HARTOGS TYPE THEOREMS FOR $C R L^{2}$ FUNCTIONS ON COVERINGS OF STRONGLY PSEUDOCONVEX MANIFOLDS

ALEXANDER BRUDNYI

Abstract

We prove an analog of the classical Hartogs extension theorem for $C R L^{2}$ functions defined on boundaries of certain (possibly unbounded) domains on coverings of strongly pseudoconvex manifolds. Our result is related to a question formulated in the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L^{2} functions on coverings of pseudoconvex manifolds.

§1. Introduction

1.1. In this paper, following our previous work [Br4], we continue to study holomorphic L^{2} functions on coverings of strongly pseudoconvex manifolds. The subject was originally motivated by the paper [GHS] of Gromov, Henkin and Shubin. In [GHS] the von Neumann dimension was used to measure the space of holomorphic L^{2} functions on regular (i.e., Galois) coverings of a strongly pseudoconvex manifold M. In particular, it was shown that the space of such functions is infinite-dimensional. It was also asked whether the regularity of the covering is relevant for the existence of many holomorphic L^{2} functions on M^{\prime} or it is just an artifact of the chosen method of the proof which requires a use of von Neumann algebras.

In an earlier paper [Br 4$]$ we proved that actually the regularity of M^{\prime} is irrelevant for the existence of many holomorphic L^{2} functions on M^{\prime}. Moreover, we obtained an extension of some of the main results of [GHS]. The method of the proof used in $[\mathrm{Br} 4]$ is completely different and (probably) easier than that used in [GHS] and is based on L^{2} cohomology techniques, as well as, on the geometric properties of M. Also, in $[\mathrm{Br} 1]-[\mathrm{Br} 3]$ the case of coverings of pseudoconvex domains in Stein manifolds was considered. Using the methods of the theory of coherent Banach sheaves together with

[^0]Cartan's vanishing cohomology theorems, we proved some results on holomorphic L^{p} functions, $1 \leq p \leq \infty$, defined on such coverings.
1.2. The present paper is related to one of the open problems posed in [GHS], a Hartogs type theorem for coverings of strongly pseudoconvex manifolds. Let us recall that for a bounded open set $D \subset \mathbb{C}^{n}(n>1)$ with a connected smooth boundary $b D$ the classical Hartogs theorem states that any holomorphic function in some neighbourhood of $b D$ can be extended to a holomorphic function on a neighbourhood of the closure \bar{D}. In [Bo] Bochner proved a similar extension result for functions defined on the $b D$ only. In modern language his result says that for a smooth function defined on the $b D$ and satisfying the tangential Cauchy-Riemann equations there is an extension to a holomorphic function in D which is smooth on \bar{D}. In fact, this statement follows from Bochner's proof (under some smoothness conditions). However at that time there was not yet the notion of a $C R$ function. Over the years significant contributions to the area of Hartogs theorem were made by many prominent mathematicians, see the history and the references in the paper of Harvey and Lawson [HL, Section 5]. A general Hartogs-Bochner type theorem for bounded domains D in Stein manifolds was proved by Harvey and Lawson [HL, Theorem 5.1]. The proof relies heavily upon the fact that for $n \geq 2$ any $\bar{\partial}$-equation with compact support on an n-dimensional Stein manifold has a compactly supported solution. In [Br 2$]$ and $[\mathrm{Br} 3]$ we proved some extensions of the theorem of Harvey and Lawson for certain (possibly unbounded) domains on coverings of Stein manifolds. In the present paper we prove an analogous result for $C R L^{2}$ functions defined on boundaries of certain domains on coverings of strongly pseudoconvex manifolds. More general Hartogs type theorems for $C R$-functions of slow growth on boundaries of such domains will be presented in a forthcoming paper.
1.3. Let $M \subset \subset N$ be a domain with smooth boundary $b M$ in an n-dimensional complex manifold N, specifically,

$$
\begin{equation*}
M=\{z \in N: \rho(z)<0\} \tag{1.1}
\end{equation*}
$$

where ρ is a real-valued function of class $C^{2}(\Omega)$ in a neighbourhood Ω of the compact set $\bar{M}:=M \cup b M$ such that

$$
\begin{equation*}
d \rho(z) \neq 0 \quad \text { for all } z \in b M . \tag{1.2}
\end{equation*}
$$

Let z_{1}, \ldots, z_{n} be complex local coordinates in N near $z \in b M$. Then the tangent space $T_{z} N$ at z is identified with \mathbb{C}^{n}. By $T_{z}^{c}(b M) \subset T_{z} N$ we denote the complex tangent space to $b M$ at z, i.e.,

$$
\begin{equation*}
T_{z}^{c}(b M)=\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in T_{z}(N): \sum_{j=1}^{n} \frac{\partial \rho}{\partial z_{j}}(z) w_{j}=0\right\} . \tag{1.3}
\end{equation*}
$$

The Levi form of ρ at $z \in b M$ is a hermitian form on $T_{z}^{c}(b M)$ defined in local coordinates by the formula

$$
\begin{equation*}
L_{z}(w, \bar{w})=\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{k}}(z) w_{j} \bar{w}_{k} . \tag{1.4}
\end{equation*}
$$

The manifold M is called pseudoconvex if $L_{z}(w, \bar{w}) \geq 0$ for all $z \in b M$ and $w \in T_{z}^{c}(b M)$. It is called strongly pseudoconvex if $L_{z}(w, \bar{w})>0$ for all $z \in b M$ and all $w \neq 0, w \in T_{z}^{c}(b M)$.

Equivalently, strongly pseudoconvex manifolds can be described as the ones which locally, in a neighbourhood of any boundary point, can be presented as strictly convex domains in \mathbb{C}^{n}. It is also known (see $[\mathrm{C}],[\mathrm{R}]$) that any strongly pseudoconvex manifold admits a proper holomorphic map with connected fibres onto a normal Stein space. In particular, if M is a strongly pseudoconvex non-Stein manifold of complex dimension $n \geq 2$, then the union C_{M} of all compact complex subvarieties of M of complex dimension ≥ 1 is a compact complex subvariety of M.

Let $r: M^{\prime} \rightarrow M$ be an unbranched covering of M. Assume that N is equipped with a Riemannian metric g_{N}. By d we denote the path metric on M^{\prime} induced by the pullback of g_{N}. Consider a domain $\widetilde{D} \subset \subset M$ with a connected C^{1} smooth boundary $b \widetilde{D}$ such that

$$
\begin{equation*}
b \widetilde{D} \cap C_{M}=\emptyset . \tag{1.5}
\end{equation*}
$$

Let D be a connected component of $r^{-1}(\widetilde{D})$. By $b D$ we denote the boundary of D and by $\bar{D} \subset M^{\prime}$ the closure of D. Also, by $\mathcal{O}(D)$ we denote the space of holomorphic functions on D. Now, recall that a continuous function f on $b D$ is called $C R$ if for every smooth $(n, n-2)$-form ω on M^{\prime} with compact support one has

$$
\int_{b D} f \cdot \bar{\partial} \omega=0
$$

If f is smooth this is equivalent to f being a solution of the tangential $C R$-equations: $\bar{\partial}_{b} f=0$ (see, e.g., $[\mathrm{KR}]$).

Let $d V_{M^{\prime}}$ and $d V_{b D}$ be the Riemannian volume forms on M^{\prime} and $b D$ obtained by the pullback of the Riemannian metric g_{N} on N. By $H^{2}(D)$ we denote the Hilbert space of holomorphic functions g on D with norm

$$
\left(\int_{z \in D}|g(z)|^{2} d V_{M^{\prime}}(z)\right)^{1 / 2}
$$

Also, $L^{2}(b D)$ stands for the Hilbert space of functions g on $b D$ with norm

$$
\left(\int_{z \in b D}|g(z)|^{2} d V_{b D}(z)\right)^{1 / 2}
$$

The following question was asked in [GHS, Section 4]:
Suppose that D is a regular covering of a strongly pseudoconvex manifold $\widetilde{D} \subset \subset M$. Is it true that for every $C R$-function $f \in L^{2}(b D) \cap C(\bar{D})$ there exists $F \in H^{2}(D) \cap C(\bar{D})$ such that $\left.F\right|_{b D}=f$?

In the present paper we give a particular answer to this question. To formulate our results we require the following definitions.

