
T. Shoji

Nagoya Math. J.

Vol. 188 (2007), 133–170

GENERALIZED GREEN FUNCTIONS

AND UNIPOTENT CLASSES

FOR FINITE REDUCTIVE GROUPS, II

TOSHIAKI SHOJI

Abstract. This paper is concerned with the problem of the determination of

unknown scalars involved in the algorithm of computing the generalized Green

functions of reductive groups G over a finite field. In the previous paper, we

have treated the case where G = SLn. In this paper, we determine the scalars

in the case where G is a classical group Sp2n or SON for arbitrary characteristic.

§0. Introduction

This paper is a sequel to [S2]. Our aim is to remove an ambiguity from

the algorithm of computing generalized Green functions of reductive groups

due to Lusztig. Let G be a connected reductive group defined over a finite

field Fq with Frobenius map F . Let p be the characteristic of Fq. In [S2],

we have treated the case where G = SLn. In this paper we consider the

case where G = Sp2n or SON for arbitrary p. The case where G = SpinN

will be treated in a separate paper.

In [S1] it was shown, in the case of Sp2n or SON with p 6= 2, that

there exists a representative in CF for each unipotent class C, called a

distinguished element there (in this paper we call it a split element) which

behaves well with respect to the computation of Green functions. Our

result in this paper shows that the split elements behave well for any type

of generalized Green functions. We also show, in the case where p = 2, that

such a good representative (called a split element) exists for G = Sp2n or

SO2n. This was not known even for the case of Green functions.

The main ingredient for the proof is a variant of the restriction theorem

([L1]) for the generalized Springer correspondence. The restriction theorem

is a powerful tool for determining the generalized Springer correspondence,

and it was used in [LS], [Sp2] quite effectively. We extend this theorem so

that it involves the information on the Frobenius action. In [S2], we have
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obtained the results by investigating the Frobenius action on the cohomology

groupHa0+r
c (Pu, Ė). But this requires a precise information on the geometry

of Pu related to the local system Ė . In the case of classical groups, one can

avoid to deal with Pu by considering the restriction theorem as above.

§1. A variant of the restriction theorem

1.1. We follow the notation in Section 1 in [S2]. In particular, G is a

connected reductive group over a finite field Fq, with Frobenius map F . Let

k be an algebraic closure of Fq and p the characteristic of k. Let P = LUP

be a parabolic subgroup of G, where L is a Levi subgroup of P and UP is the

unipotent radical of P , and let E be a cuspidal local system on a unipotent

class C in L. As in (1.2.2) in [S2], one can define a perverse sheaf K on

G associated to the triple (L,C, E). Then K is a semisimple perverse sheaf

with EndK ' Q̄l[W], where W = NG(L)/L is a Coxeter group. Thus K is

decomposed as

(1.1.1) K =
⊕

E∈W∧

VE ⊗KE ,

where KE is a simple perverse sheaf on G such that VE = Hom(KE ,K)

is an irreducible W-module corresponding to E ∈ W∧. Put d = dimZ0
L,

where ZL is the center of L. Let Guni be the unipotent variety of G, and NG

the set of all the pairs (C ′, E ′), where C ′ is a unipotent class in G and E ′ is a

G-equivariant simple local system on C ′. Then it is known that K[−d]|Guni

is a semisimple perverse sheaf on Guni, and it is decomposed as

(1.1.2) K[−d]|Guni
'

⊕

(C′,E ′)∈NG

V(C′,E ′) ⊗ IC(C
′
, E ′)[dimC ′],

where V(C′,E ′) is the multiplicity space for the simple perverse sheaf

IC(C
′
, E ′)[dimC ′] on Guni (cf. [S2, (1.2.4)]). Thus KE |Guni

coincides with

some IC(C
′
, E ′) up to shift, and V(C′,E ′) coincides with VE. It turns out that

all the irreducible W-modules are realized as V(C′,E ′) for some pair (C ′, E ′).
Thus we have an injective mapW∧ → NG by E = V(C′,E ′) → (C ′, E ′), whose

image we denote by NG(C, E). Let MG be the set of triples (L,C, E) up

to G-conjugacy, where L is a Levi subgroup of a parabolic subgroup of G

and E is a cuspidal local system on a unipotent class C of L. The above

injective maps form a bijection

(1.1.3)
∐

(L,C,E)∈MG

(NG(L)/L)∧ −→ NG
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which is the so-called generalized Springer correspondence ([L1, 6.5]).

1.2. Let Q ⊃ P be a parabolic subgroup of G with the Levi subgroup

M such that M ⊃ L. Then W1 = NM (L)/L is in a natural way a subgroup

of W. Replacing G by M , we have a subset NM(C, E) of NM . For each

(C ′, E ′) ∈ NG(C, E) (resp. (C1, E1) ∈ NM (C, E)), we denote by E (resp. E1)

the corresponding irreducible representation of W (resp. W1) under (1.1.3).

Let πQ : Q → M be the natural projection. Assume that (C1, E1) ∈

NM (C, E), and that (C ′, E ′) ∈ NG. We denote by fC1,C′ : C1UQ ∩ C
′ → C1

the restriction of πQ. Then F = R2dC1,C′ (fC1,C′)!E
′ is a semisimple M -

equivariant local system on C1, where dC1,C′ = (dimC ′ − dimC1)/2. We

define an integer mE1,E ′ to be the multiplicity of E1 in F . Lusztig proved the

following restriction theorem on the generalized Springer correspondence.

Theorem 1.3. (Lusztig [L1, Theorem 8.3]) Under the above setting,

(C ′, E ′) ∈ NG(C, E) if and only if mE1,E ′ 6= 0. Moreover in that case we

have

mE1,E ′ = 〈ResE,E1〉W1
,

where 〈 , 〉W1
is the inner product of two representations of W1 (regarded

as characters), and ResE is the restriction of E on W1.

1.4. Let u ∈ C ′ and v ∈ C1, and consider the component group AG(u)

and AM (v). The set of G-equivariant simple local systems on C ′ is in 1:1

correspondence with the set AG(u)∧ of irreducible characters of AG(u), and

a similar fact holds also for M . As described in [LS], the integer mE1,E ′ can

be interpreted in terms of the representations of AG(u) and AM (v), which

we explain below. Let Fv be the stalk of F at v ∈ C1. Then we have

(1.4.1) Fv ' H
2dC1,C′

c (C ′ ∩ vUQ, E
′).

Let π : C̃ ′ = Z0
G(u)\G → C ′, Z0

G(u)g 7→ g−1ug be the finite covering of

C ′ with group AG(u). Let X = (C ′ ∩ vUQ) ×C′ C̃ ′ be the fibre product of

C ′ ∩ vUQ with C̃ ′ over C ′, and let π̃ : X → C ′ ∩ vUQ be the base change of

π. Then we have

H
2dC1,C′

c (C ′ ∩ vUQ, π̃∗Q̄l) ' H
2dC1,C′

c (X, Q̄l),

and AG(u) acts naturally on the right hand side. Now π̃∗Q̄l can be de-

composed as π̃∗Q̄l =
∑

ρ Vρ ⊗ Eρ, where ρ runs over all the irreducible



136 T. SHOJI

characters of AG(u). Here Eρ is the G-equivariant simple local system on C ′

corresponding to ρ and Vρ is the corresponding irreducible representation

of AG(u). It follows that

H
2dC1,C′

c (C ′ ∩ vUQ, Eρ) '
(
H

2dC1,C′

c (X, Q̄l)⊗ Vρ∗
)AG(u)

,

where ρ∗ is the dual representation of ρ. On the other hand, the semisim-

ple local system F can be written as F =
∑

ρ1
mρ1
Eρ1

, where Eρ1
is the

irreducible local system on C1 corresponding to ρ1 ∈ AM (v)∧ and mρ1

is the multiplicity of Eρ1
in F . By taking the stalk at v, we have Fv =∑

ρ1
mρ1

(Eρ1
)v . Here (Eρ1

)v is an irreducible AM (v)-module corresponding

to ρ1. Note that if E ′ = Eρ, and E1 = Eρ1
, we have mE1,E ′ = mρ1

. Now

ZM (v) acts on C ′ ∩ vUQ by conjugation, and it induces an action of AM (v)

on H
2dC1,C′

c (C ′ ∩ vUQ, E
′). We have

mE1,E ′ = 〈H
2dC1,C′

c (C ′ ∩ vUQ, Eρ), ρ1〉AM (v)

= 〈H
2dC1,C′

c (X, Q̄l)⊗ Vρ∗)
AG(u), ρ1〉AM (v),

where 〈 , 〉AM (v) denotes the inner product of characters of AM (v).

By Proposition 1.2 in [L1], it is known that dimX ≤ dC1,C′ . Thus

H
2dC1,C′

c (X, Q̄l) has a basis corresponding to the set of irreducible compo-

nents of X of dimension dC1,C′ , and the action of AG(u) on H
2dC1,C′

C (X, Q̄l)

coincides with the permutation action of AG(u) on those irreducible com-

ponents of X. Since C̃ ′ = Z0
G(u)\G, we have

X = {(y, Z0
G(u)g) ∈ (C ′ ∩ vUQ)× C̃ ′ | y = g−1ug}

= {Z0
G(u)g | g−1ug ∈ vUQ}

= Z0
G(u)\{g ∈ G | g−1ug ∈ vUQ}.

Put Yu,v = {g ∈ G | g−1ug ∈ vUQ}. Then ZG(u) × ZM (v) acts on Yu,v

by (z, z′) : g 7→ zgz′−1 for z ∈ ZG(u), z′ ∈ ZM (v), and the projection

Yu,v → X = Z0
G(u)\Yu,v gives a bijection between the set of irreducible

components of X and Yu,v, which is compatible with the action of AG(u)

and AM (v). Note that

dimYu,v = dimX + dimZ0
G(u)

= dC1,C′ + dimZ0
G(u)

= (dimZG(u) + dimZM (v))/2 + dimUQ.
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Let Xu,v be the set of irreducible components of Yu,v of dimension dC1,C′ +

dimZ0
G(u). It follows from the above discussion, we have

Corollary 1.5. (Lusztig-Spaltenstein [LS, 0.4, (4)]) Let εu,v be the

permutation representation of AG(u)×AM (v) on Xu,v. Then we have

〈ResE,E1〉W1
= mE1,E ′ = 〈εu,v, ρ⊗ ρ

∗
1〉AG(u)×AM (v).

