
M. Morales

Nagoya Math. J.

Vol. 191 (2008), 1–19

SOME NUMERICAL CRITERIA FOR THE NASH

PROBLEM ON ARCS FOR SURFACES

MARCEL MORALES

Abstract. Let (X, O) be a germ of a normal surface singularity, π : X̃ → X

be the minimal resolution of singularities and let A = (ai,j) be the n × n

symmetrical intersection matrix of the exceptional set of X̃. In an old preprint

Nash proves that the set of arcs on a surface singularity is a scheme H, and

defines a map N from the set of irreducible components of H to the set of

exceptional components of the minimal resolution of singularities of (X, O).

He proved that this map is injective and ask if it is surjective. In this paper

we consider the canonical decomposition H =
Sn

i=1 N̄i:

• For any couple (Ei, Ej) of distinct exceptional components, we define

Numerical Nash condition (NN(i,j)). We have that (NN(i,j)) implies

N̄i 6⊂ N̄j . In this paper we prove that (NN(i,j)) is always true for at

least the half of couples (i, j).

• The condition (NN(i,j)) is true for all couples (i, j) with i 6= j, char-

acterizes a certain class of negative definite matrices, that we call Nash

matrices. If A is a Nash matrix then the Nash map N is bijective. In

particular our results depend only on A and not on the topological type

of the exceptional set.

• We recover and improve considerably almost all results known on this

topic and our proofs are new and elementary.

• We give infinitely many other classes of singularities where Nash Con-

jecture is true.

The proofs are based on my old work [8] and in Plenat [10].

§1. Introduction

Let (X,O) be a germ of a normal surface singularity. In an old preprint,

published recently by Duke [9], Nash proved that the set of arcs on a surface

singularity is a scheme H, and defined a map N from the set of irreducible

components of H to the set of exceptional components of the minimal res-
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olution of singularities of (X,O). He proved that this map is injective and

ask if it is surjective.

Among the principal contributions to this subject we can cite Monique

Lejeune-Jalabert [6], [7], Ana Reguera [7], [13], [14], S. Ishii and J. Kollar [5],

G. Gonzalez-Sprinberg and Monique Lejeune-Jalabert [4], Camille Plenat

[10] and C. Plenat and P. Popescu-Pampu [12]. The study of arcs spaces

was further developed by Kontsevich, Denef and Loeser [1] in the theory of

motivic integration.

Let π : X̃ → X be the minimal resolution of singularities, and E1, . . . ,

En be the components of the exceptional divisor, Ana Reguera [13] asso-

ciates to every Ei the family of arcs Ni such that the proper transform

cuts properly Ei, the spaces N̄i are irreducible and give a decomposition of

the space of arcs H =
⋃

N̄i. In order to give an affirmative answer to the

Nash problem it is sufficient to prove that for any i 6= j then N̄i 6⊂ N̄j. In

[13] Theorem 1.10, a valuative sufficient condition is given to separate two

Nash components, that has been further developed by Camille Plenat [10],

Proposition 2.2:

Proposition. ([10]) Let π : X̃ → X be the minimal resolution of

singularities and E1, . . . , En be the components of the exceptional divisor, if

there exist some f ∈ OX,O such that ordEi
(f) < ordEj

(f) then N̄i 6⊂ N̄j.

The following Theorem follows from my work [8] Theorem 1.1 and

Lemma 2.2. Remark that in [12] C. Plenat and P. Popescu-Pampu have

recently rediscover a similar condition.

Theorem. ([8]) Let (X,O) be a germ of normal surface singularity,

π : X̃ → X be the minimal resolution of singularities and E1, . . . , En be the

components of the exceptional divisor. Let KX̃ the canonical divisor on X̃.

Let E be an exceptional effective divisor and Q = π∗OX̃(−E),

1. If −E · Ei ≥ 2K · Ei for all i = 1, . . . , n then QOX̃ = OX̃(−E).

2. For any general linear combination f of a set of generators of Q we

have div(f ◦π) = H̃ +E, where H̃ is the proper transform of the cycle

defined by f .

In Section 2 we will recall some properties on minimal resolutions of

singularities, in Section 3 we will introduce the definition of Nash numerical

conditions, this is the central point of this work, in Section 4 we will prove



NASH PROBLEM ON ARCS 3

that Nash numerical conditions depend only on the intersection matrix of

the exceptional set and we will establish a connection between the numerical

Nash condition and the Gauss’s method to squaring a quadratic form. A

Nash matrix will be a matrix satisfying the Nash numerical conditions. In

Section 5, we characterize some Nash matrices, in Section 6 we consider like

star shaped graphs.

