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HARTOGS TYPE THEOREMS FOR CR L
2

FUNCTIONS

ON COVERINGS OF STRONGLY PSEUDOCONVEX

MANIFOLDS

ALEXANDER BRUDNYI

Abstract. We prove an analog of the classical Hartogs extension theorem

for CR L
2 functions defined on boundaries of certain (possibly unbounded)

domains on coverings of strongly pseudoconvex manifolds. Our result is related

to a question formulated in the paper of Gromov, Henkin and Shubin [GHS]

on holomorphic L
2 functions on coverings of pseudoconvex manifolds.

§1. Introduction

1.1. In this paper, following our previous work [Br4], we continue to

study holomorphic L2 functions on coverings of strongly pseudoconvex man-

ifolds. The subject was originally motivated by the paper [GHS] of Gromov,

Henkin and Shubin. In [GHS] the von Neumann dimension was used to mea-

sure the space of holomorphic L2 functions on regular (i.e., Galois) coverings

of a strongly pseudoconvex manifold M . In particular, it was shown that

the space of such functions is infinite-dimensional. It was also asked whether

the regularity of the covering is relevant for the existence of many holomor-

phic L2 functions on M ′ or it is just an artifact of the chosen method of the

proof which requires a use of von Neumann algebras.

In an earlier paper [Br4] we proved that actually the regularity of M ′ is

irrelevant for the existence of many holomorphic L2 functions on M ′. More-

over, we obtained an extension of some of the main results of [GHS]. The

method of the proof used in [Br4] is completely different and (probably)

easier than that used in [GHS] and is based on L2 cohomology techniques,

as well as, on the geometric properties of M . Also, in [Br1]–[Br3] the case

of coverings of pseudoconvex domains in Stein manifolds was considered.

Using the methods of the theory of coherent Banach sheaves together with
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Cartan’s vanishing cohomology theorems, we proved some results on holo-

morphic Lp functions, 1 ≤ p ≤ ∞, defined on such coverings.

1.2. The present paper is related to one of the open problems posed

in [GHS], a Hartogs type theorem for coverings of strongly pseudoconvex

manifolds. Let us recall that for a bounded open set D ⊂ C
n (n > 1) with

a connected smooth boundary bD the classical Hartogs theorem states that

any holomorphic function in some neighbourhood of bD can be extended

to a holomorphic function on a neighbourhood of the closure D. In [Bo]

Bochner proved a similar extension result for functions defined on the bD

only. In modern language his result says that for a smooth function defined

on the bD and satisfying the tangential Cauchy-Riemann equations there

is an extension to a holomorphic function in D which is smooth on D. In

fact, this statement follows from Bochner’s proof (under some smoothness

conditions). However at that time there was not yet the notion of a CR-

function. Over the years significant contributions to the area of Hartogs

theorem were made by many prominent mathematicians, see the history

and the references in the paper of Harvey and Lawson [HL, Section 5]. A

general Hartogs-Bochner type theorem for bounded domains D in Stein

manifolds was proved by Harvey and Lawson [HL, Theorem 5.1]. The proof

relies heavily upon the fact that for n ≥ 2 any ∂-equation with compact

support on an n-dimensional Stein manifold has a compactly supported

solution. In [Br2] and [Br3] we proved some extensions of the theorem of

Harvey and Lawson for certain (possibly unbounded) domains on coverings

of Stein manifolds. In the present paper we prove an analogous result for

CR L2 functions defined on boundaries of certain domains on coverings

of strongly pseudoconvex manifolds. More general Hartogs type theorems

for CR-functions of slow growth on boundaries of such domains will be

presented in a forthcoming paper.

1.3. Let M ⊂⊂ N be a domain with smooth boundary bM in an

n-dimensional complex manifold N , specifically,

(1.1) M = {z ∈ N : ρ(z) < 0}

where ρ is a real-valued function of class C2(Ω) in a neighbourhood Ω of

the compact set M := M ∪ bM such that

(1.2) dρ(z) 6= 0 for all z ∈ bM.
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Let z1, . . . , zn be complex local coordinates in N near z ∈ bM . Then the

tangent space TzN at z is identified with C
n. By T c

z (bM) ⊂ TzN we denote

the complex tangent space to bM at z, i.e.,

(1.3) T c
z (bM) =

{
w = (w1, . . . , wn) ∈ Tz(N) :

n∑

j=1

∂ρ

∂zj
(z)wj = 0

}
.

The Levi form of ρ at z ∈ bM is a hermitian form on T c
z (bM) defined in

local coordinates by the formula

(1.4) Lz(w,w) =

n∑

j,k=1

∂2ρ

∂zj∂zk
(z)wjwk.

The manifold M is called pseudoconvex if Lz(w,w) ≥ 0 for all z ∈ bM

and w ∈ T c
z (bM). It is called strongly pseudoconvex if Lz(w,w) > 0 for all

z ∈ bM and all w 6= 0, w ∈ T c
z (bM).

Equivalently, strongly pseudoconvex manifolds can be described as the

ones which locally, in a neighbourhood of any boundary point, can be pre-

sented as strictly convex domains in C
n. It is also known (see [C], [R]) that

any strongly pseudoconvex manifold admits a proper holomorphic map with

connected fibres onto a normal Stein space. In particular, if M is a strongly

pseudoconvex non-Stein manifold of complex dimension n ≥ 2, then the

union CM of all compact complex subvarieties of M of complex dimension

≥ 1 is a compact complex subvariety of M .