1.6. We want to consider a variant of Corollary 1.5 which involves

the Frobenius action. Assume that P is F -stable, and that the triple

(L,C, E) ∈ MG is F -stable. We choose u0 ∈ CF and fix an isomor-

phism ϕ0 : F ∗E ∼−→ E so that the induced isomorphism Eu0
→ Eu0

is of

finite order. ϕ0 induces an isomorphism ϕ : F ∗K ∼−→ K. For each pair

(C ′, E ′) ∈ NF
G , we choose u ∈ C ′F . We fix an isomorphism ψE ′ : F ∗E ′ ∼−→ E ′

as follows; F acts naturally on AG(u), and we consider the semidirect prod-

uct ÃG(u) = 〈τ〉 n AG(u), where τ is the restriction of F on AG(u). Since

(C ′, E ′) is F -stable, ρ is F -stable. We choose an extension ρ̃ of ρ to ÃG(u)

and fix an isomorphism ψE ′ so that the induced isomorphism E ′u → E ′u
corresponds to the action of τ on ρ̃. Now ψE ′ induces an isomorphism

ψ̃E ′ : F ∗ IC(C
′
, E ′)[dimC ′] ∼−→ IC(C

′
, E ′)[dimC ′]. The isomorphism ϕ also

induces an isomorphism F ∗K[−d]|Guni

∼−→ K[−d]|Guni
, which we also denote

by ϕ. Then under the decomposition of (1.1.2), ϕ induces an isomorphism

V(C′E ′) ⊗ F
∗ IC(C

′
, E ′)[dimC ′] ∼−−→ V(C′E ′) ⊗ IC(C

′
, E ′)[dimC ′]

for each pair (C ′, E ′) ∈ NF
G , and one can define a linear isomorphism σ(C′,E ′)

on V(C′,E ′) such that this isomorphism can be written as σ(C′,E ′)⊗ ψ̃E ′ . Now

F acts naturally on W = NG(L)/L, and σ(C′,E ′) becomes W-semilinear,

namely we have a relation σ(C′,E ′)w = F (w)σ(C′ ,E ′) on V(C′,E ′) for each w ∈

W. Replacing G by M , we can define a W1-semilinear map σ(C1 ,E1) on

V(C1 ,E1) for each pair (C1, E1) ∈ N
F
M . The irreducibleW-module V(C′,E ′) can

be written as a W1-module

(1.6.1) V(C′,E ′) =
∑

E1∈W∧

1

ME1
⊗E1,

where ME1
is the multiplicity space of the irreducible W1-module E1 and

is realized as ME1
= HomW1

(E1, V(C′ ,E ′)). Suppose that E1 ' V(C1 ,E1)

under the generalized Springer correspondence for M . If E1 is F -stable,

(C1, E1) ∈ N
F
M , and we have an isomorphism σ(C1 ,E1) on E1. One can define
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a map σE1,E ′ : ME1
→ ME1

by f 7→ σ(C′,E ′) ◦ f ◦ σ
−1
(C1,E1)

. The linear map

σ(C′,E ′) stabilizes the subspace ME1
⊗E1 and we have

(1.6.2) σ(C′,E ′)|ME1
⊗E1

= σE1,E ′ ⊗ σ(C1,E1).

On the other hand, since F (C ′) = C ′, F (C1) = C1, the map fC1,C′

is F -equivariant. Hence ψE ′ : F ∗E ′ ∼−→ E ′ induces an isomorphism ψC1,C′ :

F ∗F ∼−→ F , and so a linear isomorphism Fv → Fv which we denote by

the same symbol ψC1,C′ . Now the local system F on C1 corresponds to a

representation V of AM (v). V can be decomposed as

V =
∑

ρ1∈AM (v)∧

Mρ1
⊗ ρ1,

where Mρ1
= HomAM (v)(ρ1, V ) is the multiplicity space of the irreducible

representation ρ1. F acts on AM (v), and as in the case of G we consider the

semidirect product ÃM (v) = 〈τ〉 n AM (v), where τ is the restriction of F

on AM (v). For each (C1, E1) ∈ N
F
M , we fix an isomorphism ψE1

: F ∗E1
∼−→ E1

as in G by using an extension ρ̃1 of ρ1 to ÃM (v). Now ψC1,C′ stabilizes the

subspace Mρ1
⊗ ρ1 for an F -stable ρ1 ∈ AM (v)∧, and as in (1.6.2) one can

define a linear map ψρ1,ρ on Mρ1
such that

(1.6.3) ψC1,C′ |Mρ1
⊗ρ1

= ψρ1,ρ ⊗ ψE1
.

The following result gives an F -twisted version of the restriction theo-

rem (Theorem 1.3). The proof is done by chasing the argument in [L1].

Proposition 1.7. Under the notation as above, we have

Tr(σE1,E ′ ,ME1
) = q−dC1,C′+dimUQ Tr(ψρ1,ρ,Mρ1

).

1.8. Let Yu,v be as in 1.4. Assume that Q is F -stable. Since u, v are

F -stable, Yu,v is F -stable, and so F acts as a permutation on Xu,v. On

the other hand, F acts naturally on A(u, v) = AG(u) × AM (v), and we

denote by Ã(u, v) the semidirect product group 〈τ〉 n A(u, v). Then the

permutation representation εu,v is extended to a representation of Ã(u, v),

which we denote by ε̃u,v. Now ψE ′ and ψE1
determine an extension of ρ⊗ρ∗1

to Ã(u, v), which we denote by ρ̃⊗ ρ∗1. By chasing the argument in 1.4, we

see that

Tr(ψρ1,ρ,Mρ1
) = 〈ε̃u,v, ρ̃⊗ ρ∗1〉A(u,v)τ ,
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where in general

〈V1, V2〉A(u,v)τ = |A(u, v)|−1
∑

a∈A(u,v)

Tr(aτ, V1)Tr((aτ)−1, V2)

for representations V1, V2 of Ã(u, v). Hence combined with Proposition 1.7,

we have a variant of Corollary 1.5 involving the Frobenius action.

Corollary 1.9. Let the notations be as above. Then we have

Tr(σE1 ,E ′ ,ME1
) = q−dC1,C′+dimUQ〈ε̃u,v, ρ̃⊗ ρ∗1〉A(u,v)τ .

1.10. We shall connect the above results to the discussion on gener-

alized Green functions in [S2, Section 1]. Take j = (C ′, E ′) ∈ NF
G and

let ψ0 = ψE ′ : F ∗E ′ ∼−→ E ′ be defined in 1.6. ψ0 determines the GF -

invariant function Y 0
j on the set GF

uni as in [S2, 1.3]. On the other hand,

let W̃ = W o 〈c〉 be the semidirect product, where c is a Coxeter group

automorphism on W induced from the action of F . In the decomposition

in (1.1.1), one can define an isomorphism ϕE : F ∗KE
∼−→ KE so that the in-

duced map σ′E : VE → VE makes the irreducibleW-module VE the preferred

extension to W̃ (cf. [L2, IV, (17.2)]). Put

a0 = −dimZ0
L − dimC ′,

r = dimG− dimL+ dim(C × Z0
L).

The we have

a0 + r = (dimG− dimC ′)− (dimL− dimC).

We have Ha0(KE)|C′ = E ′ and we define ψ : F ∗E ′ ∼−→ E ′ so that q(a0+r)/2ψ

coincides with the map defined by ϕE : F ∗Ha0(KE) ∼−→ KE . The function

Yj is defined as the characteristic function of E ′ through ψ, extended by 0

to the function on GF
uni (see [S2, 1.3]). Since E ′ is a simple local system,

there exists γ ∈ Q̄∗
l such that ψ = γψ0, and so Yj = γY 0

j . Our main

objective is the determination of this scalar γ. Note that the determination

of γ is equivalent to the determination of the map σ(C′,E ′). In this paper, we

determine γ by investigating the map σ(C′,E ′). The following fact is easily

verified.

Lemma 1.11. Suppose that q−(a0+r)/2σ(C′,E ′) makes the W-module

V(C′,E ′) the preferred extension to W̃. Then we have γ = 1.
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§2. Unipotent classes of classical groups

2.1. Let G be a connected classical group defined over Fq. We consider

the following type of groups G.

(I) G = Sp2n, p 6= 2,

(II) G = SO2n+1, p 6= 2,

(III) G = SO±
2n, p 6= 2.

(IV) G = Sp2n, p = 2,

(V) G = SO±
2n, p = 2.

These groups are realized as a group of transformations preserving the

various forms. Let V be a vector space over k with dimV = N . Assume

that p 6= 2. Then SpN (resp. ON ) is the subgroup of GL(V ) leaving f

invariant, where f is an alternating form (resp. a symmetric bilinear form)

on V and N = 2n in the case of Sp. SON is the connected component of

ON , and SO±
2n corresponds to two Fq-forms of f , one is split, the other is

non-split.

Assume that p = 2. Then Sp2n is the subgroup of GL(V ) with N = 2n

leaving an alternating form (= a symmetric bilinear form) f invariant. The

quadratic form Q on V is defined by the property that the map V × V →

k, (x, y) 7→ Q(x+y)−Q(x)−Q(y) gives rise to a non-singular bilinear form,

which we may take the alternating form f . Let O2n be the subgroup of

GL(V ) leaving Q invariant. Then we have O2n ⊂ Sp2n, and let SO2n be

the connected component of O2n. It is known by [D] that there exists two

Fq-forms of Q as follows. We regard Q as the quadratic form on V0 = F2n
q .

Then there exists a basis of V0 such that, for x = (x1, . . . , x2n) ∈ V0 with

respect to this basis, Q(x) can be expressed as

Q(x) = x1xn+1 + · · ·+ xnx2n,(2.1.1)

Q(x) = x1xn+1 + · · ·+ xn−1x2n−1 + αx2
n + xnx2n + αx2

2n,(2.1.2)

where α ∈ Fq is an element such that αX2 +X+α is an irreducible polyno-

mial in Fq[X]. We denote by O+
2n (resp. O−

2n) the group O2n associated to

the form in (2.1.1) (resp. (2.1.2)), and let SO±
2n be the connected component

of O±
2n.

2.2. We shall describe the unipotent classes in G. As is well-known, in

the case where p 6= 2, the unipotent classes of G are described by unipotent

classes in GL(V ) which are parametrized by partitions of N through Jordan
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normal form. Let C̃λ be the unipotent class in GL(V ) corresponding to a

partition λ of N . We write λ as λ = (λ1 ≤ λ2 ≤ · · · ≤ λr) with
∑r

i=1 λi = N

or λ = (1c1 , 2c2 , . . . ), where r = l(λ) is called the length of λ. Assume that

G = Sp2n. Then Cλ = C̃λ ∩G is non-empty if and only if ci is even for odd

i, and in that case Cλ is a single conjugacy class in G. While for G̃ = ON ,

Cλ = C̃λ ∩ G̃ is non-empty if and only if ci is even for even i, and in that

case Cλ form a single class in G̃. Now Cλ is already contained in G = SON ,

and so gives a unipotent class in G in almost all cases. The exceptions are

the cases where λ satisfies the condition; ci = 0 if i is even, and ci is even

for all odd i. In that case, Cλ is divided into two classes C ′
λ and C ′′

λ in G.

2.3. In the case where p = 2, the parametrization of unipotent classes

is more complicated. We shall describe it following Spaltenstein [Sp1, 2.6].

First assume that G = Sp2n with p = 2, and let f be the associated alter-

nating form. Then the unipotent classes in G are parametrized by a pair

(λ, ε), where λ is a partition of 2n such that ci is even for odd i, and ε

is an assignment ε : i 7→ εi ∈ {0, 1} for even i such that ci 6= 0. Here

εi = 1 if ci is odd, and εi = 0 or 1 if ci is even. The correspondence with

unipotent classes are given as follows. Let u be a unipotent element in G.

Then as an element in GL(V ), u is parametrized by a partition λ of 2n,

which satisfies a similar condition as in the case of p 6= 2. Now take even

i such that ci is even non-zero. We define a function hi on Ker(u − 1)i by

hi(x) = f((u− 1)i−1x, x). Then we put

(2.3.1) εi =

{
0 if hi ≡ 0,

1 otherwise.