In this paper singularities will be considered only through the dual

graph of the minimal resolution of singularities and the intersection matrix.

The existence of a formal singularity with a given resolution graph (with

negative definite intersection matrix) is guaranteed by Grauert [3]. Let

us remark that provide equations corresponding to the dual graph of one

singularity is in general an open problem.

§2. On the minimal resolution of singularities

Remark 1.

• Since π : X̃ → X is the minimal resolution of singularities of X we

have −KX̃ ·Ei ≤ 0 for any i = 1, . . . , n. This fact will be very important in

our proofs. More precisely, for any irreducible component Ei of the excep-

tional divisor, we consider the adjunction formula for (eventually singular)

curves

p(Ei) =
Ei · (Ei + KX̃)

2
+ 1

where p(Ei) is the genus of Ei. Recall that p(Ei) ≥ 0 and p(Ei) = 0

if and only if Ei is a curve of genus zero and self intersection equal to

−1, which is impossible by Castelnuovo theorem since we are assuming that

π : X̃ → X is the minimal resolution of singularities of X. As a consequence

KX̃ · Ei = 2(p(Ei) − 1) − E2
i ≥ 0 for any i = 1, . . . , n.

• Since the graph of the resolution is connected we have that for any

1 ≤ i < k ≤ n the intersection number Ei · Ek ≥ 0 and for each index k

there are at least one index i such that Ei · Ek > 0.

It follows from the previous item that if E =
∑n

k=1 nkEk, nk ∈ N is an

exceptional divisor such that E · Ek ≤ −2KX̃ · Ek ≤ 0, for all k = 1, . . . , n,

then E has full support, i.e. nk > 0 for all k = 1, . . . , n.

• If E =
∑n

k=1 nkEk with nk ∈ N
∗ for k = 1, . . . , n, is an exceptional

divisor such that E · Ek ≤ −2KX̃ · Ek, then for any α ∈ N
∗ we have

(αE) · Ek ≤ −2KX̃ · Ek.
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Definition 1. Let (X,O) be a germ of normal surface singularity,

π : X̃ → X be the minimal resolution of singularities, E1, . . . , En be the

components of the exceptional divisor and A = (ai,j) with ai,j = Ei ·Ej, be

the n× n symmetrical intersection matrix of the exceptional set of X̃. The

dual graph Γ of the intersection matrix A is defined as follows:

• The vertices of the graph Γ are E1, . . . , En.

• For i 6= j there is an edge between Ei, and Ej if and only if ai,j 6= 0.

Remark 2. The graph Γ is connected and conversely by a theorem due

to Grauert [3], given a n×n symmetrical negative definite matrix A = (ai,j)

with integer entries, such that ai,i < 0 and ai,j ≥ 0 for any i, j = 1, . . . , n,

i 6= j, with a connected graph there exist a singularity with A as intersection

matrix.

§3. Numerical Nash condition

Definition 2. Let (X,O) be a germ of normal surface singularity,

π : X̃ → X be the minimal resolution of singularities and E1, . . . , En be

the components of the exceptional divisor. Let KX̃ the canonical divisor on

X̃. We say that (X,O) satisfies numerical Nash condition for (i, j) if the

following condition is fulfilled

∃E =

n
∑

k=1

nkEk, nk ∈ N
∗(NN(i,j))

with ni < nj and −E · Ek ≥ 2KX̃ · Ek, ∀k = 1, . . . , n.

We also say that (X,O) satisfies numerical Nash condition, (NN), if

(NN(i,j)) is true for all couples (i, j), with i 6= j.

As an immediate consequence of Proposition of Plenat [10] and my

Theorem [8] we have:

Corollary 1. With the above notations, if (X,O) satisfy numerical

Nash condition for (i, j) then N̄i 6⊂ N̄j. In particular if (NN) is true then

the Nash problem on arcs has a positive answer.

Proposition 1. With the notations as above. Let Γ be the dual graph

of the intersection matrix of the exceptional set. If (NN) is true for Γ, then
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• (NN) is true for any subgraph of Γ.

• (NN) is true by decreasing the self intersection numbers.

Proof.

• Let us consider a subgraph G of Γ and let I be its support. Since

(NN) is true for Γ, for any i, j ∈ I, i 6= j, there exist E =
∑n

k=1 nkEk,

nk ∈ N
∗ with ni < nj such that E · Ek ≤ −2KX̃ · Ek, ∀k = 1, . . . , n.

It then follows that for any k ∈ I,
(

∑

l∈I

nlEl

)

· Ek ≤ −2KX̃ · Ek −
∑

l /∈I

nlEl · Ek ≤ −2KX′ · Ek,

where KX′ is the canonical divisor of the minimal resolution singular-

ity X ′, having G as dual graph of the exceptional set. Remark that

KX′ · Ek = KX̃ · Ek.