Let r : M ′ → M be an unbranched covering of M . Assume that N is

equipped with a Riemannian metric gN . By d we denote the path metric

on M ′ induced by the pullback of gN . Consider a domain D̃ ⊂⊂ M with a

connected C1 smooth boundary bD̃ such that

(1.5) bD̃ ∩ CM = ∅.

Let D be a connected component of r−1(D̃). By bD we denote the boundary

of D and by D ⊂ M ′ the closure of D. Also, by O(D) we denote the space

of holomorphic functions on D. Now, recall that a continuous function f on

bD is called CR if for every smooth (n, n − 2)-form ω on M ′ with compact

support one has ∫

bD
f · ∂ω = 0.

If f is smooth this is equivalent to f being a solution of the tangential

CR-equations: ∂bf = 0 (see, e.g., [KR]).
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Let dVM ′ and dVbD be the Riemannian volume forms on M ′ and bD

obtained by the pullback of the Riemannian metric gN on N . By H2(D)

we denote the Hilbert space of holomorphic functions g on D with norm

(∫

z∈D
|g(z)|2 dVM ′(z)

)1/2

.

Also, L2(bD) stands for the Hilbert space of functions g on bD with norm

(∫

z∈bD
|g(z)|2 dVbD(z)

)1/2

.

The following question was asked in [GHS, Section 4]:

Suppose that D is a regular covering of a strongly pseudoconvex manifold

D̃ ⊂⊂ M . Is it true that for every CR-function f ∈ L2(bD) ∩ C(D) there

exists F ∈ H2(D) ∩ C(D) such that F |bD = f ?

In the present paper we give a particular answer to this question. To

formulate our results we require the following definitions.

For every x from the closure of D̃ we introduce the Hilbert space l2,x(D)

of functions g on r−1(x) ∩ D with norm

(1.6) |g|x :=

(
∑

y∈r−1(x)∩D

|g(y)|2
)1/2

.

Next, we introduce the Banach space H2(D) of holomorphic on D functions

f with norm

|f |D := sup
x∈ eD

|f |x.

Similarly, we introduce the Banach space L2(bD) of continuous on bD func-

tions g with norm

|g|bD := sup
x∈b eD

|f |x.

Let U = (Ui)i∈I be a finite open cover of bD̃ by open simply connected

sets Ui ⊂⊂ M . Then r−1(Ui) ∩ bD is homeomorphic to (Ui ∩ bD̃) × Q

where Q is the fibre of the covering r : D → D̃. In what follows we identify

r−1(Ui) ∩ bD with (Ui ∩ bD̃) × Q.

Suppose that f ∈ C(bD) is a CR-function satisfying the following con-

ditions
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(1) f ∈ L2(bD);

(2) for any i ∈ I and any z1, z2 ∈ bD̃∩Ui there is a constant Li such that

(
∑

q∈Q

∣∣∣∣
f(z1, q) − f(z2, q)

d((z1, q), (z2, q))

∣∣∣∣
2
)1/2

≤ Li.

(It is easy to show that condition (2) is independent of the choice of the

cover.)

Theorem 1.1. For any CR-function f on bD satisfying conditions (1)

and (2) there exists f̂ ∈ H2(D) ∩ C(D) such that

f̂ |bD = f and |f̂ |D = |f |bD.

Remark 1.2. (A) If, in addition, bD is smooth of class Ck, 1 ≤ k ≤ ∞,

and f ∈ Cs(bD), 1 ≤ s ≤ k, then the extension f̂ belongs to O(D)∩Cs(D).

This follows from [HL, Theorem 5.1].

(B) From the Cauchy integral formula it follows that the hypotheses of

the theorem are true if f is the restriction to bD of a holomorphic function

from H2(W ) where W̃ := r(W ) ⊂⊂ M is a neighbourhood of bD̃ and W is

a connected component of r−1(W̃ ) containing bD (see [Br1, Proposition 2.4]

for similar arguments).

(C) It was shown in [Br4, Theorem 1.1] that holomorphic functions from

H2(M
′) separate points on M ′ \C ′

M where C ′
M := r−1(CM ). Thus there are

sufficiently many CR-functions f on bD satisfying conditions (1) and (2).

As before by L2(M
′) we denote the Banach space of continuous func-

tions f on M ′ with norm

|f |M ′ := sup
x∈M

|f |x.

where | · |x, x ∈ M , is defined as in (1.6) with M ′ substituted for D. Also,

for a measurable locally bounded (0, 1)-differential form η on M ′ by |η|z ,
z ∈ M ′, we denote the norm of η at z defined by the natural hermitian

metric on the fibres of the cotangent bundle T ∗M ′ on M ′. We say that such

η belongs to the space E2(M
′) if

(1.7) |η|M ′ := sup
x∈M

(
∑

z∈r−1(x)

|η|2z

)1/2

< ∞.
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(Note that this definition does not depend on the choice of the Riemannian

metric on N , and that the expression in the brackets is correctly defined for

almost all x ∈ M .)

By suppη we denote support of η, i.e., the minimal closed set K ⊂ M ′ such

that η equals zero almost everywhere on M ′ \ K.

As mentioned above, the proof of the classical Hartogs theorem is based

on the fact that for n ≥ 2 any ∂-equation with compact support on an n-

dimensional Stein manifold has a compactly supported solution. Similarly

our proof of Theorem 1.1 is based on the following result.

Theorem 1.3. Let O ⊂⊂ M \CM . Assume that a (0, 1)-form η on M ′

belongs to E2(M
′), is ∂-closed (in the distributional sense) and

r(suppη) ⊂ O.

Then there are a function F ∈ L2(M
′) and a neighborhood U ⊂ M of bM

such that ∂F = η (in the distributional sense) and F |r−1(U) = 0.