The pair (λ, ε) is the one corresponding to the unipotent class in G contain-

ing u. We denote by Cλ,ε the unipotent class in G corresponding to (λ, ε).

For a convenience sake, we extend ε to the function on N by ε : i 7→ εi,

where εi = ω for i not appeared above (ω is a symbol not contained in

{0, 1}).
Next assume that G = SO2n with p = 2. We have G̃ = O2n ⊂ Sp2n.

Let C̃λ,ε be the unipotent class in Sp2n corresponding to (λ, ε). Then Cλ,ε =

C̃λ,ε ∩ G̃ is a unipotent class in G̃. Thus unipotent classes in G̃ are in 1:1

correspondence with unipotent classes in Sp2n. Now Cλ,ε is contained in G

if and only if l(λ) is even. Assume that l(λ) is even. Then Cλ,ε forms a

single unipotent class in G except for the case where ci = 0 for all odd i,

and εi = 0 for all even i such that ci 6= 0 (here ci is even for even i). In the

latter case, Cλ,ε splits into two classes C ′
λ,ε and C ′′

λ,ε in G.
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2.4. Let G be as in 2.1. For a convenience sake, we introduce a function

ε on N also in the case of p 6= 2. Assume that p 6= 2. In the case ofG = Sp2n,

we put εi = 1 if i is even and ci 6= 0, and put εi = ω otherwise. In the

case of ON , we put εi = 1 if i is odd and ci 6= 0, and put εi = ω otherwise.

Under this convention, we denote the class Cλ in Sp2n or SON by Cλ,ε. For

u ∈ G, let AG(u) be the component group of ZG(u) as before. In the case

of G̃ = ON , we also consider A eG
(u) = Z eG

(u)/Z0
eG
(u) for u ∈ G̃. Following

[Sp1, 2.9], we shall describe the structure of AG(u) and A eG
(u).

Assume that G = Sp2n with p 6= 2. Take u ∈ Cλ,ε. We consider the

generator ai corresponding to each λi. Then AG(u) is an abelian group

generated by ai such that ε(λi) = 1 under the condition that a2
i = 1 and

that ai = aj if λi = λj.

Next assume that G̃ = ON with p 6= 2. Take u ∈ Cλ,ε. Then A eG(u) is

an abelian group generated by ai, exactly by the same condition as the case

of Sp2n. Now AG(u) is the subgroup of A eG(u) of index 2 generated by aiaj

for each i 6= j.

Next assume that G = Sp2n with p = 2. Take u ∈ Cλ,ε. Again we

consider the generators ai corresponding to λi. Then AG(u) is an abelian

group generated by ai such that ε(λi) 6= 0 under the condition that a2
i = 1

and that ai = aj if λi = λj or if λi = λj + 1 or if λi is even and λi = λj + 2.

Finally assume that G̃ = O2n with p = 2, and G = SO2n. Take

u ∈ Cλ,ε. Then A eG
(u) is an abelian group generated by ai, exactly by the

same condition as the case of Sp2n with p = 2. AG(u) is the subgroup of

A eG(u) of index 2 generated by aiaj for i 6= j.

2.5. In what follows, we shall construct a normal form of unipotent

elements in GF . As a preliminary for this, we consider the case where

G = SO2n with p = 2. So assume given a vector space V over Fq of

dimension N = 2n with a basis e1, . . . , eN , endowed with an alternating

form f . We define an element v ∈ GL(V ) by (v − 1)ej = ej−1 (with a

convention e0 = 0), and assume that v leaves f invariant. We consider the

following condition on f .

f(e1, eN ) = 1,(2.5.1)

f(ei, eN ) = 0 for i = n+ 1, . . . , N,(2.5.2)

f(ei, ek) + f(ei+1, ek) + f(ei, ek+1) = 0 for 0 ≤ i, k ≤ N − 1.(2.5.3)

Note that (2.5.3) is equivalent to the condition that v leaves f invariant.

Also note that the conditions (2.5.1)–(2.5.3) determines the alternating form
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f invariant by v uniquely. In fact, it follows from (2.5.2) and (2.5.3) that

(2.5.4) f(ei, ej) = 0 for n+ 1 ≤ i, j ≤ N.

Also it follows from (2.5.1) and (2.5.3), we have

(2.5.5) f(ei, ej) =

{
0 if i+ j ≤ N,

1 if i+ j = N + 1.

Hence it is enough to show that f(ei, ej) is determined for 1 ≤ i ≤ n and

n+1 ≤ j ≤ N . By (2.5.5) we have f(en, en+1) = 1. Since f(en+1, ej) = 0 for

j ≥ n+ 1, we have f(en, ej) = 1 for j ≥ n+ 1 by (2.5.3). Then f(ei, ej) =

f(ei, ej−1) + f(ei+1, ej−1) is determined for 1 ≤ i ≤ n by induction on j

(n+ 1 ≤ j ≤ N).

We consider a quadratic form Q such that Q(x + y) − Q(x) − Q(y) =

f(x, y), which is left invariant by v. We have the following lemma.

Lemma 2.6. Let the notations be as above. Assume that Q(eN ) = 0.

Then Q is determined uniquely, which is non-degenerate of split type.

Proof. Since Q is invariant by v, it is known by [Sp1, 6.10] that Q(ei) =

f(ei, ei+1) for i = 1, . . . , N−1. Hence Q is determined uniquely by f and by

the condition Q(eN ) = 0. It is easy to see that this Q actually gives rise to

a quadratic form invariant by v. In order to show that Q is non-degenerate

of split type, it is enough to see that there exists a basis e′1, . . . , e
′
N of V

satisfying the property

Q(e′i) = 0 for i = 1, . . . , N,(2.6.1)

f(e′i, e
′
j) =

{
1 if i+ j = N + 1,

0 otherwise.

We show (2.6.1). We consider the square matrix A = (f(ei, eN−j+1))1≤i,j≤n

of degree n. By (2.5.5) A is a lower unitriangular matrix. For k = 0, 1, . . . ,

we denote by Ak the principal minor matrix of A of degree 2k. We have

A0 = (1). We show that

(2.6.2) The matrix Ak has the following property; for k such that 2k+1 ≤ n,

we have

Ak+1 =

(
Ak 0
Ak Ak

)
.
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If 2k < n < 2k+1, A is of the form

A =

(
Ak 0
A′

k A′′
k

)
,

where A′
k is the minor matrix of Ak of type (n − 2k, 2k) consisting of the

first (n−2k)-rows and all the columns, and A′′
k is the principal minor matrix

of Ak of degree n− 2k.

In fact, assume that 2k+1 ≤ n. By induction we may assume that (2.6.2)

holds for k − 1. Put A = (aij) with aij = f(ei, eN−j+1). Then by (2.5.3),

we have

(2.6.3) ai,j = ai−1,j + ai−1,j−1.

By induction, we see that the last row of Ak is of the form (1, . . . , 1).

Hence (2.6.3) implies that the (2k + 1)-th row of Ak+1 is of the form

(1, 0, . . . , 0, 1, 0, . . . , 0) (1 appears in the first and the (2k + 1)-th coordi-

nates), which coincides with the first row of the matrix (Ak, Ak). Since the

(2k + 2)-th row of Ak+1 is determined by (2k + 1)-th row by (2.6.3), and so

on, we see that the minor matrix of Ak+1 of type (2k, 2k+1), consisting of the

last 2k-rows and all the columns, coincides with (Ak, Ak). (Note that since

the last column of Ak is of the form t(0, . . . , 0, 1), the interaction between

two Ak does not occur in this computation). Thus (2.6.2) holds for the case

where 2k+1 ≤ n. The case where 2k < n < 2k+1 is dealt similarly.

For j such that 2a−1 < j ≤ 2a, we define a marked matrix A(j) as

follows. In the matrix Aa, the (j, j) entry is contained in a minor matrix

A1 = ( 1 0
1 1 ), where the (j, j)-entry corresponds to the (1, 1)-entry (resp.

(2, 2)-entry) of A1 if j is odd (resp. even). We define a marked matrix A
(j)
a

by replacing the minor matrix A1 in Aa by A•
1, where

A•
1 =

(
1• 0
1• 1•

)
or A•

1 =

(
1 0
1 1•

)

according as (j, j) corresponds to (1, 1) or (2, 2) in A1. In each of the

matrices the marks • are attached to some entries in Aa. For example, for

2 < j ≤ 22, A
(j)
2 is given as




1 0 0 0
1 1 0 0
1 0 1• 0
1 1 1• 1•


 or




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1•
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according to the case where j = 3 or j = 4. For k > a, we define A
(j)
k

inductively as in (2.6.2) by replacing Ak by A
(j)
k , starting from A

(j)
a . Then

we define the matrix A(j) for 2k ≤ n < 2k+1 by replacing A′
k, A

′′
k by (A

(j)
k )′,

(A
(j)
k )′′ which is defined similarly.

By a direct observation, we have

(2.6.4) The matrix A(j) has the following properties.

(i) In each row, the number of marked 1 is even except the j-th row,

where the number is 1.

(ii) In each column containing the marked 1’s, the entries except the

marked 1 are all zero.

We now define, for j = 1, . . . , n, the vector e′N−j+1 by

e′N−j+1 =
∑

k

eN−k+1,

where the sum is taken over 1 ≤ k ≤ n such that k-th column in A(j)

contains a marked 1. It follows from (2.6.4) that we have

(2.6.5) f(ei, e
′
N−j+1) =

{
1 if i = j,

0 otherwise

for 1 ≤ i, j ≤ n.

We now consider the values of Q. Since Q satisfies the relation Q(ei) =

f(ei, ei+1), it follows, by (2.5.4) and (2.5.5) together with our assumption

that Q(eN ) = 0, that

(2.6.6) Q(ei) =

{
0 if i 6= n,

1 if i = n.

Note that we have e′n+1 = en+1 by the previous computation. Put e′n =

en + en+1. Then we have

Q(e′n) = Q(en) +Q(en+1) + f(en, en+1) = 0,(2.6.7)

f(e′n, e
′
n+1) = f(en + en+1, en) = 1.

Now put e′i = ei for i = 1, . . . , n− 1. Then by (2.5.4) and (2.5.5), together

with (2.6.5)–(2.6.7), we see that the basis {e′1, . . . , e
′
N} satisfies the relation

(2.6.1). The lemma is proved.
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2.7. Let G be as in 2.1. We assume that GF is of split type. For each

F -stable unipotent class C in G, we shall construct a normal form u, called

a split element, in CF . The GF -conjugacy class of u is called the split class

in CF . In the case where p = 2, we construct u following [Sp1, II, 6.19].

First consider the case where G = Sp2n with p = 2. Take a unipotent class

Cλ,ε of G. For each j ≥ 1, put

(2.7.1) nj =





λj if ε(λj) = 1,

λj + 1 if ε(λj) = ε,

λj + 2 if ε(λj) = 0.

We consider the vector space Vj over Fq of dimension nj with basis ej
1, . . . ,

ejnj . Assume that a non-degenerate alternating form (= a symmetric bilinear

form) fj on Vj is given. Let H(Vj) be the subgroup of GL(Vj) consisting

of g ∈ GL(Vj) which leaves the form fj invariant. Put H = Spnj
(k). Then

H(Vj) is regarded as a subgroup HF of H under the natural Fq-structure

F on H.