For every x from the closure of \widetilde{D} we introduce the Hilbert space $l_{2, x}(D)$ of functions g on $r^{-1}(x) \cap \bar{D}$ with norm

$$
\begin{equation*}
|g|_{x}:=\left(\sum_{y \in r^{-1}(x) \cap \bar{D}}|g(y)|^{2}\right)^{1 / 2} \tag{1.6}
\end{equation*}
$$

Next, we introduce the Banach space $\mathcal{H}_{2}(D)$ of holomorphic on D functions f with norm

$$
|f|_{D}:=\sup _{x \in \widetilde{D}}|f|_{x} .
$$

Similarly, we introduce the Banach space $\mathcal{L}_{2}(b D)$ of continuous on $b D$ functions g with norm

$$
|g|_{b D}:=\sup _{x \in b \widetilde{D}}|f|_{x} .
$$

Let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be a finite open cover of $b \widetilde{D}$ by open simply connected sets $U_{i} \subset \subset M$. Then $r^{-1}\left(U_{i}\right) \cap b D$ is homeomorphic to $\left(U_{i} \cap b \widetilde{D}\right) \times Q$ where Q is the fibre of the covering $r: D \rightarrow \widetilde{D}$. In what follows we identify $r^{-1}\left(U_{i}\right) \cap b D$ with $\left(U_{i} \cap b \widetilde{D}\right) \times Q$.

Suppose that $f \in C(b D)$ is a $C R$-function satisfying the following conditions
(1) $f \in \mathcal{L}_{2}(b D)$;
(2) for any $i \in I$ and any $z_{1}, z_{2} \in b \widetilde{D} \cap U_{i}$ there is a constant L_{i} such that

$$
\left(\sum_{q \in Q}\left|\frac{f\left(z_{1}, q\right)-f\left(z_{2}, q\right)}{d\left(\left(z_{1}, q\right),\left(z_{2}, q\right)\right)}\right|^{2}\right)^{1 / 2} \leq L_{i}
$$

(It is easy to show that condition (2) is independent of the choice of the cover.)

ThEOREM 1.1. For any $C R$-function f on bD satisfying conditions (1) and (2) there exists $\hat{f} \in \mathcal{H}_{2}(D) \cap C(\bar{D})$ such that

$$
\left.\hat{f}\right|_{b D}=f \quad \text { and } \quad|\hat{f}|_{D}=|f|_{b D}
$$

Remark 1.2. (A) If, in addition, $b D$ is smooth of class $C^{k}, 1 \leq k \leq \infty$, and $f \in C^{s}(b D), 1 \leq s \leq k$, then the extension \hat{f} belongs to $\mathcal{O}(D) \cap C^{s}(\bar{D})$. This follows from [HL, Theorem 5.1].
(B) From the Cauchy integral formula it follows that the hypotheses of the theorem are true if f is the restriction to $b D$ of a holomorphic function from $\mathcal{H}_{2}(W)$ where $\widetilde{W}:=r(W) \subset \subset M$ is a neighbourhood of $b \widetilde{D}$ and W is a connected component of $r^{-1}(\widetilde{W})$ containing $b D$ (see [Br 1 , Proposition 2.4] for similar arguments).
(C) It was shown in $[\operatorname{Br} 4$, Theorem 1.1] that holomorphic functions from $\mathcal{H}_{2}\left(M^{\prime}\right)$ separate points on $M^{\prime} \backslash C_{M}^{\prime}$ where $C_{M}^{\prime}:=r^{-1}\left(C_{M}\right)$. Thus there are sufficiently many $C R$-functions f on $b D$ satisfying conditions (1) and (2).

As before by $\mathcal{L}_{2}\left(M^{\prime}\right)$ we denote the Banach space of continuous functions f on M^{\prime} with norm

$$
|f|_{M^{\prime}}:=\sup _{x \in M}|f|_{x}
$$

where $|\cdot|_{x}, x \in M$, is defined as in (1.6) with M^{\prime} substituted for \bar{D}. Also, for a measurable locally bounded $(0,1)$-differential form η on M^{\prime} by $|\eta|_{z}$, $z \in M^{\prime}$, we denote the norm of η at z defined by the natural hermitian metric on the fibres of the cotangent bundle $T^{*} M^{\prime}$ on M^{\prime}. We say that such η belongs to the space $\mathcal{E}_{2}\left(M^{\prime}\right)$ if

$$
\begin{equation*}
|\eta|_{M^{\prime}}:=\sup _{x \in M}\left(\sum_{z \in r^{-1}(x)}|\eta|_{z}^{2}\right)^{1 / 2}<\infty \tag{1.7}
\end{equation*}
$$

(Note that this definition does not depend on the choice of the Riemannian metric on N, and that the expression in the brackets is correctly defined for almost all $x \in M$.)
By supp η we denote support of η, i.e., the minimal closed set $K \subset M^{\prime}$ such that η equals zero almost everywhere on $M^{\prime} \backslash K$.

As mentioned above, the proof of the classical Hartogs theorem is based on the fact that for $n \geq 2$ any $\bar{\partial}$-equation with compact support on an n dimensional Stein manifold has a compactly supported solution. Similarly our proof of Theorem 1.1 is based on the following result.

THEOREM 1.3. Let $O \subset \subset M \backslash C_{M}$. Assume that a $(0,1)$-form η on M^{\prime} belongs to $\mathcal{E}_{2}\left(M^{\prime}\right)$, is $\bar{\partial}$-closed (in the distributional sense) and

$$
r(\operatorname{supp} \eta) \subset O
$$

Then there are a function $F \in \mathcal{L}_{2}\left(M^{\prime}\right)$ and a neighborhood $U \subset M$ of bM such that $\bar{\partial} F=\eta$ (in the distributional sense) and $\left.F\right|_{r^{-1}(U)}=0$.
(Since M^{\prime} can be thought of as a subset of a covering L^{\prime} of a neighbourhood L of \bar{M}, the boundary $b M^{\prime}$ of M^{\prime} is correctly defined.)

Remark 1.4. (A) Condition (2) in the formulation of Theorem 1.1 means that f is a Lipschitz section of a Hilbert vector bundle on $b \widetilde{D}$ with fibre $l_{2}(Q)$ associated with the natural action of the fundamental group $\pi_{1}(b \widetilde{D})$ of $b \widetilde{D}$ on $l_{2}(Q)$ (see [Br1, Example $\left.2.2(\mathrm{~b})\right]$ for a similar construction). This condition is required by the method of the proof. It would be interesting to know to what extent it is necessary.
(B) Another interesting question is whether a general extension theorem for $C R$-functions on $b D$ without growth condition might hold.

Acknowledgment. This work was written during my stay at the Max-Planck-Institut für Mathematik in Bonn. I am deeply grateful to MPIM for hospitality and financial support.

§2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 modulo Theorem 1.3. Then in the next section we prove Theorem 1.3.

Since $b \widetilde{D}$ is a compact C^{1} smooth manifold, there are a neighbourhood $O \subset \subset M \backslash C_{M}$ of $b \widetilde{D}$ and a C^{1} retraction $p: O \rightarrow b \widetilde{D}$. (As such O one can
take, e.g., a neighbourhood of the zero section of the normal vector bundle on $b \widetilde{D}$.) Without loss of generality we may assume also that fundamental groups $\pi_{1}(O)$ and $\pi_{1}(b \widetilde{D})$ are isomorphic. Let O^{\prime} be a connected component of $r^{-1}(O) \subset M^{\prime}$ containing $b D$. Then by the covering homotopy theorem there is a C^{1} retraction $p^{\prime}: O^{\prime} \rightarrow b D$ such that $r \circ p^{\prime}=p \circ r$.

Let $\rho, 0 \leq \rho \leq 1$, be a C^{∞} function on M equals 1 in a neighbourhood of $b \widetilde{D}$ with $\operatorname{supp} \rho \subset \subset O$. Consider the C^{∞} function $\rho^{\prime}:=\rho \circ r$ on M^{\prime}.