• In order to prove the second assertion it will be enough to consider one

index k ∈ {1, . . . , n} and the intersection matrix A′ = (a′i,j) defined

by a′i,j = ai,j if (i, j) 6= (k, k) and a′k,k = ak,k − 1. Let remark that

the matrix A′ corresponds to a minimal resolution of some isolated

singularity, π′ : X̃ ′ → X ′, call E′
1, . . . , E

′
n the irreducible components

of the exceptional set in X̃ ′ and we can assume that p(E′
i) = p(Ei). Let

E =
∑n

l=1 nlEl, nl ∈ N
∗ with ni < nj such that E · El ≤ −2KX̃ · El,

∀l = 1, . . . , n and set E′ =
∑n

l=1 nlE
′
l . By the Remark 1 we can

assume that nl ≥ 2 for any l = 1, . . . , n. It follows that

KX̃′ · E
′
i = KX̃ · Ei for i 6= k

KX̃′ · E
′
k = KX̃ · Ek + 1

E′ · E′
i = E · Ei ≤ −2KX̃ · Ei = −2KX̃ · Ei for i 6= k

E′ · E′
k = E · Ek − nk ≤ −2KX̃ · Ek − nk

= −2KX̃′ · E
′
k − nk + 2 ≤ −2KX̃′ · E

′
k.

This completes the proof of the second assertion.

§4. Nash matrices, Gauss sequences

Let π : X̃ → X be the minimal resolution of singularities and let A =

(ai,j) be the n×n symmetrical intersection matrix of the exceptional set of

X, consider an exceptional effective divisor E = x1E1 + · · · + xnEn, then

E · Ek = x1E1 · Ek + · · · + xnEn · Ek = x1ak,1 + · · · + xnak,n.
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Set tX = (x1, . . . , xn), tC = (−2KX̃ ·E1, . . . ,−2KX̃ ·En) and ci = −2KX̃ ·Ei,

then

1. Corollary 1 can be translated into linear algebra:

If the inequality: AX ≤ C has a solution (x1, . . . , xn) ∈ N
n such that

xi < xj , then N̄i 6⊂ N̄j

2. The condition (NN(i,j)) is equivalent to the condition:

the inequality: AX ≤ C has solutions (x1, . . . , xn) ∈ N
n such that

xi < xj .

Remark that since X̃ is the minimal resolution we have −KX̃ · Ei ≤ 0

for any i. In what follows we allow the intersection matrix A to have

rational terms, remark that after multiplication by a convenient integer it

will correspond to a singularity.

Lemma 1. Let (X,O) be a germ of a normal surface singularity, π :

X̃ → X be the minimal resolution of singularities. Assume that π has only

two exceptional components E1, E2. Let A =

(

−a c
c −b

)

the intersection

matrix of E1, E2. Then

1. c < a if and only if (NN(1,2)) is true

2. c < b if and only if (NN(2,1)) is true

3. c < min{a, b} if and only if (NN) is true.

In particular since the quadratic form associated to the matrix A is negative

definite, we have c2 < ab, which implies that either N̄1 6⊂ N̄2 or N̄2 6⊂ N̄1.

Proof. We are looking for solutions (x, y) ∈ N
∗ of the system:

−ax + cy ≤ c1 ≤ 0

cx − by ≤ c2 ≤ 0
(∗)

let D1 the line of equation −ax + cy = c1 and D2 the line with equation

cx − by = c2, since A is negative definite we have c2 < ab, which implies

c/b < a/c, so the relative positions of the lines D1, D2, and the set of

solutions of the system (∗) are represented in figures below. Since these are

the unique possible cases we are done.
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y=x

2D1D

(i) c < a and b ≤ c

y=x

2D

1D

(ii) c < b but a ≤ c

y=x

2D

1D

(iii) c < a and c < b.

Corollary 2. Let π : X̃ → X be the minimal resolution of singular-

ities and E1, . . . , En be the components of the exceptional divisor, then for

any i 6= j either N̄i 6⊂ N̄j or N̄j 6⊂ N̄i. In any case if i 6= j then N̄i 6= N̄j.

In particular after considering numerical Nash conditions, in order to check

if Nash is true, we will be reduced to check at most the half of non inclusion

conditions.

We prove the Corollary by induction on n. For n = 2 it was proved in

Lemma 1.