(Since M ′ can be thought of as a subset of a covering L′ of a neighbourhood

L of M , the boundary bM ′ of M ′ is correctly defined.)

Remark 1.4. (A) Condition (2) in the formulation of Theorem 1.1

means that f is a Lipschitz section of a Hilbert vector bundle on bD̃ with

fibre l2(Q) associated with the natural action of the fundamental group

π1(bD̃) of bD̃ on l2(Q) (see [Br1, Example 2.2(b)] for a similar construc-

tion). This condition is required by the method of the proof. It would be

interesting to know to what extent it is necessary.

(B) Another interesting question is whether a general extension theorem

for CR-functions on bD without growth condition might hold.

Acknowledgment. This work was written during my stay at the

Max-Planck-Institut für Mathematik in Bonn. I am deeply grateful to

MPIM for hospitality and financial support.

§2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 modulo Theorem 1.3. Then in the

next section we prove Theorem 1.3.

Since bD̃ is a compact C1 smooth manifold, there are a neighbourhood

O ⊂⊂ M \ CM of bD̃ and a C1 retraction p : O → bD̃. (As such O one can
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take, e.g., a neighbourhood of the zero section of the normal vector bundle

on bD̃.) Without loss of generality we may assume also that fundamental

groups π1(O) and π1(bD̃) are isomorphic. Let O′ be a connected component

of r−1(O) ⊂ M ′ containing bD. Then by the covering homotopy theorem

there is a C1 retraction p′ : O′ → bD such that r ◦ p′ = p ◦ r.

Let ρ, 0 ≤ ρ ≤ 1, be a C∞ function on M equals 1 in a neighbourhood

of bD̃ with suppρ ⊂⊂ O. Consider the C∞ function ρ′ := ρ ◦ r on M ′.

Let V = (Vj)j∈J be a finite open cover of D̃ ∪ bD̃ by simply connected

coordinate charts Vj ⊂⊂ M . We naturally identify r−1(Vj) with Vj × S

where S is the fibre of r : M ′ → M . Then in these local coordinates on M ′

we have

(2.1) p′(z, s) = (p(z), s), ρ′(z, s) = ρ(z), (z, s) ∈ O′ ∩ r−1(Vj), j ∈ J.

Next, for a CR-function f satisfying the assumptions of the theorem

we define

(2.2) f1(z) := ρ′(z) · f(p′(z)), z ∈ D.

Lemma 2.1. In the above local coordinates on M ′ one has

(
∑

s∈S

∣∣∣∣
f1(z1, s) − f1(z2, s)

d((z1, s), (z2, s))

∣∣∣∣
2
)1/2

≤ Cj , (z1, s), (z2, s) ∈ D∩r−1(Vj), j ∈ J,

for some numerical constants Cj.

Proof. By dN we denote the path metric on N determined by the

Riemannian metric gN . Since the path metric d on M ′ is obtained by

the pullback of gN , we have d((z1, s), (z2, s)) = dN (z1, z2). Also, by the

definition of p′ and ρ′ we clearly have for some C > 0,

d(p′(z1, s), p
′(z2, s)) ≤ CdN (z1, z2) for all z1, z2 ∈ suppρ, and

|ρ′(z1, s) − ρ′(z2, s)| ≤ CdN (z1, z2) for all z1, z2 ∈ M.

Using these inequalities, condition (2) of the theorem and the triangle

inequality for l2 norms we obtain that there is A > 0 such that for z1, z2 ∈
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suppρ

(
∑

s∈S

∣∣∣∣
f1(z1, s) − f1(z2, s)

dN (z1, z2)

∣∣∣∣
2
)1/2

≤
(
∑

s∈S

{∣∣∣∣
ρ(z1) − ρ(z2)

dN (z1, z2)

∣∣∣∣ · |f(p(z1), s)|

+ |ρ(z2)| ·
∣∣∣∣
f(p(z1), s) − f(p(z2), s)

dN (z1, z2)

∣∣∣∣
}2
)1/2

≤ C





(
∑

s∈S

|f(p(z1), s)|2
)1/2

+

(
∑

s∈S

∣∣∣∣
f(p(z1), s) − f(p(z2), s)

d((p(z1), s), (p(z2), s))

∣∣∣∣
2
)1/2





≤ A.

Suppose now that, e.g., z1 ∈ suppρ and z2 6∈ suppρ. Then the term

with |ρ(z2)| in the second line of the above inequalities disappears and again

we get the require estimate. Finally, the case z1, z2 6∈ suppρ is obvious.

This lemma in particular implies that f1 is a bounded Lipschitz function

on D. Now, using the McShane extension theorem [M] we extend f1 to a

Lipschitz function f̃ on M ′.

Further, since locally the metric d is equivalent to the Euclidean metric

and since f̃ is Lipschitz on M ′, by the Rademacher theorem, see, e.g., [Fe,

Section 3.1.6], f̃ is differentiable almost everywhere. In particular, ∂f̃ is a

(0, 1)-form on M ′ whose coefficients in its local coordinate representations

are L∞-functions. Let χD be the characteristic function of D. Consider the

(0, 1)-form on M ′ defined by

ω := χD · ∂f̃.

Then repeating word-for-word the arguments of [Br3, Lemma 3.3] we get

Lemma 2.2. ω is ∂-closed in the distributional sense.

