose N to be the maximal

Galois extension Ktot,S1[σ] of K in Ktot,S1(σ), where σ is an element of

Gal(K)e chosen at random. Let N ′ be a finite proper extension of N in

∗Our argument at this point differs somewhat from the one given in [Pop4].
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Ktot,S1. Then N ′ is Hilbertian (by a theorem of Weissauer) and PS1C [GeJ,

Thm. A]. Under these assumptions [Pop4] proves that Gal(N ′) is isomorphic

to the free product of F̂ω and a free product of local groups. Moreover, it

proves that the closed normal subgroup generated by the second factor is

the group Gal(Ktot,S1) and is isomorphic to the first factor.

The fields Ktot,S1[σ]

Another question left open in this work is the structure of the Galois

group of the field Ktot,S1[σ], where σ is taken at random in Gal(K)e. We

wish to prove that the structure of that group is given by an analog of (1)

in which Gal(K̃(σ)) is replaced by Gal(Ks[σ]). See Remark 12.5 for more

details.

§1. Automorphisms of finitely generated profinite groups

Let Γ be a finitely generated profinite group and A a finite quotient

of Γ. We construct a big quotient B of Γ in a uniform way such that

each automorphism of A which lifts to an automorphism of B lifts to an

automorphism of Γ.

To that end we consider a positive integer n and observe that Γ has only

finitely many distinct open subgroups of index ≤ n [FrJ, Lemma 16.10.2].

Their intersection Γ(n) is an open characteristic subgroup of Γ and Γ(n) =

Γ/Γ(n) is a finite group. Furthermore, Γ = Γ(1) ≥ Γ(2) ≥ Γ(3) ≥ · · · and
⋂∞
n=1 Γ(n) = 1.

Lemma 1.1. Let Γ be a finitely generated profinite group and n a pos-

itive integer. Consider an open normal subgroup N of Γ with N ≤ Γ(n).

Then:

(a) (Γ/N)(n) = Γ(n)/N .

(b) Let N ′ be another open normal subgroup of Γ such that Γ/N ∼= Γ/N ′.

Then N ′ ≤ Γ(n).

(c) Assume that Γ is a closed subgroup of a profinite group G and let

K be an open normal subgroup of G such that Γ ∩ K ≤ Γ(n). Then

(ΓK/K)(n) = Γ(n)K/K.

Proof of (a). Let Cn(Γ, N) be the set of all open subgroups M of Γ

with N ≤ M and (Γ : M) ≤ n. The map M 7→ M/N is a bijection of

Cn(Γ, N) onto Cn(Γ/N, 1) that commutes with intersections. By definition,

Γ(n) (resp. (Γ/N)(n)) is the intersection of all the groups in Cn(Γ, 1) (resp.
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Cn(Γ/N, 1)). By assumption, Cn(Γ, 1) = Cn(Γ,Γ(n)) = Cn(Γ,N). Therefore,

Γ(n)/N = (Γ/N)(n).

Proof of (b). By definition, Cn(Γ,N
′) ⊆ Cn(Γ,Γ(n)). By the proof of (a)

and by assumption, |Cn(Γ, N
′)| = |Cn(Γ/N

′, 1)| = |Cn(Γ/N, 1)| = |Cn(Γ,N)|
= |Cn(Γ,Γ(n))|. Hence, Cn(Γ, N

′) = Cn(Γ,Γ(n)), so N ′ ⊆
⋂

M∈Cn(Γ,N ′)M =
⋂

M∈Cn(Γ,Γ(n))
M = Γ(n).

Proof of (c). By (a), with N = Γ ∩ K = Γ(n) ∩ K, we have (Γ/Γ ∩

K)(n) = Γ(n)/(Γ ∩K). The isomorphism Γ/Γ ∩K → ΓK/K maps the left

hand side onto (ΓK/K)(n) and the right hand side onto Γ(n)K/K. Hence

(ΓK/K)(n) = Γ(n)K/K.

Lemma 1.2. Let Γ be a finitely generated profinite group. Then for

every m ∈ N there is an n ≥ m such that every automorphism of Γ(m)

which lifts to an automorphism of Γ(n) lifts to an automorphism of Γ.

Proof. For each n ≥ m there are natural maps Aut(Γ)→ Aut(Γ(n))→

Aut(Γ(m)) of finite groups. Let Bn be the image of Aut(Γ(n)) in Aut(Γ(m)).

Then Aut(Γ(m)) = Bm ≥ Bm+1 ≥ Bm+2 ≥ · · · and
⋂∞
k=mBk is the image of

Aut(Γ). Indeed, since
⋂∞
k=1 Γ(k) = 1, we have Γ = lim←−Γ(k). If α ∈

⋂∞
k=mBk,

then for each k ≥ m the inverse image of α in Aut(Γ(k)) is a nonempty finite

set. The inverse limit of these images is nonempty [FrJ, Cor. 1.1.4]. Each

sequence in the inverse limit gives rise to a lifting of α to an element of

Aut(Γ). Since Bm is finite, there is an n ≥ m such that Bn = Bn+1 =

Bn+2 = · · · , hence Bn is the image of Aut(Γ).

We will use the following reformulation of Lemma 1.2:

Lemma 1.3. Let Γ and ∆ be finitely generated isomorphic profinite

groups. Then for each m ∈ N there is an n ≥ m with the following prop-

erty : Let N ≤ K be open normal subgroups of Γ and M ≤ L open normal

subgroups of ∆ such that

(a) N ≤ Γ(n) or M ≤ ∆(n); and

(b) Γ(m) ≤ K or ∆(m) ≤ L.

Then every isomorphism Γ/K → ∆/L that can be lifted to an isomorphism

Γ/N → ∆/M lifts to an isomorphism Γ→ ∆.
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Proof. Each isomorphism Γ ∼= ∆ maps Γ(m) and Γ(n), respectively,

onto ∆(m) and ∆(n). Thus, we may assume that ∆ = Γ. For m ∈ N we

choose n ≥ m as in Lemma 1.2. Let K, L, M , N be groups satisfying (a)

and (b) as in the Lemma. We may assume that there is an isomorphism

Γ/K ∼= Γ/L and an isomorphism α : Γ/N → Γ/M which maps K/N onto

L/M . Hence, (Γ/N : K/N) = (Γ/M : L/M).

Under these assumptions we may strengthen (a) and (b) to

(a′) N ≤ Γ(n) and M ≤ Γ(n); and

(b′) Γ(m) ≤ K and Γ(m) ≤ L.

Indeed, the isomorphism Γ/N ∼= Γ/M and Lemma 1.1(b) imply that

N ≤ Γ(n) if and only if M ≤ Γ(n). This proves (a′). In particular, N ≤ Γ(m)

and M ≤ Γ(m).

The existence of α implies that (Γ/N)(m) ≤ K/N if and only if

(Γ/M)(m) ≤ L/M . By Lemma 1.1(a), Γ(m)/N ≤ K/N if and only if

Γ(m)/M ≤ L/M , that is, Γ(m) ≤ K if and only if Γ(m) ≤ L. This proves

(b′).

Now let θ : Γ/N → Γ/M be an isomorphism which induces an isomor-

phism θ′ : Γ/K → Γ/L. Thus we have the following commutative diagram

Γ // Γ/N

θ
��

η // Γ/Γ(n)
//

θ(n)

��

Γ/Γ(m)
//

θ(m)

��

Γ/K

θ′

��
Γ // Γ/M //η′ // Γ/Γ(n)

// Γ/Γ(m)
// Γ/L

in which the horizontal maps are the quotient maps (and θ(n) and θ(m) are

constructed below).

By Lemma 1.1(a), Ker(η) = Γ(n)/N = (Γ/N)(n); similarly Ker(η′) =

(Γ/M)(n). Therefore θ induces an automorphism θ(n) of Γ(n) = Γ/Γ(n)

making the above diagram commutative. The automorphism θ(m) of Γ(m) =

Γ/Γ(m) is constructed similarly.

By Lemma 1.2, θ(m), hence also θ′, lifts to an automorphism of Γ.

§2. Topologies

Let G be a profinite group. The set Subgr(G) of all closed subsets of

G has two natural topologies. A basis for the first topology consists of all

subsets U(G1, N) = {H ∈ Subgr(G) | HN = G1N}, where G1 ∈ Subgr(G)
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and N is an open normal subgroup of G. This topology is referred to in

[HJPa] and [HJPb] as the strict topology. If G is finite, the strict topol-

ogy of Subgr(G) coincides with its discrete topology. In the general case,

Subgr(G) = lim←−Subgr(G/N), where N ranges over all open normal sub-

groups of G. Thus, Subgr(G) is a profinite space under the strict topology.

In particular, a subset of Subgr(G) is strictly closed if and only if it is strictly

compact.

In addition to the strict topology, Subgr(G) admits a weaker topology,

called the étale topology, which is in general not Hausdorff. A basis for

the étale topology consists of all the subsets Subgr(M) with M open in G.

Thus, each étale open (closed) subset of Subgr(G) is strictly open (closed),

and each strictly closed subset of Subgr(G) is strictly compact, hence étale

compact.

We mainly use the strict topology, so we usually drop the reference to

it.

Lemma 2.1. Let G be a profinite group and G a closed subset of

Subgr(G). Suppose there are no inclusions between distinct groups in G.
Then the étale topology of G coincides with its strict topology.

Proof. Since the strict topology of Subgr(G) is finer than its étale

topology, it suffices to prove for each G1 ∈ G that each basic strictly open

neighborhood N1 of G1 in G contains an étale open neighborhood of G1. In

fact, N1 = {H ∈ G | HN = G1N} for some an open normal subgroup N of

G. Let M be the set of all open subgroups M of G with G1 ≤ M ≤ G1N .

It suffices to find M ∈M such that Subgr(M) ⊆ N1.

Assume that such M does not exists. Then, for each M ∈M

HM = {H ∈ G | H ≤M, HN 6= G1N} 6= ∅.

The set HM is the intersection of G with two strictly closed subsets

{H ∈ Subgr(G) | H ≤M} and {H ∈ Subgr(G) | HN 6= G1N}

of Subgr(G), so HM is strictly closed in G. For all M1, . . . ,Mn ∈ M we

have,

HM1∩···∩Mn ⊆ HM1 ∩ · · · ∩ HMn

and M1 ∩ · · · ∩Mn ∈ M. Hence HM1 ∩ · · · ∩ HMn 6= ∅. Since G is strictly

closed, G is strictly compact. Therefore, there exists H ∈
⋂

M∈MHM . In

particular, H ∈ G, HN 6= G1N , and H ≤ G1. By assumption, H = G1.

This leads to the contradiction G1N 6= G1N .
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For a profinite group G and closed subgroup H1, H2 we consider the

space of the double cosets H1\G/H2 with its quotient topology.

Lemma 2.2. Let G be a profinite group, g ∈ G, and H1, H2 closed

subgroups of G. Then H1gH2 is an isolated point in the quotient space

H1\G/H2 if and only if Hg
1H2 is open in G.

Proof. By the definition of the quotient topology, the point H1gH2 ∈
H1\G/H2 is isolated if and only if its preimage H1gH2 in G is open. Since

multiplication from the left by g−1 is a homeomorphism of G, this is equiv-

alent to Hg
1H2 being open in G.

§3. Group piles

One of the main objects in [HJPa] and [HJPb] is a group structure. A

group structure is defined to be data (X,G,Gx)x∈S consisting of a profi-

nite space X, a profinite group G, and a closed subgroup Gx of G for each

x ∈ X, satisfying certain conditions. Among others, G acts continuously

on X from the right such that Gxσ = Gσx for all σ ∈ G and x ∈ X and the

stabilizer of each x is contained in Gx. In this work we omit X, retain the

profinite group G and the collection G = {Gx | x ∈ X}, relax the conditions

imposed on the group structure, and call the structure obtained in this way

a “group pile”.

The group G acts continuously on Subgr(G) by conjugation from the

right. A G-domain of Subgr(G) is a subset of Subgr(G) closed under that

action. In particular, each conjugacy domain {Gg0 | g ∈ G} with a closed

subgroup G0 of G is a closed G-domain which we call a G-class.

We fix a finite set S containing 0 but not containing 1 and set S0 = {0}
and S1 = Sr{0}.

A group pile is a structure G = (G,Gv)v∈S consisting of a profinite

groupG, a G-class G0 and a closed G-domain Gv of Subgr(G) for each v ∈ S1.

We set G =
⋃

v∈S Gv, G1 =
⋃

v∈S1
Gv, and assume that each H ∈ G is finitely

generated.

We call G finite if G is finite. We say that G is self-generated if

there exists G0 ∈ G0 such that G = 〈G0,G1〉 = 〈G0, G1 | G1 ∈ G1〉. We

call G separated if the Gv’s are disjoint. Thus G =
⋃

· v∈S Gv is a partition

into open-closed sets. An epimorphism ϕ : G→ A = (A,A0,A1) of group

piles is an epimorphism of profinite groups ϕ : G→ A such that ϕ(Gv) = Av
for each v ∈ S. It is an isomorphism, if ϕ : G → A is an isomorphism
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of groups; equivalently, ϕ : G → A has an inverse. Each epimorphism

ϕ : G → A is determined, up to an isomorphism, by Ker(ϕ). If G is self-

generated, so is A. If A is separated, so is G.

We say that G is deficient if G0 consists of the trivial subgroup of G.

In this case we omit G0 from G and rewrite it also as (G,Gv)v∈S1 . Note that

if ϕ : G → A is an epimorphism of group piles and G is deficient, then so

is A. Likewise, in this case, each of the assumptions about G0 done in the

forthcoming definitions and all statements about G0 hold trivially. We will

mention that in the sequel only occasionally.

Let A = (A,Av)v∈S be a finite group pile and ϕ : G → A an epimor-

phism. A decomposition of ϕ is a pair of epimorphisms ϕ̂ : G → Â and

ϕ̄ : Â→ A, where Â = (Â, Âv)v∈S is a finite group pile and ϕ̄◦ ϕ̂ = ϕ. The

kernel of the decomposition Ker(ϕ̂) is an open normal subgroup of G

contained in Ker(ϕ). Conversely, for each open normal subgroup K of G

contained in Ker(ϕ) there is a decomposition of ϕ with kernel K, unique

up to an isomorphism. Namely, let Â = G/K and let ϕ̂ : G → Â be the

quotient map G → G/K. Put Âv = ϕ̂(Gv) and Â = (Â, Âv)v∈S . Then the

induced epimorphism of groups ϕ̄ : Â→ A maps Âv onto Av for each v ∈ V ,

so it is an epimorphism ϕ̄ : Â→ A of group piles.

Lemma 3.1. Let G = (G,Gv)v∈S be a separated group pile. Suppose

that for each v ∈ S there is a finitely generated group Γv with Gv ∼= Γv for

every Gv ∈ Gv.

(a) Let n ∈ N. Then there exists an open normal subgroup K of G such

that, in the notation of Section 1, H ∩K ≤ H(n) for every H ∈ G.

(b) There is an open normal subgroup K of G such that if ϕ : G → A is

an epimorphism of group piles with Ker(ϕ) ≤ K, then A is separated.

Proof of (a). Consider H ∈ G and let v be the unique index with H ∈
Gv. Then H ∼= Γv, so H is finitely generated. In addition, Gv is open in G.
Therefore, there is an open normal subgroupK of G such that H∩K ≤ H(n)

and if H ′ ∈ G satisfies H ′K = HK, then H ′ ∈ Gv, hence H ′ ∼= Γv ∼= H. The

equality HK = H ′K implies H/H ∩ K ∼= H ′/H ′ ∩ K. The isomorphism

H ∼= H ′ implies (H : H(n)) = (H ′ : H ′
(n)). Hence

(

H ′ : H ′ ∩K
)

=
(

H : H ∩K
)

≥
(

H : H(n)

)

=
(

H ′ : H ′
(n)

)

.

By Lemma 1.1(b), H ′ ∩K ≤ H ′
(n).
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Finally, since G is compact, we may choose K to be independent of H.

Proof of (b). By compactness each of the sets Gv is the finite union of

sets of the form {H ∈ Subgr(G) | HKk = Mk}, where Kk are open normal

subgroups of G and Mk are open subgroups of G. The intersection K of all

of the Kk’s has the required property.

Indeed, let ϕ : G→ A be an epimorphism with Ker(ϕ) ≤ K, let v, v′ ∈
S be distinct, and let Gv ∈ Gv and Gv′ ∈ Gv′ . There is a k such that

Gv′Kk = Mk. Since Gv /∈ Gv′ , we have GvKk 6= Mk, so GvKk 6= Gv′Kk.

Since Ker(ϕ) ≤ K ≤ Kk, this implies Gv Ker(ϕ) 6= Gv′ Ker(ϕ), so ϕ(Gv) 6=

ϕ(Gv′). Thus, in the notation introduced prior to the lemma, Âv is disjoint

from Âv′ , which means that A is separated.

Lemma 3.2. Let G = (G,Gv)v∈S be a group pile. Suppose there are

no inclusions between distinct groups in G1 =
⋃

v∈S1
Gv. Let ϕ : G → A be

an epimorphism onto a finite group pile A. Then there is an open normal

subgroup N of G with the following property : Let (ϕ̂, ϕ̄) be a decomposition

of ϕ with Ker(ϕ̂) ≤ N . If G1, G2 ∈ G1 and ϕ̂(G1) ≤ ϕ̂(G2), then ϕ(G1) =

ϕ(G2).