Assume n ≥ 3, by changing the order in the set E1, . . . , En, we can suppose

that i = 1 and j = 2, now pick k a positive integer such that kan,n < cn

and put −an,nxn =
∑

1≤i≤n−1 an,ixi − kan,n in our system AX ≤ C, then
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we have the inequality: A′X ≤ C ′ where a′i,j = an,ian,j − ai,jan,n for all i,

j and c′j = (−cj + kan,j)an,n. By induction hypothesis there exist a vector

S = (s1, . . . , sn−1) ∈ N
n solution of the in-equation

A′X ≤ C ′

with s1 6= s2. Let sn = an,1s1 + · · ·+ an,n−1sn−1 + k, then a simple compu-

tation shows that the vector T = (−an,ns1, . . . ,−an,nsn−1, sn) is a solution

of AX ≤ C for k large enough.

Remark that by construction the vector T has strict positive components.

Now we consider the sequences appearing in the proof of the last Corol-

lary.

Definition 3. Let: a
(n)
i,j = ai,j and for any 2 ≤ l ≤ n − 1 set a

(l)
i,j =

a
(l+1)
i,j −

a
(l+1)
l+1,i

a
(l+1)
l+1,j

a
(l+1)
l+1,l+1

, 1 ≤ i, j ≤ l. Also for any 2 ≤ l ≤ n let C(A)
(l)
i =

∑l
j=1 a

(l)
i,j . We will also use the notation C(A)i = C(A)

(n)
i .

Lemma 2. The matrices A(l) = (a
(l)
i,j) appear naturally when we use

the Gauss method to decompose the quadratic form associated to A into a

sum of squares. In particular the matrix A(l) are negative definite. For this

reason we will call the terms a
(l)
i,j the Gauss sequence associated to A.

Proof. The quadratic form associated to the matrix A is:

Q =

n
∑

i=1

ai,ix
2
i + 2

∑

1≤i<j≤n

ai,jxixj

we follow Gauss method to squaring a quadratic form:

Q =
n−1
∑

i=1

ai,ix
2
i + 2

∑

1≤i<j≤n−1

ai,jxixj + an,nx2
n + 2

n−1
∑

i=1

ai,nxixn

but

an,nx2
n + 2

n−1
∑

i=1

ai,nxixn

= an,n

(

xn +

n−1
∑

i=1

ai,n

an,n
xi

)2
−

n−1
∑

i=1

a2
i,n

an,n
x2

i − 2
∑

1≤i<j≤n−1

ai,naj,n

an,n
xixj
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Hence

Q = an,n

(

xn +
n−1
∑

i=1

ai,n

an,n
xi

)2
+

n−1
∑

i=1

(

ai,i −
a2

i,n

an,n

)

x2
i

+ 2
∑

1≤i<j≤n−1

(

ai,j −
ai,naj,n

an,n

)

xixj

and A is negative definite if and only if an,n < 0 and A(n−1) is negative

definite.

Remark 3. 1. By multiplying by a convenient natural number the

matrix A has integer coefficients and correspond to some singulari-

ties. Our definition does not depend on the topological type of the

components of the exceptional divisor.

2. In what follows we will say that for l ≥ 3 the operation A(l) 7→ A(l−1)

is an algebraic contraction of the exceptional component El in the

graph Γl corresponding to A(l), it is an algebraic operation and this

algebraic contraction has no geometry meaning.

We have immediately from Lemma 1 and Corollary 2 that

Proposition 2. Let π : X̃ → X be the minimal resolution of singu-

larities and let A = (ai,j) be the n × n symmetrical intersection matrix of

the exceptional set of X. Then

1. a
(2)
1,2 < −a

(2)
1,1 if and only if (NN(1,2)) is true

2. a
(2)
1,2 < −a

(2)
2,2 if and only if (NN(2,1)) is true

3. a
(2)
1,2 < min{−a

(2)
1,1,−a

(2)
2,2} if and only if both (NN(1,2)), (NN(2,1)) are

true.

Theorem 1. Let π : X̃ → X be the minimal resolution of singularities,

let A = (ai,j) be the n×n symmetrical intersection matrix of the exceptional

set of X and let C(A)
(l)
i =

∑l
j=1 a

(l)
i,j . For l ≥ 1, we consider the property :

(∗l+1) C(A)
(l+1)
i < 0, for i = 1, . . . , l + 1.

If (∗l+1) is true for some l ≥ 2 then (∗l) is true.
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Let σ ∈ Sn any permutation of E1, . . . , En, we denote by Aσ the cor-

responding intersection matrix obtained from A by permuting lines and

columns. Then (NN) is true if and only if there exist a natural integer

l ≥ 1 such that

(∗l+1) C(Aσ)
(l+1)
i < 0, for i = 1, . . . , l + 1, ∀σ ∈ Sn.