Also, the inequality of Lemma 2.1 implies immediately that ω ∈ E2(M
′),

see (1.7). Moreover, by our construction r(suppω) ⊂⊂ M \ CM . Thus

according to Theorem 1.3 there is a continuous function F ∈ L2(M
′) such

that ∂F = ω and F |r−1(U) = 0 for a neighbourhood U ⊂ M of bM . Since
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D ⊂ M ′ is a domain with a connected boundary, and F is holomorphic

outside D (by the definition of ω), the latter implies that F |bD = 0.

We set

f̂(z) := f1(z) − F (z), z ∈ D.

Using the above properties of f1 and F one obtains easily that

f̂ ∈ O(D) ∩ C(D) and f̂ |bD = f.

Since f1 and F |D belong to L2(D), f̂ ∈ H2(D). Now, the identity |f̂ |D =

|f |bD follows from the fact that the function z 7→ |f |z, z ∈ D̃∪bD̃, see (1.6),

is continuous and plurisubharmonic on D̃.

This completes the proof of the theorem.

§3. Proof of Theorem 1.3

3.1. In Sections 3.1–3.6 we collect some auxiliary results required in

the proof. Then in Section 3.7 we prove the theorem.

Let X be a complete Kähler manifold of dimension n with a Kähler form

ω and E be a hermitian holomorphic vector bundle on X with curvature

Θ. Let Lp,q
2 (X,E) be the space of L2 E-valued (p, q)-forms on X with the

L2 norm, and let W p,q
2 (X,E) be the subspace of forms such that ∂η is L2.

(The forms η may be taken to be either smooth or just measurable, in which

case ∂η is understood in the distributional sense.) The cohomology of the

resulting L2 Dolbeault complex (W · , ·
2 , ∂) is the L2 cohomology

Hp,q
(2) (X,E) = Zp,q

2 (X,E)/Bp,q
2 (X,E),

where Zp,q
2 (X,E) and Bp,q

2 (X,E) are the spaces of ∂-closed and ∂-exact

forms in Lp,q
2 (X,E), respectively.

If Θ ≥ εω for some ε > 0 in the sense of Nakano, then the L2 Kodaira-

Nakano vanishing theorem, see [D], [O], states that

(3.1) Hn,r
(2) (X,E) = 0 for r > 0.

Assume now that Θ ≤ −εω for some ε > 0 in the sense of Nakano. Then

using a duality argument and the Kodaira-Nakano vanishing theorem (3.1)

one obtains, see [L, Corollary 2.4],

(3.2) H0,r
(2) (X,E) = 0 for r < n.
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3.2. Let M ⊂⊂ N be a strongly pseudoconvex manifold. Without

loss of generality we will assume that π1(M) = π1(N) and N is strongly

pseudoconvex, as well. Then there exist a normal Stein space XN , a proper

holomorphic surjective map p : N → XN with connected fibres and points

x1, . . . , xl ∈ XN such that

p : N \
⋃

1≤i≤l

p−1(xi) −→ XN \
⋃

1≤i≤l

{xi}

is biholomorphic, see [C], [R]. By definition, the domain XM := p(M) ⊂ XN

is strongly pseudoconvex, and so it is Stein. Without loss of generality we

may assume that x1, . . . , xl ∈ XM . Thus
⋃

1≤i≤l p
−1(xi) = CM .

Next, we introduce a complete Kähler metric on the complex manifold

M \ CM as follows.

First, according to [N] there is a proper one-to-one map i : XM ↪→
C

2n+1, n = dimC XM , which is an embedding in regular points of XM .

Then i(XM ) is a complex subvariety of C
2n+1. By ωe we denote the (1, 1)-

form on M obtained as the pullback by i ◦ p of the Euclidean Kähler form

on C
2n+1. Clearly, ωe is d-closed and positive outside CM .

Similarly we can embed XN into C
2n+1 as a closed complex subvariety.

Let j : XN ↪→ C
2n+1 be an embedding such that j(XM ) belongs to the open

Euclidean ball B of radius 1/4 centered at 0 ∈ C2n+1. Set zi := j(xi), 1 ≤
i ≤ l. By ωi we denote the restriction to M \CM of the pullback with respect

to j ◦p of the form −
√
−1 ·∂∂ log(log ‖z− zi‖2)2 on C

2n+1 \{zi}. (Here ‖ · ‖
stands for the Euclidean norm on C

2n+1.) Since j(XM ) ⊂ B, the form ωi is

Kähler. Its positivity follows from the fact that the function − log(log ‖z‖2)2

is strictly plurisubharmonic for ‖z‖ < 1. Also, ωi is extended to a smooth

form on M \ p−1(xi). Now, let us introduce a Kähler form ωM on M \ CM

by the formula

(3.3) ωM := ωe +
∑

1≤i≤l

ωi.

Proposition 3.1. The path metric d on M \ CM induced by ωM is

complete.

Proof. Assume, on the contrary, that there is a sequence {wj} con-

vergent either to CM or to the boundary bM of M such that the sequence

{d(o, wj)} is bounded (for a fixed point o ∈ M \CM ). Then, since ωL ≥ ωe,
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the sequence {i(p(wj))} ⊂ C
2n+1 is bounded. This implies that {wj} con-

verges to CM . But since ωL ≥∑ωi, the latter is impossible. One can check

this using single blow-ups of C
2n+1 at points zi and rewriting the pullbacks

to the resulting manifold of (1, 1)-forms −
√
−1 · ∂∂ log(log ‖z − zi‖2)2 in

local coordinates near exceptional divisors, see, e.g., [GM] for similar argu-

ments.

Similarly one obtains complete Kähler metrics on unbranched coverings

of M \ CM induced by pullbacks to these coverings of the Kähler form ωM

on M \ CM .