Proof. Let A1, A2 ∈ A1 = ϕ(G1) such that A1 6= A2. Consider the

compact subsets G(1) = {G1 ∈ G1 | ϕ(G1) = A1} and G(2) = {G2 ∈ G1 |
ϕ(G2) = A2} of G1. Let G1 ∈ G

(1), G2 ∈ G
(2). Then G1 6= G2, so G1 6≤ G2.

Therefore there is an open normal subgroup N = N(G1, G2) of G such that

G1N 6≤ G2N . If G′
1 ∈ G

(i) satisfies G′
1N = G1N and G′

2 ∈ G
(i) satisfies

G′
2N = G2N , then G′

1N 6≤ G′
2N . By the compactness of G(1) × G(2),

there is an open normal subgroup N of G, such that G1N 6≤ G2N for all

G1 ∈ G
(1), G2 ∈ G

(2). This remains true if we replace N by any open normal

subgroup K of G contained in N . Thus, since A is finite, we may assume

that N is good for all A1 6= A2 in A. Consequently, if ϕ̂ : G → Â is an

epimorphism with Ker(ϕ̂) ≤ N , and G1, G2 ∈ G1 satisfy ϕ(G1) 6= ϕ(G2),

then ϕ̂(G1) 6≤ ϕ̂(G2).

§4. Embedding problems for group piles

We show how to dominate locally solvable embedding problems for

groups piles with rigid finite embedding problems having extra properties.

First we introduce an appropriate vocabulary. Let G = (G,Gv)v∈S and

A = (A,Av)v∈S be group piles. An epimorphism ϕ : G → A is rigid if

ϕ : G→ A is injective on each G′ ∈ G.
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An embedding problem for G is a pair of epimorphisms of group

piles

(1) (ϕ : G→ A, α : B→ A)

which we eventually abbreviate as (ϕ,α). We say that (1) is rigid, if α is

rigid, that is, α : B → A is injective on each B′ ∈ B. We say that (1) is

finite, if B is finite. We say that (1) splits group theoretically if there

exists a group homomorphism α′ : A → B satisfying α ◦ α′ = idA. We say

that (1) is self-generated, if G,A,B are self-generated.

Groups B′ ∈ B and G′ ∈ G are compatible for the embedding

problem (1) if there exists an epimorphism γ′ : G′ → B′ such that α ◦ γ′ =

ϕ|G′ ; in particular, ϕ(G′) = α(B′). Note that if B′ and G′ are compatible

and B′′ is conjugate to B′, then there is a conjugate G′′ of G′ which is

compatible with B′′. Indeed, if B′′ = (B′)b, choose g ∈ G such that ϕ(g) =

α(b). Then (G′)g is compatible with B′. Similarly, if G′′ is conjugate to G′,

then G′′ is compatible with some conjugate of B′.

We say that (1) is locally solvable if the following holds for each v ∈ S:

(2a) for every Bv ∈ Bv there exists a compatible Gv ∈ Gv,

(2b) for every Gv ∈ Gv there exists a compatible Bv ∈ Bv.

Note that it suffices to demand (2a) only for every Bv in a system of

representatives of the B-classes of Bv. Similarly it suffices to demand (2b)

only for a system of representatives of the G-classes of Gv.
If both G and B in (1) are deficient, then for (1) to be locally solvable

it suffices that (2) holds only for v ∈ S1.

A rigid embedding problem is always locally solvable. A solution of

(1) is an epimorphism γ : G→ B such that α ◦ γ = ϕ.

Let (1) be an embedding problem. Another embedding problem

(3) (ϕ̂ : G→ Â, α̂ : B̂→ Â)

is said to dominate (1) if there exists a commutative diagram

(4)

G

ϕ̂
��
ϕ





B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A
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of epimorphisms of group piles. If γ̂ : G→ B̂ is a solution of (3), then β ◦ γ̂

is a solution of (1).

If B̂ is a subgroup of the fiber product B ×A Â [FrJ, Sec. 22.2], β and

α̂ are the restrictions of the projections on the corresponding components,

and both B and G are deficient, then so is Â. In this case, β(B̂0) = 1 and

α̂(B̂0) = 1, so B̂0 = 1 for each B̂0 ∈ B̂0. Therefore, B̂ is deficient. We will

often use this observation without mentioning it.

The following result replaces G in a locally solvable embedding problem

(1) by a finite group pile.

Lemma 4.1. Let (1) be a finite locally solvable embedding problem.

Then there exists an open normal subgroup N of G with the following prop-

erty. Let G
ϕ̂
−→ Â

ϕ̄
−→ A be a decomposition of ϕ with Ker(ϕ̂) ≤ N . Then

(ϕ̄ : Â→ A, α : B→ A) is a finite locally solvable embedding problem.

Proof. Let v ∈ S and consider the family {(Bi, Gi) ∈ B × G | i ∈ Iv}

of all compatible pairs for (1) with Bi ∈ Bv and Gi ∈ Gv. For each i ∈ Iv
choose an epimorphism γi : Gi → Bi with α ◦ γi = ϕ|Gi . Then Ker(γi) is an

open subgroup of Gi. Choose an open normal subgroup Ni of G satisfying

Ni ≤ Ker(ϕ) and Gi ∩Ni ≤ Ker(γi). Then G(i) = {G′ ∈ Gv | G
′Ni = GiNi}

is an open-closed neighborhood ofGi in Gv and γi extends to an epimorphism

δi : GiNi → Bi with kernel Ker(γi)Ni such that α ◦ δi = ϕ|GiNi .

Since (1) is locally solvable, Bv = {Bi ∈ B | i ∈ Iv} and Gv = {Gi ∈

G | i ∈ Iv}, so Gv =
⋃

i∈Iv
G(i). Since Gv is compact, there is a finite subset

Jv of Iv such that Gv =
⋃

i∈Jv
G(i). Add more elements to Jv , if necessary,

to get Bv = {Bi ∈ B | i ∈ Jv} and put Nv =
⋂

i∈Jv
Ni. Let N =

⋂

v∈S Nv.

Then N is an open normal subgroup of G.

Now let v ∈ S and consider a decomposition G
ϕ̂
−→ Â

ϕ̄
−→ A of ϕ

with Ker(ϕ̂) ≤ N . Let Â′ ∈ Âv. There are i ∈ Jv and G′ ∈ G(i) ⊆ Gv
such that Â′ = ϕ̂(G′). Let ϕ̂′ : G′ → Â′ and δ′i : G

′ → B be the restrictions

of ϕ̂ and δi from G and GiNi, respectively, to G′. Since G′Ni = GiNi

and Ker(ϕ̂) ≤ Ni ≤ Ker(δi), we have δ′i(G
′) = δi(Gi) = Bi ∈ Bv and

δ′i induces an epimorphism δ̄′ : Â′ → Bi such that δ̄′ ◦ ϕ̂′ = δ′i. Hence,

α ◦ δ̄′ ◦ ϕ̂′ = α ◦ δ′i = ϕ|G′ = ϕ̄ ◦ ϕ̂′. Since ϕ̂′ : G′ → Â′ is an epimorphism,

α ◦ δ̄′ = ϕ̄|Â′ . Thus, (Bi, Â
′) is a compatible pair.

Conversely, let B′ ∈ Bv. Then B′ = Bi for some i ∈ Jv. Set Âi = ϕ̂(Gi).

Then Âi ∈ Âv and (Bi, Âi) is a compatible pair.
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The following construction will be used several times to produce domi-

nating embedding problems.

Lemma-Construction 4.2. Let (1) be a finite embedding problem and

G
ϕ̂
−→ Â

ϕ̄
−→ A

a decomposition of ϕ. Let Iv, v ∈ S, be disjoint sets such that I0 = {0}. For

each i ∈ Iv let (Bi, Âi) ∈ Bv × Âv be a compatible pair for the embedding

problem (ϕ̄ : Â→ A, α : B→ A) such that

(5) {Bb
i | i ∈ Iv, b ∈ B} = Bv and {Ââi | i ∈ Iv, â ∈ Â} = Âv.

Set B̂ = B ×A Â with the coordinate projections α̂ : B̂ → Â and β : B̂ → B.

For each i ∈ Iv let γi : Âi → Bi be an epimorphism such that α ◦ γi = ϕ̄|Âi .

It defines a homomorphism γ̂i : Âi → B̂ such that

(6) β ◦ γ̂i = γi and α̂ ◦ γ̂i = idÂi .

Let B̂i = γ̂i(Âi), B̂v = {B̂ b̂
i | i ∈ Iv, b̂ ∈ B̂}, and B̂ = (B̂, B̂v)v∈S. Then:

(a) B̂ is a group pile and (3) is a finite rigid embedding problem that

dominates (1).

(b) Suppose {Âi | i ∈ Iv} is a set of representatives of the Â-classes of

Âv. Let i ∈ Iv and B̂′ ∈ B̂v. If α̂(B̂′) is conjugate in Â to Âi, then

β(B̂′) is conjugate in B to Bi.

(c) If B and Â are deficient, then so is B̂.

Proof of (a). For each i ∈ Iv we have, β(B̂i) = β◦ γ̂i(Âi) = γi(Âi) = Bi
and α̂(B̂i) = α ◦ γ̂i(Âi) = Âi (by (6)). Hence, by (5), β(B̂v) = Bv and

α̂(B̂v) = Âv. Thus, β : B̂→ B and α̂ : B̂→ Â are epimorphisms. Let i ∈ I.
Since α̂◦ γ̂i = idÂi , the restriction of α̂ to B̂i is an isomorphism onto Âi. By

conjugation, α̂ is injective on each group in B̂v. Since the latter consequence

holds for each v ∈ S, the map α̂ is injective on each group in B̂.

Proof of (b). There exist j ∈ Iv and b̂ ∈ B̂ such that B̂′ = B̂ b̂
j . Thus,

α̂(B̂′) = Â
α̂(b̂)
j is conjugate to Âj. On the other hand, by assumption, α̂(B̂′)

is conjugate to Âi. Hence, j = i, so β(B̂′) = B
β(b̂)
j is conjugate to Bj = Bi.
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Recall that G is said to be G1-projective if for every finite embedding

problem (ϕ : G→ A, α : B → A) satisfying

(7) for each Γ ∈ G1 there exists a homomorphism γΓ : Γ→ B with α◦γΓ =

ϕ|Γ,

there exists a homomorphism γ : G→ B such that α◦γ = ϕ [HJPb, Sec. 3].

The following result is a variant of [HJPb, Lemma 3.1].

Lemma 4.3. Let (1) be a finite locally solvable embedding problem.

Then there exists an open normal subgroup N of G with the following prop-

erty : Let K be an open normal subgroup of G contained in N . Then (1) can

be dominated by a finite rigid embedding problem (3) in which B̂ = B ×A Â

and Ker(ϕ̂) = K. If G is G1-projective, then (3) splits group theoretically.

Proof. Let N be an open normal subgroup of G as in Lemma 4.1.

Consider an open normal subgroup K of G contained in N . Decompose

ϕ : G → A into (ϕ̂ : G → Â, ϕ̄ : Â → A) such that Ker(ϕ̂) = K. By

Lemma 4.1, (ϕ̄, α) is a finite locally solvable embedding problem. Then

for each v ∈ S we may choose a set {(Bi, Âi) | i ∈ Iv} ⊆ Bv × Âv of

compatible pairs such that I0 = {0}, the Iv are disjoint, and (5) holds.

Lemma-Construction 4.2(a) gives Diagram (4) with B̂ = B ×A Â such that

(3) is rigid.

If G is G1-projective, there exists a homomorphism γ : G → B with

α◦γ = ϕ. We may assume N ≤ Ker(γ), so that Ker(ϕ̂) = K ≤ N ≤ Ker(γ).

Then γ induces a homomorphism γ̄ : Â → B with γ = γ̄ ◦ ϕ̂. Hence,

α◦ γ̄ ◦ ϕ̂ = α◦γ = ϕ = ϕ̄◦ ϕ̂. Since ϕ̂ is surjective, α◦ γ̄ = ϕ̄. The universal

property of the cartesian square in (4) gives a homomorphism γ̂ : Â → B̂

such that β ◦ γ̂ = γ̄ and α̂ ◦ γ̂ = idÂ. Thus, α̂ splits group theoretically.

Notation 4.4. Let G = (G,Gv)v∈S be a group pile. For each v ∈ S

and each Gv ∈ Gv let Ḡv be the conjugacy class of Gv in G. Let Ḡv = {Ḡv |
Gv ∈ Gv} be the corresponding topological quotient space. We may identify

Ḡv with a set of representatives of the conjugacy classes in Gv.

Lemma 4.5. Let (1) be a finite locally solvable embedding problem for

G = (G,Gv)v∈S . Suppose Ḡv has no isolated points for each v ∈ S1. Then

(1) can be dominated by a finite rigid embedding problem (4) with B̂ =

B ×A Â such that the following statement holds for each v ∈ S1:
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(∗) For every Bv ∈ Bv there exists Âv ∈ Âv with α(Bv) = ϕ̄(Âv) such

that if B̂′ ∈ B̂v and α̂(B̂′) is conjugate to Âv, then β(B̂′) is conjugate

to Bv.

Proof. By Lemma 4.1 there is a decomposition G
ϕ̂
−→ Â

ϕ̄
−→ A of ϕ

where Â = (Â, Âv)v∈S is finite and (ϕ̄, α) is a locally solvable embedding

problem.

Let v ∈ S1 and let n be the number of conjugacy classes in Bv. For

each B′ ∈ Bv there is an Â′ ∈ Âv compatible with B′. The set {G′ ∈
Gv | ϕ̂(G′) = Â′} is non-empty and open-closed in Gv. By assumption it

contains infinitely many non-conjugate subgroups of G. Therefore there is a

decomposition G
ϕ∗

1−→ A∗ ϕ∗

2−→ Â of ϕ̂ : G→ Â with A∗ = (A∗,A∗
v)v∈S finite

such that there are at least n non-conjugate groups in A∗
v mapped by ϕ∗

2

onto Â′. Each of them is compatible with B′, with respect to the embedding

problem (ϕ̄ ◦ ϕ∗
2, α). Hence, replacing ϕ̂ : G → Â by ϕ∗

1 : G → Â∗ and

ϕ̄ : Â → A by ϕ̄ ◦ ϕ∗
2 : A∗ → A, we may assume that there are at least n

non-conjugate groups in Â compatible with B′. In fact, since B1 is finite, we

may assume that the latter statement holds for all B′ ∈ Bv and all v ∈ S1.

This allows us to choose for each v ∈ S1 a family of compatible pairs

{(Bi, Âi) | i ∈ Iv} ⊆ Bv × Âv such that the set {Bi | i ∈ Iv} meets all of

the B-classes of Bv and {Âi | i ∈ Iv} is a system of representatives of the

conjugacy classes of Âv. Indeed, for v ∈ S1 let {Bi | i ∈ Jv} be a system of

representatives of the B-classes of Bv. By the preceding paragraph, |Jv| ≤ n,

so we may choose for each i ∈ Jv a compatible Âi ∈ Â such that the Âi’s,

i ∈ Jv, are non-conjugate. Complete {Âi | i ∈ Jv} to a system {Âi | i ∈ Iv}
of representatives of the Â-classes of Âv and choose for each Âi ∈ Âv with

i ∈ Iv r Jv a compatible Bi ∈ Bv. Finally we may change the sets Iv, if

necessary, to assume that they are disjoint and do not contain 0.

Lemma-Construction Lemma 4.2 gives the required dominating embed-

ding problem (4). Indeed, we choose a compatible pair (B0, Â0) ∈ B0 × Â0

and set B̂ = (B̂, B̂v)v∈S and {B̂i | i ∈ Iv} for each v ∈ S as in Lemma 4.2.

Then (1) is dominated by a finite rigid embedding problem (4).

Now consider v ∈ S. For each Bv ∈ Bv there exist i ∈ Iv and b ∈ B with

Bv = Bb
i . Since the pair (Bi, Âi) is compatible, α(Bi) = ϕ̄(Âi). By (6),

α̂(B̂i) = α̂(γ̂i(Âi)) = Âi. Choose â ∈ Â with α(b) = ϕ̄(â) and set Âv = Ââi .

Then α(Bv) = ϕ̄(Âv). If for some B̂′ ∈ B̂v the group α̂(B̂′) is conjugate to

Âv, then α̂(B̂′) is conjugate to Âi. Therefore, by Lemma 4.2(b), β(B̂′) is

conjugate to Bi, hence to Bv, as is required by (∗).
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Remark 4.6. In Lemma 4.5 let (4) satisfy statement (∗). Let

(7) (ϕ∗ : G→ A∗, α∗ : B∗ → A∗)

be another finite locally solvable embedding problem which dominates (3)

such that B∗ = B̂ ×Â A
∗. Then (7) dominates (1) and satisfies statement

(∗) of Lemma 4.5. This allows us to replace (3) by an embedding problem

with additional properties.

§5. Free products

We follow Melnikov-Haran and define a free product of profinite groups

indexed by a profinite space. A special free product will be shown to have

all necessary properties entering in the definition of a Cantor group pile in

the next section.