In particular we recover the following result from [12]: if C(A)
(n)
i < 0, for

i = 1, . . . , n then the Nash map N is bijective.

Note that condition (∗l) has a meaning only if l ≥ 2.

Proof. Assume that C(A)
(l+1)
i < 0, for i = 1, . . . , l + 1, let i ≤ l, by

definition

C(A)
(l)
i =

l
∑

j=1

a
(l)
i,j =

l
∑

j=1

(

a
(l+1)
i,j −

a
(l+1)
l+1,i a

(l+1)
l+1,j

a
(l+1)
l+1,l+1

)

C(A)
(l)
i =

l
∑

j=1

a
(l+1)
i,j −

a
(l+1)
l+1,i

a
(l+1)
l+1,l+1

l
∑

j=1

a
(l+1)
l+1,j ,

C(A)
(l)
i = C(A)

(l+1)
i −

a
(l+1)
l+1,i

a
(l+1)
l+1,l+1

C(A)
(l+1)
l+1 < 0.

The second assertion follows from Proposition 3. Remark that it is not

necessary to consider all permutation of E1, . . . , En.

Definition 4. Let A = (ai,j) be the n × n symmetrical negative def-

inite matrix with rational coefficients with ai,i < 0, ai,j ≥ 0 for all i, j,

i 6= j. We say that A is a Nash matrix if for any permutation σ of the set

{1, . . . , n} C(Aσ)
(2)
1 < 0, C(Aσ)

(2)
2 < 0.

§5. Trees, cycles, generalized cycles

We look now for some necessary or sufficient conditions in order to have

the condition (NN) true. For the moment we need to recall some notation

on graphs.

Definition 5. Let A = (ai,j) be the n × n symmetrical negative def-

inite matrix with rational coefficients with ai,i < 0, ai,j ≥ 0 for all i, j,
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i 6= j. Let Γ the dual graph associated to A. We say that Ei is a leaf of Γ

if ai,j 6= 0 for exactly one index j 6= i i.e. Ei is connected to only one other

vertex of Γ. A cycle of Γ is a subgraph C where every vertex is connected

to exactly two others vertices of C. A tree is a subgraph with no cycles.

Finally a complete subgraph is a subset of Γ, where every two points are

connected.

Lemma 3. Assume that for any point Ej of Γ, we have C(A)j ≤ 0.

1. For any l ≤ n and j ≤ l we have C(A)
(l)
j ≤ 0

2. If C(A)
(l+1)
i < 0 then C(A)

(l)
i < 0

3. Let us consider a path Ei1 , Ei2 , . . . , Eik in Γ, and C(A)ik < 0. After

the algebraic contraction of Eik , Eik−1
, . . . , Ei3 we will have C(A)

(2)
i2

<

0.

Proof. The first two assertions follow immediately from the following

formula, which is true for any l ≥ 2, and 1 ≤ i ≤ l:

C(A)
(l)
i = C(A)

(l+1)
i −

a
(l+1)
l+1,i

a
(l+1)
l+1,l+1

C(A)
(l+1)
l+1 < 0.

We prove the third assertion by induction on k the length of the path, if

k = 2, there is nothing to do. Now take any k ≥ 3, then using the above

formula we have that C(A)
(n−1)
ik−1

< 0, by the induction hypothesis we get

C(A)
(n−k+1)
i2

< 0, so by the assertion 1 we are done.

Theorem 2. Let π : X̃ → X be the minimal resolution of singulari-

ties and let A = (ai,j) be the n × n symmetrical intersection matrix of the

exceptional set of X.

1. If (NN) is true then C(A)i < 0 for any leaf Ei of Γ.

2. Assume that Γ is a tree and C(A)i ≤ 0 for any vertex Ei of Γ. Then

C(A)i < 0 for any leaf Ei of Γ if and only if (NN) is true.

3. In particular if the above conditions are satisfied the Nash map N is

bijective.

Proof.
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1. Suppose that (NN) is true. Let Ei be a leaf of Γ, we can assume

that i = 1 and E2 is the unique vertex connected to E1, by the alge-

braic contraction of all other vertices of Γ, we will have a
(2)
1,1 = a1,1,

a
(2)
1,2 = a1,2. By Proposition 2 (or Theorem 1) we must have C(A)1 =

C(A)
(2)
1 < 0. This concludes the proof of the first statement.

2. The necessary condition was proved before. The proof of the other

implication is by induction on n. If n = 2 the hypothesis implies that

(NN) is true by Lemma 1. So assume the case n− 1 is solved and we

prove the case n. Take any i 6= j. We have two cases

1) Both Ei, Ej are leaves of Γ, then C(A)
(n)
i < 0, C(A)

(n)
j < 0,

by the algebraic contraction of all vertices in Γ except Ei, Ej and

applying Lemma 3, we get that C(A)
(2)
i < 0, C(A)

(2)
j < 0, and we are

done.