Let $\mathcal{V}=\left(V_{j}\right)_{j \in J}$ be a finite open cover of $\widetilde{D} \cup b \widetilde{D}$ by simply connected coordinate charts $V_{j} \subset \subset M$. We naturally identify $r^{-1}\left(V_{j}\right)$ with $V_{j} \times S$ where S is the fibre of $r: M^{\prime} \rightarrow M$. Then in these local coordinates on M^{\prime} we have

$$
\begin{equation*}
p^{\prime}(z, s)=(p(z), s), \quad \rho^{\prime}(z, s)=\rho(z), \quad(z, s) \in O^{\prime} \cap r^{-1}\left(V_{j}\right), \quad j \in J . \tag{2.1}
\end{equation*}
$$

Next, for a $C R$-function f satisfying the assumptions of the theorem we define

$$
\begin{equation*}
f_{1}(z):=\rho^{\prime}(z) \cdot f\left(p^{\prime}(z)\right), \quad z \in \bar{D} \tag{2.2}
\end{equation*}
$$

Lemma 2.1. In the above local coordinates on M^{\prime} one has

$$
\left(\sum_{s \in S}\left|\frac{f_{1}\left(z_{1}, s\right)-f_{1}\left(z_{2}, s\right)}{d\left(\left(z_{1}, s\right),\left(z_{2}, s\right)\right)}\right|^{2}\right)^{1 / 2} \leq C_{j}, \quad\left(z_{1}, s\right),\left(z_{2}, s\right) \in \bar{D} \cap r^{-1}\left(V_{j}\right), \quad j \in J
$$

for some numerical constants C_{j}.

Proof. By d_{N} we denote the path metric on N determined by the Riemannian metric g_{N}. Since the path metric d on M^{\prime} is obtained by the pullback of g_{N}, we have $d\left(\left(z_{1}, s\right),\left(z_{2}, s\right)\right)=d_{N}\left(z_{1}, z_{2}\right)$. Also, by the definition of p^{\prime} and ρ^{\prime} we clearly have for some $C>0$,

$$
\begin{gathered}
d\left(p^{\prime}\left(z_{1}, s\right), p^{\prime}\left(z_{2}, s\right)\right) \leq C d_{N}\left(z_{1}, z_{2}\right) \quad \text { for all } z_{1}, z_{2} \in \operatorname{supp} \rho, \text { and } \\
\left|\rho^{\prime}\left(z_{1}, s\right)-\rho^{\prime}\left(z_{2}, s\right)\right| \leq C d_{N}\left(z_{1}, z_{2}\right) \text { for all } z_{1}, z_{2} \in M .
\end{gathered}
$$

Using these inequalities, condition (2) of the theorem and the triangle inequality for l_{2} norms we obtain that there is $A>0$ such that for $z_{1}, z_{2} \in$
$\operatorname{supp} \rho$

$$
\begin{aligned}
& \left(\sum_{s \in S}\left|\frac{f_{1}\left(z_{1}, s\right)-f_{1}\left(z_{2}, s\right)}{d_{N}\left(z_{1}, z_{2}\right)}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum _ { s \in S } \left\{\left|\frac{\rho\left(z_{1}\right)-\rho\left(z_{2}\right)}{d_{N}\left(z_{1}, z_{2}\right)}\right| \cdot\left|f\left(p\left(z_{1}\right), s\right)\right|\right.\right. \\
& \left.\left.\quad+\left|\rho\left(z_{2}\right)\right| \cdot\left|\frac{f\left(p\left(z_{1}\right), s\right)-f\left(p\left(z_{2}\right), s\right)}{d_{N}\left(z_{1}, z_{2}\right)}\right|\right\}^{2}\right)^{1 / 2} \\
& \leq C\left\{\left(\sum_{s \in S}\left|f\left(p\left(z_{1}\right), s\right)\right|^{2}\right)^{1 / 2}+\left(\sum_{s \in S}\left|\frac{f\left(p\left(z_{1}\right), s\right)-f\left(p\left(z_{2}\right), s\right)}{d\left(\left(p\left(z_{1}\right), s\right),\left(p\left(z_{2}\right), s\right)\right)}\right|^{2}\right)^{1 / 2}\right\}
\end{aligned}
$$

$\leq A$.
Suppose now that, e.g., $z_{1} \in \operatorname{supp} \rho$ and $z_{2} \notin \operatorname{supp} \rho$. Then the term with $\left|\rho\left(z_{2}\right)\right|$ in the second line of the above inequalities disappears and again we get the require estimate. Finally, the case $z_{1}, z_{2} \notin \operatorname{supp} \rho$ is obvious.

This lemma in particular implies that f_{1} is a bounded Lipschitz function on \bar{D}. Now, using the McShane extension theorem $[\mathrm{M}]$ we extend f_{1} to a Lipschitz function \widetilde{f} on M^{\prime}.

Further, since locally the metric d is equivalent to the Euclidean metric and since \tilde{f} is Lipschitz on M^{\prime}, by the Rademacher theorem, see, e.g., [Fe, Section 3.1.6], \widetilde{f} is differentiable almost everywhere. In particular, $\bar{\partial} \widetilde{f}$ is a (0,1)-form on M^{\prime} whose coefficients in its local coordinate representations are L^{∞}-functions. Let χ_{D} be the characteristic function of D. Consider the $(0,1)$-form on M^{\prime} defined by

$$
\omega:=\chi_{D} \cdot \bar{\partial} \tilde{f}
$$

Then repeating word-for-word the arguments of [Br3, Lemma 3.3] we get
Lemma 2.2. ω is $\bar{\partial}$-closed in the distributional sense.
Also, the inequality of Lemma 2.1 implies immediately that $\omega \in \mathcal{E}_{2}\left(M^{\prime}\right)$, see (1.7). Moreover, by our construction $r(\operatorname{supp} \omega) \subset \subset M \backslash C_{M}$. Thus according to Theorem 1.3 there is a continuous function $F \in \mathcal{L}_{2}\left(M^{\prime}\right)$ such that $\bar{\partial} F=\omega$ and $\left.F\right|_{r^{-1}(U)}=0$ for a neighbourhood $U \subset M$ of $b M$. Since
$D \subset M^{\prime}$ is a domain with a connected boundary, and F is holomorphic outside \bar{D} (by the definition of ω), the latter implies that $\left.F\right|_{b D}=0$.

We set

$$
\hat{f}(z):=f_{1}(z)-F(z), \quad z \in \bar{D}
$$

Using the above properties of f_{1} and F one obtains easily that

$$
\hat{f} \in \mathcal{O}(D) \cap C(\bar{D}) \quad \text { and }\left.\quad \hat{f}\right|_{b D}=f
$$

Since f_{1} and $\left.F\right|_{\bar{D}}$ belong to $\mathcal{L}_{2}(\bar{D}), \hat{f} \in \mathcal{H}_{2}(D)$. Now, the identity $|\hat{f}|_{D}=$ $|f|_{b D}$ follows from the fact that the function $z \mapsto|f|_{z}, z \in \widetilde{D} \cup b \widetilde{D}$, see (1.6), is continuous and plurisubharmonic on \widetilde{D}.

This completes the proof of the theorem.

§3. Proof of Theorem 1.3

3.1. In Sections $3.1-3.6$ we collect some auxiliary results required in the proof. Then in Section 3.7 we prove the theorem.

Let X be a complete Kähler manifold of dimension n with a Kähler form ω and E be a hermitian holomorphic vector bundle on X with curvature Θ. Let $L_{2}^{p, q}(X, E)$ be the space of $L^{2} E$-valued (p, q)-forms on X with the L^{2} norm, and let $W_{2}^{p, q}(X, E)$ be the subspace of forms such that $\bar{\partial} \eta$ is L^{2}. (The forms η may be taken to be either smooth or just measurable, in which case $\bar{\partial} \eta$ is understood in the distributional sense.) The cohomology of the resulting L^{2} Dolbeault complex $\left(W_{2}^{\cdot}, \cdot \bar{\partial}\right)$ is the L^{2} cohomology

$$
H_{(2)}^{p, q}(X, E)=Z_{2}^{p, q}(X, E) / B_{2}^{p, q}(X, E)
$$

where $Z_{2}^{p, q}(X, E)$ and $B_{2}^{p, q}(X, E)$ are the spaces of $\bar{\partial}$-closed and $\bar{\partial}$-exact forms in $L_{2}^{p, q}(X, E)$, respectively.