The basic notion underlying the free product of profinite groups is that

of a sheaf of profinite groups [Mel, (1.13)]. It is a triple (X, τ, T ) of

profinite spaces X, T with a surjective continuous map τ : X → T such that

XT,t = τ−1(t) is a profinite group for each t ∈ T and the map (x, y) 7→ x−1y

from {(x, y) ∈ X ×X | τ(x) = τ(y)} into X is continuous.

The simplest sheaves of profinite groups are the constant sheaves

[Mel, (1.13)]: Let Γ be a profinite group and let T be a profinite space.

Consider the triple (Γ × T,pr, T ), where pr : Γ × T → T is the projection

on the second coordinate. For each t ∈ T the fiber pr−1(t) = Γ × {t} is a

profinite group isomorphic to Γ by (γ, t) 7→ γ.

Data 5.1. We retain the finite set S from Section 3 and its partition

S = S0 ·∪ S1 with S0 = {0} and 1 /∈ S. For each v ∈ S let Γv be a finitely

generated profinite group and Tv a profinite space such that T0 = {0}.
Suppose Γ0 is profinite free, Γv is nontrivial for each v ∈ S1, and the Tv’s,

v ∈ S, are disjoint. Thus, T1 =
⋃

· v∈S1
Tv is a profinite space and T =

T0 ·∪ T1 =
⋃

· v∈S Tv are partitions of T into open-closed subsets.

We combine the constant sheaves (Γv × Tv,pr, Tv) to a semi-constant

sheaf : Set XT =
⋃

· v∈S(Γv × Tv) and let pr: XT → T be the unique

map which extends the projection maps pr : Γv × Tv → Tv. Then XT =

(XT ,pr, T ) is a sheaf of profinite groups with XT,t = Γv×{t} for v ∈ S and

t ∈ Tv .
Let GT =

∏

∗ T XT be the free product of XT [Mel, (1.14)]. Thus, GT
is a profinite group together with a continuous map ω : XT → GT with the

following properties:
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(1a) The restriction of ω to each fiber XT,t is an injective homomorphism

XT,t → GT [Mel, (1.15)].

(1b) Given a profinite group B and a continuous map β : XT → B, whose

restriction to each fiber XT,t is a homomorphism, there is a unique

homomorphism γ : GT → B such that γ ◦ ω = β.

For each t ∈ T put GT,t = ω(XT,t). Then GT,t ∼= Γv for each t ∈ Tv
and each v ∈ S. By [Mel, (1.16), (1.17)], GT =

∏

∗ t∈T GT,t is the (in-

ner) free product of the groups GT,t, t ∈ T . This means that the map

ω̄ : T → Subgr(GT ) defined by ω̄(t) = GT,t is étale continuous and every

continuous map from
⋃

t∈T GT,t into a profinite group H, whose restriction

to each GT,t is a homomorphism GT,t → H, admits a unique extension to a

homomorphism GT → H. By [Mel, (4.9)],

(2) GT,t and GT,t′ are non-conjugate if t, t′ ∈ T are distinct.

The partition T =
⋃

· v∈S Tv into open-closed sets yields a free decom-

position GT =
∏

∗ v∈S

∏

∗ t∈T GT,t [Mel, (1.7)]. Since T0 = {0}, we get

(3) GT = GT,0 ∗
∏

∗
v∈S1

∏

∗
t∈Tv

GT,t.

For each v ∈ S let G′T,v = {GT,t | t ∈ Tv}, GT,v = {GgT,t | t ∈ Tv, g ∈
GT }, GT,1 =

⋃

v∈S1
GT,v, and GT =

⋃

v∈S GT,v.
The following result of Efrat is an analog of a lemma of Gaschütz [FrJ,

Lemma 17.7.2]. We will have two opportunities to use this result.

Lemma 5.2. ([Efr, Main Theorem]) Let α : B → A be an epimorphism

of finite groups, A1, . . . , An subgroups of A, and B1, . . . , Bn subgroups of

B. Suppose A = 〈A1, . . . , An〉, B = 〈B1, . . . , Bn〉, and α(Bi) is a conjugate

of Ai for i = 1, . . . , n. Then there exist b1, . . . , bn ∈ B such that B =

〈Bb1
1 , . . . , B

bn
n 〉 and α(Bbi

i ) = Ai for i = 1, . . . , n.

Proposition 5.3. The structure GT = (GT ,GT,v)v∈S is a group pile.

It satisfies:

(a) The map ω̄ : T → Subgr(GT ) given by t 7→ GT,t is strictly continuous

(and not only étale continuous).

(b) The map T × GT → Subgr(GT ) given by (t, g) 7→ GgT,t is strictly

continuous.
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(c) GT = 〈GT,0,G
′
T,v | v ∈ S1〉; in particular GT is self-generated.

(d) Suppose T = lim←−j∈J T
(j) and T (j) =

⋃

· v∈S T
(j)
v , where each T

(j)
v is

open-closed in T (j), T
(j)
0 = {0}, and the maps T → T (j) map Tv into

T
(j)
v for all v ∈ S and j ∈ J . Then GT = lim←−j∈J GT (j) . Moreover, for

each j ∈ J , if t ∈ T and t(j) is its image in T (j), then the induced map

GT,t → GT (j),t(j) is an isomorphism.

(e) If T has a countable basis for its topology, then GT is countably gen-

erated.

(f) GT =
⋃

· v∈S GT,v, is a partition into open-closed subsets of GT ; more-

over, for every v ∈ S and H ∈ GT,v we have H ∼= Γv.

(g) For each v ∈ S1, the set G′T,v is a closed system of representatives

of the GT -classes of GT,v and the space ḠT,v of the GT -classes of the

groups in GT,v is homeomorphic to Tv.

(h) If T1 has no isolated points, then every finite self-generated locally

solvable embedding problem for GT is solvable.

(i) GT is GT,1-projective.

Proof. First we note that for each v ∈ S the subset GT,v of Subgr(GT )

is closed. Indeed, by (b) proven below, (t, g) 7→ GgT,t is a continuous map of

profinite spaces Tv × GT → Subgr(GT ). As such it is a closed map, hence

its image GT,v is closed.

Proof of (a). Let t ∈ T , say, t ∈ Tv ⊆ T with v ∈ S, and let N be

an open normal subgroup of GT . The composed map ωN : XT → GT /N

of ω : XT → GT with the quotient map GT → GT /N is continuous. Since

GT /N is discrete, for each (γ, t) ∈ XT,t = Γv × {t} there are open-closed

neighborhoods U of γ in Γv and V of t in Tv ⊆ T such that ωN (U × V ) =

{ωN (γ, t)}. By the compactness of Xt we may assume that V does not

depend on γ. Then, for all t′ ∈ V , we have ωN (XT,t′) = ωN (XT,t). By

definition, ω̄(t) = ω(XT,t). Hence, ω̄(t′)N = ω̄(t)N . Consequently, w̄ : T →
Subgr(GT ) is continuous.

Proof of (b). This follows from (a).

Proof of (c). See [Mel, Lemma 1.15].

Proof of (d). The sheaf XT = (XT ,pr, T ) is the inverse limit of the

sheaves XT (j) = (XT (j) ,pr, T (j)), where the maps XT → XT (j) are in-

duced from the maps Γv × Tv → Γv × T
(j)
v ; therefore they map the fibers
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of XT → T isomorphically onto the fibers of XT (j) → T (j). We have

GT (j) =
∏

∗ T (j) XT (j) . Then GT = lim
←−i

GT (j) [Mel, (2.4)].

As for the last assertion, we have t ∈ Tv for some v ∈ S. Then t(j) ∈

T
(j)
v . Both XT,t and XT (j),t(j) are isomorphic copies of Γv (by (1a)) and the

map GT,t → GT (j),t(j) is induced by the identity map of Γv. Hence it is an

isomorphism.

Proof of (e). If T is finite, then by (c), GT is generated by finitely many

finitely generated profinite groups, so it is finitely generated.

In the general case we may write T as the inverse limit of a sequence

of finite sets T (j) as in (d). By (d) and the preceding paragraph, GT is the

inverse limit of a sequence of finitely generated profinite groups, hence is

countably generated.

Proof of (f). Since a continuous map of profinite spaces is closed, by

(b), the sets G and GT,v are closed in Subgr(GT ). By [Mel, (1.17)], GT is

the free product of the groups {GT,t}t∈T . Hence, by (2), the sets GT,v are

disjoint. Therefore, the sets GT,v are open in GT as well.

Let t ∈ Tv and g ∈ GT . Then XT,t
∼= Γv. By (1a), GT,t ∼= XT,t. Hence

GgT,t
∼= GT,t ∼= XT,t

∼= Γv.

Proof of (g). The map ω̄ defined in (a) maps the profinite space Tv
continuously onto the closed subset G′T,v of GT,v. By (2), ω̄ is injective, so

it is a homeomorphism. Moreover, by (2), G′T,v meets exactly once each

conjugacy class in GT,v. Hence, G′T,v is a closed set of representatives of the

conjugacy classes of GT,v. Since G′T,v is homeomorphic to ḠT,v, it is also

homomorphic to Tv.

Proof of (h). Let

(4) (ϕ : GT → A, α : B→ A),

be a finite self-generated locally solvable embedding problem with A =

(A,Av)v∈S and B = (B,Bv)v∈S . We break the proof that (4) is solvable

into several parts.

Part A: Making (4) rigid. By (c), GT = 〈GT,0,GT,v〉v∈S1 . Hence,

A = 〈A0,Av〉v∈S1 , where A0 = ϕ(GT,0). Since B is self-generated, there

exists B∗
0 ∈ B0 such that B = 〈B∗

0 ,Bv〉v∈S1 . Next note that α(B∗
0) belongs

to A0, so α(B∗
0) is conjugate in A to A0. Also, α(Bv) = Av for each v ∈ S1.

Hence, by Lemma 5.2, there exists B0 ∈ B0 such that B = 〈B0,Bv〉v∈S1
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and α(B0) = A0. Since (4) is locally solvable, there exist a g ∈ GT
and an epimorphism ε0 : GgT,0 → B0 such that α ◦ ε0 = ϕ|GgT,0 . In par-

ticular, rank(GT,0) = rank(GgT,0) ≥ rank(B0). Since GT,0 ∼= Γ0 and Γ0

is free, we may apply Gaschütz’ lemma [FrJ, 17.7.2], to find an epimor-

phism δ0 : GT,0 → B0 such that α ◦ δ0 = ϕ|GT,0 . By Lemma 4.1, there

is a decomposition GT
ϕ̂
−→ Â

ϕ̄
−→ A such that Ker(ϕ̂) ≤ Ker(δ0) and

(ϕ̄ : Â → A, α : B → A) is a finite locally solvable embedding problem.

In particular, with Â0 = ϕ̂(GT,0), the map δ0 defines an epimorphism

γ0 : Â0 → B0 such that α ◦ γ0 = ϕ̄|Â0
. Thus, (B0, Â0) is a compatible

pair.

For each v ∈ S1 we choose a finite set Iv and compatible pairs (Bi, Âi) ∈
Bv × Âv, i ∈ Iv, such that Condition (5) of Lemma 4.2 is satisfied, the Iv’s

are disjoint, and I0 = {0}. By that lemma, there is a commutative diagram

(5)

G

ϕ̂
��
ϕ





B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A

of group piles such that B̂ is finite, α̂ is a rigid epimorphism, and β is an

epimorphism.

Unfortunately, B̂ need not be self-generated. Nevertheless, by Lemma

4.2, there exists a homomorphism γ̂0 : Â0 → B̂ such that β ◦ γ̂0 = γ0 and

α̂ ◦ γ̂0 = idÂ0
. Let B′

0 = γ̂0(Â0), B
′ = 〈B′

0, B̂v〉v∈S1 , B
′
0 = {(B′

0)
b′ | b′ ∈ B′},

B′v = B̂v for each v ∈ S1, B′ = (B′,B′v)v∈S , β′ = β|B′ , and α′ = α̂|B′ . Then

B′ is a self-generated finite group pile. Moreover, since B = 〈B0,Bv〉v∈S1 ,

and β′(B′
0) = β′(γ̂0(Â0)) = γ0(Â0) = B0, the morphism β′ : B′ → B is an

epimorphism. Similarly, α′ : B′ → Â is an epimorphism. Moreover, α′ is

rigid, because α̂ is rigid. In particular,

(6) (ϕ̂ : GT → Â, α′ : B′ → Â)

is locally solvable. Every solution of (6) yields a solution of (4). Conse-

quently, we may assume without loss that (4) is rigid.

Part B: Selection of subgroups. For each v ∈ S1 consider again

the closed subset G′T,v of GT,v and the subset A′
v = ϕ(G′T,v) of Av. Since
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GT,v = (G′T,v)
G, we have Av = (A′

v)
A. Moreover, with A0 = ϕ(G0) we get,

by (c), that A = 〈A0,A
′
v | v ∈ S1〉. Next we choose B0 ∈ B0 and subsets

B′v ⊆ Bv, v ∈ S1, such that

(7) B = 〈B0,B
′
v | v ∈ S1〉 and B′v meets every B-class in Bv for each

v ∈ S1

(e.g. B′v = Bv). Then α(B′v) ⊆ α(Bv) = Av = (A′
v)
A. Therefore, we may

find disjoint finite sets Jv , v ∈ S1, not containing 0 and for each v ∈ S1 label

the elements of A′
v as Av,j and the elements of B′v as Bv,j, j ∈ Jv , where

the Aj ’s need not be distinct, the Bj ’s need not be distinct, but α(Bv,j) is

a conjugate of Av,j in A, j ∈ Jv . In addition, we put J0 = {0}, B0,0 = B0,

A0,0 = A0, and note that α(B0,0) is conjugate to A0,0. By (7) and by

Lemma 5.2, we may replace the Bj,v’s by appropriate conjugate subgroups

in B such that after the replacement

(7′) B = 〈B0,0,B
′
v | v ∈ S1〉, B0,0 ∈ B0, B

′
v meets every conjugacy class in

Bv, and α(Bv,j) = Av,j for all j ∈ Jv and v ∈ S.

Part C: Partition of T . By (a), for each v ∈ S1, the map t 7→ ϕ(GT,t)

from Tv to Av is continuous. Hence, each of the subsets Tv,j = {t ∈ Tv |
ϕ(GT,t) = Av,j} of Tv is open-closed. Moreover, Tv,j 6= ∅, because ϕ : GT →
A is surjective. However, Tv,j = Tv,j′ for distinct j, j′ ∈ Jv if Av,j = Av,j′ .

Nevertheless, since Tv has no isolated points, we may partition each Tv,j
such that they become disjoint and get a partition Tv =

⋃

· j∈Jv Tv,j into

open-closed subsets such that ϕ(GT,t) = Av,j for each t ∈ Tv,j and each

j ∈ Jv. In addition, we set T0,0 = T0 = {0}. Then ϕ(GT,t) = Av,j for

t ∈ Tv,j , j ∈ Jv, and v ∈ S. Let α′
v,j be the inverse of the isomorphism

α : Bv,j → Av,j .

Part D: Solution of (4). For each v ∈ S and j ∈ Jv let Xv,j =

pr−1(Tv,j). Then, XT =
⋃

· v∈S
⋃

· j∈Jv Xv,j is a partition of X into open-

closed subsets. If x ∈ Xv,j , then t = pr(x) ∈ Tv,j , ω(x) ∈ GT,t, and

ϕ(ω(x)) ∈ Av,j , so that α′
v,j(ϕ(ω(x))) is well defined. We may therefore

define a map β : XT → B by β|Xv,j = α′
v,j ◦ ϕ ◦ ω|Xv,j . It satisfies

(8) α ◦ β|Xv,j = α ◦ α′
v,j ◦ ϕ ◦ ω|Xv,j = ϕ ◦ ω|Xv,j

for v ∈ S and j ∈ Jv. By (1b), β defines a homomorphism γ : GT → B

such that γ ◦ ω = β. By (8), (α ◦ γ) ◦ ω = α ◦ β = ϕ ◦ ω. Therefore, by

the uniqueness property (1b), α ◦ γ = ϕ. Further, for each t ∈ Tv,j we have
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XT,t ⊆ Xv,j , so γ(GT,t) = γ(ω(XT,t)) = β(XT,t) = α′
v,j ◦ ϕ ◦ ω(XT,t) =

α′
v,j ◦ ϕ(GT,t) = α′

v,j(Av,j) = Bv,j . It follows from (7′) that γ(G) = B. In

addition, γ(GT,0) = B0 and γ(GT,v) = γ((G′T,v)
G) = (B′v)

B = Bv for each

v ∈ S1. Consequently, γ : G → B is an epimorphism solving embedding

problem (4).

Proof of (i). Let α : B → A be an epimorphism of finite groups and

ϕ : GT → A be an epimorphism. Suppose for each H ∈ GT,1 there exists a

homomorphism γH : H → B such that α ◦ γH = ϕ|H . We have to produce

a homomorphism γ : GT → B such that α ◦ γ = ϕ.

To that end we write T as the inverse limit of finite spaces lim
←−j∈J

T (j).