3.3. We retain the notation of the previous section.

Let r : N ′ → N be an unbranched covering. Consider the corresponding

covering (M \CM )′ := r−1(M \CM ) of M \CM . We equip (M \CM )′ with

the complete Kähler metric induced by the form ω ′
M := r∗ωM . Next we

consider the function f :=
∑

0≤s≤l fs on (M \ CM )′ such that f0 is the

pullback by i ◦ p ◦ r of the function ‖z‖2 on C
2n+1 and fs is the pullback

by j ◦ p ◦ r of the function − log(log ‖z − zs‖2)2 on C
2n+1 \ {zs}, 1 ≤ s ≤ l.

Clearly we have

(3.4) ω′
M :=

√
−1 · ∂∂f.

Let E := (M \ CM )′ × C be the trivial holomorphic line bundle on

(M \CM )′. Let g be the pullback to (M \CM )′ of a smooth plurisubharmonic

function on M . We equip E with the hermitian metric ef+g (i.e., for z×v ∈
E the square of its norm in this metric equals ef(z)+g(z)|v|2 where |v| is the

modulus of v ∈ C). Then the curvature ΘE of E satisfies

(3.5) ΘE := −
√
−1 · ∂∂ log(ef+g) = −ω′

M −
√
−1 · ∂∂g ≤ −ω′

M .

From here by (3.2) we obtain

(3.6) H0,r
(2) ((M \ CM )′, E) = 0 for r < n.

3.4. In the proof we also use the following result.

Lemma 3.2. Let h be a nonnegative piecewise continuous function on

M equals 0 in some neighbourhood of CM and bounded on every compact

subset of M \CM . Then there exists a smooth plurisubharmonic function ĝ

on M such that

ĝ(z) ≥ h(z) for all z ∈ M.
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Proof. Without loss of generality we identify M \ CM with XM \⋃
1≤j≤l{xj}. Also, we identify XM with a closed subvariety of C

2n+1 as in

Section 3.2. Let U be a neighbourhood of
⋃

1≤j≤l{xj} such that h|U ≡ 0. By

∆r ⊂ C
2n+1 we denote the open polydisk of radius r centered at 0 ∈ C

2n+1.

Assume without loss of generality that 0 ∈ XM \U . Consider the monoton-

ically increasing function

(3.7) v(r) := sup
∆r∩XM

h, r ≥ 0.

By v1 we denote a smooth monotonically increasing function satisfying v1 ≥
v (such v1 can be easily constructed by v). Let us determine

v2(r) :=

∫ r+1

0
2v1(2t) dt, r ≥ 0.

By the definition v2 is smooth, convex and monotonically increasing. More-

over,

v2(r) ≥
∫ r+1

r+1
2

2v1(2t) dt ≥ (r + 1)v(r + 1).

Next we define a smooth plurisubharmonic function v3 on C
2n+1 by the

formula

v3(z1, . . . , z2n+1) :=

2n+1∑

j=1

v2(|zj |).

Then the pullback of v3 to M is a smooth plurisubharmonic function on M .

This is the required function ĝ. Indeed, under the identification described

at the beginning of the proof for |z|∞ := max1≤i≤2n+1 |zi| we have

ĝ(z) = v3(z) ≥ (|z|∞ + 1)v(|z|∞ + 1)

≥ sup
∆|z|∞+1∩XM

h ≥ h(z) for all z ∈ M.

3.5. In the proof of Theorem 1.3 we will assume without loss of gen-

erality that CM is a divisor with normal crossings. Indeed, according

to the Hironaka theorem, there is a modification m : NH → N of N

from Section 1.3 such that m−1(CM ) is a divisor with normal crossings

and m : NH \ m−1(CM ) → N \ CM is biholomorphic. By the defini-

tion MH := m−1(M) ⊂ NH is strongly pseudoconvex. Further, since M

is a complex manifold, m induces an isomorphism of fundamental groups
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m∗ : π1(MH) → π1(M). Thus for an unbranched covering r : M ′ → M of

M there are a covering rH : M ′
H → MH and a modification m′ : M ′

H → M ′

such that r◦m′ = m◦rH and m′ induces an isomorphism of the correspond-

ing fundamental groups.

Assume now that a (0, 1)-form η ∈ E2(M
′) satisfies the hypotheses of

Theorem 1.3. Consider its pullback η̃ := (m′)∗η on M ′
H . Clearly, η̃ also

satisfies the hypotheses of Theorem 1.3 with M replaced by MH . Now,

suppose that Theorem 1.3 is valid for M ′
H , i.e., there is a continuous function

f̃ ∈ L2(M
′
H) such that ∂f̃ = η̃ and f̃ vanishes in a neighbourhood of bM ′

H .

Since by the definition of η the function f̃ is holomorphic in a neighbourhood

of (r ◦m′)−1(CM ) ⊂ M ′
H and m′ : MH′ → M ′ is a modification of M ′, there

is a function f ∈ L2(M
′) such that f̃ = (m′)∗f . Obviously, f satisfies the

required statements of the theorem.

3.6. Let Uq ⊂⊂ M be a simply connected coordinate chart of q ∈ CM

with complex coordinates z = (z1, . . . , zn), n = dimC M , such that z1(q) =

· · · = zn(q) = 0 and

(3.8) CM ∩ Uq = {fq(z) = 0}, fq(z) := z1 · · · zk.

(Such coordinates exist by the definition of a divisor with normal crossings.)

Let f̂ be a function on M \ CM such that r∗f̂ = f , see Section 3.3.

From the definition of f we obtain

Lemma 3.3. ef̂ extended by 0 to CM is a continuous function on M

such that ef̂/|fq| is unbounded on Uq \ CM .