One can construct vj ∈ H(Vj) such that (vj − 1)eji = eji−1 for i =

1, . . . , nj (under the convention that ej
0 = 0) with respect to the alternating

form fj satisfying the property as given in 2.5 (with f = fj, N = nj).

We also note that

(2.7.2) The image of vj ∈ ZH(vj) to AH(vj) gives a generator āj of AH(vj),

where AH(vj) is of order 1 or 2.

For each h = λj, we shall construct a vector space Mj over Fq with an

alternating form f 0
j , and uj ∈ H(Mj) as follows.

(a) ε(h) = 1. In this case, h is even and ch is odd or even. We put

Mj = Vj and uj = vj. Thus uj ∈ H(Mj) with respect to f 0
j = fj on Mj .

Since f 0
j (ejnj , e

j
1) = 1, we see that the function x 7→ f 0

j ((uj − 1)h−1x, x) is

non-trivial on Ker(uj − 1)h.

(b) ε(h) = ω. In this case h is odd and ch is even. Assume that

λj = λj−1 = h, and let (Vj , fj) and (Vj−1, fj−1) be as before. Note that

dimVj = dimVj−1 = nj = h+ 1 by (2.7.1). We define an alternating form

f ′ on Vj ⊕ Vj−1 by the condition that f ′|Vj
= fj, f

′|Vj−1
= fj−1 and that

Vj⊥Vj−1. Let L be a line in Vj ⊕ Vj−1 generated by ej
1 + ej−1

1 . Then L is

an isotropic line by (2.5.5) and we put Mj = L⊥/L. We have dimMj = 2h.
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Since vj(e
j
1) = ej1, vj−1(e

j−1
1 ) = ej−1

1 , we see that vj + vj−1 fixes L, and so

it induces a linear transformation on Mj, which we denote by uj . The form

f ′ induces an alternating form f 0
j . We have uj ∈ H(Mj).

By (2.5.1) and (2.5.5), L⊥ has a basis

ejn + ej−1
n , ejn−1, e

j−1
n−1, . . . , e

j
2, e

j−1
2 , ej1 + ej−1

1 .

HenceL⊥/L has a basis

ējn + ēj−1
n , ējn−1, ē

j−1
n−1, . . . , ē

j
2, ē

j−1
2 , ēj1 = ēj−1

1 ,

where ēj
i , ē

j−1
i denote the image of ej

i , e
j−1
i on (Vj ⊕ Vj−1)/L.

(c) ε(h) = 0. In this case, h is even and ch is even. Assume that

λj = λj−1, and consider the vector spaces Vj and Vj−1 as before. By (2.7.1),

we have nj = dimVj = dimVj−1 = h+ 2. We consider the alternating form

f ′ on Vj ⊕ Vj−1 as before. Let N be the subspace of Vj ⊕ Vj−1 spanned

by ej1 + ej−1
1 and ej2 + ej−1

2 . Then N is an isotropic subspace of Vj ⊕ Vj−1

of dimension 2, and we put Mj = N⊥/N . We have dimMj = 2h. The

alternating form f ′ induces an alternating form f 0
j on Mj. Now vj + vj−1

stabilized N , and so induces a linear transformation on Mj which we denote

by uj. We see that uj ∈ H(Mj).

By (2.5.1) and (2.5.5), N⊥ has a basis

ejn + ej−1
n , ejn−1 + ej−1

n−1, e
j
n−2, e

j−1
n−2, . . . , e

j
1, e

j−1
1 .

Hence N⊥/N has a basis

ējn + ēj−1
n , ējn−1 + ēj−1

n−1, ē
j
n−2, ē

j−1
n−2, . . . , ē

j
3, ē

j−1
3 , ēj2 = ēj−1

2 , ēj1 = ēj−1
1 ,

where ēj
i , ē

j−1
i denotes the image of ej

i on (Vj ⊕ Vj−1)/N . The action of uj

on this basis is easily described, and by using the formulas in 2.5, one can

check that f 0
j ((uj − 1)h−1x, x) = 0 for all x ∈ Ker(uj − 1)h. For example,

f0
j (ējn + ēj−1

n , ēj3 + ēj−1
3 ) = 2fj(e

j
n, e

j
3) = 0,

and the other cases are dealt similarly.

We now define a vector space V̄ as V̄ =
⊕

j Mj so that dim V̄ = 2n, and

let f =
⊕

j f
0
j be the alternating form obtained from f 0

j . Put ū =
∏

j uj ∈
H(V̄ ). It follows from the previous construction, we have
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(2.7.3) H(V̄ ) can be identified with GF , and under this isomorphism, the

element u ∈ GF corresponding to ū gives an element in CF
λ,ε. We call u a

split element in CF
λ,E .

The structure of the group AG(u) is also described as follows (cf. [Sp1,

II, 6.19]) Take λj such that ε(λj) 6= 0. We denote by āj an automorphism

of
⊕

k≥1 Vk defined by v 7→ vj(v) for v ∈ Vj , and v 7→ v for v ∈ Vk such that

k 6= j. Then āj induces an automorphism on V̄ commuting with ū, which

we denote also by āj . It is checked that āj ∈ H(V̄ ), and so this gives an

element of ZG(u). The image of āj on AG(u) coincides with the generator

aj stated in 1.4. In particular, we see that F acts trivially on AG(u). This

implies, since AG(u) is abelian, that

(2.7.4) For any u′ ∈ CF
λ,ε, F acts trivially on AG(u′).

2.8. Next we consider the case where G = SO2n with p = 2. Take a

unipotent class Cλ,ε of G, and let nj be as in (2.7.1). We consider the vector

space Vj over Fq with basis ej
1, . . . , e

j
nj and a unipotent element vj ∈ GL(Vj)

as in 2.7. By Lemma 2.6, one can construct a split quadratic form Qj on Vj

which is invariant by vj. Let H(Vj) be the subgroup of GL(Vj) consisting

of g which leaves Qj invariant. Let H̃ = Onj
(k). Since Qj is of split

type, H(Vj) can be identified with the subgroup H̃F of H̃, where F is a

split Frobenius map. Then by a similar argument as in 2.7, we obtain

uj ∈ H(Mj) for each case (a), (b) or (c), where H(Mj) is the group of

invariants with respect to the induced quadratic from Q0
j . Note that the

explicit computation in the proof of Lemma 2.6 shows that Q0
j is of split

type. As in 2.7, we define a vector space V̄ =
⊕

j Mj and Q =
⊕

j Q
0
j , and

put ū =
∏

j uj ∈ H(V̄ ). We have

(2.8.1) Let G̃ = O+
2n. Then H(V̄ ) can be identified with G̃F with split

Frobenius map F , and under this isomorphism, the element u ∈ G̃F corre-

sponding to ū gives an element in C̃F
λ,ε. In the ordinary case u ∈ CF

λ,ε. In

the exceptional case we have u ∈ (C ′
λ,ε)

F and σ(u) ∈ (C ′′
λ,ε)

F , where σ is

the graph automorphism on SO2n. We call u and σ(u) the split elements

in C̃F
λ .

2.9. Next we consider the case where G = Sp2n or SON with p 6= 2.

We assume that F is a split Frobenius map. Let g be the Lie algebra of G.

Since the unipotent classes in G are in bijection with the nilpotent orbits in

g with Fq-structure, we consider the normal form of nilpotent orbits instead
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of unipotent classes. Let Oλ,ε be the nilpotent orbit in g corresponding to

the unipotent class Cλ,ε in G. For each λj , we construct a vector space Mj

over Fq and a nilpotent transformation Xj on Mj as follows.

(a) ε(λj) = 1. We consider a vector space Mj of dimension h = λj

with basis ej
1, . . . , e

j
h. We define a non-degenerate alternating form (resp. a

symmetric bilinear form) fj on Mj in the case where G = Sp2n (resp. SON )

by

(2.9.1) fj(e
j
h−i+1, e

j
i ) = (−1)δj−i for i = 1, . . . , h,

where

δj =

{
λj/2 + j if G = Sp2n,

(λj − 1)/2 + j if G = SON .

We put the value of fj zero for any other pair of the basis. We define a

nilpotent transformation Xj on Mj by Xj(e
j
i ) = eji−1 (under the convention

that e0 = 0). Then Xj ∈ h(Mj), where h(Mj) is the subalgebra of gl(Mj)

consisting of X such that fj(Xx, y) + fj(x,Xy) = 0 for x, y ∈Mj .

(b) ε(λj) = ω. In this case ch is even for λj = h. We assume that

λj = λj−1. We consider a vector space Mj of dimension 2h = 2λj with basis

ej1, . . . , e
j
h, e

j−1
1 , . . . , ej−1

h . We define an alternating form (resp. a symmetric

bilinear form) fj on Mj in the case where G = Sp2n (resp. G = SON ) by

(2.9.2) fj(e
j
h−i+1, e

j−1
i ) = εfj(e

j−1
i , ejh−i+1) = (−1)i−1 for i = 1, . . . , h,

where ε = −1 (resp. ε = 1) if G = Sp2n (resp. G = SON ). We put the

values of fj zero for any other pair of the basis. We define a nilpotent

transformation Xj on Mj by Xje
j
i = eji−1, Xje

j−1
i = ej−1

i−1 (we put ej
0 =

ej−1
0 = 0 as before). Then Xj ∈ h(Mj).

We define a vector space V̄ by V̄ =
⊕

j Mj so that dim V̄ = N , and let

f =
∑

j fj be an alternating form (resp. a symmetric bilinear form) on V̄

obtained from fj. Put X̄ =
⊕

j Xj ∈ h(V̄ ). Then it is known by [SS],

(2.9.3) h(V̄ ) can be identified with gF . Under this correspondence X̄ gives

an element X ∈ OF
λ,ε, which we call a split element in OF

λ,ε. X also deter-

mines the GF -class in CF
λ,ε, which we call the split class in CF

λ,ε.
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2.10. We consider the case where G = SO2n with non-split Frobenius

F (for arbitrary p). Let F0 be the split Frobenius map. Then one can write

F = F0σ with the graph automorphism σ. We may choose s ∈ G̃ \ G such

that σ = ad s, and fix it for all. Let u ∈ GF0 be a split element in Cλ,ε.

Since A eG(u) 6= AG(u), there exists a ∈ A eG(u) \ AG(u). Let ȧ ∈ Z eG(u) be a

representative of a. Since [G̃ : G] = 2, there exists g ∈ G such that ȧ = gs.

It follows that gFu = u. Now there exists α ∈ G such that α−1F (α) = g,

and we have u′ = αuα−1 ∈ CF
λ,ε. It is easy to see that the GF -conjugacy

class of u′ is uniquely determined by ȧ ∈ Z eG
(u). For the exceptional case,

we have u′ ∈ (C ′
λ,ε)

F and σ(u′) ∈ (C ′′
λ,ε)

F . In what follows, we fix a split

element u′ ∈ CF
λ,ε as follows.