By (d), ϕ factors through GT (j) for some j ∈ J . Moreover, the map GT →
GT (j) is injective on each H ∈ GT . By assumption, GT,0 is isomorphic to the

free finitely generated profinite group Γ0. Hence, GT (j),0 is a free finitely

generated profinite group and each H(j) ∈ GT (j),1 satisfies the condition of

local solvability. We may therefore assume that T is finite and GT = GT,0 ∗
∏

∗ t∈T1
GT,t is the free product of finitely many profinite groups, with GT,0

free. By [FrJ, Cor. 22.4.5], GT,0 is projective, so there exists γ0 : GT,0 → B

such that α ◦ γ0 = ϕ|GT,0 . By assumption, for each t ∈ T1 there is a group

Bt ∈ B and an epimorphism γt : GT,t → Bt such that α ◦ γt = ϕ|GT,t . These

maps extend to a homomorphism γ : GT → B such that α ◦ γ = ϕ, as

claimed.

§6. Iwasawa criterion for group piles

Iwasawa has characterized the free profinite group F̂ω of countable rank

as a profinite group of countable rank for which every finite embedding prob-

lem is solvable. Using the language of piles and the same method of proof,

we characterize the free product of groups of finitely many isomorphism

types over Cantor sets by essentially the same condition, namely solvability

of finite embedding problems, more precisely by Condition (1) below.

Let (S, S0, S1,Γv, Tv)v∈S be a data as in Data 5.1.

Definition 6.1. Let G = (G,Gv)v∈S be a group pile. We say that G

is a Cantor group pile over (Γv)v∈S if it satisfies the following conditions:

(1a) rank(G) ≤ ℵ0.

(1b) For each v ∈ S1, the space Ḡv of the G-classes of Gv has no isolated

points.
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(1c) G =
⋃

· v∈S Gv, where, for each v ∈ S, Gv is an open-closed subset of G
and H ∼= Γv for every H ∈ Gv.

(1d) G is self-generated and every finite locally solvable self-generated em-

bedding problem for G is solvable.

The name “Cantor group pile” is justified by Conditions (1a) and (1b).

By [HaJ1, Lemma 1.2], they are equivalent to the spaces Ḡv, v ∈ S1, being

homeomorphic to the Cantor middle third set, which we refer to as the Can-

tor space. Thus, the following result is a special case of Proposition 5.3.

Corollary 6.2. For each v ∈ S1 let Tv be a homeomorphic copy of

the Cantor space. Then GT = (GT ,GT,v)v∈S is a Cantor group pile over

(Γv)v∈S .

Having constructed a Cantor group pile over (Γv)v∈S we now prove its

uniqueness. The proof is modeled after the proof of [FrJ, Lemma 24.4.7].

Proposition 6.3. Let G = (G,Gv)v∈S and G′ = (G′,G′v)v∈S be Can-

tor group piles over (Γv)v∈S . Then G ∼= G′.

Proof. Choose descending sequences G = K1 ≥ K2 ≥ · · · and G′ =

K ′
1 ≥ K ′

2 ≥ · · · of open normal subgroups of G and G′, respectively, with
⋂∞
n=1Kn = 1 and

⋂∞
n=1K

′
n = 1.

Inductively define descending sequences L1 ≥ L2 ≥ · · · and L′
1 ≥ L′

2 ≥
· · · of open normal subgroups of G and G′, respectively, and isomorphisms

θn : G/Ln → G′/L′
n, for n = 1, 2, . . . satisfying the following conditions, for

every n ≥ 1:

(3a) Ln ≤ Kn.

(3b) L′
n ≤ K

′
n.

(3c) If n ≥ 2, then the following diagram, in which the horizontal arrows

are the quotient maps (and hence λn ◦πn = πn−1 and λ′n ◦π
′
n = π′n−1),

is commutative:

(4)

G
πn // G/Ln

θn
��

λn // G/Ln−1

θn−1

��

G′
π′

n // G′/L′
n

λ′n // G′/L′
n−1



116 D. HARAN, M. JARDEN AND F. POP

(3d) The following condition holds for each v ∈ S: for each H ∈ Gv there

exists H ′ ∈ G′v and for each H ′ ∈ G′v there exists H ∈ Gv with an

isomorphism γ0 : H → H ′ such that θn ◦ πn|H = π′n ◦ γ0.

Then G = lim
←−n

G/Ln and G′ = lim
←−n

G′/L′
n, and the isomorphisms

θ1, θ2, θ3, . . . define an isomorphism θ : G→ G′. (This follows already from

(3a)–(3c); we need (3d) only for the induction step.)

For n = 1 let L1 = G, L′
1 = G′, and set θ1 to be the trivial map. Then

(3a) and (3b) hold trivially, (3c) is vacuous, and (3d) holds by (1c).

Now let n ≥ 2 and suppose (3) holds for n − 1. In particular, Ln−1,

L′
n−1, and the isomorphism θn−1 : G/Ln−1 → G′/L′

n−1 have already been

constructed and

(3′d) the following condition holds for each v ∈ S: for each H ∈ Gv there

exists H ′ ∈ G′v and for each H ′ ∈ G′v there exists H ∈ Gv with an

isomorphism γ0 : H → H ′ such that θn−1 ◦ πn−1|H = π′n−1 ◦ γ0.

Choose an open normal subgroup L′
n of G′ such that L′

n ≤ K ′
n ∩ L

′
n−1.

This gives (3b). Let m = (G′ : L′
n). Then, for each H ′ ∈ G′, we have

(H ′ : H ′ ∩ L′
n) = (H ′L′

n : L′
n) ≤ m, so, in the notation of Section 1,

H ′
(m) ≤ H

′ ∩ L′
n ≤ L

′
n. By (1c), each H ′ is isomorphic to one of the groups

Γv, so H ′ is finitely generated (Data 5.1). Hence, by Lemma 1.2, there is an

r ≥ m such that, for every H ′ ∈ G′, every automorphism of (H ′)(m) which

lifts to an automorphism of (H ′)(r) can be lifted to an automorphism of

H ′. By Lemma 3.1(a) there is an open normal subgroup L̂′ of G′ such that

H ′ ∩ L̂′ ≤ H ′
(r) for every H ′ ∈ G′. We may assume that L̂′ ≤ L′

n. This gives

the following diagram in which all horizontal maps are quotient maps.

(5)

G
πn−1 // G/Ln−1

θn−1

��

G′ π′

// G′/L̂′ λ′ // G′/L′
n

λ′n // G′/L′
n−1

In particular, λ′ ◦ π′ = π′n and λ′n ◦ λ
′ ◦ π′ = π′n−1.

By (3′d),

(θn−1 ◦ πn−1 : G→ G′/L′
n−1, λ

′
n ◦ λ

′ : G′/L̂′ → G′/L′
n−1)

is a finite locally solvable embedding problem. Hence, by (1d), there exists

an epimorphism τ : G→ G′/L̂′ such that λ′n ◦ λ
′ ◦ τ = θn−1 ◦ πn−1.
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Let L̂ be the kernel of τ : G → G′/L̂′ and let Ln be the kernel of

λ′ ◦ τ : G → G′/L′
n. Then τ, λ′ ◦ τ induce isomorphisms θ̂ : G/L̂ → G′/L̂′

and θn : G/Ln → G′/L′
n such that the following diagram commutes.

(5′)

G
π //

τ

!!DD
DD

DD
DD

D G/L̂
λ //

θ̂
��

G/Ln
λn //

θn
��

G/Ln−1

θn−1

��

G′ π′

// G′/L̂′ λ′ // G′/L′
n

λ′n // G′/L′
n−1

This gives (3c).

Now we verify (3d). Since τ(Gv) = π′(G′v), the following condition holds

for each v ∈ S: for each H ∈ Gv there is an H ′ ∈ G′v and for each H ′ ∈ G′v
there is H ∈ Gv with θ̂

(

(π(H)
)

= π′(H ′). For such groups θ̂ induces an

isomorphism H/H ∩ L̂ ∼= H ′/H ′ ∩ L̂′. Thus we have the following diagram

(6)

H
π // H/H ∩ L̂ //

θ̂
��

H/H ∩ Ln //

θn
��

H/H ∩ Ln−1

θn−1

��
H ′ π′

// H ′/H ′ ∩ L̂′ // H ′/H ′ ∩ L′
n

// H ′/H ′ ∩ L′
n−1

in which the horizontal maps are the quotient maps and θ̂, θn, θn−1 are the

restrictions of these maps defined above to the images of H.

We have H ′ ∩ L̂′ ≤ H ′
(r) ≤ H ′

(m) ≤ H ′ ∩ L′
n. Hence, by Corollary 1.3,

θn lifts to an isomorphism H → H ′.

If (3a) holds, then we are done. If not, we replace Ln−1, L
′
n−1, and

θn−1 by L′
n, Ln, and θ−1

n . Reversing the roles of G and G′ in the above con-

struction, we may construct an open normal subgroup Mn of G in Ln∩Kn,

an open normal subgroup M ′
n of G′ in L′

n (hence in K ′
n) and an isomor-

phism µn : G′/M ′
n → G/Mn such that the following diagram (in which the

horizontal arrows are the quotient maps) commutes

G/Mn
// G/Ln

θn
��

G′/M ′
n

µn

OO

// G′/L′
n

and where (3d) holds with respect to the quotient maps G′ → G′/M ′
n and

G → G/Mn and to µn replacing θn. Finally, we replace Ln, L
′
n and θn by

Mn, M
′
n, and µ−1

n , respectively to obtain all conditions of (3).

This finishes the induction.
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Proposition 6.4. Let (S, S0, S1,Γv, Tv)v∈S be as in Data 5.1, let G =

(G,Gv)v∈S be a Cantor group pile over (Γv)v∈S , and let G0 ∈ G0. Suppose

Tv is a homeomorphic copy of the Cantor space, v ∈ S. Then:

(a) G is isomorphic to the free product of the semi-constant sheaf X =

(X,pr, T ), where X =
⋃

· v∈S Γv × Tv, T =
⋃

· v∈S Tv, and pr is the

projection on the second coordinate.

(b) G has a presentation as an inner free product

G = G0 ∗
∏

∗
v∈S1

∏

∗
t∈Tv

Gt

such that for each v ∈ S1 the set {Gt | t ∈ Tv} is a closed system of

representatives of the G-classes of Gv.

Proof of (a). By Corollary 6.2, GT is a Cantor group pile. By as-

sumption, so is G. Hence, by Proposition 6.3, there is an isomorphism

θ : GT → G of group piles. By construction, GT is the free product of the

sheaf X, hence so is G.

Proof of (b). By (a), θ(GT,0) = Gg0 for some g ∈ G. Let θ′ = ιg−1 ◦ θ
be the composition of θ with conjugation by g−1. Then θ′ : GT → G is an

isomorphism of group piles satisfying θ′(GT,0) = G0. Replacing θ by θ′, we

may assume that θ(GT,0) = G0. Now let Gt = θ(GT,t) for each t ∈ T1.

By (3) of Section 5, GT = GT,0 ∗
∏

∗ v∈S1

∏

∗ t∈Tv
GT,t, so G = G0 ∗

∏

∗ v∈S1

∏

∗ t∈Tv
Gt. Moreover, for each v ∈ S1, {GT,t | t ∈ Tv} is a closed sys-

tem of representatives of the GT -classes of GT,v (Proposition 5.3(g)). Since

θ(GT,v) = Gv, the set {Gt | t ∈ Tv} is a closed system of representatives of

the G-classes of Gv.

§7. Big quotients

Omitting the spaces Tv from Data 5.1, we demand that the set {Γv |
v ∈ S1} has a “system of big quotients”. Big quotients enter in an essential

way in the proof of Proposition 7.5 which is one of the key steps in the proof

of our main result.

Data 7.1. We continue to consider the finite set S = S0 ·∪ S1 with

S0 = {0} and 1 /∈ S. For each v ∈ S let Γv be a finitely generated profinite

group. Put C1 = {Γv | v ∈ S1}. A finite quotient Γ̄v of Γv is said to be big

if it satisfies the following condition:



ABSOLUTE GALOIS GROUP 119

(1) Let F̂ be a finitely generated free profinite group and J a finite set.

For each j ∈ J let ∆j ∈ C1. Consider the free profinite product B∗ =

F̂ ∗
∏

∗ j∈J ∆j. Let ∆ be a closed subgroup of B∗ with epimorphisms

Γv
γ
−→ ∆→ Γ̄v. Then ∆ is conjugate in B∗ to a closed subgroup of a

certain ∆j and γ is an isomorphism.

The definition of “big quotients” depends on C1. The latter set will be

always clear from the context.

Note that if Γ̄′ is a finite quotient of Γv and Γ̄v is a quotient of Γ̄′, then

also Γ̄′ is a big quotient of Γv.

We assume that

(2a) Γ0 is a finitely generated free profinite group and that

(2b) each Γv with v ∈ S1 has a big quotient Γ̄v.

Lemma 7.2. Let B = (B,Bv)v∈S be a finite group pile. Suppose each

group in Bv is a quotient of Γv. Then there exists a finite group pile B′ =

(B′,B′v)v∈S and an epimorphism β : B′ → B such that the following holds

for each v ∈ S:

(a) For every homomorphism ψ : Γv → B with ψ(Γv) ∈ Bv there is a

homomorphism ψ′ : Γv → B′ with ψ′(Γv) ∈ B
′
v and β ◦ ψ′ = ψ.

(b) Suppose v ∈ S1. If a subgroup C ′ of B′ is a quotient of Γv and β(C ′)

is a big quotient of Γv, then β(C ′) is a subgroup of some group in B1.

Moreover, if B is deficient, then B′ can be chosen to be deficient.

Proof. We divide the proof into three parts.

Part A: Free product. Choose a homomorphism ψ0 : Γ0 → B such

that ψ0(Γ0) ∈ B0, write Γ0 also as Γ(ψ0), and let Ψ0 = {ψ0}. For each

v ∈ S1 let Ψv be the set of all homomorphisms ψ : Γv → B such that

ψ(Γv) ∈ B1. For each ψ ∈ Ψv let Γ(ψ) be an identical copy of Γv. Then ψ is

a homomorphism of Γ(ψ) into B whose image lies in B1. Since Γv is finitely

generated and B is finite, the set Ψv is finite. We consider the various

Ψv as disjoint and set Ψ =
⋃

· v∈S Ψv. Finally consider a finitely generated

free profinite group F̂ with rank(F̂ ) ≥ rank(B) and let ζ : F̂ → B be an

epimorphism.

Now consider the free product B(∞) = F̂ ∗
∏

∗ v∈S

∏

∗ ψ∈Ψv
Γ(ψ) and let

γ : B(∞) → B be the epimorphism whose restriction to F̂ is ζ, and to each
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Γ(ψ) is ψ. Choose a descending sequence Ker(γ) = N (0) ≥ N (1) ≥ N (2) ≥

· · · of open normal subgroups of B(∞) whose intersection is 1. For each j ≥ 0

put B(j) = B(∞)/N (j). (We are not using here B(j) in the sense of Section

1.) Then let γ(j) : B(∞) → B(j), β(j) : B(j) → B, and γj+1,j : B
(j+1) → B(j)

be the quotient maps. Then γ(j) = γj+1,j ◦ γ
(j+1) and β ◦ γ(j) = γ. Since

γ is an epimorphism, so is each β(j). We may identify B with B(0) and γ

with γ(0).

Part B: Construction of B′ and Proof of (b). We choose B′ to be B(j)

with j sufficiently large. To that end we consider v ∈ S1 and a subgroup C

of B which is a big quotient of Γv but contained in no group belonging to B1.

Assume, toward contradiction, that for each j there is a subgroup C(j) of

B(j) which is a quotient of Γv such that β(j)(C(j)) = C. Since for each j the

groupB(j) has only finitely many subgroups, a compactness argument allows

us to choose the C(j)’s such that γj+1,j(C
(j+1)) = C(j) for all j. The inverse

image of the C(j)’s is a closed subgroupC(∞) of B(∞) satisfying γ(j)(C(∞)) =

C(j) for each j. In particular, γ(C(∞)) = C. Since Γv is finitely generated,

another compactness argument gives a compatible sequence of epimorphisms

δ(j) : Γv → C(j). That sequence defines an epimorphism δ : Γ→ C(∞). Note

that B(∞) = (F̂ ∗Γ(0))∗
∏

∗ v∈S1

∏

∗ ψ∈Ψv
Γ(ψ) and F̂ ∗Γ(0) is a finitely generated

free profinite group. By the defining properties of C1 (Data 7.1), C(∞) is

conjugate to a closed subgroup of Γ(ψ) for some ψ ∈ Ψv and v ∈ S1. Then

C = γ(C(∞)) is conjugate to a subgroup of γ(Γ(ψ)) = ψ(Γ(ψ)) ∈ B1. Since B1

is closed under conjugation, C is contained in a group in B1, a contradiction.

The contradiction proves that there exists a positive integer j such that

(b) holds for B′ = B(j) and β = β(j).

Part C: Proof of (a). For each v ∈ S let B′v be the conjugacy domain

of Subgr(B′) generated by the groups γ(j)(Γ(ψ)) with ψ ∈ Ψv. If B is

deficient, we choose B′0 to be the conjugacy class consisting of the trivial

group.

Let ψ : Γ0 → B be a homomorphism with ψ(Γ0) ∈ B0. Then with

B0 = γ(Γ(ψ0)) and B′
0 = γ(j)(Γ(ψ0)) (or B0 = B′

0 = 1 if B is deficient),

we have ψ(Γ0) = Bb
0 for some b ∈ B. Choose b′ ∈ B′ such that β(b′) = b.