Let ω be the associated (1, 1)-form of a hermitian metric gN on N .

Since by the definition ωM ≥ ωe and the latter form vanishes on CM , we

have locally near CM ∩ Uq

(3.9) ωn
M ≥ c′|fq|2m′

ωn

for some c′ > 0, m′ ∈ N. This and Lemma 3.3 imply that locally near

CM ∩ Uq

(3.10) ef̂ωn
M ≥ c|fq|2mωn

for some c > 0, m ∈ N.

By En(M) we denote a holomorphic line vector bundle on M determined

by the divisor nCM , n ∈ N. Let s1 be a holomorphic section of E1(M)
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defined in local coordinates on Uq by functions fq from (3.8). Then (r∗s1)
n

is a holomorphic section of the bundle E ′
n(M) := r∗En(M) on M ′.

Since the hermitian bundle E from Section 3.3 is holomorphically trivial,

we naturally identify sections of E with functions on (M \ CM )′. Here and

below we set X ′ := r−1(X) for X ⊂ M . Also, the Banach space L2(X
′) of

continuous functions on X ′ is defined similarly to L2(M
′), see Section 1.3.

Let (Ui)i∈I be a finite open cover of a neighbourhood M (⊂⊂ N) by

simply connected coordinate charts Ui ⊂⊂ N .

Proposition 3.4. Suppose h ∈ L2((M \CM )′, E) is such that for any

U ′
i there is a continuous function hi ∈ L2(U

′
i) so that ci := h−hi ∈ O((Ui \

CM )′). Then there is an integer n ∈ N independent of h such that h ·(r∗s1)
n

admits an extension ĥ ∈ C(M ′, E′
n(M)). Moreover, h|O′ ∈ L2(O

′) for every

O ⊂⊂ M \ CM .

Proof. Let Uq be a simply connected coordinate chart of q ∈ CM with

the local coordinates satisfying (3.8). We naturally identify U ′
q with Uq ×S

where S is the fibre of r. Then the hypotheses of the proposition imply that

(3.11)

∫

z∈Uq\CM

(
∑

s∈S

|h(z, s)|2
)

ef̂(z)+ĝ(z)ωn
M (z) < ∞

where ĝ is a smooth plurisubharmonic function on M such that r∗ĝ = g.

Diminishing if necessary Uq assume that f̂ , ωn
M satisfy (3.10) there. Also,

on Uq we clearly have ĝ ∼ 1. From here and (3.11) we obtain on Uq

(3.12)

∫

z∈Uq\CM

(
∑

s∈S

|h(z, s)|2
)
|fq(z)|2mωn(z) < ∞

where fq is defined by (3.8).

Further, according to the hypothesis of the proposition, there is a con-

tinuous function hq ∈ L2(U
′
q) such that cq := h − hq ∈ O((Uq \ CM )′). This

and (3.12) imply that every fm
q ·cq( · , s), s ∈ S, is L2 integrable with respect

to the volume form (
√
−1)n

∧n
i=1 dzi∧dzi. Using these facts and the Cauchy

integral formulas for coefficients of the Laurent expansion of f m
q cq( · , s), one

obtains easily that every fm
q cq( · , s) can be extended holomorphically to Uq.

In turn, this gives a continuous extension ĥ of h · (r∗fq)
m to U ′

q.
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Let Vq ⊂⊂ Uq be another connected neighbourhood of q. By the

Bergman inequality for holomorphic functions, see, e.g., [GR, Chapter 6,

Theorem 1.3], we have

(3.13) |h(y, s)fm
q (y)|2 ≤ A

∫

z∈Uq

|h(z, s)fm
q (z)|2ωn(z) for all (y, s) ∈ W ′

q

with some constant A depending on Uq, Wq and ω only. Therefore from

(3.12) and (3.13) we obtain

sup
z∈Vq

(
∑

s∈S

|ĥ(z, s)|2
)1/2

< ∞.

Equivalently, ĥ|V ′
q
∈ L2(V

′
q ).

Next assume that Uq ⊂ (Ui)i∈I is a simply connected coordinate neigh-

bourhood of a point q ∈ M \CM . Without loss of generality we may assume

that all such Uq are relatively compact in M\CM . Identifying U ′
q with Uq×S

we have anew inequality of type (3.11) for h|U ′
q
. Since Uq ⊂⊂ M \ CM and

f̂ , ĝ and ωn
M are smooth on M \CM by their definitions, we obviously have

on Uq

ef̂+ĝ · ωn
M ∼ ωn.

Similarly to (3.12)–(3.13) (with fq = 1) this implies that h|V ′
q
∈ L2(V

′
q ) for

any connected neighbourhood Vq ⊂⊂ Uq of q. Choose the above neighbour-

hoods Vq so that they form a finite cover of a set O ⊂⊂ M \CM . Then from

the implications h|V ′
q
∈ L2(V

′
q ) we obtain that h|O′ ∈ L2(O

′). Now, choosing

the neighbourhoods Vq, q ∈ CM , so that they form a finite cover of CM and

taking as the n the maximum of the numbers m in the powers of fq, see

(3.10), we obtain that h · (r∗s1)
n admits an extension ĥ ∈ C(M ′, E′

n(M)).

By our construction n is independent of h.

3.7. Proof of Theorem 1.3

Assume that a (0, 1)-form η belongs to E2(M
′), is ∂-closed and

r(suppη) ⊂ O ⊂⊂ M \ CM .