2) At most one of Ei, Ej is a leaf, then there exist a leaf Ek,

different from Ei, Ej , so after changing the order of the exceptional

components we can assume that i = 1, j = 2, k = n, let El be unique

component connected to En. By the algebraic contraction of En, we

get the matrix A(n−1) = (a
(n−1)
i,j ), with a

(n−1)
i,j = ai,j for any (i, j) 6=

(l, l) and a
(n−1)
l,l = al,l−

a2
l,n

an,n
< 0. It follows that C(A)

(n−1)
i = C(A)i ≤

0 for i 6= l and C(A)
(n−1)
l = C(A)l −

( a2
l,n

an,n
+ al,n

)

< C(A)l ≤ 0. Also

the graph corresponding to the matrix A(n−1) is a tree, so by induction

hypothesis (NN(1,2)) and (NN(2,1)) are true, and we are done.

Remark 4. Inside the class of rational singularities, rational minimal

singularities are exactly those for which the graph satisfies the hypothesis

of the above theorem. Note that Nash problem’s on arcs for (rational)

minimal singularities has a positive solution by the work of Ana Reguera

[13], also C. Plenat [11] and Fernandez-Sanchez [2] gave different proofs.

Our Theorem applies without any restriction on the topological type of the

exceptional components and so extends to non rational singularities the

mentioned results.

Definition 6. We say that a subgraph G of Γ is a generalized cycle

if any two vertices of G are connected by a cycle. Remark that a cycle or a

complete graph are generalized cycles.
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A generalized cycle is a leaf of Γ if at most one vertex of G is connected

to one vertex of Γ \ G.

Theorem 3. Let π : X̃ → X be the minimal resolution of singulari-

ties and let A = (ai,j) be the n × n symmetrical intersection matrix of the

exceptional set of X.

1. Assume that the graph Γ of the exceptional set is a cycle, with n ≥ 3,

and C(A)i ≤ 0 for all i. Then (NN) is true if and only if C(A)i < 0

for at least two exceptional components.

2. Suppose that Γ is a generalized cycle, n ≥ 3 and C(A)i ≤ 0, for any

vertex Ei. Then (NN) is true if and only if C(A)i < 0, for at least

two vertices.

3. In particular if these conditions are fulfilled the Nash map N is bijec-

tive.

n 1

2n−1

n−2

Proof.

1. Assume first that C(A)i < 0 for at least two exceptional components.

We prove that (NN) is true by induction on n.

If n = 3, we make the algebraic contraction of the exceptional fiber

E3 and we get the matrix:

A(2) =





a1,1 −
a2
1,3

a3,3
a1,2 −

a1,3a2,3

a3,3

a1,2 −
a1,3a2,3

a3,3
a2,2 −

a2
2,3

a3,3





It follows that C(A)
(2)
1 = C(A)1 −

(a1,3

a3,3
(C(A)3)

)

< 0 and C(A)
(2)
2 =

C(A)2 −
(a2,3

a3,3
(C(A)3)

)

< 0 since by hypothesis two over the three

numbers C(A)1, C(A)2, C(A)3 are strictly negative. So the case n = 3

is over.

Consider now the case n ≥ 4. By the algebraic contraction of En,

we get the matrix A(n−1) = (a
(n−1)
i,j ), with a

(n−1)
i,j = ai,j if i, j ∈
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{2, 3, . . . , n − 2} and a
(n−1)
1,1 = a1,1 −

a2
1,n

an,n
, a

(n−1)
1,n−1 = −

a1,nan−1,n

an,n
and

a
(n−1)
n−1,n−1 = an−1,n−1 −

a2
n−1,n

an,n
.

It follows that C(A)
(n−1)
i = C(A)i ≤ 0 for i ∈ {2, 3, . . . , n − 2},

C(A)
(n−1)
n−1 = C(A)n−1 −

(an−1,n

an,n
(C(A)n)

)

and C(A)
(n−1)
1 = C(A)1 −

( a1,n

an,n
(C(A)n)

)

. We have to consider three cases:

i) C(A)1 = C(A)n−1 = C(A)n = 0 then there are two indexes

i, j ∈ {2, 3, . . . , n − 2} such that C(A)
(n−1)
i < 0, C(A)

(n−1)
j < 0.

ii) C(A)n < 0, then C(A)
(n−1)
n−1 , C(A)

(n−1)
1 are strictly negative.

iii) at least one of C(A)1 = 0, C(A)n−1 and C(A)n is zero, then

either C(A)
(n−1)
n−1 < 0 or C(A)

(n−1)
1 < 0.