Then, B′
0 ∈ B

′
0, rank((B′

0)
b′) = rank(B′

0) ≤ rank(Γ0), and β((B′
0)
b′) =

Bb
0 = ψ(Γ0). By assumption, Γ0 is a finitely generated free profinite group.

Therefore, by Gaschütz, there exists an epimorphism ψ′ : Γ0 → (B′
0)
b′ such

that β ◦ ψ′ = ψ [FrJ, Prop. 17.7.3]. This settles the case v = 0.

Now consider v ∈ S1 and let ψ : Γv → B be a homomorphism with
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ψ(Γv) ∈ Bv. Then ψ ∈ Ψv and Γv = Γ(ψ). Set ψ′ = γ(j)|Γ(ψ) . Then

ψ′(Γv) ∈ B
′
v and β ◦ ψ′ = ψ, as desired.

Remark 7.3. Non-improvable. It is impossible to deduce in Lemma

7.2(b) that β(C ′) is a subgroup of some group in Bv because, for example,

Γv can be isomorphic to a subgroup of Γv′ for distinct v, v′ ∈ S1. We over-

come this difficulty in Part F of the proof of Proposition 7.5 by considering

separated rigid finite embedding problems.

Lemma 7.4. Let G = (G,Gv)v∈S be a separated group pile. Suppose

each group in Gv is isomorphic to Γv, v ∈ S1. Then there exists an open

normal subgroup K of G with the following property : If ϕ : G→ A is an epi-

morphism onto a finite group A with Ker(ϕ) ≤ K, then A = (A,ϕ(Gv))v∈S
is separated and ϕ(H) is a big quotient of Γv for every H ∈ Gv and each

v ∈ S1.

Proof. There is an n such that, in the notation of Section 1, Γ
(n)
v is

a big quotient of Γv for each v ∈ S1. Thus, H(n) is a big quotient of H

for each H ∈ G1. Note that the groups in G0 are conjugate to each other,

hence isomorphic. Lemma 3.1 gives an open normal subgroup K of G such

that G/K is separated and K ∩H ≤ H(n) for each H ∈ G1. Consider an

epimorphism ϕ : G→ A with A finite and Ker(ϕ) ≤ K. Let H ∈ G1. Then

H → H(n) factors through ϕ : H → ϕ(H), hence ϕ(H) is a big quotient of

H.

The following proposition is an essential step toward a solution of a finite

locally solvable embedding problem (3) for a group pile G. We cover the

deficient group pile associated with G by a deficient group pile H and solve

the corresponding embedding problem (4) for H assuming among others

that the group theoretic embedding problem for the underlying profinite

groups is solvable.

Proposition 7.5. Let G = (G,Gv)v∈S be a separated deficient group

pile, H = (H,Hv)v∈S a deficient group pile, and λ : H→ G a rigid epimor-

phism. Suppose:

(a) Each group in Gv is isomorphic to Γv, v ∈ S1.

(b) There are no inclusions between distinct groups in G1.

(c) G is G1-projective.
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(d) The space Ḡ1 of the G-orbits of G1 has no isolated points.

(e) For every finite split embedding problem (ϕ : G → A, α : B → A) of

profinite groups there exists a group epimorphism δ : H → B such that

α ◦ δ = ϕ ◦ λ and λ(Ker(δ)) = Ker(ϕ).

Then for every finite locally solvable embedding problem

(3) (ϕ : G→ A, α : B→ A)

of deficient group piles there exists an epimorphism δ : H → B of deficient

group piles such that α ◦ δ = ϕ ◦ λ and λ(Ker(δ)) = Ker(ϕ).

Proof. Let (3) be a finite locally solvable embedding problem of defi-

cient group piles. We want to solve the embedding problem

(4) (ϕ ◦ λ : H→ A, α : B→ A).

Let us call a group epimorphism δ : H → B which satisfies α ◦ δ = ϕ◦λ and

λ(Ker(δ)) = Ker(ϕ) a group theoretic regular solution of (4). It will

be a regular solution if δ(Hv) = Bv for each v ∈ S1.

Part A: Domination principle. If

(5)

G

ϕ̂
��
ϕ





B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A

is a commutative diagram of epimorphisms of deficient group piles with

B̂ = B ×A Â, then

(6) (ϕ̂ ◦ λ : H→ Â, α̂ : B̂→ Â)

is a finite embedding problem dominating (4). If δ̂ is a (group theoretic)

regular solution of (6), then δ = β ◦ δ̂ is a (group theoretic) regular solution

to (4).

Indeed, suppose that α̂ ◦ δ̂ = ϕ̂ ◦ λ and λ(Ker(δ̂)) = Ker(ϕ̂). We

prove that λ(Ker(δ)) = Ker(ϕ). If g ∈ λ(Ker(δ)), then g = λ(h) with

h ∈ Ker(δ). Hence, ϕ(g) = ϕ(λ(h)) = α(δ(h)) = 1. Conversely, suppose
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that g ∈ Ker(ϕ). Choose h ∈ H with λ(h) = g and set b̂ = δ̂(h). Then

α(β(b̂)) = ϕ(λ(h)) = ϕ(g) = 1. By [FrJ, Lemma 22.2.4] we may write

b̂ = b̂1b̂2 with β(b̂1) = 1 and α̂(b̂2) = 1. Choose h1 ∈ H with δ̂(h1) = b̂1 and

set g1 = λ(h1). Then ϕ̂(g−1
1 g) = ϕ̂(λ(h−1

1 h)) = α̂(δ̂(h−1
1 h)) = α̂(b̂−1

1 b̂) =

α̂(b̂2) = 1. Since λ(Ker(δ̂)) = Ker(ϕ̂), there exists h2 ∈ Ker(δ̂) with g−1
1 g =

λ(h2). Thus, g = λ(h1h2) and δ(h1h2) = β(δ̂(h1))β(δ̂(h2)) = β(b̂1)β(1) = 1.

Consequently, g ∈ λ(Ker(δ)), as claimed.

Since fiber products over α̂ : B̂ → Â are fiber products over α : B → A,

we may iterate the same construction several times.

Similarly, if β : B′ → B is an epimorphism of profinite groups, δ′ : H →

B′ is a homomorphism satisfying α ◦ β ◦ δ′ = ϕ ◦ λ, and δ = β ◦ δ′, then

λ(Ker(δ′)) = Ker(ϕ) implies λ(Ker(δ)) = Ker(ϕ).

Part B: Without loss A is separated, ϕ(Gv) is a big quotient of Γv for

each Gv ∈ Gv and each v ∈ S1, and α is rigid. Indeed, by Lemma 7.4 (here

we use Assumption (a)) and Lemma 4.3 there is a commutative diagram (5)

of deficient group piles such that Â is separated, ϕ̂(Gv) is a big quotient of

Γv for each Gv ∈ Gv and each v ∈ S1, B̂ = B ×A Â, and α̂ is rigid. By Part

A, a regular solution δ̂ : H→ B̂ of (6) gives a regular solution β ◦ δ̂ : H→ B

of (4).

Part C: For every locally embedding problem (3) of deficient group

piles, embedding problem (4) has a group theoretic regular solution. In

fact, Lemma 4.3 gives a commutative diagram (5) in which α̂ splits (here

we use Assumption (c)). Assumption (e) gives a group theoretic regular

solution δ̂ to (6). By Part A, δ = β ◦ δ̂ is a group theoretic regular solution

of (4).

Part D: Embedding problem (4) has a group theoretic regular solution

δ : H → B such that for each H1 ∈ H1 there is a B1 ∈ B1 with δ(H1) ≤ B1.

Indeed, by Lemma 7.2 there exists an epimorphism β : B′ → B of deficient

group piles such that (a) and (b) of that lemma hold. Let Gv ∈ Gv for

some v ∈ S1. Then there exists Bv ∈ Bv and an epimorphism ψ : Gv →

Bv such that α ◦ ψ = ϕ|Gv (because (3) is locally solvable). By (a) of

Lemma 7.2, ψ lifts to an epimorphism ψ′ : Gv → B′
v for some B′

v ∈ B
′
v

with β(B′
v) = Bv. Thus Gv is compatible with B′

v. Therefore B′′v = {B′
v ∈

B′v | B
′
v is compatible with some Gv ∈ Gv} is a B′-domain that satisfies

β(B′′v ) = Bv. If necessary, replace B′v by B′′v to make (ϕ,α ◦ β) a locally

solvable embedding problem for G.

Now consider H1 ∈ H1. Put G1 = λ(H1), B
′
1 = δ′(H1), and B1 =
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β(B′
1). ThenB1 = δ(H1) and α(B1) = ϕ(G1). Since λ is rigid, its restriction

to H1 is an isomorphism H1 → G1. Therefore B′
1 ≤ B′ is a quotient of

G1 ∈ G1. By Part B, ϕ(G1) is a big quotient of Γv for the unique v ∈ S1

with G1 ∈ Gv. By Lemma 7.2(b), B1 is a subgroup of some group in B1, as

claimed.

Part E: Embedding problem (4) has a group theoretic regular solution

δ : H → B such that δ(H1) ⊆ B1. By Lemma 3.2 and Lemma 4.3, there is

a commutative diagram (5) with B̂ = B ×A Â in which α̂ is rigid such that

(7) if Â1, Â2 ∈ Â1 and Â1 ≤ Â2, then ϕ̄(Â1) = ϕ̄(Â2)

(here we use Assumption (b)). By Part D, the embedding problem

(8) (ϕ̂ ◦ λ : H→ Â, α̂ : B̂→ Â)

has a group theoretic regular solution δ̂ : H → B̂ such that for each H1 ∈ H1

there is B̂1 ∈ B̂1 with δ̂(H1) ≤ B̂1. Fix such H1, B̂1. Then

α̂(δ̂(H1)) ≤ α̂(B̂1) and β(δ̂(H1)) ≤ β(B̂1).

But α̂((δ̂(H1)) = ϕ̂(λ(H1)) ∈ Â1 and α̂(B̂1) ∈ Â1. Hence, by (7),

ϕ̄
(

α̂(δ̂(H1))
)

= ϕ̄
(

α̂(B̂1)
)

, that is, α
(

β(δ̂(H1))
)

= α
(

β(B̂1)
)

. Since α is

rigid, hence injective on β(B̂1) ∈ B1, this gives δ(H1) = β(δ̂(H1)) = β(B̂1) ∈
B1. Consequently, δ = β ◦ δ̂ has the required property.

Part F: Embedding problem (4) has a regular solution. By (d) and

by Lemma 4.5 there is a commutative diagram (5) with B̂ = B ×A Â in

which α̂ is rigid such that

(9) for every v ∈ S1 and Bv ∈ Bv there exists Âv ∈ Âv with α(Bv) =

ϕ̄(Âv) such that if B̂′ ∈ B̂v and α̂(B̂′) is conjugate to Âv, then β(B̂′)

is conjugate to Bv.

By Part E, (8) has a group theoretic regular solution δ̂ : H → B̂ such that

δ̂(H1) ⊆ B̂1. We show that the group theoretic regular solution δ = β ◦ δ̂ of

(4) satisfies δ(Hv) = Bv for each v ∈ S1. This will prove that δ is a regular

solution of (4).

The inclusion δ̂(H1) ⊆ B̂1 implies that δ(H1) ⊆ B1. Let v ∈ S1 and

Hv ∈ Hv. Then there exists v′ ∈ S1 such that δ(Hv) ∈ Bv′ , so α(δ(Hv)) ∈
Av′ . On the other hand, since ϕ ◦ λ : H → A is an epimorphism of group

piles, α(δ(Hv)) = ϕ(λ(Hv)) ∈ Av. Therefore Av ∩Av′ 6= ∅. But, by Part B,

A is separated, so v = v′. Consequently, δ(Hv) ⊆ Bv.
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Conversely, let Bv ∈ Bv. Let Âv ∈ Âv be as in (9). Then, there

is an Hv ∈ Hv such that ϕ̂ ◦ λ(Hv) = Âv. Since δ̂(H1) ⊆ B̂1, we have

δ̂(Hv) ∈ B̂v′ for some v′ ∈ S1. Thus, α̂(δ̂(Hv)) ∈ Âv′ and ϕ̂(λ(Hv)) ∈ Âv.

Since α̂ ◦ δ̂ = λ ◦ ϕ̂, we get Âv ∩ Âv′ 6= ∅. Since A is separated, so is Â.

Therefore, v = v′. Finally, since δ̂(Hv) = Âv, Condition (9) gives a b ∈ B

with δ(Hv) = β(δ̂(Hv)) = Bb
v. Let h ∈ H with δ(h) = b−1. Then Hh

v ∈ Hv
and δ(Hh

v ) = Bv.

It follows that δ : H → B is the desired epimorphism.

Remark 7.6. Galois theoretic interpretation of regularity. Let N/M

be a finite Galois extension and let t be transcendental over M . Set G =

Gal(M), A = Gal(N/M), and H = Gal(M(t)). Let ϕ : G→ A and λ : H →

G be the restriction maps. Suppose δ is a group theoretic solution of (4),

that is δ : H → B is an epimorphism and α ◦ δ = ϕ ◦ λ. Let P be the

fixed field of Ker(δ) in M̃(t). Then the condition λ(Ker(δ)) = Ker(ϕ) for

the regularity of δ is equivalent to P ∩ M̃ = N . If char(M) = 0, the latter

condition is equivalent to “P is regular over N”.

§8. P-adically closed fields

Ordered fields and p-adically valued fields have common features. For

example, both have closures and the theory of these closures is model com-

plete. In this section we present a unified vocabulary for both types of fields

and survey their basic properties.

Let (K, v) be an ordered field or a valued field. We call (K, v) P-adic

if

(1) either (K, v) is an ordered field

(2) or (K, v) is a valued field and there exists a prime number p such that

(2a) the residue field of (K, v) is finite, say, with pf elements (we call

p the residue characteristic),

(2b) there is a π ∈ K× with a smallest positive value v(π) in v(K×)

(we call π a prime element of (K, v)),

(2c) and there is a positive integer e with v(p) = ev(π) (we call e the

ramification index of (K, v)).

We refer to Case (1) as the real case and to Case (2) with p the residue

characteristic as the p-adic case. The type of (K, v) is (0, 1, 1) in the real
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case and (p, e, f) in the p-adic case. In both cases we call ef the rank of

(K, v).

Let (K, v) and (K ′, v′) be P-adic fields. We say that (K ′, v′) is an

extension of (K, v) if K ⊆ K ′, v = v′|K , and in Case (2) they have the

same residue characteristic. Let (p, e, f) and (p′, e′, f ′) be the types of (K, v)

and (K ′, v′), respectively. Then p = p′, e|e′, and f |f ′. Hence, (K ′, v′) and

(K, v) are of the same type if and only if they are of the same rank.

We say that (K, v) is P-adically closed if (K, v) is a P-adic field which

admits no finite proper P-adic extensions of the same type. In the real case

(K, v) is real closed, hence is elementarily equivalent to (R,≤), where ≤ is

the standard ordering of the R [Pre, Cor. 5.3]. In particular, an element

x ∈ K is nonnegative if and only if it is a square. In the p-adic case K is

elementarily equivalent to a finite extension of Qp [HJPb, Prop. 8.2(j)] and

v is the unique valuation of K such that (K, v) is P-adically closed [HJPb,

Prop. 8.2(c)]. Occasionally, we denote v also by vK .

A P-adic closure of (K, v) is an algebraic extension (K̄, v̄) of (K, v)

which is maximal P-adic of the same type, in particular (K̄, v̄) is P-adically

closed. Zorn’s lemma guarantees the existence of (K̄, v̄). In the real case

(K̄, v̄) is unique up to a K-isomorphism [Pre, Thm. 3.10]. This is not nec-

essarily so in the p-adic case [PrR, Thm. 3.2]; however, (K̄, v̄) is Henselian

[PrR, Thm. 3.1], so each Henselian closure (Kv , v) of (K, v) isK-embeddable

in (K̄, v̄).

Each P-adic closure of (K, v) is also called a P-adic closure of K.

By (1) and (2), char(K) = 0. Let Kabs = K ∩ Q̃ be the algebraic part

of K.

Lemma 8.1. Let (K, v) be a Henselian P-adic valued field. Then

(Kabs, v) is a Henselian P-adic field of the same type as (K, v). Moreover,

let K̄ be a P-adic closure of K at v. Then K̄abs = Kabs. In particular, Kabs

is P-adically closed.

Proof. By [PrR, Lemma 3.5(i)], (K, v) and (Kabs, v) have the same

residue field. By [PrR, Lemma 3.5(ii)], Kabs contains a prime element of

(K, v). Hence, by (2c), the ramification indices of (K, v) and (Kabs, v) are

the same. It follows that (K, v) and (Kabs, v) have the same type.

Now consider a P-adic closure (K̄, v̄) of (K, v). Then, (K̄, v̄) has the

same type as (K, v), say (p, e, f). By the first part of the lemma, this is

also the type of (K̄abs, v). Thus, Qp,abs ⊆ Kabs ⊆ K̄abs and [Kabs : Qp,abs] =

ef = [K̄abs : Qp,abs]. Therefore, Kabs = K̄abs.
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Lemma 8.2. Let (K, v) be a P-adic field and (E, vE), (F, vF ) two P-

adic closures of (K, v). Then (E, vE) and (F, vF ) are elementarily equivalent

as ordered fields in the real case and as valued fields in the p-adic case.