(2.10.1) Let G = SO−
2n. Let u be the split element in CF0

λ,ε or (C ′
λ,ε)

F0 . We

choose a = ai ∈ A eG
(u) such that ε(λi) = 1 (resp. ε(λi) 6= 0) in the case

where p 6= 2 (resp. p = 2) and that λi is minimal under this condition. Take

a representative ȧi ∈ Z eG(u) as in 2.7, and define u′ ∈ CF
λ,ε by using ȧi. (In

the exceptional case, define u′ ∈ (C ′
λ,ε)

F and σ(u′) ∈ (C ′′
λ,ε)

F .) We call u′

the split element in CF
λ,ε.

Under the notation above, aF0 = gF acts trivially on AG(u) by (2.7.4).

It follows that F acts trivially on AG(u′). Since AG(u′) is abelian, we have

(2.10.2) The statement (2.7.4) holds also for the case where F is of non-split

type.

Remark 2.11. The definition of the split elements for Sp2n or SON (for

p 6= 2) in 2.9, 2.10 is essentially the same as the one used in [S1, 3.3, 3.7]

(where they are called distinguished elements). Note that in the case where

q ≡ 1 (mod 4), δj can be removed in the formula (2.9.1) by a suitable base

change. Also note that the definition of fj involves the case where ε(h) = 1

and ch is even, which is necessary for later discussions, though these cases

are ignored in [S1].

In the case of non-split groups with p 6= 2, our definition of split ele-

ments is not the same as in [S1, 3.7], where it is defined by using a = ai

corresponding to λi of maximal length instead of minimal length. This is

not essential, but the definition here is more convenient since it produces

preferred extensions of W-modules as will be seen in Theorem 4.3. (The

elements defined in [S1, 3.7] do not necessarily produce them).
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§3. Generalized Springer correspondence

3.1. We review here the generalized Springer correspondence for clas-

sical groups following [L1] and [LS]. In what follows, we denote by Wn the

Weyl group of type Cn, and by W ′
n the Weyl group of type Dn. Through-

out the whole cases, for a given (L,C, E) ∈ MG, the cuspidal pair (C, E)

is uniquely determined by L. So, we just describe L which has a cuspidal

pair.

(a) Let G = Sp2n with p 6= 2. Then (L,C, E) ∈ MG if and only if L

is of type Cm for some m of the form m = 1
2d(d − 1) with d ≥ 1. We have

NG(L)/L ' Wn− 1

2
d(d−1). Since the set {d(d − 1) | d ≥ 1} coincides with

the set {d(d − 1) | d ∈ Z, d : odd}, the generalized Springer correspondence

(1.1.3) is given by a bijection

NG ←→
∐

d∈Z

d odd

(Wn− 1

2
d(d−1))

∧.

(b) Let G = SON with p 6= 2. Then (L,C, E) ∈MG if and only if L is

of type Bm (resp. Dm) for some m such that m = 1
2(d2−1) (resp. m = 1

2d
2)

and that d ≡ N (mod 2) in the case where N is odd (resp. N is even) with

m ≥ 0. We have NG(L)/L ' W(N−d2)/2 if m ≥ 1, and NG(L)/L ' Wn

(resp. W ′
n) if m = 0, namely if L is a maximal torus T , in the case where

N is odd (resp. N is even). Thus the generalized Springer correspondence

is given by a bijection

NG ←→
∐

d≥1
d odd

(W(N−d2)/2)
∧ (N : odd),

NG ←→W ′
n

∐( ∐

d>0
d even

(W(N−d2)/2)
∧
)

(N : even).

(c) Let G = Sp2n with p = 2. Then (L,C, E) ∈ MG if and only if L

is of type Cm for some m of the form m = d(d − 1) with d ≥ 1. We have

NG(L)/L ' Wn−d(d−1). Hence as in the case (a), the generalized Springer

correspondence is given by

NG ←→
∐

d∈Z

d odd

(Wn−d(d−1))
∧.
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(d) Let G = SO2n with p = 2. Then (L,C, E) ∈ MG if and only if L

is of type Dm for some m of the form m = d2 with d ≥ 0, even. We have

NG(L)/L ' Wn−d2 if d ≥ 1 and NG(L)/L ' W ′
n if d = 0, namely if L is

a maximal torus of G. Hence the generalized Springer correspondence is

given by

NG ←→W ′
n

∐( ∐

d>0
d even

(Wn−d2)∧
)
.

3.2. The generalized Springer correspondence for classical groups is

described in terms of symbols. We review the notion of symbols following

[L1], [LS]. Let r, s ∈ Z≥1, d ∈ Z. For each integer n ≥ 1 let X̃r,s
n,d be the

set of all ordered pairs (A,B), where A = {a1, . . . , am+d}, B = {b1, . . . , bm}
(for some m) are subsets of Z≥0 satisfying the following conditions.

ai − ai−1 ≥ r + s (1 < i ≤ m+ d),

bi − bi−1 ≥ r + s (1 < i ≤ m),

b1 ≥ s,∑
ai +

∑
bi = n+ (r + s)(m+ [d/2])(m + d− [d/2]) − r(m+ [d/2]).

(3.2.1)

(In the case where r + s = 0, A or B contains elements with multiplicities.

In that case, we regard it as a sequence of integers.)

Note that if r = s = 1 and d is odd the fourth condition is written as

(3.2.2)
∑

ai +
∑

bi = n+
1

2
(2m+ d)(2m + d− 1),

and if r = 2, s = 0 it is written as

(3.2.3)
∑

ai +
∑

bi = n+
1

2
((2m+ d− 1)2 − 1).

Let Xr,s
n,d be the set of equivalence classes on X̃r,s

n,d for the equivalence

relation generated by

(A,B) ∼
(
{0} ∪ (A+ r + s), {s} ∪ (B + r + s)

)
,

where A+ r+ s denotes the set {a1 +(r+ s), . . . , am+d +(r+ s)} and so on

for B. We put

Xr,s
n =

∐

d odd

Xr,s
n,d.
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An element in Xr,s
n,d is called an (r, s)-symbol of rank n and defect d, which

we also denote by (A,B).

We consider the special case where s = 0. In that case, (A,B) 7→ (B,A)

defines a bijection from Xr,0
n,d to Xr,0

n,−d and so induces an involution of each

of the following sets,

Xr,0
n, even =

∐

d even

Xr,0
n,d, Xr,0

n, odd =
∐

d odd

Xr,0
n,d.

Let Y r
n, odd (resp. Y r

n, even) be the set obtained as the quotient of X r,0
n, odd (resp.

Xr,0
n, even) by this involution, with the convention that the symbol invariant by

the involution, i.e., the symbol (A,A) which we call the degenerate symbol,

is counted twice. For d ≥ 0, the image of X r,0
n,d in Y r

n, odd or Y r
n, even is

denoted by Y r
n,d. One can regard the element in Y r

n,d as a symbol (A,B) in

Xr,0
n,d considered as an unordered pair.

3.3. The set W∧
n is parametrized by ordered pairs of partitions (α, β)

such that |α| + |β| = n. For a fixed d ∈ Z, one can express the partitions

α, β as α : α1 ≤ α2 ≤ · · · ≤ αm+d, β : β1 ≤ β2 ≤ · · · ≤ βm for a suitable m,

by allowing 0 in the entries. Then (A,B) ∈ X̃0,0
n,d for A = {α1, . . . , αm+d},

B = {β1, . . . , βm}, and this induces a well-defined bijection between W ∧
n

and X0,0
n,d. The same map induces a bijection between W ∧

n and Y 0
n,d if d ≥ 1.

On the other hand, the set (W ′
n)∧ is parametrized by unordered pairs of

partitions (α, β) such that |α|+ |β| = n, under the convention that (α, α) is

counted twice. Thus in a similar way as above, we have a natural bijection

between (W ′
n)∧ and Y 0

n,0.

For a given r, s, d, we define a symbol Λr,s
d = (A,B) as follows.





A = {0, (r + s), . . . , (d− 1)(r + s)}, B = ∅ if d > 0,

A = ∅, B = {s, s+ (r + s), . . . , s+ (−d− 1)(r + s)} if d < 0,

A = ∅, B = ∅ if d = 0.

It is easy to see that Λr,s
d ∈ X

r,s
n0,d with n0 = (r+ s)[d/2](d− [d/2])− s[d/2],

and that the set Xr,s
n0,d consists of a unique element Λr,s

d . In the case where

s = 0, let Λr
d be the image of Λr,0

d under the map Xr,0
n0,d → Y r

n0,d. For each

d ∈ Z, one can define a map

(3.3.1) X0,0
n−n0,d −→ Xr,s

n,d, Λ 7−→ Λ+ Λr,s
d ,
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which gives a bijection Xr,s
n−n0,d ' Xr,s

n,d. (Note, in general, that the sum of

two symbols Λ, Λ′ with the same defect is defined by choosing representa-

tives Λ = (A,B), Λ′ = (A′, B′) such that |A|+ |B| = |A′|+ |B′|, namely of

the same shape, and then by adding entry-wise.) Similarly for each d ≥ 0,

one can define a bijection

(3.3.2) Y 0
n−n0,d −→ Y r

n,d, Λ 7−→ Λ+ Λr
d.

Combining (3.3.1) with the bijection W ∧
n−n0

' X0,0
n−n0,d above, we have

a bijection

(3.3.3) W∧
n−n0

−→ Xr,s
n,d.

Similarly, combining (3.3.2) with the bijections W ∧
n−n0

' Y 0
n−n0,d for d > 0

and (W ′
n−n0

)∧ ' Y 0
n−n0,0, we have bijections

W∧
n−n0

−→ Y r
n,d (d > 0),

(W ′
n−n0

)∧ −→ Y r
n,d (d = 0).

(3.3.4)

3.4. A symbol (A,B) ∈ Xr,s
n,d is said to be distinguished if d = 0 or 1,

and
a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ am ≤ bm (d = 0),

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ am ≤ bm ≤ am+1 (d = 1).

A symbol (A,B) ∈ Y r
n,d for d ≥ 0 is said to be distinguished if it is an image

of a distinguished symbol in Xr,0
n,d.

Assume that r ≥ 1. The two symbols (A,B), (A′, B′) ∈ Xr,s
n are said

to be similar if A ∪ B = A′ ∪ B′, A ∩ B = A′ ∩ B′, namely under some

shift, A ∪ B coincides with A′ ∪ B′ with multiplicities. This defines an

equivalence relation on the set Xr,s
n , and an equivalence class is called a

similarity class in Xr,s
n . A similarity class in Y r

n, even or Y r
n, odd is defined

in a similar way. A similarity class in Y r
n, even containing (A,A) is called a

degenerate class, which consists of two copies of (A,A). It is easy to see

that each (non-degenerate) similarity class contains a unique distinguished

symbol.

It is known by [L1], [LS] that a similarity class in X r,s
n , Y r

n, even or Y r
n, odd

is in a natural way regarded as a vector space over F2 as follows. Let

Λ = (A,B) be a distinguished symbol in a similarity class C in X r,s
n , Y r

n, even

or Y r
n, odd. We assume that A 6= B if (A,B) ∈ Y r

n, even, and put S = (A ∪
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B)\(A ∩ B). Then S 6= ∅ and it is written as S = {c1, c2, . . . , ct} in an

increasing order. A non-empty subset I = {ci, ci+1, . . . , cj} of S is called an

interval if ck+1 − ck < r+ s for i ≤ k < j and it is maximal with respect to

this condition. We say that ci is the tail of I. An interval is called an initial

interval if ci < s. Hence the initial interval exists only in the case where

s > 0, and in that case, it exists uniquely after some shift. S is a disjoint

union of intervals.