Let us define the function g in the definition of the bundle E from

Section 3.3 by Lemma 3.2. Namely, fix a neigbourhood U ⊂⊂ M of CM

and consider the function h on M defined by the formula

(3.14) h(z) :=
χUc(z)

dist(z, bM)
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where χUc is the characteristic function of U c := M \ U and the distance

to the boundary is defined by the path metric dN on N induced by the

Riemannian metric gN . Further, according to Lemma 3.2 we can find a C∞

plurisubharmonic function ĝ on M such that ĝ(z) ≥ h(z) for all z ∈ M .

Then in the definition of the metric on E we choose g := r∗ĝ.

Lemma 3.5. The form η belongs to L0,1
2 ((M \ CM )′, E).

Proof. We retain the notation of Proposition 3.4. Consider the set

U ′
q
∼= Uq × S on M ′ for some q ∈ M such that Uq ⊂⊂ M \ CM . Since

η ∈ E2(M
′), r(supp η) ⊂ O ⊂⊂ M \ CM and ĝ, f̂ and ωn

M are bounded on

O, for every such Uq we have

(3.15)

∫

z∈Uq\CM

(
∑

s∈S

|η|2(z,s)

)
ef̂(z)+ĝ(z)ωn

M(z) < ∞.

(Recall that |η|2(z,s) stands for the norm of η at (z, s) ∈ M ′ defined by the

natural hermitian metric on the fibres of the cotangent bundle T ∗M ′ on

M ′.) Taking a finite open cover of O by such sets Uq we get the required

statement.

From Lemma 3.5 and the fact that ∂η = 0 we obtain by (3.6) that there

exists a function F ′ ∈ L2((M\CM )′, E) such that ∂F ′ = η. Moreover, by the

definition of η, this function is holomorphic on (M \ CM )′ \ r−1(O). Also,

since η ∈ E2(M
′) the equation ∂G = η has local (continuous) solutions

fU ∈ L2(U
′) for every U ⊂⊂ M biholomorphic to an open Euclidean ball

of C
n. (In fact, since U ′ ∼= U × S, we can rewrite the equation ∂G = η on

U ′ as a ∂-equation on U with a measurable Hilbert valued (0, 1)-form on

the right-hand side. Then we apply the formula presented in the proof of

Lemma 3.4 of [Br3] (see also [H, Section 4.2]) to solve this equation and to

get a solution from L2(U
′), for similar arguments see [Br1, Appendix A].)

Let us prove now

Lemma 3.6. There is a neighbourhood U ⊂ M of bM such that

F ′|r−1(U) = 0.

Proof. Let q ∈ bM and Uq ⊂⊂ N \ CM be a simply connected coordi-

nate chart of q. Since π1(M) = π1(N) by our assumption, the covering M ′

of M is contained in the corresponding covering r : N ′ → N of N . Thus
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r−1(Uq) ⊂ N ′ can be naturally identified with Uq × S where S is the fibre

of r. Further, without loss of generality we may identify Uq with an open

Euclidean ball B in C
n. In this identification, on each component Uq ×{s},

s ∈ S, the path metric d on N ′ is equivalent to the Euclidean metric on B

with the constants of equivalence independent of s.

Next, for some s ∈ S let us consider the restriction F ′
s of F ′ to Uq×{s} =

B. We set M ′
s := M ′∩(Uq×{s}) and bM ′

s := bM ′∩(Uq×{s}). Diminishing

if necessary Uq, without loss of generality we may assume that these sets

are connected. Also by dv we denote the Euclidean volume form on C
n. By

the constructions of ωM ′ , see Section 3.2, and f , see Section 3.3, we clearly

have

(3.16) f |Uq×{s} ≥ c and ωn
M ′ |Uq×{s} ≥ c dv

for some c > 0 independent of s ∈ S.

Further, by the definition F ′
s ∈ L2(M

′
s, E). So by the choice of g in the

definition of the hermitian metric on E using (3.16) we obtain

(3.17)

∫

z∈M ′
s

|F ′
s(z)|2e

1
dist(z,bM′

s) dv(z) < ∞.

Without loss of generality we may assume that Uq ∩ r(suppη) = ∅. Thus

F ′
s is holomorphic on M ′

s for each s ∈ S. Now, from (3.17) using the mean-

value property for the plurisubharmonic function |F ′
s|2 defined on M ′

s we

easily obtain that for any y ∈ bM ′
s

(3.18) lim
z→y

F ′
s(z) = 0.

Indeed, for a point z sufficiently close to y ∈ bM ′
s consider a Euclidean ball

Bz centered at z of radius rz := dist(z, bM ′
s)/2. Choosing z closer to y we

may assume that Bz ⊂⊂ M ′
s. Then by the triangle inequality for the metric

dN we have

dist(w, bM ′
s) ≤ 3rz/2 for all w ∈ Bz.

Now from (3.17) by the mean-value property we get for some cn > 0 de-

pending on n only:

cnr2n
z e2/(3rz)|F ′

s(z)|2 ≤ e2/(3rz)

∫

w∈Bz

|F ′
s(w)|2 dv(w)

≤
∫

w∈Bz

|F ′
s(w)|2e

1
dist(w,bM′

s) dv(w) ≤ A < ∞.
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Hence,

lim
z→y

|F ′
s(z)|2 ≤ lim

z→y

Ae−2/(3rz)

cnr2n
z

= 0.

Thus (3.18) is true for any y ∈ bM ′
s.