Proof. By Tarski, all real closed fields are elementarily equivalent as

ordered fields [Pre, Cor. 5.3]. Suppose (K, v) is p-adic. Replace (K, v) by a

Henselian closure and (E, vE), (F, vF ) by conjugate valued fields over K, if

necessary, to assume that (K, v) is Henselian. By Lemma 8.1, Eabs = Kabs =

Fabs and (Kabs, v) is P-adically closed. It follows from [PrR, Thm. 5.1] that

(E, vE) ≡ (Kabs, v) ≡ (F, vF ).

Let F/K be a field extension. A K-rational place of F is a place ϕ

of F with residue field K such that ϕ(a) = a for each a ∈ K.

Lemma 8.3. Let (K, v) be a P-adic field, (K̄, v̄) a P-adic closure of

(K, v), F an extension of K, and ϕ a K-rational place of F . Then F has a

P-adic closure (F̄ , w̄) extending (K̄, v̄) and ϕ extends to a K̄-rational place

of F̄ .

Proof. By [FrJ, Lemma 2.6.9(b)], F is a regular extension of K. Hence,

ϕ extends to a K̄-rational place ϕ of FK̄ [FrJ, Lemma 2.5.5].

Proposition 7.4(c) of [HJPa] gives an algebraic extension F̄ of FK̄ and

ϕ extends to a K̄-rational place ϕ̄ such that res : Gal(F̄ ) → Gal(K̄) is

an isomorphism. In the real case Gal(F̄ ) is of the same order of Gal(K̄),

that is 2. Hence, F̄ is real closed. Denote the unique ordering of F̄ by w̄.

Then (F̄ , w̄) extends (K̄, v̄). In the p-adic case, F̄ is P-adically closed and

F̄abs = K̄abs [Pop1, Thm. E11]. Denote the unique P-adic valuation of F̄ by

w̄. Then (F̄ , w̄) has the same type as (K̄, v̄) (Lemma 8.1), so (F̄ , w̄) extends

(K̄, v̄).

Lemma 8.4. Let K be a subfield of a P-adically closed field Ē. Then:

(a) Ē ∩ K̃ is the unique algebraic extension K̄ of K contained in Ē which

is P-adically closed of the same type as Ē.

(b) In the real case let v and w be the unique orderings of K̄ and Ē; in

the p-adic case let v and w be the unique P-adic valuations of K̄ and

Ē. Then (K̄, v) is an elementary submodel of (Ē, w).

(c) Gal(Ē) is a nontrivial finitely generated group and the map res :

Gal(Ē)→ Gal(K̄) is an isomorphism.
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Proof of (a) and (b). Assertion (a) is [Pre, Lemma 3.13] in the real

case and [PrR, Thm. 3.4] in the p-adic case. Assertion (b) follows from

[Pre, Thm. 5.1] in the real case and from [PrR, Thm. 5.1] in the P-adic

case.

Proof of (c). In the real case Gal(Ē) ∼= Gal(K̄) ∼= Z/2Z. In the p-adic

case Gal(Ē) is infinite, e.g. because it has a finite residue field. Nevertheless

Gal(Ē) is finitely generated [HJPb, Prop. 8.2(k)]. Hence, by (b), Gal(Ē) ∼=
Gal(K̄) [FrJ, Prop. 20.4.6]. Since res : Gal(Ē)→ Gal(K̄) is surjective, it is

an isomorphism [FrJ, Prop. 16.10.6(b)].

Each P-adic field (K, v) carries a natural v-adic topology. If v is

an ordering <, then a basic v-open neighborhood of an element a of K is

{x ∈ K | −ε < x − a < ε}, where ε ∈ K and ε > 0. In the p-adic case, a

basic v-open neighborhood of a is {x ∈ K | v(x−a) > v(c)}, where c ∈ K×.

Lemma 8.5. Let K be a field, t an indeterminate, F a finite Galois

extension of E = K(t), and (Ē, v) a P-adically closed field containing E.

Suppose K is v-dense in K̄ = Ē ∩ K̃. Then K has a nonempty v-open

subset A satisfying the following condition:

(3) For each a ∈ A the K-specialization t → a extends to a place ϕ of F

with residue field F ′ such that K̄ ∩ F ′ is the residue field of Ē ∩ F .

Proof. Put F0 = Ē ∩ F . List the intermediate fields of F/F0 as

F0, F1, . . . , Fm−1, Fm = F . For each i between 0 and m let zi be a prim-

itive element for Fi/E which is integral over K[t] and let hi ∈ K[T,Z]

be a polynomial satisfying hi(t, Z) = irr(zi,K(t)). Let H = {a ∈ A1 |
∏m
i=0 discr(hi(a,Z)) 6= 0}. This is a Zariski K-open subset of A1 and

t ∈ H(E). For each a ∈ H(K) and for each place ϕ of F extending the K-

specialization t → a the extension F/E is unramified at ϕ and the residue

field of F is a finite Galois extension of K. Moreover,

(4) if E1 is an intermediate field of F/E and E′
1 is its residue field under

ϕ, then E′
1(ϕ(zi)) is the residue field of E1(zi) = E1Fi at ϕ, for i =

0, 1, . . . ,m. In particular, F ′
i = K(ϕ(zi)) is the residue field of Fi at

ϕ, i = 0, 1, . . . ,m [FrJ, Remark 6.1.6].

Since F0 = Ē ∩ F ,

(5) h0(t, Z) has a root in Ē, while h1(t, Z), . . . , hm(t, Z) have no roots in

Ē.
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Indeed if hi(t, Z) had a root z′i in Ē, then z′i ∈ F0, so deg(hi(t, Z)) =

[E(z′i) : E] ≤ [F0 : E] < [Fi : E] = deg(hi(t, Z)), which is a contradiction.

By Lemma 8.4, K̄ is a P-adically closed field and (K̄, v|K̄) is an elementary

submodel of (Ē, v). Hence, by (5) there exists a ∈ H(K̄) such that

(6) h0(a,Z) has a root in K̄, while h1(a,Z), . . . , hm(a,Z) have no root in

K̄.

By the theorem about the continuity of roots of polynomials [Jar2,

Prop. 16.7 and Prop. 12.3] there is a v-open neighborhood Ā of a in K̄ such

that (6) holds for each a ∈ Ā. Since K is v-dense in K̄, there is a nonempty

v-open set A ⊆ K contained in Ā. Without loss A ⊆ H(K).

Consider a ∈ A. The K-specialization t → a extends to a place ϕ of

F . Let F ′ be its residue field and let F ′
i be the residue field of Fi under ϕ,

for i = 0, 1, . . . ,m. Then F ′
0, F

′
1, . . . , F

′
m are intermediate fields of F ′/F ′

0.

Moreover, every intermediate field of F ′/F ′
0 is of this form. Indeed, let E1

be the decomposition field of F/E at ϕ. Then {E1F0, . . . , E1Fm} is the set

of all intermediate fields of F/E1F0. By (4), {F ′
0 = K(ϕ(z0)), . . . , F

′
m =

K(ϕ(zm))} is the set of their residue fields. This proves our claim.

Since ϕ(zi) is a root of hi(a,Z), we may assume by (6) that F ′
0 ⊆ K̄

and F ′
i 6⊆ K̄ for i = 1, . . . ,m. Consequently, F ′

0 = K̄ ∩ F ′.

§9. S1-adic hilbertianity

The P-adic closures of a field K extending a given basic P-adic field

build a topological space. Given a Hilbertian field equipped with a finite set

of independent “classical” P-adic fields and a set of irreducible polynomials

over K with algebraically independent parameters t1, . . . , tr, we specialize

the parameters to elements of K and extend this specialization to a place

which maps the P-adic space over K(t) onto the P-adic space over K.

Consider a P-adic field (K, v) and a field extension E of K. Let

AlgExt(E, v) be the set of all P-adically closed algebraic extensions of E

whose unique P-adic valuation or ordering extends v and is of the same

type as v. It is a topological subspace of the profinite space AlgExt(E) of all

algebraic extensions of E with the strict topology. A basic open neighbor-

hood of a field Ē ∈ AlgExt(E) is the set {E′ ∈ AlgExt(E) | E′∩F = Ē∩F}
where F is a finite Galois extension of E [HJPa, Section 6]. Galois corre-

spondence maps AlgExt(E) homeomorphically onto Subgr(E) with respect

to the strict topologies. In particular, it maps AlgExt(E, v) onto

Gal (E, v) = {Gal(Ē) | Ē ∈ AlgExt(E, v)}.
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The absolute Galois group Gal(E) acts continuously on AlgExt(E) and

AlgExt(E, v) (from the right). Let AlgExt(E, v)/Gal(E) be the quotient

space under this action. Likewise, Gal(K) acts on Gal(E, v) by conjugation

from the right.

For a Galois extension F/E let

AlgExt(F/E, v) = {Ē ∩ F | Ē ∈ AlgExt(E, v)}

Gal (F/E, v) = {Gal(F/Ē ∩ F ) | Ē ∈ AlgExt(E, v)}.

Then Gal(F/E) acts on both AlgExt(F/E, v) and Gal (F/E, v) from the

right. Also, the restriction to F maps AlgExt(E, v) onto AlgExt(F/E, v)

and Gal (E, v) onto Gal(F/E, v).

Definition 9.1. We call a P-adic field (K, v) classical in each of the

following cases:

(1a) v is an ordering and (K, v) embeds into (R, <), where < is the usual

ordering of R.

(1b) v is a p-adic valuation and (K, v) embeds into (F,w) where F is a

finite extension of Qp and w is the extension of the p-adic valuation

of Qp to F .

In both cases the P-adic closure (K̄, v̄) of (K, v) is uniquely determined

up to a K-isomorphism. In addition, there is a unique (up to equivalence)

absolute value on K which induces the v-adic topology on K. In the real

case this is part of the Artin-Schreier theory [Lan, p. 455, Thm. 2.9]. In the

p-adic case, v is discrete and the statement follows from [PrR, Thm. 3.2].

Moreover, in this case (K̄, v̄) is a Henselian closure of (K, v). In both cases

K is v-dense in K̄, so Lemma 8.5 applies.

Definition 9.2. Let S1 be a finite set of independent classical P-

adic orderings and valuations of K. Thus, the v-topologies of K for distinct

v ∈ S1 are distinct. Equivalently, by the weak approximation theorem, the

orderings in S1 are distinct and the valuations in S1 are inequivalent.

The family of all intersections of basic v-open sets, with v ∈ S1, forms a

basis for the S1-topology of K. Each S1-open set has the form
⋂

v∈S1
Uv,

where Uv = {x ∈ K | −εv < x− av < εv} with εv, av ∈ K and εv > 0 if v

is an ordering < and Uv = {x ∈ K | v(x − av) > v(cv)} with av ∈ K and

cv ∈ K
× if v is a p-adic valuation.
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Definition 9.3. Let M be a field and O a subset of M r. Following

[JaR1, Def. 1.1], we say that M is PAC over O if for every absolutely

irreducible variety V of dimension r ≥ 0 and for each dominating separable

rational map ϕ : V → Ar defined over M there exists a ∈ V (M) such that

ϕ(a) ∈ O.

The next result generalizes the characterization of “PAC over O” given

in [JaR1, Lemma 1.3] from a subring of M to an arbitrary subset O of M r.

Lemma 9.4. Let M be a field and let O be a subset of M r. Then the

following condition is necessary and sufficient for M to be PAC over O:

(2) Let f ∈ M [T1, . . . , Tr,X] be an absolutely irreducible polynomial with
∂f
∂X 6= 0 and let 0 6= g ∈ M [T1, . . . , Tr]. Then there exists a ∈ O and

b ∈M such that f(a, b) = 0 and g(a) 6= 0.

Proof. Necessity of (2) is obvious. To prove that (2) is sufficient, we

consider an absolutely irreducible variety V and a dominating separable

rational map ϕ : V → Ar defined over M . Let x be a generic point of V over

M and t = ϕ(x). Then t is a separating transcendence basis for M(x)/M

[Lan, p. 363]. Choose a primitive element y for M(x)/M(t) which is integral

over M [t] and let f ∈ M [T, Y ] be a monic polynomial in Y such that

f(t, Y ) = irr(M(t), y). Then f is absolutely irreducible [FrJ, Cor. 10.2.2]

and ∂f
∂Y 6= 0. Denote the hypersurface in Ar+1 which the equation f(T, Y ) =

0 defines over M by W . Let π : W → Ar be the projection on the first r

coordinates. The map (t, y) 7→ x defines a birational map θ : W → V over

M such that ϕ ◦ θ = π. Find a nonzero polynomial g ∈ M [T], an M -open

subset V0 of V and an M -open subset W0 of W such that ϕ|V0 : V0 → Ar is

a morphism, θ|W0 : W0 → V0 is an isomorphism, and W0 = π−1(Ar rV (g)).

By (2) there exists a ∈ O and b ∈ M such that f(a, b) = 0 and g(a) 6= 0.

Let c = θ(a, b). Then (a, b) ∈ W0(M), c ∈ V (M), and ϕ(c) = a ∈ O.

Consequently, M is PAC over O.

The following result (except for Condition (3a), which is new) is an

analog of [FHV, Lemma 3].

Lemma 9.5. Let K be a Hilbertian field [FrJ, Sec. 12.1], S1 a finite set

of independent classical P-adic orderings and valuations of K, and K0 a

separable algebraic extension of K. Let L be a finite Galois extension of K,

t an indeterminate, and F a finite Galois extension of K(t) which is regular

over L, and F0 an extension of K(t) in F . Set L0 = K0 ∩ L. Suppose



132 D. HARAN, M. JARDEN AND F. POP

(3a) K0 is PAC over each subset H ∩A, where H is a Hilbert subset of Kr

and A is a nonempty S1-open subset of Kr,

(3b) F0 ∩ L = L0, and F0L = F .

Then there exists an epimorphism γ : Gal(K)→ Gal(F/K(t)) such that

resF/L ◦γ = resK̃/L, γ(Gal(K0)) = Gal(F/F0), and for each v ∈ S1 we have

γ(Gal(K, v)) = Gal (F/K(t), v).

Proof. By abuse of notation, we abbreviate a place of fields ψ : M →
N ∪ {∞} to ψ : M → N and write ψ(M) for the residue field of M under

ψ.

Part A: Hilbertianity. There is a Hilbert subset H of K with the

following property: For each a ∈ H each extension of the specialization t 7→

a to an L-place ϕa : F → K̃ with residue field Fa induces an isomorphism

γa : Gal(Fa/K)→ Gal(F/K(t)) such that ϕa(γa(σ)(x)) = σ(ϕa(x)) for each

x ∈ F with ϕa(x) 6=∞ and each σ ∈ Gal(Fa/K); in particular resF/L ◦γa =

resFa/L [FrJ, Lemma 13.1.1]. Put γ = γa ◦ resK̃/Fa . Then resF/L ◦γ =

resK̃/L. Thus, it suffices to choose a ∈ H such that γa(Gal(Fa/Fa ∩K0)) =

Gal(F/F0) and γa(Gal (Fa/K, v)) = Gal(F/K(t), v) for each v ∈ S1.

Let E be a field between K(t) and F . Denote the residue field of E

under ϕa by Ea. Then γa(Gal(Fa/Ea)) = Gal(F/E). Therefore the map

E 7→ Ea is a bijection between the lattices of intermediate fields of F/K(t)

and of Fa/K. Then it suffices to choose a ∈ H such that

(4a) F0,a = K0 ∩ Fa, and

(4b) E ∈ AlgExt(F/K(t), v) ⇔ Ea ∈ AlgExt(Fa/K, v) for each v ∈ S1.

Indeed, in that case γ(Gal(K0)) = γa(Gal(Fa/K0 ∩Fa)) = γa(Gal((Fa/

F0,a)) = Gal(F/F0) and γ(Gal (K, v)) = γa(Gal (Fa/K, v)) = Gal (F/K(t), v)

for each v ∈ S1.

Part B: Lifting. Suppose Ea ∈ AlgExt(Fa/K, v). Then there is a

P-adic closure (K̄, v̄) of (K, v) such that K̄ ∩ Fa = Ea. By Lemma 8.3,

there is a P-adic closure (Ē, w̄) of E which extends (K̄, v̄) such that the

restriction E → Ea of ϕa to E extends to a place ϕ̄a : Ē → K̄. Then

Ea = ϕa(E) ⊆ ϕa(Ē ∩ F ) ⊆ ϕa(Ē) ∩ ϕa(F ) = K̄ ∩ Fa = Ea.

Therefore, ϕa(E) = ϕa(Ē ∩ F ). By the bijection in Part A, E = Ē ∩ F . In

addition, Ē ∈ AlgExt(K(t), v), so E ∈ AlgExt(F/K(t), v).
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Part C: Open neighborhoods. Suppose E ∈ AlgExt(F/K(t), v).

Then, there is a P-adic closure Ē ∈ AlgExt(K(t), v) of E such that Ē∩F =

E. Extend v to a P-adic ordering or valuation of Ē and let K̄ = Ē ∩ K̃.

Then K̄ ∈ AlgExt(K, v). By Definition 9.1, K is v-dense in K̄.

By Lemma 8.5, K has a v-open subset Av such that for each a ∈ Av
the K-specialization t → a extends to a place ϕa of F with residue field

Fa such that K̄ ∩ Fa is the residue field Ea of E. Hence, if a ∈ Av , then

Ea ∈ AlgExt(Fa/K, v).