Assume that C ⊂ Xr,s
n . Let I be an interval which is not initial with the

tail c. If c ∈ A (resp. c ∈ B), then there exists a unique (A′, B′) ∈ C such

that c ∈ B (resp. c ∈ A) and that A∩J = A′∩J , B∩J = B ′∩J for all other

intervals J . This means that (A′, B′) is obtained from (A,B) by permuting

the entries in the interval I. All the symbols in C are obtained from (A,B)

by permuting the entries in certain intervals. Let I be the set of non-initial

intervals in S and P(I) the set of all subsets of I. The above argument

shows that C is in bijection with the set P(I), which has a natural structure

of F2 vector space with origin Λ and is denoted by V r,s
Λ . In the case where

C ⊂ Y r
n, even or C ⊂ Y r

n, odd (C: non-degenerate), C is in bijection with the

quotient set of P(I) under the relation K ∼ I\K for K ∈ P(I). Hence C is

identified with the F2 vector space V r,0
Λ /L, where L is a line generated by

I ∈ P(I), which we denote by V r
Λ .

3.5. Let G be as in 3.1. We associate the sets X1,1
n , Y 2

n, even, Y 2
n, odd

for Sp2n, SO2n, SO2n+1 with p 6= 2 and X2,2
n , Y 4

n, even for Sp2n, SO2n with

p = 2. Recall n0 in 3.3.

(a) The case X1,1
n . We have r = s = 1, and n0 = 1

2d(d − 1) for odd d.

Hence (3.3.3) implies a bijection

X1,1
n ←→

∐

d∈Z

d odd

(Wn− 1

2
d(d−1))

∧.

(b) The case Y 2
n, even or Y 2

n, odd. We have r = 2, s = 0, and n0 = 1
2d

2

for even d and n0 = 1
2(d2 − 1) for odd d. Hence (3.3.4) implies bijections

Y 2
n, odd ←→

∐

d≥1
d odd

(Wn− 1

2
(d2−1))

∧,

Y 2
n, even ←→ (W ′

n)∧
∐( ∐

d>0
d even

(Wn− 1

2
d2)

∧
)
.
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(c) The case X2,2
n . We have r = s = 2, and n0 = d(d − 1) for odd d.

Hence (3.3.3) implies a bijection

X2,2
n ←→

∐

d∈Z

d odd

(Wn−d(d−1))
∧.

(d) The case Y 4
n, even. We have r = 4, s = 0, and n0 = d2 for even d.

Hence (3.3.4) implies a bijection

Y 4
n, even ←→ (W ′

n)∧
∐( ∐

d>0
d even

(Wn−d2)∧
)
.

3.6. Let X = X1,1
n , Y 2

n, odd, Y 2
n, even or X2,2

n , Y 4
n, even according as G =

Sp2n, SO2n+1, SO2n with p 6= 2, or G = Sp2n, SO2n with p = 2. In view

of the bijections in 3.5 and the discussion in 3.1, the generalized Springer

correspondence can be described by giving a bijection between NG and X.

By [L1], [LS], this bijection is given explicitly in such a way that the set

Guni/∼ of unipotent classes inG is in bijection with the setX/∼ of similarity

classes in X. In what follows, we define a map ρ : Guni/∼ → X/∼ by

associating a distinguished symbol Λ = ρ(C) ∈ X for each unipotent class

C in G.

(a) G = Sp2n with p 6= 2. Let Cλ be a unipotent class of G as

in 2.2, where λ is a partition of 2n. We express λ as λ1 ≤ λ2 ≤ · · · ≤

λ2m for some m, by allowing 0 in the entries if necessary. We divide the

sequence {λ1, λ2, . . . , λ2m} into the union of blocks as follows. If λi is even,

let {λi} be a block. If λi = h is odd, the sequence Ah = {λk | λk = h}

consisting of even elements, which we write as {λa, λa+1, . . . , λb} for some

b > a. Then we divide Ah into a disjoint union of two elements blocks

{λa, λa+1}∪{λa+2, λa+3}∪· · ·∪{λb−1, λb}. We define a sequence ν1, . . . , ν2m

as follows. Put
{
νi = λi/2 + i if {λi} is a block,

νi = νi+1 = (λi + 1)/2 + i if {λi, λi+1} is a block,

and put A = {0, ν2, ν4, . . . , ν2m}, B = {ν1, ν3, . . . , ν2m−1}. Then Λ = (A,B)

gives rise to a distinguished symbol in X1,1
n , which is independent of the

choice of m, and Cλ 7→ Λ gives the required bijection ρ. Actually, the map
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ρ was defined in [L1, 11.6]. Although the definition given there is not the

same as ours, it is easily checked that they coincide with each other.

(b) G = SON with p 6= 2. Let Cλ be a unipotent class of G as

in 2.2, where λ is a partition of N . We choose M such that M ≡ N

(mod 2) and express λ as λ1 ≤ λ2 ≤ · · · ≤ λM . We divide the sequence

{λ1, λ2, . . . , λM} into the union of blocks as follows. If λi is odd, let {λi}
be a block. If λi = h is even, the sequence Ah = {λk | λk = h} consists of

even elements. As in the case (a), we divide Ah as a disjoint union of two

elements blocks, {λa, λa+1} ∪ {λa+2, λa+3} ∪ · · · ∪ {λb−1, λb}. We define a

sequence ν1, ν2, . . . , νM as follows. Put
{
νi = (λi − 3)/2 + i if {λi} is a block,

νi = νi+1 = (λi − 2)/2 + i if {λi, λi+1} is a block,

and put A = {ν1, ν3, . . . , ν[(M+1)/2]}, B = {ν2, ν4, . . . , ν[M/2]}. Then Λ =

(A,B) gives rise to a distinguished symbol in Y 2
n, odd or Y 2

n, even according

as N is odd or even, which is independent of the choice of M . The map

Cλ 7→ Λ gives the required bijection ρ. The proof follows, as in the case (a),

from the discussion in [L1, 11.7].

(c) G = Sp2n with p = 2. The map ρ is defined in [LS, 2.1]. The

following definition is slightly modified from the original one so as to fit to

the case (a). Let Cλ,ε be a unipotent class of G as in 2.3, where λ is a

partition of 2n. Here λ is the same as in the case (a), and we express it

as λ1 ≤ · · · ≤ λ2m for some m. We use the convention that ε(0) = 1. We

divide the set {λ1, λ2, . . . , λ2m} into a disjoint union of blocks as follows. If

ε(λi) = 1, then {λi} is a block. If ε(λi) = 0 or ω for λi = h, the sequence

Ah = {λk | λk = h} has even cardinality, and it is divided into blocks as in

the case (a). We define a sequence ν1, . . . , ν2m as follows.

(i) If {λi} is a block, put

νi = λi/2 + 2i.

(ii) If {λi, λi+1} is a block and ε(λi) = ω, put

νi = (λi + 1)/2 + 2i,

νi+1 = νi + 1.

(iii) If {λi, λi+1} is a block and ε(λi) = 0, put

νi = (λi + 2)/2 + 2i,

νi+1 = νi.
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Put A = {0, ν2, ν4, . . . , ν2m}, B = {ν1, ν3, . . . , ν2m−1}. Then by [LS, 2.2],

Λ = (A,B) gives rise to a distinguished symbol inX 2,2
n , which is independent

of the choice m, and Cλ,ε 7→ Λ gives the required bijection

(d) G = SO2n with p = 2. The map ρ is defined in [LS, 3.1]. Let Cλ,ε

be a unipotent class in G. λ is the same as in the case (c), and we define the

block in the same way as the case (c). However, here we use the convention

that ε(0) = 0. Note that in the sequence {λ1, . . . , λ2m} the multiplicity of

0 is even since the number of non-zero λi is even (cf. 2.3). We define a

sequence ν1, . . . , ν2m as follows.

(i) If {λi} is a block, put

νi = (λi − 6)/2 + 2i.

(ii) If {λi, λi+1} is a block and ε(λi) = ω, put

νi = (λi − 5)/2 + 2i,

νi+1 = νi + 1.

(iii) If {λi, λi+1} is a block and ε(λi) = 0, put

νi = (λi − 4)/2 + 2i,

νi+1 = νi.

Put A = {ν1, ν3, . . . , ν2m−1}, B = {ν2, ν4, . . . , ν2m}. Then by [LS, 3.2], Λ =

(A,B) gives rise to a distinguished symbol in Y 4
n, even, which is independent

of the choice of m, and Cλ,ε 7→ Λ gives the required bijection.

3.7. We return to the setting in the beginning of 3.6, and let ρ :

Guni/∼ → X/∼ be the bijection constructed in 3.6. By making use of

ρ, we shall construct a bijection ρ̃ : NG → X. For a unipotent class C in

G, let C be the similarity class in X containing the distinguished symbol

Λ = ρ(C). Take u ∈ C. As discussed in 3.4, C has a natural structure of

F2-vector space V r,s
Λ for X = X1,1

n or X2,2
n with the basis corresponding to

the set of intervals. Since AG(u) is an elementary abelian 2-group, it has a

natural structure of F2-vector space, and so does the dual group AG(u)∧.

It was shown in [L1, 11], [LS, 2.2] that V r,s
Λ is naturally identified with

AG(u)∧, where the set of intervals is in bijection with the set of generators

in AG(u) given in 2.4; if I is an interval corresponding to the generator ai

of AG(u), we associate the character χi of AG(u) which takes the value −1
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for ai and 1 for other generators. Similar argument also works for the case

where X = Y 2
n, odd, Y

2
n, even and Y 4

n, even, and by [L1, 11], [LS, 3.2] V r
Λ is natu-

rally identified with AG(u)∧. Hence the similarity class C can be identified

with AG(u)∧.

On the other hand, for a fixed C, G-equivariant simple local systems on

C are parametrized by AG(u)∧. Thus combining with the above argument,

we obtain a bijection ρ̃ : NG → X. This bijection describes combinatorially

the generalized Springer correspondence, namely,

Theorem 3.8. ([L1, 12.3, 13.3], [LS, 2.4, 3.3]) Let G be as in 3.1. Then

the composite of ρ̃ with the bijection in 3.5 gives the generalized Springer

correspondence in 3.1.

§4. Main results

4.1. Let G be as in 2.1 and we apply the argument in Section 1 for

G. First consider the case where G is of split type. For each unipotent

class C ′ in G, we choose a split element u ∈ C ′F described in Section 2, i.e.,

(2.9.3) for G = Sp2n or SON with p 6= 2, (2.7.3) for G = Sp2n with p = 2,

(2.8.1) for G = SON with p = 2. For each pair (C ′, E ′) ∈ NF
G , we fix an

isomorphism ψ0 = ψE ′ : F ∗E ′ → E ′ in 1.6 so that the induced isomorphism

E ′u → E
′
u is identity. (Note that F acts trivially on AG(u). This is known

by [SS] for the case where p 6= 2, and follows from (2.7.4) for the case where

p = 2.) Take (L,C, E) ∈ MF
G. Then L is of the same type as G of split

type. Thus we choose the split element u0 ∈ C
F . We fix an isomorphism

ϕ0 : F ∗E → E in 1.6 so that the induced isomorphism Eu0
→ Eu0

is identity.