Next, since M ′
s is connected, (3.18) implies that F ′

s ≡ 0 on M ′
s for each

s ∈ S. Actually, let z ∈ bM ′
s. Consider a complex line lz passing through z

and containing the normal to bM ′
s at z (recall that bM ′

s is smooth). Then

lz intersects bM ′
s transversely in a neighbourhood of z in bM ′

s. This implies

that there is a simply connected domain Wz ⊂ ls ∩M ′
s whose boundary bW

contains z such that F ′
s|W z

∈ C(W z) and it equals 0 on an open subset of

bWz. Thus by the uniqueness property for univariate holomorphic functions

we have F ′
s = 0 on Wz. Observe that if z varies along bM ′

s the union of the

connected components of lz ∩M ′
s containing Wz contains an open subset of

M ′
s. This implies that F ′

s ≡ 0 on M ′
s.

Finally, taking a finite open cover of bM by the above sets Uq and using

similar arguments we obtain the required neighbourhood U of bM (as the

union of such Uq intersected with M). This completes the proof of the

lemma.

Let us finish the proof of the theorem. As established above, the func-

tion F ′ satisfies conditions of Proposition 3.4. According to this proposi-

tion there is a number n ∈ N independent of F ′ such that F ′ · (r∗s1)
n is

extended to a continuous section of E ′
n(M) equals 0 on r−1(U). Moreover,

F ′|O ∈ L2(O
′) for any O ⊂⊂ M \ CM .

We set

F̃ := eF ′ − 1 and η̃ := ∂F̃ = F̃ η.

By the definitions of η and F ′ we have supp η̃ = suppη and F̃ is bounded

on supp η. In particular, η̃ is ∂-closed and belongs to L0,1
2 ((M \ CM )′, E),

as well. Then by (3.6) there is a function F̃ ′ ∈ L2((M \ CM )′, E) such that

∂F̃ ′ = η̃. Applying to F̃ ′ the same arguments as to F ′ we conclude that

F̃ ′|r−1(U) ≡ 0 for some neigbourhood U ⊂ M of bM . Since by the definition

F̃ − F̃ ′ is holomorphic on (M \ CM )′ and equals zero on a neighbourhood

of bM ′, from the connectedness of M ′ we get F̃ = F̃ ′. Also, as in the case

of F ′, F̃ ′ · (r∗s1)
n is extended to a continuous section of En(M ′).

Let q be a regular point of C ′
M := r−1(CM ). The above properties of

F ′ and F̃ imply that for suitable complex coordinates z = (z1, . . . , zn) in a
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neighbourhood Uq of q we have C ′
M ∩ Uq = {z1 = 0} and

eF ′(z) = z−n
1 A(z), F ′(z) = z−n

1 B(z), z ∈ Uq \ CM ,

where A,B ∈ O(Uq). Suppose that A(z) = zl
1A

′(z) for some 0 ≤ l < n

with A′ ∈ O(Uq) not identically 0 on C ′
M ∩ Uq. Then there is a point

p ∈ C ′
M ∩ Uq and its neighbourhood W ⊂ Uq so that A′(z) 6= 0 for all

z ∈ W . Thus we can introduce complex coordinates y = (y1, . . . , yn) on

W by y1 := z1(A
′(z))1/(n−l), y2 = z2, . . . , yn = zn. In these coordinates

we have eF ′(y) = yl−n
1 , y ∈ W \ CM . Since F ′ ∈ O(W \ CM ), the latter

is impossible. This contradiction shows that l ≥ n and so eF ′
admits a

holomorphic extension to Uq. From here we obtain easily that F ′ admits a

holomorphic extension to Uq, as well.

Taking an open cover of regular points of C ′
M by such neighbourhoods

Uq, from the above arguments we obtain that F ′ is extended holomorphically

to C ′
M (it is extended to nonregular points of C ′

M by the Hartogs theorem

because the complex codimension of the set of such points in M ′ is ≥ 2).

Finally, the extended function F (i.e., the extension of F ′) belongs to

L2(M
′). Indeed, by the definition F |O′ ∈ L2(O

′) for every O ⊂⊂ N \ CM .

Assume now that q ∈ CM . Let U be a simply connected coordinate chart of q

with complex coordinates z = (z1, . . . , zn) such that z1(q) = · · · = zn(q) = 0,

CM ∩ M = {z1 · · · zk = 0} and U = {z ∈ M : max1≤k≤n |zk| ≤ 1}. We

identify U with the unit polydisk in C
n and by T

n we denote its boundary

torus. Also, we naturally identify (U )′ ⊂ M ′ with U × S where S is the

fibre of r : M ′ → M . Diminishing, if necessary, U we will assume that

F is holomorphic in a neighbourhood O ′ := r−1(O) of (U)′ where O is a

neighbourhood of U .

Let {Sl}l∈N ⊂ S be an increasing sequence of finite subsets of S such

that
⋃

l Sl = S. Then from the Cauchy integral formula we obtain

lim
l→∞

(
∑

s∈Sl

|F (y, s)|2
)

≤
(

1

2π

)n ∫

x∈Tn

∑

s∈S

|F (x, s)|2
(1 − |z1(y)|) · · · (1 − |zn(y)|) dx, y ∈ U,

where dx is the volume form on T
n. Since T

n ⊂⊂ M \ CM , F |Tn ∈
L2(T

n × S). This implies that F |r−1(y) ∈ l2(S) for all y ∈ Vq := {z ∈
U : max1≤k≤n |zk| ≤ 1/2} and the l2 norms | · |y of these functions are uni-

formly bounded. Choosing a finite cover of CM by such Vq and taking into
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account that F |O′ ∈ L2(O
′) for every O ⊂⊂ N \ CM , from the above we

obtain that F ∈ L2(M
′). Also, ∂F = η.

This completes the proof of the theorem.
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