Part D: Conclusion. By assumption, the orderings and valuations

in S are classical and independent. Hence, by [Gey, Lemma 3.4], H ∩
⋂

v∈S Av 6= ∅. By assumption, F0 ∩ L = L0, F0L = F , and F/L is regular.

Choose a primitive element x for F0/L0(t) which is integral over L0[t] and let

f ∈ L0[T,X] be a monic polynomial in X such that f(t,X) = irr(x,L0(t)).

Then f ∈ K0[T,X] and f is absolutely irreducible [FrJ, Cor. 10.2.2(b)].

Moreover, discr(f(t,X)) 6= 0, so we may make H smaller, if necessary, such

that for each a ∈ H each extension of the specialization t→ a to an L-place

ϕa : F → K̃, we have discr(f(a,X)) 6= 0, hence ϕa(F0) = L0(ϕa(x)).

By (3a), we may choose a ∈ H∩
⋂

v∈S Av and b ∈ K0 such that f(a, b) =

0. Now we extend the specialization t → a to an L-place ϕa : F → K̃ such

that ϕa(x) = b. Let Fa = ϕa(F ) and F0,a = ϕa(F0). Then F0,a = L0(b) ⊆

K0, so [F : F0] ≥ [Fa : F0,a] ≥ [Fa : K0∩Fa] ≥ [L : L0] = [F : F0]. It follows

that all of the latter inequalities are in fact equalities and K0∩Fa = F0,a. By

Part A, this implies that γ(Gal(K0)) = Gal(F/F0), so (4a) holds. Finally,

(4b) follows from Parts B and C.

§10. Totally S1-adic extensions

Starting from a countable Hilbertian field K, a set S1 of classical P-adic

orderings and valuations of K, and a distinguished algebraic extension K0

of K, we consider the maximal totally S1-adic extension Ktot,S1 of K and

the field

M = K0 ∩Ktot,S1 = K0 ∩
⋂

v∈S1

⋂

σ∈Gal(K)

Kσ
v

and note that M ⊆ Kv for each v ∈ S1. Proposition 10.5 gives a weak

solution to an embedding problem over M with local data. The proof of

that proposition reduces the problem over M to an embedding problem over

a finite extension K ′ of K and then uses Lemma 9.5 to solve the reduced

problem.
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Setup 10.1. For the rest of this section and the next one we fix a

countable Hilbertian field K of characteristic 0, an algebraic closure K̃ of

K, a field extension K0 ofK in K̃, and a finite set S1 of independent classical

P-adic orderings and valuations of K; in particular 0, 1 /∈ S1. Set S0 = {0}
and S = S0 ∪ S1.

For an extension E of K let

AlgExt(E,S1) =
⋃

v∈S1

AlgExt(E, v) and

Gal (E,S1) =
⋃

v∈S1

Gal(E, v).

For a Galois extension F of E let

AlgExt(F/E, S1) =
⋃

v∈S1

AlgExt(F/E, v) and

Gal (F/E, S1) =
⋃

v∈S1

Gal(F/E, v).

The maximal totally S1-adic extension of K is the intersection of all

K̄ ∈ AlgExt(K,S1). We denote it by Ktot,S1. It is a Galois extension of

K, because each AlgExt(K, v) is closed under the conjugation by elements

of Gal(K). For each v ∈ S1 we choose a real closure of K at v if v is an

ordering or a Henselian closure Kv of K at v if v is a valuation.

We also set M = K0∩Ktot,S1, Gal (M,S0) = {Gal(K0)
τ | τ ∈ Gal(M)},

Gal(M,S) = Gal (M,S0) ∪ Gal(M,S1), and make the following assumptions

on K0 and M :

(1a) K0 is PAC over each set H ∩A, where H is a Hilbertian subset of Kr

and A is a nonempty open S1-adic subset of Kr.

(1b) Gal(K0) is a finitely generated free profinite group.

(1c) M is PS1C. This means that every absolutely irreducible variety V

which is defined over M and has a simple Kv-rational point for each

v ∈ S1 has an M -rational point.

(1d) [M : K] =∞.

Corollary 10.2. The field M is ample. That is, every absolutely

irreducible curve C defined over M with a simple M -rational point has in-

finitely many M -rational points.
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Proof. Let p be a simple M -rational point on C. Consider q1, . . . ,qn ∈
C(M). Then C ′ = C r{q1, . . . ,qn} is also an absolutely irreducible curve

defined over M . Let now v ∈ S1. Then p ∈ Csimp(Kv). Hence, C(Kv)

is infinite, because Kv is either real closed or Henselian [GPR, Thm. 9.2].

Hence, C ′
simp(Kv) 6= ∅. Applying the PS1C property of M to C ′, we con-

clude that C(M) has an additional point qn+1.

Lemma 10.3. The following statements hold for M and for each v ∈
S1:

(a) AlgExt(M,v) = AlgExt(K, v) = {Kσ
v | σ ∈ Gal(K)}.

(b) Kσ
v = Kv if and only if σ ∈ Gal(Kv).

(c) K0 /∈ AlgExt(M,S1) and the sets AlgExt(M,v), v ∈ S1, are disjoint.

Moreover, there are no inclusions among distinct fields belonging to

AlgExt(M,S1).

(d) Let E be a field extension of K. Then AlgExt(E, v) is closed in

AlgExt(E).

(e) The topological space AlgExt(M,v)/Gal(M) has no isolated points.

(f) Every finite split embedding problem over M is regularly solvable

over M(t). That is, let N/M be a finite Galois extension, B a fi-

nite group, α : B → Gal(N/M) an epimorphism admitting a group

theoretic section, λ : Gal(M(t)) → Gal(M) the restriction map, and

ϕ : Gal(M(t)) → Gal(N/M) an epimorphism. Then there exists an

epimorphism δ : Gal(M(t)) → Gal(N/M) such that α ◦ δ = ϕ and

λ(Ker(δ)) = Ker(ϕ). Equivalently (Remark 7.6), the fixed field F of

Ker(δ) in M̃(t) is regular over N .

Proof of (a). As indicated in Definition 9.1, the set AlgExt(K, v) of

the P-adic closures of (K, v) coincides with the set of Henselian closures of

K at v in K̃. Thus AlgExt(K, v) = {Kσ
v | σ ∈ Gal(K)}. By definition,

AlgExt(M,v) = AlgExt(K, v).

Proof of (b). Suppose Kσ
v = Kv. Then σ|Kv belongs to Aut(Kv/K).

By [Lan, p. 455, Thm. 2.9] for real closed fields and [Jar2, Prop. 14.5] for

Henselian closures, Aut(Kv/K) is trivial, so σ ∈ Gal(Kv).

Proof of (c). By (1a), K0 is PAC. As such, K0 is neither real closed

[FrJ, Thm. 11.5.1] nor does K0 have a valuation with a finite residue field

[FrJ, p. 217, Exercise 7(b)]. Thus, K0 /∈ AlgExt(K,S1).
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Next note that, by Lemma 8.4, no field in AlgExt(K,S1) is algebraically

closed. Consider distinct fields K ′,K ′′ ∈ AlgExt(K,S1). Assume that K ′ ⊂
K ′′. Since the absolute Galois group of a real closed field is of order 2 while

the absolute Galois group of a p-adically closed field is torsion free [HJPb,

Lemma 8.3], neither K ′ nor K ′′ are real closed.

If K ′ ∈ AlgExt(K, v′) and K ′′ ∈ AlgExt(K, v′′) for some v′, v′′ ∈ S1

with v′ 6= v′′, then K ′′ is Henselian with respect to v′′ and to an extension

of v′. Since, v′ and v′′ are independent and K ′′ is not separably closed

(Lemma 8.4(c)), this contradicts [Jar2, Lemma 13.2].

If K ′,K ′′ ∈ AlgExt(K, v) for some v ∈ S1, then K ′ and K ′′ are conju-

gate over K, so K ′′ cannot properly contain K ′ [FrJ, Lemma 20.6.2].

Proof of (d). Let Ē ∈ AlgExt(E) and put K̄ = Ē ∩ K̃. If Ē ∈
AlgExt(E, v), then, by Lemma 8.4, K̄ ∈ AlgExt(K, v) and Ē ≡ K̄. By (a),

K̄ is isomorphic to Kv . Hence, Ē ≡ Kv. Conversely, if K̄ ∈ AlgExt(K, v)

and Ē ≡ Kv, then Ē is P-adically closed of the same type as Kv. In the

p-adic case this follows from [HJPb, Proposition 8.2(h)]. In the real case

Ē is real closed and our conclusion follows. Therefore, Ē ∈ AlgExt(E, v).

It follows that AlgExt(E, v) is the intersection of A1 = {Ē ∈ AlgExt(E) |
Ē ∩ K̃ ∈ AlgExt(K, v)} and A2 = {Ē ∈ AlgExt(E) | Ē ≡ Kv}.

By (a), AlgExt(K, v) is closed in AlgExt(K). Since the restriction

AlgExt(E) → AlgExt(K) is continuous, A1 is closed in AlgExt(E). By

[HJPb, Lemma 10.1], also A2 is closed in AlgExt(E). Consequently,

AlgExt(E, v) is closed in AlgExt(E).

Proof of (e). The map Gal(K) → AlgExt(K) given by σ 7→ Kσ
v is a

continuous map of profinite spaces. By (a), its image is AlgExt(M,v). By

(b), Kσ1
v = Kσ2

v with σ1, σ2 ∈ Gal(K) if and only if σ2 ∈ Gal(Kv)σ1. There-

fore Gal(K)→ AlgExt(K) induces a homeomorphism Gal(Kv)\Gal(K)→
AlgExt(M,v). This map is compatible with the action of Gal(M) on both

spaces (on Gal(Kv)\Gal(K) by multiplication from the right) and hence

induces a homeomorphism of quotient spaces Gal(Kv)\Gal(K)/Gal(M)→
AlgExt(M,v)/Gal(M). Thus, by Lemma 2.2, it suffices to show that

Gal(Kσ
v )Gal(M) is an open subset of Gal(K) for no σ ∈ Gal(K). But

M ⊆ Kσ
v and [M : K] = ∞ (Condition (1d)), hence Gal(Kσ

v )Gal(M) =

Gal(M) is not open.

Proof of (f). By (1c), M is PS1C. Hence, by Corollary 10.2, M is

ample. Therefore, every finite split embedding problem over M is regularly

solvable over M(t) ([Pop4, Main Theorem A] or [HaJ3, Thm. C]).
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We rewrite the results of Lemma 10.3 in group theoretic terms. To this

end we add the following notation to Setup 10.1:

C1 = {Gal(Kv) | v ∈ S1}

Gal (M, 0) = {Gal(K0)
σ | σ ∈ Gal(M)}

Gal (M,v) = {Gal(Kv)
σ | σ ∈ Gal(K)}, v ∈ S1

Gal (M,S1) =
⋃

v∈S1

Gal (M,v)

Gal(M,S) =
⋃

v∈S

Gal (M,v)

Gal(M,S) = (Gal(M),Gal (M,v))v∈S

Proposition 10.4. In the above notation, the following holds:

(a) Each group in C1 has a big quotient with respect to C1.

(b) There are no inclusions between distinct groups in Gal(M,S1).

(c) Gal(M,S) =
⋃

· v∈S Gal(M,v) and for each v ∈ S, Gal (M,v) is open-

closed in Gal(M,S) and each group in Gal(M,v) is isomorphic to

Gal(Kv).

(d) Gal(M) is Gal(M,S1)-projective.

(e) For each v ∈ S1 the space Gal(M,v)/Gal(M) has no isolated points.

(f) Gal(M,S) is a self-generated group pile.

Proof of (a). By [HJPb, Prop. 8.2(j), (m) and Remark 8.4], each

Gal(Kv) with v ∈ S is isomorphic to Gal(R) or to Gal(F), where F is a

finite extension of Qp for some prime number p (note that our definition of

P-adically closed fields has been extended to include R). Hence, by [HJPb,

Lemma 9.4], each group in C1 has a big quotient with respect to C1.

Proof of (b). By Lemma 10.3(c), there are no inclusions among dis-

tinct elements of AlgExt(M,S1), so there are no inclusions among distinct

elements of Gal(M,S1).

Proof of (c). By definition, Gal (M, 0) is a closed Gal(M)-class. For

each v ∈ S1, AlgExt(M,v) is closed in AlgExt(M) (Lemma 10.3(d)), so

Gal (M,v) is closed in Gal(M) and in particular in Gal (M,S). By 10.3(c),

Gal(K0) /∈ Gal(M,S1), so Gal (M, 0) is disjoint from Gal(M,S1). By (b), the

sets Gal (M,v), v ∈ S1, are disjoint. Therefore, Gal(M,S) =
⋃

· v∈S Gal(M,v)
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is a partition into open closed sets. Finally, each group in Gal(M, 0) is by

definition isomorphic to Gal(K0), and for v ∈ S1 each group in Gal (M,v) is

isomorphic to Gal(Kv) (Lemma 10.3(a)).

Proof of (d). By Assumption (1c), M is PS1C. By (c) and the second

paragraph of Section 2, Gal(M,S1) is étale compact. It follows from [HJPb,

Prop. 4.1] that Gal(M) is Gal(M,S1)-projective.

Proof of (e). Let v ∈ S1. By Lemma 10.3(e), AlgExt(M,v)/Gal(M)

has no isolated points. Hence, Gal(M,v)/Gal(M) has no isolated points.

Proof of (f). By definition, Gal(M,S0) is a Gal(M)-class in Subgr

(Gal(M)). By (c), Gal (M,v) is a closed Gal(M)-domain in Subgr(Gal(M)),

v ∈ S1. Hence, Gal(M,S) is a group pile. By Lemma 10.3(b), Gal(M) =

〈Gal(K0),Gal (M,S1)〉. Consequently, Gal(M) is self-generated.

Proposition 10.5. In the above notation, let N be a finite Galois

extension of M , t an indeterminate, P a finite Galois extension of M(t)

which is regular over N , and P0 a subfield of P which contains M(t). Set

N0 = K0 ∩ N and suppose that P0 ∩ N = N0 and P0N = P . Then there

exists a homomorphism γ : Gal(M) → Gal(P/M(t)) such that resP/N ◦γ =

resM̃/N , γ(Gal(K0)) = Gal(P/P0), and γ(Gal (M,v)) = Gal(P/M(t), v) for

each v ∈ S1.

Proof. The proof naturally breaks up into three parts.

Part A: Replacing K by a finite extension. Let K ′ be a finite ex-

tension of K contained in M . For each v ∈ S1 we have Gal(P/M(t), v) =
⋃

v′∈Val(K ′,v) Gal (P/M(t), v′) and Gal (N/M, v) =
⋃

v′∈Val(K ′,v) Gal (N/M, v′),

where Val(K ′, v) is the set of all extensions of v to K ′ of the same type as v.

Therefore we may replace K by K ′ and S1 by S′
1 =

⋃

v∈S Val(K ′, v). Now

we choose a suitable K ′.

Let c ∈ N with N = M(c) and let f(X) = irr(c,M) ∈ M [X]. Choose

a finite extension K ′ of K contained in M , such that f ∈ K ′[X] and f

splits over K ′(c) into linear factors. Put L = K ′(c) and L0 = N0 ∩ L.

Then L/K ′ is a finite Galois extension such that ML = N , M ∩ L = K ′,

and L0 = K0 ∩ N ∩ L = K0 ∩ L. In addition, N0L = N0(c) = N , hence

[N : N0] = [L : L0].

Now choose z ∈ P integral over M [t] such that P = M(t, z) and let

g(t,X) = irr(z,M(t)) ∈ M [t,X]. Let p ∈ K[T,X] and q ∈ K[T ] such that

q 6= 0 and c = p(t,z)
q(t) . Put F = K ′(t, z). If K ′ is sufficiently large, then it
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contains the coefficients of g, p, and q, and g(t,X) splits over F into linear

factors. In this case F is a finite Galois extension of K ′(t) containing L such

that M(t)F = P and M(t) ∩ F = K ′(t).

By the first paragraph of this part we may assume that K ′ = K. This

gives a diagram of fields

M(t)

uu
uu

N(t)

vv
vv

P

��
��

K(t) L(t) F

M

rr
rr

rr
N

ss
ss

ss

K L

in which ML = N , M ∩ L = K, M(t)F = P , and M(t) ∩ F = K(t). Thus,

M(t) and F are linearly disjoint over K(t). Since M(t)L(t) = N(t), it

follows that N(t) is linearly disjoint from F over L(t). Hence, N is linearly

disjoint from F over L. Since NF = P and P is linearly disjoint from K̃

over N (because P/N is regular), F is linearly disjoint from K̃ over L. This

means that F/L is regular.

Next let F0 = P0∩F and observe that F0∩L = P0∩F∩L = P0∩N∩L =

N0 ∩ L = L0. Since [P : P0] = [N : N0] = [L : L0] and [P : P0] ≥ [F0 : F ] ≥
[L : L0], we have [F : F0] = [L : L0], so F0L = F . This gives commutative

diagrams of fields and of Galois groups in which each of the restriction maps

is an isomorphism:

M(t)

uu
uu

P0

}}
}}

P

��
��

K(t) F0 F

M

ss
ss

ss
N0

{{
{{

N

��
��

K L0 L

Gal(P/P0) //

��

Gal(N/N0)

��
Gal(F/F0) // Gal(L/L0)

In addition, we have the following commutative diagrams of restrictions

of Galois groups and sets of subgroups for each v ∈ S1.