So the induction hypothesis is verified by A(n−1) and we are done.

Conversely, if (NN) is true and C(A)i < 0 for at most one index i, take

any index j 6= i, by the algebraic contraction of all other components

Ek, k 6= i, j we will have C(A)
(2)
i = C(A)i = 0, C(A)

(2)
j = C(A)j < 0,

this is a contradiction by Proposition 3.

2. If Γ is a generalized cycle, then any two vertices are connected by a

cycle and the statement follows from the first item.

Example 1. The following matrix and graph correspond to a general-

ized cycle, for which Nash’s problem has an affirmative answer.

A =

























−5 1 1 1 1 1 0 0
1 −6 1 1 0 1 1 0
1 1 −5 1 0 0 1 1
1 1 1 −5 1 0 0 1
1 0 0 1 −2 0 0 0
1 1 0 0 0 −2 0 0
0 1 1 0 0 0 −2 0
0 0 1 1 0 0 0 −3

























s

s

s

ss

s

s

s

@
@

@
@

@�
�

�
�

�
@

@
@

@
@�

�
�

�
�

@
@

@
@
@�

�
�

�
�

−5 −6

−5−5

−2 −2

−2

−3

§6. Like star graphs

We can improve the above result in the some special situations:

Theorem 4. Let π : X̃ → X be the minimal resolution of singularities

and let A = (ai,j) be the n×n symmetrical intersection matrix of the excep-

tional set of X. Assume that X has a polygon singularity, i.e. the graph of

the exceptional set is a star with root En and all other vertices are leaves.
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2

1

n

n−1

n−2

Then (NN) is true if and only if we have the following conditions:

• ∀i = 1, . . . , n − 1 ai,i + ai,n < 0

• ∀i, j = 1, . . . , n − 1 ai,iaj,j∆n + aj,n(ai,iaj,n − aj,jai,n) < 0

• ∀i = 1, . . . , n − 1
ai,n

ai,i
(ai,i + ai,n) + ∆n < 0

where ∆n = an,n −
∑n−1

i=1

a2
i,n

ai,i
. We note that A is negative definite if and

only if ∆n < 0.

Proof. It is enough to compare any two leaves and any leaf with the

root. So we consider the following order: E1, E2, En, E3, . . . , En−1. After

applying the construction above we are reduced to the matrix

A(3) =





a1,1 0 a1,n

0 a2,2 a2,n

a1,n a2,n a
(3)
n,n





where a
(3)
n,n = an,n −

∑n−1
i=3

a2
i,n

ai,i
. We are reduced to consider two cases:

first case: Comparison of E1, E2 Again by the construction above we

are reduced to the matrix:

A(2) =







a1,1 −
a2
1,n

a
(3)
n,n

−
a1,na2,n

a
(3)
n,n

−
a1,na2,n

a
(3)
n,n

a2,2 −
a2
2,n

a
(3)
n,n







So (NN)(1,2) and (NN)(2,1) are true if and only if:

a1,1 −
a2

1,n

a
(3)
n,n

−
a1,na2,n

a
(3)
n,n

< 0

a2,2 −
a2

2,n

a
(3)
n,n

−
a1,na2,n

a
(3)
n,n

< 0
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by simple computations these are equivalent to:

ai,iaj,j∆n + aj,n(ai,iaj,n − aj,jai,n) < 0

for {i, j} = {1, 2}.

Let us consider now the second case: Comparison of E1, En

By the construction above we are reduced to the matrix:

(

a1,1 a1,n

a1,n a
(3)
n,n −

a2
2,n

a2,2

)

So (NN)(1,n) and (NN)(n,1) are true if and only if: a1,1 + a1,n < 0 and

a1,n + a
(3)
n,n −

a2
2,n

a2,2
< 0.

After simple computations these are equivalent to: a1,1 + a1,n < 0 and
a1,n

a1,1
(a1,1 + a1,n) + ∆n < 0 Since the choice of the leaves were arbitrary, we

are done.

The next corollary follows immediately from the theorem.

Corollary 3. Let π : X̃ → X be the minimal resolution of singular-

ities and let A = (ai,j) be the n × n symmetrical intersection matrix of the

exceptional set of X. Assume that X has a polygon singularity, the graph

of the exceptional set is a star shaped with root En, and ai,n = 1, ai,i = −2,

for i = 1, . . . , n − 1. Then the matrix A is negative definite if and only if

−an,n > n−1
2 and (NN) is true if and only if −an,n > n

2 . So if n is odd

(NN) is always true, but if n is even it remains open the case −an,n = n
2 .