Let V(C′,E ′) be the irreducibleW-module and σ(C′,E ′) be the isomorphism on

V(C′,E ′) given in 1.6. Since F is of split type, F acts trivially on W and so

σ(C′,E ′) commutes with the action of W. It follows that σ(C′,E ′) is a scalar

map.

Next consider the case where G = SO2n with F = F0σ of non-split

type. We choose the split elements u′ ∈ C ′F and u′0 ∈ C
F as in 2.10, and

fix ψ0 = ψE ′ , ϕ0 as above. (Again F acts trivially on AG(u′) by (2.10.2).)

Let (L,C, E) ∈MF
G. If L 6= T , W is a Weyl group of type B and so F acts

trivially on W. Hence σ(C′,E ′) is a scalar map. While if L = T , W = W ′
n is

the Weyl group of type Dn and F acts non-trivially onW. Note that σ acts

on W ′
n and the semidirect product W ′

n o 〈σ〉 is isomorphic to Wn. Assume

that V(C′,E ′) = E is F -stable. Then E can be extended to an irreducible

representation Ẽ of Wn via the map σ(C′,E ′). Since σ−1 ◦ σ(C′,E ′) commutes
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with the action of W, it acts as a scalar on E. Thus in order to describe

the map σ(C′,E ′), we have only to determine this scalar together with the

representation Ẽ.

We recall the preferred extension Ẽ of Wn due to [L2, IV, 17.2]. An F -

stable irreducible representation E of W ′
n is parametrized by an unordered

pair (α;β) of partitions such that |α| + |β| = n and that α 6= β. We write

α : α1 ≤ · · · ≤ αm, β : β1 ≤ · · · ≤ βm, and define a symbol ΛE associated

to E by an unordered pair (λ;µ) with λi = αi + i − 1, µj = βj + j − 1.

(This is a different type of symbols from those appeared in Section 3.)

Irreducible representations of Wn are parametrized in a similar way, but

by using an ordered pair (α;β) and its associated symbol (λ;µ). For an

F -stable irreducible representation E, there exists two extensions to Wn,

which correspond to two symbols (λ;µ) and (µ;λ) for Wn. An extension Ẽ

of E is called the preferred extension of E if in the symbol Λ eE , the smallest

number which does not appear in both entries appears in the second entry.

For example, (n; 0) is the symbol associated to the unit representation of

W ′
n, and it is extended to the unit representation (n; 0) or the long sigh

representation (0;n) of Wn. In this case, (n; 0) is the preferred extension.

We can state our main results.

Theorem 4.2. Let G = Sp2n, SON with F of split type (N is even if

p = 2). Then σ(C′,E ′) is q(a0+r)/2 times identity.

Theorem 4.3. Let G = SO2n with F of non-split type.

(i) Suppose L 6= T . Then σ(C′,E ′) is q(a0+r)/2 times identity.

(ii) Suppose L = T . Then σC′,E ′ = q(a0+r)/2σ, and W ′
n〈σ〉-module Ẽ

coincides with the preferred extension of E.

In view of Lemma 1.11, we have the following corollary.

Corollary 4.4. Let G be as in 2.1. For each (C ′, E ′) ∈ NF
G , choose

ψ0 : F ∗E ′ ∼−→ E ′ by choosing a split element u ∈ C ′F . Let γ be the constant

given in 1.10. Then we have γ = 1, namely we have Yj = Y 0
j for j = (C ′, E ′).

4.5. We prove the theorem by making use of the restriction formula

in Corollary 1.9. We choose a standard parabolic subgroup Q = MUQ such

that the Levi subgroup M of Q is of the same type as G with semisimple

rank n − 1. Take (L,C, E) ∈ MF
G and let P be the F -stable standard
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parabolic subgroup of G whose Levi subgroup is L. Then we have P ⊂ Q

and L ⊂ M . Take (C ′, E ′) ∈ NF
G , and take a split element u ∈ C ′F . Also

take (C1, E1) ∈ N
F
M , and choose a split element v ∈ CF

1 . Let ρ (resp. ρ1) be

the irreducible representation of AG(u) (resp. AM (v)) corresponding to E ′

(resp. E1). Since F acts trivially on AG(u) and AM (v), the extension ρ̃⊗ ρ∗1
to Ã(u, v) in 1.8 is just the trivial extension of ρ ⊗ ρ∗1. Then we have the

following lemma.

Lemma 4.6. Assume that F acts trivially on W and on W1. Let E ∈
W∧ (resp. E1 ∈ W

∧
1 ) be corresponding to (C ′, E ′) ∈ NG (resp. (C1, E1) ∈

NM ), and assume that E1 occurs in the restriction of E to W1. Suppose

that the theorem holds for σ(C1,E1). If Xu,v 6= ∅ and F acts trivially on Xu,v,

then the theorem holds for σ(C′,E ′).

Proof. We follow the notation in Section 1. Since E1 occurs in the

restriction of E to W1, ME1
6= 0 in (1.6.1). Since σ(C′,E ′) and σ(C1,E1) is

a scalar map, σE1,E ′ is also a non-zero scalar map by (1.6.2). Since F acts

trivially onXu,v, ε̃u,v is the trivial extension of εu,v to Ã(u, v) = 〈τ〉×A(u, v).

It follows that

〈ε̃u,v, ρ̃⊗ ρ∗1〉A(u,v)τ = 〈εu,v, ρ⊗ ρ
∗
1〉A(u,v).

Then Corollary 1.9 together with Corollary 1.5 implies that

Tr(σE1,E ′ ,ME1
) = q−dC1,C′+dim UQ dimME1

,

and we see that σE1,E ′ is a scalar map by q−dC1,C′+dimUQ . By our assumption,

σ(C1 ,E1) is a scalar map by q(a′

0
+r′)/2, where a′0, r

′ are as in 1.10 with respect

to M . Thus again by (1.6.2), we see that σ(C′,E ′) is a scalar map by q(a0+r)/2.

4.7. In view of Lemma 4.6, it is important to know the Frobenius

action on Xu,v. We note that

(4.7.1) ZG(u)× ZM (v)UQ acts transitively on the set Yu,v.

In fact, put Qu,C1
= {gQ ∈ G/Q | g−1ug ∈ C1UQ}. Qu,C1

is a locally

closed subvariety of G/Q. We have a surjective morphism Yu,v → Qu,C1
,

g 7→ gQ, which induces an isomorphism Yu,v/ZM (v)UQ ' Qu,C1
. It is known

by [Sp1, II, 6.7] that ZG(u) acts transitively on Qu,C1
. (4.7.1) follows from

this.
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Lemma 4.8. If Y F
u,v 6= ∅, then F acts trivially on Xu,v.

Proof. Take g ∈ Yu,v. By (4.7.1), the closure of Z0
G(u)gZ0

M (v)UQ

in Yu,v gives an element x ∈ Xu,v, and AG(u)xAM (v) gives all the irre-

ducible components in Yu,v. By assumption, we can choose g ∈ Y F
u,v. Hence

Z0
G(u)gZ0

M (v)UQ is F -stable, and so is x. Since F acts trivially on AG(u)

and AM (v), F stabilizes all the irreducible components in Yu,v.

4.9. Assume that F is of split type. For each u ∈ GF , we shall find

v ∈ MF such that Y F
u,v 6= ∅. Let V and f be as in 2.1. Note that G/Q

can be identified with the subvariety of P(V ) consisting of 〈x〉 for isotropic

vectors x with respect to f , (〈x〉 denotes the line spanned by x). Under

the setting in 2.7, 2.9, we consider the vector space V̄ =
⊕
Mj which is

identified with V F . In the following cases, we can find g ∈ GF such that

g−1ug ∈ Q and that v = π(g−1ug) is a split element in M (π : Q → M is

the natural projection). In particular, we have g ∈ Y F
u,v. In the discussion

below, we identify the partitions with the corresponding Young diagrams.

First we consider the case where G = Sp2n or SON with p 6= 2.

(i) Take Mj such that ε(λj) = 1. Let ej
1, . . . , e

j
h be the basis of Mj with

h = λj given in 2.9 (a). The stabilizer of 〈ej
1〉 in G is a parabolic subgroup

gQg−1 with some g ∈ GF . The nilpotent transformation Xj on Mj induces

a map X̄j on M̄j = 〈ej1〉
⊥/〈ej1〉, and one can define a nilpotent element X̄ on

M̄j⊕
⊕

j′ 6=j Mj′ . This determines a unipotent element π(g−1ug) = v in MF

which is a split element. In this case v is of type λ′, where λ′ is obtained

from λ by replacing one row h such that ε(h) = 1 by h− 2.

(ii) Take Mj such that ε(λj) = 1 and that ch is even for h = λj . We

choose j such that λj = λj−1 = h and consider Nj = Mj ⊕ Mj−1 with

f ′j = fj + fj−1. Thus Nj has a basis ej
1, . . . , e

j
h, e

j−1
1 , . . . , ej−1

h . By our

construction, we have

fj(e
j
1, e

j
h) = −fj−1(e

j−1
1 , ej−1

h ) = ±1.

We consider N̄j = 〈x〉⊥/〈x〉 for x = ej
1 +ej−1

1 . The nilpotent transformation

Xj +Xj−1 on Mj⊕Mj−1 induces a linear map X̄j on N̄j, and one can define

a nilpotent element X̄ on N̄j⊕
⊕
Mj′ . This determines a unipotent element

π(g−1ug) = v in M of type λ′, where λ′ is obtained from λ by replacing two

rows of length h by two rows of length h − 1. It is easy to see that v is a

split element in MF .
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(iii) Take Mj such that ε(λj) = ω. Put h = λj . We choose a basis of Mj

as in 2.9 (b). Let x = ej
1 + ej−1

1 . Then x is an isotropic vector with respect

to fj. Now Xj induces X̄j on M̄j = 〈x〉⊥/〈x〉, and one can define X̄ on

M̄j⊕
⊕

j′ 6=j Mj′ . This determines a unipotent element v = π(g−1ug) ∈MF .

In this case, v is of type λ′, where λ′ is obtained from λ by replacing two

rows of length h by two rows of length h − 1. It is easy to see that v is a

split element in MF .

It is known (cf. [S1]) that if Yu,v 6= ∅, for u ∈ Cλ, v ∈ Cλ′ , then λ′ is

obtained from λ by the procedure described above. Hence if v is split, it

coincides with one of the above cases. It follows that

Proposition 4.10. Let G = Sp2n or SON with p 6= 2. Assume that

F is of split type. Let u ∈ GF and v ∈ MF be such that Yu,v 6= ∅. Assume

that u, v are split elements. Then F acts trivially on Xu,v.

4.11. Next we consider the case where G = Sp2n with p = 2. We keep

the setting in 4.9, in particular assume that F is of split type.