If $\Theta \geq \epsilon \omega$ for some $\epsilon>0$ in the sense of Nakano, then the L^{2} KodairaNakano vanishing theorem, see [D], [O], states that

$$
\begin{equation*}
H_{(2)}^{n, r}(X, E)=0 \quad \text { for } r>0 \tag{3.1}
\end{equation*}
$$

Assume now that $\Theta \leq-\epsilon \omega$ for some $\epsilon>0$ in the sense of Nakano. Then using a duality argument and the Kodaira-Nakano vanishing theorem (3.1) one obtains, see [L, Corollary 2.4],

$$
\begin{equation*}
H_{(2)}^{0, r}(X, E)=0 \quad \text { for } r<n \tag{3.2}
\end{equation*}
$$

3.2. Let $M \subset \subset N$ be a strongly pseudoconvex manifold. Without loss of generality we will assume that $\pi_{1}(M)=\pi_{1}(N)$ and N is strongly pseudoconvex, as well. Then there exist a normal Stein space X_{N}, a proper holomorphic surjective map $p: N \rightarrow X_{N}$ with connected fibres and points $x_{1}, \ldots, x_{l} \in X_{N}$ such that

$$
p: N \backslash \bigcup_{1 \leq i \leq l} p^{-1}\left(x_{i}\right) \longrightarrow X_{N} \backslash \bigcup_{1 \leq i \leq l}\left\{x_{i}\right\}
$$

is biholomorphic, see $[\mathrm{C}],[\mathrm{R}]$. By definition, the domain $X_{M}:=p(M) \subset X_{N}$ is strongly pseudoconvex, and so it is Stein. Without loss of generality we may assume that $x_{1}, \ldots, x_{l} \in X_{M}$. Thus $\bigcup_{1 \leq i \leq l} p^{-1}\left(x_{i}\right)=C_{M}$.

Next, we introduce a complete Kähler metric on the complex manifold $M \backslash C_{M}$ as follows.

First, according to $[\mathrm{N}]$ there is a proper one-to-one map $i: X_{M} \hookrightarrow$ $\mathbb{C}^{2 n+1}, n=\operatorname{dim}_{\mathbb{C}} X_{M}$, which is an embedding in regular points of X_{M}. Then $i\left(X_{M}\right)$ is a complex subvariety of $\mathbb{C}^{2 n+1}$. By ω_{e} we denote the $(1,1)$ form on M obtained as the pullback by $i \circ p$ of the Euclidean Kähler form on $\mathbb{C}^{2 n+1}$. Clearly, ω_{e} is d-closed and positive outside C_{M}.

Similarly we can embed X_{N} into $\mathbb{C}^{2 n+1}$ as a closed complex subvariety. Let $j: X_{N} \hookrightarrow \mathbb{C}^{2 n+1}$ be an embedding such that $j\left(X_{M}\right)$ belongs to the open Euclidean ball B of radius $1 / 4$ centered at $0 \in \mathbb{C}^{2 n+1}$. Set $z_{i}:=j\left(x_{i}\right), 1 \leq$ $i \leq l$. By ω_{i} we denote the restriction to $M \backslash C_{M}$ of the pullback with respect to $j \circ p$ of the form $-\sqrt{-1} \cdot \partial \bar{\partial} \log \left(\log \left\|z-z_{i}\right\|^{2}\right)^{2}$ on $\mathbb{C}^{2 n+1} \backslash\left\{z_{i}\right\}$. (Here $\|\cdot\|$ stands for the Euclidean norm on $\mathbb{C}^{2 n+1}$.) Since $j\left(X_{M}\right) \subset B$, the form ω_{i} is Kähler. Its positivity follows from the fact that the function $-\log \left(\log \|z\|^{2}\right)^{2}$ is strictly plurisubharmonic for $\|z\|<1$. Also, ω_{i} is extended to a smooth form on $M \backslash p^{-1}\left(x_{i}\right)$. Now, let us introduce a Kähler form ω_{M} on $M \backslash C_{M}$ by the formula

$$
\begin{equation*}
\omega_{M}:=\omega_{e}+\sum_{1 \leq i \leq l} \omega_{i} . \tag{3.3}
\end{equation*}
$$

Proposition 3.1. The path metric d on $M \backslash C_{M}$ induced by ω_{M} is complete.

Proof. Assume, on the contrary, that there is a sequence $\left\{w_{j}\right\}$ convergent either to C_{M} or to the boundary $b M$ of M such that the sequence $\left\{d\left(o, w_{j}\right)\right\}$ is bounded (for a fixed point $\left.o \in M \backslash C_{M}\right)$. Then, since $\omega_{L} \geq \omega_{e}$,
the sequence $\left\{i\left(p\left(w_{j}\right)\right)\right\} \subset \mathbb{C}^{2 n+1}$ is bounded. This implies that $\left\{w_{j}\right\}$ converges to C_{M}. But since $\omega_{L} \geq \sum \omega_{i}$, the latter is impossible. One can check this using single blow-ups of $\mathbb{C}^{2 n+1}$ at points z_{i} and rewriting the pullbacks to the resulting manifold of $(1,1)$-forms $-\sqrt{-1} \cdot \partial \bar{\partial} \log \left(\log \left\|z-z_{i}\right\|^{2}\right)^{2}$ in local coordinates near exceptional divisors, see, e.g., $[\mathrm{GM}]$ for similar arguments.

Similarly one obtains complete Kähler metrics on unbranched coverings of $M \backslash C_{M}$ induced by pullbacks to these coverings of the Kähler form ω_{M} on $M \backslash C_{M}$.
3.3. We retain the notation of the previous section.

Let $r: N^{\prime} \rightarrow N$ be an unbranched covering. Consider the corresponding covering $\left(M \backslash C_{M}\right)^{\prime}:=r^{-1}\left(M \backslash C_{M}\right)$ of $M \backslash C_{M}$. We equip $\left(M \backslash C_{M}\right)^{\prime}$ with the complete Kähler metric induced by the form $\omega_{M}^{\prime}:=r^{*} \omega_{M}$. Next we consider the function $f:=\sum_{0 \leq s \leq l} f_{s}$ on $\left(M \backslash C_{M}\right)^{\prime}$ such that f_{0} is the pullback by $i \circ p \circ r$ of the function $\|z\|^{2}$ on $\mathbb{C}^{2 n+1}$ and f_{s} is the pullback by $j \circ p \circ r$ of the function $-\log \left(\log \left\|z-z_{s}\right\|^{2}\right)^{2}$ on $\mathbb{C}^{2 n+1} \backslash\left\{z_{s}\right\}, 1 \leq s \leq l$. Clearly we have

$$
\begin{equation*}
\omega_{M}^{\prime}:=\sqrt{-1} \cdot \partial \bar{\partial} f \tag{3.4}
\end{equation*}
$$

Let $E:=\left(M \backslash C_{M}\right)^{\prime} \times \mathbb{C}$ be the trivial holomorphic line bundle on $\left(M \backslash C_{M}\right)^{\prime}$. Let g be the pullback to $\left(M \backslash C_{M}\right)^{\prime}$ of a smooth plurisubharmonic function on M. We equip E with the hermitian metric e^{f+g} (i.e., for $z \times v \in$ E the square of its norm in this metric equals $e^{f(z)+g(z)}|v|^{2}$ where $|v|$ is the modulus of $v \in \mathbb{C})$. Then the curvature Θ_{E} of E satisfies

$$
\begin{equation*}
\Theta_{E}:=-\sqrt{-1} \cdot \partial \bar{\partial} \log \left(e^{f+g}\right)=-\omega_{M}^{\prime}-\sqrt{-1} \cdot \partial \bar{\partial} g \leq-\omega_{M}^{\prime} . \tag{3.5}
\end{equation*}
$$

From here by (3.2) we obtain

$$
\begin{equation*}
H_{(2)}^{0, r}\left(\left(M \backslash C_{M}\right)^{\prime}, E\right)=0 \quad \text { for } r<n . \tag{3.6}
\end{equation*}
$$

3.4. In the proof we also use the following result.

Lemma 3.2. Let h be a nonnegative piecewise continuous function on M equals 0 in some neighbourhood of C_{M} and bounded on every compact subset of $M \backslash C_{M}$. Then there exists a smooth plurisubharmonic function \hat{g} on M such that

$$
\hat{g}(z) \geq h(z) \quad \text { for all } z \in M
$$

Proof. Without loss of generality we identify $M \backslash C_{M}$ with $X_{M} \backslash$ $\bigcup_{1 \leq j \leq l}\left\{x_{j}\right\}$. Also, we identify X_{M} with a closed subvariety of $\mathbb{C}^{2 n+1}$ as in Section 3.2. Let U be a neighbourhood of $\bigcup_{1 \leq j \leq l}\left\{x_{j}\right\}$ such that $\left.h\right|_{U} \equiv 0$. By $\Delta_{r} \subset \mathbb{C}^{2 n+1}$ we denote the open polydisk of radius r centered at $0 \in \mathbb{C}^{2 n+1}$. Assume without loss of generality that $0 \in X_{M} \backslash U$. Consider the monotonically increasing function

$$
\begin{equation*}
v(r):=\sup _{\Delta_{r} \cap X_{M}} h, \quad r \geq 0 \tag{3.7}
\end{equation*}
$$