By the above theorem only the cases (NN(n,i)) for i = 1, . . . , n − 1 are not

true.

Example 2. Our theorem cannot be applied to the following graph of

a sandwich singularity where a ≥ 3. In fact it follows from the theorem

that only (NN)(1,3) is not true. Note that the Nash problem’s on arcs for

(rational) sandwich singularities has a positive solution by the work of Ana

Reguera [14].

A =









−a 0 1 0
0 −2 1 0
1 1 −2 1
0 0 1 −2









uu

u

u

−2 −2−a

−2
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Theorem 5. Let π : X̃ → X be the minimal resolution of singularities

and let A = (ai,j) be the n × n symmetrical intersection matrix of the ex-

ceptional set of X. Assume that the singularity is like a star, i.e. the graph

of the exceptional set is a star with root E0 having s ≥ 3 branches.

u

u

u

u

u

u

u

u

u u uu

u

u

"
""

Q
Q

QQ
B
B
BB

�
�

��

�
�

�

B
B

BB
b

bb

Q
Q

QQ

"
""

a(i)11 a(i)22 a(i)33 a(i)44

a(i)34a(i)23a(i)12

To any branch of the star we associate some continuous fractions expansions

(i = 1, . . . , s; j ≥ 1):

qi := a(i)1,1 −
a(i)21,2

a(i)2,2 −
a(i)22,3

a(i)3,3 −
a(i)23,4

· · ·

;

qi,j := a(i)j,j −
a(i)2j,j+1

a(i)j+1,j+1 −
a(i)2j+1,j+2

a(i)j+2,j+2 −
a(i)2j+2,j+3

· · ·

Then (NN) is true if we have the following conditions:

• for any leaf Ei we have C(A)i < 0

• for any vertex Ei which is not the root C(A)i ≤ 0

• ∀i, j = 1, . . . , s, i 6= j, a0,0 + a0,i + a0,j −
∑s

k=1, k 6=i,j

a2
0,k

qk
≤ 0

Let ∆n = a0,0 −
∑s

i=1

a2
i,0

qi
. We note that A is negative definite if and only

if ∆n < 0, and qi,j < 0 ∀i = 1, . . . , s; j ≥ 1.

Proof. Our first step consists to make the algebraic contraction of a

whole branch Gk of the star Γ. We reorder the irreducible components of

the exceptional set by letting En to be the leaf of the branch Gk, En−1 be

the unique vertex connected to En, En−2 be the unique vertex connected
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to En−1 but distinct from En, and so on until we arrive to the root named

always by E0, the order in the other branches are arbitrary. We also denote

a0,k := a(k)0,1. By the algebraic contraction of En we will get again a like

star graph and a new matrix A(n−1) = (a
(n−1)
i,j ) given by

a
(n−1)
i,j = a

(n)
i,j −

a
(n)
n,i a

(n)
n,j

a
(n)
n,n

,

regarding that our graph is a star we get:

a
(n−1)
i,j = ai,j if (i, j) 6= (n − 1, n − 1) and

a
(n−1)
n−1,n−1 = an−1,n−1 −

a2
n,n−1

an,n
.

Proceeding in this way we can make the algebraic contraction of all the

vertices of Gk, then we will get again a like star graph and a new matrix

A′ = (a′i,j) given by

a′i,j = ai,j if (i, j) 6= (0, 0) and

a′0,0 = a0,0 −
a2

0,k

qk
.

Now we are ready to prove the claim: we need to compare any two elements

in the graph Γ, these elements are in at most two branches Gα, Gβ of the

star, we make the algebraic contraction of s− 2 branches (indexed by a set

I) of the star distinct from Gα, Gβ and we get a new graph of type An and

a new matrix A′′ = (a′′i,j) given by

a′′i,j = ai,j if (i, j) 6= (0, 0) and

a′′0,0 = a0,0 −
∑

k∈I

a2
0,k

qk
,

the hypothesis of the theorem imply that this special tree satisfies the hy-

pothesis of Theorem 2 and we are done.
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métrie algébrique et applications, La Rabida 1984 (J-M. Aroca, et als, eds.), Her-

mann, pp. 15–172.

[9] J. F. Nash Jr., Arcs structure of singularities, Duke Math. J., 81 (1995), no. 1, 31–38.

[10] C. Plénat, A Propos du problème des arcs de Nash, Ann. Inst. Fourier., 55 (2005),

no. 3, 805–823.

[11] C. Plénat, Résolution du problème des arcs de Nash pour les points doubles rationnels
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