(2)

Gal(P/M(t))

resP/F

��

resP/N// Gal(N/M)

resN/L

��
Gal(F/K(t))

resF/L// Gal(L/K)

Gal(P/M(t), v)

resP/F

��

resP/N// Gal(N/M, v)

resN/L

��
Gal (F/K(t), v)

resF/L// Gal (L/K, v)
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Part B: We prove that the vertical maps in diagram (2) are bijec-

tions. By Part A, the vertical maps in the diagram on the left are iso-

morphisms. The vertical maps in the diagram on the right are induced by

them, hence they are injective. We show they are surjective. Every field

in AlgExt(F/K(t), v) has the form Ē ∩ F for some Ē ∈ AlgExt(K(t), v).

Then, Ē∩K̃ ∈ AlgExt(K, v). By assumption, M ⊆ Ē∩K̃ and K(t) ⊆ Ē, so

M(t) ⊆ Ē. Therefore Ē∩P ∈ AlgExt(P/M(t), v) and (Ē∩P )∩F = Ē∩F ,

as claimed. Similarly resN/L is surjective.

Part C: Homomorphism. By Lemma 9.5, there exists an epimorphism

γ1 : Gal(K)→ Gal(F/K(t)) such that resF/L ◦γ1 = resK̃/L, γ1(Gal(K0)) =

Gal(F/F0), and γ1((Gal (K, v)) = Gal(F/K(t), v) for each v ∈ S1.

Let γ2 = res−1
P/F ◦γ1 : Gal(K) → Gal(P/M(t)). Set γ to be the restric-

tion of γ2 to Gal(M). By the commutativity of (2) and by Claim B we

have resP/N ◦γ = resM̃/N , γ(Gal(K0)) = Gal(P/P0), and γ(Gal (M,v) =

γ2(Gal (K, v)) = Gal (P/M(t), v) for each v ∈ S1. This completes the proof

of the proposition.

§11. Free product of local groups

The group theoretic and field theoretic information gathered up to now

gives a free product theorem: Gal(M) is a free product of local subgroups.

The homomorphism γ : Gal(M) → Gal(P/M(t)) of Proposition 10.5

need not be surjective. We fix this drawback by assuming in the next result

that Gal(P/M(t)) = 〈Gal(P/P0),Gal(P/M(t))〉v∈S1 .

For an extension E of K and a finite Galois extension F of E let

Gal(F/E, S) =
⋃

v∈S Gal(F/E, v).

Proposition 11.1. Every finite locally solvable self-generated embed-

ding problem of group piles

(1) (ϕ : Gal(M,S)→ A, α : B→ A),

is solvable.

Proof. Let A0 = ϕ(Gal(K0)). Then A0 is the A-class generated by

A0 and A = 〈A0,A1〉 (by Proposition 10.4(f)). By assumption, there exists

B0 ∈ B0 such that B = 〈B0,B1〉. In particular, α(B0) is conjugate to

A0. Applying Lemma 5.2, we may replace B0 by a conjugate subgroup, if

necessary, to assume that α(B0) = A0.
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Now we may assume that A = (Gal(N/M),Gal (N/M, v))v∈S , where

N is a finite Galois extension of M , Gal (N/M, 0) = {Gal(N/N0)
σ | σ ∈

Gal(N/M)} with N0 = K0 ∩N , and ϕ is the restriction map resM̃/N .

Next we replace B by a group pile of Galois groups over M(t) with t

transcendental over M . To this end we consider the deficient group piles

H = (Gal(M(t)),Gal (M(t), v))v∈S1 ,

G = (Gal(M),Gal (M,v))v∈S1 ,

where G is obtained from Gal(M,S) by replacing Gal(M, 0) by the class of

the trivial group. Let λ : H→ G be the restriction map. By Lemma 8.4(d),

λ is rigid. Let A′ = (Gal(N/M),Gal (N/M, v))v∈S1 and B′ = (B,Bv)v∈S1

be the deficient group piles associated with A and B. Then

(2) (ϕ : G→ A′, α : B′ → A′)

is a finite locally solvable embedding problem of deficient group piles. Propo-

sition 10.4 implies that G is a separated deficient group pile satisfying Con-

ditions (a)–(d) of Proposition 7.5. Proposition 10.3(f) settles Condition (e)

of Proposition 7.5.

Thus, Proposition 7.5 gives an epimorphism of deficient group files

δ : H → B′ such that α ◦ δ = ϕ ◦ λ and λ(Ker(δ)) = Ker(ϕ). Let P be

the fixed field in M̃(t) of Ker(δ). Then P is a finite Galois extension of

M(t) regular over N (Remark 7.6) and res
M̃(t)/P

maps H onto the deficient

group pile P′ = (Gal(P/M(t)),Gal (P/M(t), v))v∈S1 . Moreover, there is an

isomorphism δ̄ : P′ → B′ of deficient group piles such that δ = δ̄ ◦ res
M̃(t)/P

.

Then α ◦ δ̄ = resP/N . Let P0 be the fixed field of δ̄−1(B0) in P , and

Gal (P/M(t), 0) = {Gal(P/P0)
σ | σ ∈ Gal(P/M(t))}. Then

P = (Gal(P/M(t)),Gal (M/P (t), v))v∈S

is a finite group pile and δ̄ : P → B is an isomorphism of group piles such

that α ◦ δ̄ = resP/N . Replacing B by P via δ̄ we may assume that B =

Gal(P/M(t)), Bv = Gal (P/M(t), v) for each v ∈ S, and δ = res
M̃(t)/P

.

Then α is the restriction resP/N , P0 ∩N = N0, and

(3) Gal(P/M(t)) = 〈Gal(P/P0),Gal (P/M(t), v)〉v∈S1

By Proposition 10.5, there is a homomorphism γ : Gal(M) → Gal(P/

M(t)) of profinite groups such that α ◦ γ = ϕ, γ(Gal(K0)) = Gal(P/P0),
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and γ((Gal (M,v)) = Gal (P/M(t), v) for each v ∈ S1. By (3), γ is an

epimorphism of group piles. Consequently, (1) has a solution.

Proposition 11.2. In the setup of 10.1 there exists for each v ∈ S1 a

closed subset Rv of Gal(K) such that

Gal(M) = Gal(K0) ∗
∏

∗
v∈S1

∏

∗
ρ∈Rv

Gal(Kρ
v ).

Moreover, for each v ∈ S1, Rv is a system of representatives of Gal(K)/

Gal(M) and {Gal(Kv)
ρ | ρ ∈ Rv} is a closed system of representatives for

the Gal(M)-orbits of Gal (M,v).

Proof. By Condition (1b) of Section 10, Gal(K0) is a finitely generated

free profinite group. By Lemma 8.4(c), Gal(Kv) is a finitely generated

nontrivial group. Thus, the groups in Gal (K, v), v ∈ S, satisfy the conditions

of Data 5.1.

We prove that Gal(M,S) = (Gal(M),Gal (M,v)))v∈S is a Cantor group

pile over (Gal(Kv))v∈S . In other words, we verify Condition (1) of Definition

6.1 for Gal(M,S).

Condition (1a) holds because M is a countable field. Condition (1b)

follows from Lemma 10.4(e). Lemma 10.4(c) implies Condition (1c), that is

Gal(M,S) =
⋃

· v∈S Gal(M,v), where Gal(M,v) is open-closed in Gal (M,S)

and each group in Gal (M,v) is isomorphic to Gal(Kv). By Proposition

10.4(f), Gal(M,S) is self-generated. Finally, Proposition 11.1 completes

the proof of (1d).

It follows from Proposition 6.4 that Gal(M) = Gal(K0)∗
∏

∗ v∈S1

∏

∗ t∈Tv
Gt,

where Tv is a Cantor space and Tv = {Gt | t ∈ Tv} is a closed system of

representatives of the Gal(M)-classes of Gal (M,v).

For each v ∈ S1 let s : Gal(K) → Gal (M,v) be the map defined by

s(ρ) = Kρ
v . It is continuous and surjective. Moreover, Gal(M) acts on

Gal(K) by multiplication from the right and on Gal (M,v) by upper right

conjugation and s respects this action. Since K is countable, Gal(K)

has a countable basis for its topology. Hence, s has a continuous section

s′ : Gal(M,v) → Gal(K) [Har, Lemma 8.1]. Thus, Rv = s′(Tv) is a closed

system of representatives of Gal(K)/Gal(M) and {Gal(Kρ
v ) | ρ ∈ Rv} = Tv

is a closed system of representatives of the Gal(M)-orbits of Gal (M,v). Note

that the map t 7→ Gt of Tv onto Tv is a continuous bijection of profinite

spaces, hence it is an homeomorphism. It follows that the map t → s′(Gt)
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of Tv is a homeomorphism satisfying Gt = Gal(K
s′(Gt)
v ). Consequently,

Gal(M) = Gal(K0) ∗
∏

∗ v∈S1

∏

∗ ρ∈Rv
Gal(Kρ

v ).

§12. Large fields chosen at random

As in Setup 10.1 let K be a countable Hilbertian field of characteristic

0, and S = {0} ·∪ S1, where S1 is a finite set independent classical P-adic

valuations and orderings. In addition, let e ≥ 0 an integer. We prove below

that for almost all σ ∈ Gal(K)e, the field K0 = K̃(σ) satisfies Condition

(1) of Section 10. Applying Proposition 11.2, we get a presentation of

Gal(Ktot,S1(σ)) as a free product of local groups.

Lemma 12.1. Let K be a countable Hilbertian field, S1 a finite set of

independent orderings and valuations, and e ≥ 0 an integer. Then for

almost all σ ∈ Gal(K)e the field Ks(σ) is PAC over each set H ∩A, where

H is a Hilbert subset of Kr and A is a nonempty open S1-adic subset of

Kr.

Proof. Let L be a finite separable extension of K, f ∈ L[T1, . . . , Tr,X]

an absolutely irreducible polynomial, g ∈ L[T1, . . . , Tr] a nonzero polyno-

mial, A a nonempty S1-open subset of Kr, and H a separable Hilbert subset

of Kr. Set

C(L, f, g,A,H) = {σ ∈ Gal(L)e | there exist a ∈ H ∩A and b ∈ Ks(σ)

such that f(a, b) = 0 and g(a) 6= 0}

and let µL be the normalized Haar measure of Gal(L)e.

Claim: µL(C(L, f, g,A,H)) = 1. To prove the claim, we construct by

induction a linearly disjoint sequence of separable extensions L1, L2, L3, . . .

of L such that for each i, [Li : L] = degX(f) and there exist a ∈ H ∩ A

and b ∈ Ks(σ) with f(a, b) = 0 and g(a) 6= 0. Suppose we have already

constructed L1, . . . , Ln with that property and let L′ = L1 · · ·Ln. Since f

is absolutely irreducible, the set H ′ of all a ∈ (L′)r such that f(a,X) is

irreducible and separable over L′ and g(a′) 6= 0 is a separable Hilbert subset

of (L′)r. By [FrJ, Cor. 12.2.3], H ∩H ′ contains a separable Hilbert subset

HK of Kr. By [Jar2, Prop. 19.8], we may choose a ∈ HK ∩ A such that

g(a) 6= 0. Let b ∈ Ks with f(a, b) = 0 and set Ln+1 = K(b). Then Ln+1

is linearly disjoint from L′ over K, hence L1, . . . , Ln+1 are disjoint over K.

This completes the induction.
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By [FrJ, Lemma 18.5.3], for almost all σ ∈ Gal(L)e the field Ls(σ)

contains at least one of the fields Li. Hence µL(C(L, f, g,A,H)) = 1, as

asserted.

Since K is countable, there are only countably many L, f , g, H as

above. For each valuation or ordering v of K the set of v-open discs is

countable and forms a basis for the v-topology of K. Hence, the set of all

rectangles of v-open discs with v ∈ S1 is countable and forms a basis AL
for the S1-topology of Kr. It follows that the set

C = Gal(K)e r
⋃

L,f,g,A,H

(

Gal(L)e rC(L, f, g,A,H)
)

where L, f , g, H are as above and A ranges over AL has measure 1 in

Gal(K)e. Each σ ∈ C has the desired property.

Given a field K and σ1, . . . , σe ∈ Gal(K), we denote the maximal Galois

extension of K in Ks(σ) by Ks[σ].

Lemma 12.2. Let K be a countable Hilbertian field, S1 a finite set of

independent classical P-adic valuations and orderings, and e ≥ 0. Then, for

almost all σ ∈ Gal(K)e each field M lying between Ktot,S1 [σ] and Ktot,S1 is

PS1C.

Proof. By [GeJ, Theorem A], for almost all σ ∈ Gal(K)e the field

L = Ktot,S1[σ] is PS1C. In the notation of [Jar1, Section 7], this means that

L is PKC, where K = AlgExt(K,S1). By Lemma 10.3(d), AlgExt(K,S1)

is closed in AlgExt(K). If a field M lies between Ks[σ] and Ktot,S1, then

MK̄ = K̄ for each K̄ ∈ AlgExt(L,S1). Hence, by [Jar1, Lemma 7.4], M is

PS1C.

Proposition 12.3. Let K be a countable Hilbertian field of charac-

teristic 0, e ≥ 0 an integer, and S1 a finite set of independent classical

P-adic valuations and orderings. Then for almost all σ ∈ Gal(K)e the

fields K0 = K̃(σ) and M = Ktot,S1(σ) satisfy Condition (1) of Section 10.

Proof of (1a) of Section 10. This is a special case of Lemma 12.1.

Proof of (1b) of Section 10. By [FrJ, Thm. 18.5.6], Gal(K̃(σ)) ∼= F̂e
for almost all σ ∈ Gal(K)e.

Proof of (1c) of Section 10. This is a special case of Lemma 12.2.
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Proof of (1d) of Section 10. Let n be a positive integer and consider the

general polynomial f(T,X) = Xn+T1X
n−1+· · ·+Tn of degree n. Its Galois

group over K(T) is isomorphic to Sn [Lan, p. 272, Example 4]. By [FrJ,

Lemma 13.1.1], there exists a separable Hilbert subset H of Kn such that

for each a ∈ H, the polynomial f(a,X) is Galois over K with Galois group

isomorphic to Sn. Consider also the polynomial g(X) =
∏n
i=1(X − i) =

Xn+c1X
n−1+· · ·+cn with c1, . . . , cn ∈ Z. The theorem about the continuity

of roots [Jar2, Prop. 12.3] gives an S1-adic open neighborhood A of c ∈ Kn

such that for each v ∈ S1 and each a ∈ A the polynomial f(a,X) totally

splits in Kv. It follows that f(a,X) totally splits in Ktot,S1.

By (1a) of Section 10 (which we have already proved), for almost all

σ ∈ Gal(K)e there exist a ∈ H∩A and b ∈ K0 = K̃(σ) such that f(a, b) = 0.

By the choice of A and H, the field K(b) is Galois over K with Galois group

Sn and K(b) ⊆ Ktot,S1, so K(b) ⊆M = Ktot,S1(σ).

The compositum of all K(b) with n ranges over all positive integers is

an infinite Galois extension of K in M .

Proposition 12.3 allows us now to apply Proposition 11.2 to K̃(σ) for

almost all σ ∈ Gal(K)e and to achieve the main result of this work.

Theorem 12.4. Let K be a countable Hilbertian field of characteristic

0, e ≥ 0 an integer, and S1 a finite set of independent classical P-adic

valuations and orderings of K. Then, for almost all σ ∈ Gal(K)e there

exists for each v ∈ S1 a closed subset Rv of Gal(K) such that

Gal(Ktot,S1(σ)) = Gal(K̃(σ)) ∗
∏

∗
v∈S1

∏

∗
ρ∈Rv

Gal(Kρ
v ).

Moreover, Rv is a system of representatives of Gal(K)/Gal(Ktot,S1(σ)) and

{Kρ
v | ρ ∈ Rv} is a closed system of representatives for the Gal(Ktot,S1(σ))-

orbits of AlgExt(K, v).

Remark 12.5. The fields Ktot,S1 [σ]. Given K, S1, and e ≥ 1 as in

Theorem 12.4, we would like to prove the following analog of Theorem 12.4:

For almost all σ ∈ Gal(K)e and for each v ∈ S1 there exists a closed

subsets Rv of Gal(K) such that

(2) Gal(Ktot,S1[σ]) = Gal(K̃[σ]) ∗
∏

∗
v∈S1

∏

∗
ρ∈Rv

Gal(Kρ
v ).
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We know that for almost all σ ∈ Gal(K)e the field K̃[σ] is PAC and

Gal(K̃[σ]) ∼= F̂ω [Jar3, Lemma 2.7]. However, since K̃[σ] is Galois over

K, and not algebraically closed, it is not PAC over K, at least if K is

finitely generated over Q (the case where K is a number field is proved in

[Jar4, Main Theorem], the general case is [BSJ, Thm. B]). In particular,

K̃[σ] does not satisfy Condition (1a) of Section 10, so a major argument in

Part D of the proof of Lemma 9.5 does not work in the new case. Conse-

quently, the proof of Theorem 12.4 cannot be adapted to a proof of (2) and

one has to come up with another strategy.
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