By v_{1} we denote a smooth monotonically increasing function satisfying $v_{1} \geq$ v (such v_{1} can be easily constructed by v). Let us determine

$$
v_{2}(r):=\int_{0}^{r+1} 2 v_{1}(2 t) d t, \quad r \geq 0
$$

By the definition v_{2} is smooth, convex and monotonically increasing. Moreover,

$$
v_{2}(r) \geq \int_{\frac{r+1}{2}}^{r+1} 2 v_{1}(2 t) d t \geq(r+1) v(r+1)
$$

Next we define a smooth plurisubharmonic function v_{3} on $\mathbb{C}^{2 n+1}$ by the formula

$$
v_{3}\left(z_{1}, \ldots, z_{2 n+1}\right):=\sum_{j=1}^{2 n+1} v_{2}\left(\left|z_{j}\right|\right)
$$

Then the pullback of v_{3} to M is a smooth plurisubharmonic function on M. This is the required function \hat{g}. Indeed, under the identification described at the beginning of the proof for $|z|_{\infty}:=\max _{1 \leq i \leq 2 n+1}\left|z_{i}\right|$ we have

$$
\begin{aligned}
\hat{g}(z)=v_{3}(z) & \geq\left(|z|_{\infty}+1\right) v\left(|z|_{\infty}+1\right) \\
& \geq \sup _{\Delta_{|z| \infty+1} \cap X_{M}} h \geq h(z) \quad \text { for all } z \in M
\end{aligned}
$$

3.5. In the proof of Theorem 1.3 we will assume without loss of generality that C_{M} is a divisor with normal crossings. Indeed, according to the Hironaka theorem, there is a modification $m: N_{H} \rightarrow N$ of N from Section 1.3 such that $m^{-1}\left(C_{M}\right)$ is a divisor with normal crossings and $m: N_{H} \backslash m^{-1}\left(C_{M}\right) \rightarrow N \backslash C_{M}$ is biholomorphic. By the definition $M_{H}:=m^{-1}(M) \subset N_{H}$ is strongly pseudoconvex. Further, since M is a complex manifold, m induces an isomorphism of fundamental groups
$m_{*}: \pi_{1}\left(M_{H}\right) \rightarrow \pi_{1}(M)$. Thus for an unbranched covering $r: M^{\prime} \rightarrow M$ of M there are a covering $r_{H}: M_{H}^{\prime} \rightarrow M_{H}$ and a modification $m^{\prime}: M_{H}^{\prime} \rightarrow M^{\prime}$ such that $r \circ m^{\prime}=m \circ r_{H}$ and m^{\prime} induces an isomorphism of the corresponding fundamental groups.

Assume now that a $(0,1)$-form $\eta \in \mathcal{E}_{2}\left(M^{\prime}\right)$ satisfies the hypotheses of Theorem 1.3. Consider its pullback $\widetilde{\eta}:=\left(m^{\prime}\right)^{*} \eta$ on M_{H}^{\prime}. Clearly, $\widetilde{\eta}$ also satisfies the hypotheses of Theorem 1.3 with M replaced by M_{H}. Now, suppose that Theorem 1.3 is valid for M_{H}^{\prime}, i.e., there is a continuous function $\widetilde{f} \in \mathcal{L}_{2}\left(M_{H}^{\prime}\right)$ such that $\bar{\partial} \tilde{f}=\widetilde{\eta}$ and \widetilde{f} vanishes in a neighbourhood of $b M_{H}^{\prime}$. Since by the definition of η the function \widetilde{f} is holomorphic in a neighbourhood of $\left(r \circ m^{\prime}\right)^{-1}\left(C_{M}\right) \subset M_{H}^{\prime}$ and $m^{\prime}: M_{H^{\prime}} \rightarrow M^{\prime}$ is a modification of M^{\prime}, there is a function $f \in \mathcal{L}_{2}\left(M^{\prime}\right)$ such that $\widetilde{f}=\left(m^{\prime}\right)^{*} f$. Obviously, f satisfies the required statements of the theorem.
3.6. Let $U_{q} \subset \subset M$ be a simply connected coordinate chart of $q \in C_{M}$ with complex coordinates $z=\left(z_{1}, \ldots, z_{n}\right), n=\operatorname{dim}_{\mathbb{C}} M$, such that $z_{1}(q)=$ $\cdots=z_{n}(q)=0$ and

$$
\begin{equation*}
C_{M} \cap U_{q}=\left\{f_{q}(z)=0\right\}, \quad f_{q}(z):=z_{1} \cdots z_{k} \tag{3.8}
\end{equation*}
$$

(Such coordinates exist by the definition of a divisor with normal crossings.)
Let \hat{f} be a function on $M \backslash C_{M}$ such that $r^{*} \hat{f}=f$, see Section 3.3. From the definition of f we obtain

LEMMA 3.3. $e^{\hat{f}}$ extended by 0 to C_{M} is a continuous function on M such that $e^{\hat{f}} /\left|f_{q}\right|$ is unbounded on $U_{q} \backslash C_{M}$.

Let ω be the associated $(1,1)$-form of a hermitian metric g_{N} on N. Since by the definition $\omega_{M} \geq \omega_{e}$ and the latter form vanishes on C_{M}, we have locally near $C_{M} \cap U_{q}$

$$
\begin{equation*}
\omega_{M}^{n} \geq c^{\prime}\left|f_{q}\right|^{2 m^{\prime}} \omega^{n} \tag{3.9}
\end{equation*}
$$

for some $c^{\prime}>0, m^{\prime} \in \mathbb{N}$. This and Lemma 3.3 imply that locally near $C_{M} \cap U_{q}$

$$
\begin{equation*}
e^{\hat{f} \omega_{M}^{n} \geq c\left|f_{q}\right|^{2 m} \omega^{n}} \tag{3.10}
\end{equation*}
$$

for some $c>0, m \in \mathbb{N}$.
By $E_{n}(M)$ we denote a holomorphic line vector bundle on M determined by the divisor $n C_{M}, n \in \mathbb{N}$. Let s_{1} be a holomorphic section of $E_{1}(M)$
defined in local coordinates on U_{q} by functions f_{q} from (3.8). Then $\left(r^{*} s_{1}\right)^{n}$ is a holomorphic section of the bundle $E_{n}^{\prime}(M):=r^{*} E_{n}(M)$ on M^{\prime}.

Since the hermitian bundle E from Section 3.3 is holomorphically trivial, we naturally identify sections of E with functions on $\left(M \backslash C_{M}\right)^{\prime}$. Here and below we set $X^{\prime}:=r^{-1}(X)$ for $X \subset M$. Also, the Banach space $\mathcal{L}_{2}\left(X^{\prime}\right)$ of continuous functions on X^{\prime} is defined similarly to $\mathcal{L}_{2}\left(M^{\prime}\right)$, see Section 1.3.

Let $\left(U_{i}\right)_{i \in I}$ be a finite open cover of a neighbourhood $\bar{M}(\subset \subset N)$ by simply connected coordinate charts $U_{i} \subset \subset N$.

Proposition 3.4. Suppose $h \in L_{2}\left(\left(M \backslash C_{M}\right)^{\prime}, E\right)$ is such that for any U_{i}^{\prime} there is a continuous function $h_{i} \in \mathcal{L}_{2}\left(U_{i}^{\prime}\right)$ so that $c_{i}:=h-h_{i} \in \mathcal{O}\left(\left(U_{i} \backslash\right.\right.$ $\left.\left.C_{M}\right)^{\prime}\right)$. Then there is an integer $n \in \mathbb{N}$ independent of h such that $h \cdot\left(r^{*} s_{1}\right)^{n}$ admits an extension $\hat{h} \in C\left(M^{\prime}, E_{n}^{\prime}(M)\right)$. Moreover, $\left.h\right|_{O^{\prime}} \in \mathcal{L}_{2}\left(O^{\prime}\right)$ for every $O \subset \subset M \backslash C_{M}$.

Proof. Let U_{q} be a simply connected coordinate chart of $q \in C_{M}$ with the local coordinates satisfying (3.8). We naturally identify U_{q}^{\prime} with $U_{q} \times S$ where S is the fibre of r. Then the hypotheses of the proposition imply that

$$
\begin{equation*}
\int_{z \in U_{q} \backslash C_{M}}\left(\sum_{s \in S}|h(z, s)|^{2}\right) e^{\hat{f}(z)+\hat{g}(z)} \omega_{M}^{n}(z)<\infty \tag{3.11}
\end{equation*}
$$

where \hat{g} is a smooth plurisubharmonic function on M such that $r^{*} \hat{g}=g$. Diminishing if necessary U_{q} assume that \hat{f}, ω_{M}^{n} satisfy (3.10) there. Also, on U_{q} we clearly have $\hat{g} \sim 1$. From here and (3.11) we obtain on U_{q}

$$
\begin{equation*}
\int_{z \in U_{q} \backslash C_{M}}\left(\sum_{s \in S}|h(z, s)|^{2}\right)\left|f_{q}(z)\right|^{2 m} \omega^{n}(z)<\infty \tag{3.12}
\end{equation*}
$$

where f_{q} is defined by (3.8).
Further, according to the hypothesis of the proposition, there is a continuous function $h_{q} \in \mathcal{L}_{2}\left(U_{q}^{\prime}\right)$ such that $c_{q}:=h-h_{q} \in \mathcal{O}\left(\left(U_{q} \backslash C_{M}\right)^{\prime}\right)$. This and (3.12) imply that every $f_{q}^{m} \cdot c_{q}(\cdot, s), s \in S$, is L^{2} integrable with respect to the volume form $(\sqrt{-1})^{n} \bigwedge_{i=1}^{n} d z_{i} \wedge d \bar{z}_{i}$. Using these facts and the Cauchy integral formulas for coefficients of the Laurent expansion of $f_{q}^{m} c_{q}(\cdot, s)$, one obtains easily that every $f_{q}^{m} c_{q}(\cdot, s)$ can be extended holomorphically to U_{q}. In turn, this gives a continuous extension \hat{h} of $h \cdot\left(r^{*} f_{q}\right)^{m}$ to U_{q}^{\prime}.

Let $V_{q} \subset \subset U_{q}$ be another connected neighbourhood of q. By the Bergman inequality for holomorphic functions, see, e.g., [GR, Chapter 6, Theorem 1.3], we have

$$
\begin{equation*}
\left|h(y, s) f_{q}^{m}(y)\right|^{2} \leq A \int_{z \in U_{q}}\left|h(z, s) f_{q}^{m}(z)\right|^{2} \omega^{n}(z) \quad \text { for all }(y, s) \in W_{q}^{\prime} \tag{3.13}
\end{equation*}
$$

with some constant A depending on U_{q}, W_{q} and ω only. Therefore from (3.12) and (3.13) we obtain

$$
\sup _{z \in V_{q}}\left(\sum_{s \in S}|\hat{h}(z, s)|^{2}\right)^{1 / 2}<\infty
$$

Equivalently, $\left.\hat{h}\right|_{V_{q}^{\prime}} \in \mathcal{L}_{2}\left(V_{q}^{\prime}\right)$.
Next assume that $U_{q} \subset\left(U_{i}\right)_{i \in I}$ is a simply connected coordinate neighbourhood of a point $q \in M \backslash C_{M}$. Without loss of generality we may assume that all such U_{q} are relatively compact in $M \backslash C_{M}$. Identifying U_{q}^{\prime} with $U_{q} \times S$ we have anew inequality of type (3.11) for $\left.h\right|_{U_{q}^{\prime}}$. Since $U_{q} \subset \subset M \backslash C_{M}$ and \hat{f}, \hat{g} and ω_{M}^{n} are smooth on $M \backslash C_{M}$ by their definitions, we obviously have on U_{q}

$$
e^{\hat{f}+\hat{g}} \cdot \omega_{M}^{n} \sim \omega^{n}
$$

Similarly to (3.12)-(3.13) (with $f_{q}=1$) this implies that $\left.h\right|_{V_{q}^{\prime}} \in \mathcal{L}_{2}\left(V_{q}^{\prime}\right)$ for any connected neighbourhood $V_{q} \subset \subset U_{q}$ of q. Choose the above neighbourhoods V_{q} so that they form a finite cover of a set $O \subset \subset M \backslash C_{M}$. Then from the implications $\left.h\right|_{V_{q}^{\prime}} \in \mathcal{L}_{2}\left(V_{q}^{\prime}\right)$ we obtain that $\left.h\right|_{O^{\prime}} \in \mathcal{L}_{2}\left(O^{\prime}\right)$. Now, choosing the neighbourhoods $V_{q}, q \in C_{M}$, so that they form a finite cover of C_{M} and taking as the n the maximum of the numbers m in the powers of f_{q}, see (3.10), we obtain that $h \cdot\left(r^{*} s_{1}\right)^{n}$ admits an extension $\hat{h} \in C\left(M^{\prime}, E_{n}^{\prime}(M)\right)$. By our construction n is independent of h.

3.7. Proof of Theorem 1.3

Assume that a $(0,1)$-form η belongs to $\mathcal{E}_{2}\left(M^{\prime}\right)$, is $\bar{\partial}$-closed and $r(\operatorname{supp} \eta) \subset O \subset \subset M \backslash C_{M}$.

Let us define the function g in the definition of the bundle E from Section 3.3 by Lemma 3.2. Namely, fix a neigbourhood $U \subset \subset M$ of C_{M} and consider the function h on M defined by the formula

$$
\begin{equation*}
h(z):=\frac{\chi_{U^{c}}(z)}{\operatorname{dist}(z, b M)} \tag{3.14}
\end{equation*}
$$

where $\chi_{U^{c}}$ is the characteristic function of $U^{c}:=M \backslash U$ and the distance to the boundary is defined by the path metric d_{N} on N induced by the Riemannian metric g_{N}. Further, according to Lemma 3.2 we can find a C^{∞} plurisubharmonic function \hat{g} on M such that $\hat{g}(z) \geq h(z)$ for all $z \in M$. Then in the definition of the metric on E we choose $g:=r^{*} \hat{g}$.

LEMMA 3.5. The form η belongs to $L_{2}^{0,1}\left(\left(M \backslash C_{M}\right)^{\prime}, E\right)$.
Proof. We retain the notation of Proposition 3.4. Consider the set $U_{q}^{\prime} \cong U_{q} \times S$ on M^{\prime} for some $q \in M$ such that $U_{q} \subset \subset M \backslash C_{M}$. Since $\eta \in \mathcal{E}_{2}\left(M^{\prime}\right), r(\operatorname{supp} \eta) \subset O \subset \subset M \backslash C_{M}$ and \hat{g}, \hat{f} and ω_{M}^{n} are bounded on O, for every such U_{q} we have

$$
\begin{equation*}
\int_{z \in U_{q} \backslash C_{M}}\left(\sum_{s \in S}|\eta|_{(z, s)}^{2}\right) e^{\hat{f}(z)+\hat{g}(z)} \omega_{M}^{n}(z)<\infty \tag{3.15}
\end{equation*}
$$

(Recall that $|\eta|_{(z, s)}^{2}$ stands for the norm of η at $(z, s) \in M^{\prime}$ defined by the natural hermitian metric on the fibres of the cotangent bundle $T^{*} M^{\prime}$ on M^{\prime}.) Taking a finite open cover of O by such sets U_{q} we get the required statement.

From Lemma 3.5 and the fact that $\bar{\partial} \eta=0$ we obtain by (3.6) that there exists a function $F^{\prime} \in L_{2}\left(\left(M \backslash C_{M}\right)^{\prime}, E\right)$ such that $\bar{\partial} F^{\prime}=\eta$. Moreover, by the definition of η, this function is holomorphic on $\left(M \backslash C_{M}\right)^{\prime} \backslash r^{-1}(\bar{O})$. Also, since $\eta \in \mathcal{E}_{2}\left(M^{\prime}\right)$ the equation $\bar{\partial} G=\eta$ has local (continuous) solutions $f_{U} \in \mathcal{L}_{2}\left(U^{\prime}\right)$ for every $U \subset \subset M$ biholomorphic to an open Euclidean ball of \mathbb{C}^{n}. (In fact, since $U^{\prime} \cong U \times S$, we can rewrite the equation $\bar{\partial} G=\eta$ on U^{\prime} as a $\bar{\partial}$-equation on U with a measurable Hilbert valued $(0,1)$-form on the right-hand side. Then we apply the formula presented in the proof of Lemma 3.4 of [Br3] (see also [H, Section 4.2]) to solve this equation and to get a solution from $\mathcal{L}_{2}\left(U^{\prime}\right)$, for similar arguments see [Br1, Appendix A].)

Let us prove now
Lemma 3.6. There is a neighbourhood $U \subset M$ of bM such that $\left.F^{\prime}\right|_{r^{-1}(U)}=0$.

Proof. Let $q \in b M$ and $U_{q} \subset \subset N \backslash C_{M}$ be a simply connected coordinate chart of q. Since $\pi_{1}(M)=\pi_{1}(N)$ by our assumption, the covering M^{\prime} of M is contained in the corresponding covering $r: N^{\prime} \rightarrow N$ of N. Thus
$r^{-1}\left(U_{q}\right) \subset N^{\prime}$ can be naturally identified with $U_{q} \times S$ where S is the fibre of r. Further, without loss of generality we may identify U_{q} with an open Euclidean ball B in \mathbb{C}^{n}. In this identification, on each component $U_{q} \times\{s\}$, $s \in S$, the path metric d on N^{\prime} is equivalent to the Euclidean metric on B with the constants of equivalence independent of s.

Next, for some $s \in S$ let us consider the restriction F_{s}^{\prime} of F^{\prime} to $U_{q} \times\{s\}=$ B. We set $M_{s}^{\prime}:=M^{\prime} \cap\left(U_{q} \times\{s\}\right)$ and $b M_{s}^{\prime}:=b M^{\prime} \cap\left(U_{q} \times\{s\}\right)$. Diminishing if necessary U_{q}, without loss of generality we may assume that these sets are connected. Also by $d v$ we denote the Euclidean volume form on \mathbb{C}^{n}. By the constructions of $\omega_{M^{\prime}}$, see Section 3.2, and f, see Section 3.3, we clearly have

$$
\begin{equation*}
\left.f\right|_{U_{q} \times\{s\}} \geq c \quad \text { and }\left.\quad \omega_{M^{\prime}}^{n}\right|_{U_{q} \times\{s\}} \geq c d v \tag{3.16}
\end{equation*}
$$

for some $c>0$ independent of $s \in S$.
Further, by the definition $F_{s}^{\prime} \in L_{2}\left(M_{s}^{\prime}, E\right)$. So by the choice of g in the definition of the hermitian metric on E using (3.16) we obtain

$$
\begin{equation*}
\int_{z \in M_{s}^{\prime}}\left|F_{s}^{\prime}(z)\right|^{2} e^{\frac{1}{\mathrm{dist}\left(z, b M_{s}^{\prime}\right)}} d v(z)<\infty . \tag{3.17}
\end{equation*}
$$

Without loss of generality we may assume that $U_{q} \cap r(\operatorname{supp} \eta)=\emptyset$. Thus F_{s}^{\prime} is holomorphic on M_{s}^{\prime} for each $s \in S$. Now, from (3.17) using the meanvalue property for the plurisubharmonic function $\left|F_{s}^{\prime}\right|^{2}$ defined on M_{s}^{\prime} we easily obtain that for any $y \in b M_{s}^{\prime}$

$$
\begin{equation*}
\lim _{z \rightarrow y} F_{s}^{\prime}(z)=0 \tag{3.18}
\end{equation*}
$$

Indeed, for a point z sufficiently close to $y \in b M_{s}^{\prime}$ consider a Euclidean ball B_{z} centered at z of radius $r_{z}:=\operatorname{dist}\left(z, b M_{s}^{\prime}\right) / 2$. Choosing z closer to y we may assume that $B_{z} \subset \subset M_{s}^{\prime}$. Then by the triangle inequality for the metric d_{N} we have

$$
\operatorname{dist}\left(w, b M_{s}^{\prime}\right) \leq 3 r_{z} / 2 \quad \text { for all } w \in B_{z} .
$$

Now from (3.17) by the mean-value property we get for some $c_{n}>0$ depending on n only:

$$
\begin{aligned}
c_{n} r_{z}^{2 n} e^{2 /\left(3 r_{z}\right)}\left|F_{s}^{\prime}(z)\right|^{2} & \leq e^{2 /\left(3 r_{z}\right)} \int_{w \in B_{z}}\left|F_{s}^{\prime}(w)\right|^{2} d v(w) \\
& \leq \int_{w \in B_{z}}\left|F_{s}^{\prime}(w)\right|^{2} e^{\overline{\operatorname{dist}\left(w, b M_{s}^{\prime}\right)}} d v(w) \leq A<\infty .
\end{aligned}
$$

Hence,

$$
\lim _{z \rightarrow y}\left|F_{s}^{\prime}(z)\right|^{2} \leq \lim _{z \rightarrow y} \frac{A e^{-2 /\left(3 r_{z}\right)}}{c_{n} r_{z}^{2 n}}=0
$$

Thus (3.18) is true for any $y \in b M_{s}^{\prime}$.
Next, since M_{s}^{\prime} is connected, (3.18) implies that $F_{s}^{\prime} \equiv 0$ on M_{s}^{\prime} for each $s \in S$. Actually, let $z \in b M_{s}^{\prime}$. Consider a complex line l_{z} passing through z and containing the normal to $b M_{s}^{\prime}$ at z (recall that $b M_{s}^{\prime}$ is smooth). Then l_{z} intersects $b M_{s}^{\prime}$ transversely in a neighbourhood of z in $b M_{s}^{\prime}$. This implies that there is a simply connected domain $W_{z} \subset l_{s} \cap M_{s}^{\prime}$ whose boundary $b W$ contains z such that $\left.F_{s}^{\prime}\right|_{W_{z}} \in C\left(\bar{W}_{z}\right)$ and it equals 0 on an open subset of $b W_{z}$. Thus by the uniqueness property for univariate holomorphic functions we have $F_{s}^{\prime}=0$ on W_{z}. Observe that if z varies along $b M_{s}^{\prime}$ the union of the connected components of $l_{z} \cap M_{s}^{\prime}$ containing W_{z} contains an open subset of M_{s}^{\prime}. This implies that $F_{s}^{\prime} \equiv 0$ on M_{s}^{\prime}.

Finally, taking a finite open cover of $b M$ by the above sets U_{q} and using similar arguments we obtain the required neighbourhood U of $b M$ (as the union of such U_{q} intersected with M). This completes the proof of the lemma.

Let us finish the proof of the theorem. As established above, the function F^{\prime} satisfies conditions of Proposition 3.4. According to this proposition there is a number $n \in \mathbb{N}$ independent of F^{\prime} such that $F^{\prime} \cdot\left(r^{*} s_{1}\right)^{n}$ is extended to a continuous section of $E_{n}^{\prime}(M)$ equals 0 on $r^{-1}(U)$. Moreover, $\left.F^{\prime}\right|_{O} \in \mathcal{L}_{2}\left(O^{\prime}\right)$ for any $O \subset \subset M \backslash C_{M}$.

We set

$$
\widetilde{F}:=e^{F^{\prime}}-1 \quad \text { and } \quad \widetilde{\eta}:=\bar{\partial} \widetilde{F}=\widetilde{F} \eta .
$$

By the definitions of η and F^{\prime} we have $\operatorname{supp} \widetilde{\eta}=\operatorname{supp} \eta$ and \widetilde{F} is bounded on supp η. In particular, $\widetilde{\eta}$ is $\bar{\partial}$-closed and belongs to $L_{2}^{0,1}\left(\left(M \backslash C_{M}\right)^{\prime}, E\right)$, as well. Then by (3.6) there is a function $\widetilde{F}^{\prime} \in L_{2}\left(\left(M \backslash C_{M}\right)^{\prime}, E\right)$ such that $\bar{\partial} \widetilde{F}^{\prime}=\widetilde{\eta}$. Applying to \widetilde{F}^{\prime} the same arguments as to F^{\prime} we conclude that $\left.\widetilde{F}^{\prime}\right|_{r^{-1}(U)} \equiv 0$ for some neigbourhood $U \subset M$ of $b M$. Since by the definition $\widetilde{F}-\widetilde{F}^{\prime}$ is holomorphic on $\left(M \backslash C_{M}\right)^{\prime}$ and equals zero on a neighbourhood of $b M^{\prime}$, from the connectedness of M^{\prime} we get $\widetilde{F}=\widetilde{F}^{\prime}$. Also, as in the case of $F^{\prime}, \widetilde{F}^{\prime} \cdot\left(r^{*} s_{1}\right)^{n}$ is extended to a continuous section of $E_{n}\left(M^{\prime}\right)$.

Let q be a regular point of $C_{M}^{\prime}:=r^{-1}\left(C_{M}\right)$. The above properties of F^{\prime} and \widetilde{F} imply that for suitable complex coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ in a
neighbourhood U_{q} of q we have $C_{M}^{\prime} \cap U_{q}=\left\{z_{1}=0\right\}$ and

$$
e^{F^{\prime}(z)}=z_{1}^{-n} A(z), \quad F^{\prime}(z)=z_{1}^{-n} B(z), \quad z \in U_{q} \backslash C_{M},
$$

where $A, B \in \mathcal{O}\left(U_{q}\right)$. Suppose that $A(z)=z_{1}^{l} A^{\prime}(z)$ for some $0 \leq l<n$ with $A^{\prime} \in \mathcal{O}\left(U_{q}\right)$ not identically 0 on $C_{M}^{\prime} \cap U_{q}$. Then there is a point $p \in C_{M}^{\prime} \cap U_{q}$ and its neighbourhood $W \subset U_{q}$ so that $A^{\prime}(z) \neq 0$ for all $z \in \bar{W}$. Thus we can introduce complex coordinates $y=\left(y_{1}, \ldots, y_{n}\right)$ on W by $y_{1}:=z_{1}\left(A^{\prime}(z)\right)^{1 /(n-l)}, y_{2}=z_{2}, \ldots, y_{n}=z_{n}$. In these coordinates we have $e^{F^{\prime}(y)}=y_{1}^{l-n}, y \in W \backslash C_{M}$. Since $F^{\prime} \in \mathcal{O}\left(W \backslash C_{M}\right)$, the latter is impossible. This contradiction shows that $l \geq n$ and so $e^{F^{\prime}}$ admits a holomorphic extension to U_{q}. From here we obtain easily that F^{\prime} admits a holomorphic extension to U_{q}, as well.

Taking an open cover of regular points of C_{M}^{\prime} by such neighbourhoods U_{q}, from the above arguments we obtain that F^{\prime} is extended holomorphically to C_{M}^{\prime} (it is extended to nonregular points of C_{M}^{\prime} by the Hartogs theorem because the complex codimension of the set of such points in M^{\prime} is ≥ 2).

Finally, the extended function F (i.e., the extension of F^{\prime}) belongs to $\mathcal{L}_{2}\left(M^{\prime}\right)$. Indeed, by the definition $\left.F\right|_{O^{\prime}} \in \mathcal{L}_{2}\left(O^{\prime}\right)$ for every $O \subset \subset N \backslash C_{M}$. Assume now that $q \in C_{M}$. Let U be a simply connected coordinate chart of q with complex coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ such that $z_{1}(q)=\cdots=z_{n}(q)=0$, $C_{M} \cap M=\left\{z_{1} \cdots z_{k}=0\right\}$ and $\bar{U}=\left\{z \in M: \max _{1 \leq k \leq n}\left|z_{k}\right| \leq 1\right\}$. We identify \bar{U} with the unit polydisk in \mathbb{C}^{n} and by \mathbb{T}^{n} we denote its boundary torus. Also, we naturally identify $(\bar{U})^{\prime} \subset M^{\prime}$ with $\bar{U} \times S$ where S is the fibre of $r: M^{\prime} \rightarrow M$. Diminishing, if necessary, U we will assume that F is holomorphic in a neighbourhood $O^{\prime}:=r^{-1}(O)$ of $(\bar{U})^{\prime}$ where O is a neighbourhood of \bar{U}.

Let $\left\{S_{l}\right\}_{l \in \mathbb{N}} \subset S$ be an increasing sequence of finite subsets of S such that $\bigcup_{l} S_{l}=S$. Then from the Cauchy integral formula we obtain

$$
\begin{aligned}
& \lim _{l \rightarrow \infty}\left(\sum_{s \in S_{l}}|F(y, s)|^{2}\right) \\
& \quad \leq\left(\frac{1}{2 \pi}\right)^{n} \int_{x \in \mathbb{T}^{n}} \sum_{s \in S} \frac{|F(x, s)|^{2}}{\left(1-\left|z_{1}(y)\right|\right) \cdots\left(1-\left|z_{n}(y)\right|\right)} d x, \quad y \in U,
\end{aligned}
$$

where $d x$ is the volume form on \mathbb{T}^{n}. Since $\mathbb{T}^{n} \subset \subset M \backslash C_{M},\left.F\right|_{\mathbb{T}^{n}} \in$ $\mathcal{L}_{2}\left(\mathbb{T}^{n} \times S\right)$. This implies that $\left.F\right|_{r^{-1}(y)} \in l_{2}(S)$ for all $y \in V_{q}:=\{z \in$ $\left.U: \max _{1 \leq k \leq n}\left|z_{k}\right| \leq 1 / 2\right\}$ and the l_{2} norms $|\cdot|_{y}$ of these functions are uniformly bounded. Choosing a finite cover of C_{M} by such V_{q} and taking into
account that $\left.F\right|_{O^{\prime}} \in \mathcal{L}_{2}\left(O^{\prime}\right)$ for every $O \subset \subset N \backslash C_{M}$, from the above we obtain that $F \in \mathcal{L}_{2}\left(M^{\prime}\right)$. Also, $\bar{\partial} F=\eta$.

This completes the proof of the theorem.

References

[Bo] S. Bochner, Analytic and meromorphic continuation by means of Green's formula, Ann. of Math., 44 (1943), 652-673.
[Br1] A. Brudnyi, Representation of holomorphic functions on coverings of pseudoconvex domains in Stein manifolds via integral formulas on these domains, J. Funct. Anal., 231 (2006), 418-437.
[Br2] A. Brudnyi, Holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds, Compositio Math., 142 (2006), 1018-1038.
[Br3] A. Brudnyi, Hartogs type theorems on coverings of Stein manifolds, Internat. J. Math., 17 (2006), no. 3, 339-349.
[Br4] A. Brudnyi, On holomorphic L^{2}-functions on coverings of strongly pseudoconvex manifolds, Publications of RIMS, Kyoto University, 43 (2007), no. 4, 963-976.
[C] H. Cartan, Sur les fonctions de plusieurs variables complexes. Les espaces analytiques, Proc. Intern. Congress Mathematicians Edinbourgh 1958, Cambridge Univ. Press, 1960, pp. 33-52.
[D] J.-P. Demailly, Estimations L ${ }^{2}$ pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kahlérienne complète, Ann. Sci. Ecole Norm. Sup. (4), 15 (3) (1982), 457-511.
[Fe] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
[GHS] M. Gromov, G. Henkin and M. Shubin, Holomorphic L ${ }^{2}$ functions on coverings of pseudoconvex manifolds, GAFA, Vol. 8 (1998), 552-585.
[GM] C. Grant and P. Milman, Metrics for singular analytic spaces, Pacific J. Math., 168 (1995), no. 1, 61-156.
[GR] H. Grauert and R. Remmert, Theorie der Steinschen Räume, Springer-Verlag, Berlin, 1977.
[HL] R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties, I, Ann. of Math. (2), 102 (1975), no. 2, 223-290.
$[\mathrm{H}] \quad$ G. Henkin, The method of integral representations in complex analysis, Several complex variables, I, Introduction to complex analysis, A translation of Sovremennye problemy matematiki. Fundamental'nye napravleniya, Tom 7, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekn. Inform., Moscow 1985. Encyclopaedia of Mathematical Sciences, 7, Springer-Verlag, Berlin, 1990.
[KR] J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2), $\mathbf{8 1}$ (1965), 451-472.
[L] F. Lárusson, An extension theorem for holomorphic functions of slow growth on covering spaces of projective manifolds, J. Geom. Anal., 5 (1995), no. 2, 281-291.
[M] E. McShane, Extension of range functions, Bull. Amer. Math. Soc., 40 (1934), no. 12, 837-842.
[N] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math., 82 (1960), no. 4, 917-934.
[O] T. Ohsawa, Complete Kähler manifolds and function theory of several complex variables, Sugaku Expositions, 1 (1) (1988), 75-93.
[R] R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes, C. R. Acad. Sci. Paris, 243 (1956), 118-121.

Department of Mathematics and Statistics
University of Calgary
Calgary
Canada

[^0]: Received January 5, 2006.
 Revised October 24, 2006.
 2000 Mathematics Subject Classification: Primary 32V25; Secondary 32A40.
 Research supported in part by Max-Planck-Institut für Mathematik.