(i) Choose Mj as in 2.7 (a), i.e., the case where ε(h) = 1 for h = λj.

vj induces a linear map v̄j on M̄j = 〈ej1〉
⊥/〈ej1〉 and one can define v̄ on

M̄j ⊕
⊕

j′ 6=j Mj′ . This determines a unipotent element π(g−1ug) = v ∈ M

for some g ∈ GF . v is contained in the class Cλ′,ε′ in M , where λ′ is obtained

from λ by replacing one row of length h by a row of length h− 2, and ε′ is

given by ε′(h−2) = 1 and ε′(λ′k) = ε(λk) if λ′k 6= h−2. By our construction

of the form fj in 2.5, we see that v is a split element if h− 2 does not occur

in the row of λ, nor h− 2 occurs and ε(h − 2) = 1.

(ii) Assume that ch ≥ 2 and ε(h) = 1 for h = λj , and take λj = λj−1 =

h. We consider Mj = Vj ⊕ Vj−1 with fj = f0
j + f0

j−1, where f 0
j , Vj are as

in 2.7. Let x = ej
1 + ej−1

1 . Put M̄j = 〈x〉⊥/〈x〉. Then vj + vj−1 induces

a unipotent element v̄j on M̄j. This determines π(g−1ug) = v of MF as

before. This construction is exactly the same as the one in 2.7 (b). Hence

v is contained in Cλ′,ε′ in M , where λ′ is obtained from λ by removing two

rows of length h by two rows of length h−1, and ε′(h−1) = ω, ε′(h′) = ε(h′)

for all h′ 6= h. In this case, v is a split element without any condition.

(iii) Choose Mj as in 2.7 (b), i.e., the case where ε(h) = ω. The basis of

Mj is given in 2.7 (b). Then M̄j = 〈ēj1〉
⊥/〈ēj1〉 has a basis ēj

n−1, ē
j−1
n−1, . . . , ē

j
2,

ēj−1
2 (we use the same notation for the image on M̄j as the one in Mj). Thus

the induced linear map v̄j on M̄j is just a sum of two copies of nilpotent



164 T. SHOJI

elements as given in 2.7 (a) with respect to the induced form f̄j on M̄j .

It follows that v̄ determines a unipotent element π(g−1ug) = v ∈ M . v is

contained in CF
λ′,ε′, where λ′ is obtained from λ by replacing two rows of

length h by two rows of length h − 1. ε′ is given by ε′(h − 1) = 1, and is

the same as ε for all other h′ 6= h. In particular, v is a split element if h− 1

does not occur in the rows of λ nor ε(h− 1) = 1.

(iv) Choose Mj as in (iii). Under the notation there, put x = ēj
2 + ēj−1

2 .

Then M̄j = 〈x〉⊥/〈x〉 has a basis exactly the same as the basis of N⊥/N in

2.7 (c). Thus the induced map v̄j on M̄j determines a unipotent element

π(g−1ug) = v of M in the same way as above. v is a split element in M and

is contained in Cλ′,ε′ , where λ′ is obtained from λ by replacing two rows of

length h by two rows of length h − 1, and ε′(h − 1) = 0 if h − 1 does not

occur in λ nor if ε(h − 1) = 0.

(v) Choose Mj as in 2.7 (c), i.e., the case where ε(h) = 0. The ba-

sis of Mj is given in 2.7 (c). Then M̄j = 〈ēj1〉
⊥/〈ēj1〉 has a basis ēj

n−1 +

ēj−1
n−1, ē

j
n−2, ē

j−1
n−2, . . . , ē

j
3, ē

j−1
3 , ēj2 = ēj−1

2 . Thus the induced linear map v̄j on

M̄j is the same as the case (b) as above with respect to the induced form

f̄j. It follows that v̄ determines a unipotent element π(g−1ug) = v ∈ M . v

is contained in Cλ′,ε′ where λ′ is obtained from λ by replacing two rows of

length h by two rows of length h−1, and ε′ is given by ε′(h−1) = ω if h−1

does not occur in the rows of λ. In this case, v is a split element without

any condition.

Finally, we consider the case where G = SO2n with p = 2. The argu-

ment in the case of G = Sp2n with p = 2 works well for this case under

a suitable modification, since in the discussion in Section 2, the induced

quadratic form is of the same type as the original one, and so one can check

easily that v is a split element.

4.12. We consider the counter part of Proposition 4.10 and 4.11 for

the case where F = F0σ is of non-split type. We assume that G = SO2n (p :

arbitrary) and G̃ = O2n. Let u ∈ CF0

λ,ε and v ∈ CF0

λ′,ε′ be split elements as in

4.9 or 4.11, and assume that Y F0

u,v 6= ∅. Take g ∈ Y F0

u,v . Then g−1ug ∈ vUQ.

By replacing u by g−1ug (an element in the split class) we may assume

that u ∈ vUQ. Let a = ai ∈ Z eG(u) be as in (2.10.1) and ȧ ∈ Z eG(u) be its

representative. Let a′ ∈ AfM
(v) be defined similar to a. We assume that a

and a′ are both related to the row of the same length in λ and λ′. By the

explicit description of the element ȧ ∈ Z eG
(u) (see 2.7–2.10), we see that ȧ

normalizes Q. It follows that ȧ ∈ ZfM
(v), which gives a representative of a′.
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Let us write ȧ = xs and let α−1F (α) = x be as in (2.10.1). Since we may

take s ∈ M , we have x ∈ M , and so α ∈ M also. Let u′ = αuα−1 ∈ CF
λ,ε

v′ = αvα−1 ∈ CF
λ′,ε′ be split elements as given in (2.10.1). We have the

following lemma.

Lemma 4.13. Let the notations be as above, and u, v (resp. u′, v′) be

split elements with respect to F0 (resp. F ). Then under the assumption in

Proposition 4.10 or 4.11, F acts trivially on the set Xu′,v′.

Proof. Since α ∈ M , adα maps Yu,v onto Yu′,v′ , and so induces a

bijection between Xu,v and Xu′,v′ . Since ȧF0 = xF , adα maps ȧF0-stable

elements of Xu,v to F -stable elements of Xu′,v′ . In view of Proposition 4.10

and 4.11, we may assume that F0 acts trivially on the set Xu,v. Hence in

order to prove the lemma, it is enough to show that any element in Xu,v is

stable by ad ȧ. Now an irreducible component of Yu,v is expressed as the

closure of Z0
G(u)gZ0

M (v)UQ for some g ∈ Yu,v. By our choice of u, v, we may

take g = 1. Then Z0
G(u)ZM (v)0UQ is stable by ad ȧ, and so there exists an

irreducible component stable by ad ȧ. Since AG(u)×AM (v) acts transitively

on the set Xu,v, and a commutes with AG(u) and AM (v), we conclude that

ad ȧ stabilizes each element in Xu,v. This proves the lemma.

4.14. In order to apply Lemma 4.6, we first need to know the condi-

tion for Xu,v 6= ∅. By the isomorphism Yu,v/ZM (v)UQ ' Qu,C1
in 4.7, the

elements in Xu,v corresponds to the irreducible components of Qu,C1
of di-

mension (dimZG(u)−dimZM (v))/2. The condition for C1 for the existence

of such an irreducible component in Qu,C1
is described in [Sp1, II, 6.7]. By

making use of 3.6, it is interpreted in terms of the symbols (cf. [LS, 2.6]);

(4.14.1) Let Λ = ρG(u), Λ′ = ρM (v) be the distinguished symbols associated

to u and v. Then Xu,v 6= ∅ if and only if Λ′ is obtained from Λ by decreasing

one of the entries of Λ by 1.

Let E ∈ W∧, E1 ∈ W
∧
1 be as in Lemma 4.6. In applying the lemma,

we also need to know when E1 appears in the restriction of E. This is given

as follows (cf. [LS, 2.8]).

(4.14.2) Let X be the set of symbols as in 3.6. Let (A,B) ∈ X corresponding

to E ∈ W∧. Then E1 ∈ W
∧
1 appears in the restriction of E if and only if the

symbol (A′, B′) corresponding to E1 is obtained from (A,B) by decreasing

one of the entries in A or B by 1. (This holds also for the case of degenerate
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symbols. If E,E ′ ∈ W∧ are corresponding to the degenerate symbol (A,A)

and its copy, E and E ′ have the same restriction onW1, and its components

are parametrized by symbols obtained by decreasing one of the entries in

(A,A) by 1.) In particular, if E1 appears in the restriction of E, we have

Xu,v 6= ∅.

4.15. We are now ready to prove Theorem 4.2. So, assume that F is

of split type. First consider the case where G = Sp2n or SON with p 6= 2.

By induction on the rank of G, we may assume that the theorem holds

for Sp2n−2 or SON−2. Let (C ′, E ′) ∈ NG be corresponding to E ∈ W∧.

Let E1 ∈ W
∧
1 be an irreducible component of the restriction of E, and

(C1, E1) ∈ NM be the corresponding element. We choose the split elements

u ∈ C ′F and v ∈ CF
1 . Then Xu,v 6= ∅ by (4.14.2), and F acts trivially on

Xu,v by Proposition 4.10. Thus the assertion holds for σ(C′,E ′) by Lemma 4.6,

and the theorem follows.

Next we consider the case where G = Sp2n or SO2n with p = 2. Since

the result in 4.11 is somewhat weaker than Proposition 4.10, we need a more

precise argument. Let λ1 ≤ λ2 ≤ · · · ≤ λ2m be the sequence of λ as in 3.6,

and Λ be the distinguished symbol associated to λ. For a given integer h,

let Ah = {λj , λj+1, . . . , λk} be the subsequence consisting of λi = h. We

say that I = {a, . . . , b} (a ≤ b) is a semi-interval if I corresponds to the

sequence Ah under the construction of Λ in 3.6 (c), (d). The element a is

called the tail of the semi-interval I. They have the following forms. We

denote by I
ε(h)
h the semi-interval corresponding to h and ε(h).

(4.15.1) I
ε(h)
h =





{a, a + 2, a + 4, a + 6, . . . } if ε(h) = 1,

{a, a, a + 4, a+ 4, a+ 8, a+ 8, . . . } if ε(h) = 0,

{a, a + 1, a + 4, a + 5, a+ 8, a+ 9, . . . } if ε(h) = ω.

For two semi-intervals I = {a, . . . , b}, I ′ = {a′, . . . , b′} with b′ < a, the

distance of I, I ′ is defined by a − b′. It is easy to see that the distance of

two semi-intervals is always ≥ 3. The case where the distance is 3 occurs in

the following three cases;

(I1
h, I

1
h+2), (I1

h, I
ω
h+1), (Iω

h , I
1
h+1).

The semi-interval I is a part of an interval unless I = I 0
h, and if the distance

of I and I ′ is equal to 3, they are joined to be a part of one big interval.

This explains the condition of generators of AG(u) in 2.4.
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By induction, we may assume that the theorem holds for the smaller

rank case. Let E ∈ W∧ corresponding to (C ′, E ′) ∈ NG. Let Λ be the

distinguished symbol associated to C ′. We write C ′ = Cλ,ε. Suppose that

there exist two semi-intervals I = {a, . . . , b}, I ′ = {a′, . . . , b′} such that the

distance a − b′ ≥ 5. Then a is also a tail of an interval, and it is easy

to check that one can decrease a by a − 1 in Λ to obtain a new symbol

Λ′. This procedure is also valid for a symbol similar to Λ. Moreover if

a corresponds to h, and a − 1 corresponds to h′ = h − 1 or h − 2 under

Cλ,ε ↔ Λ, then we have ch′ = 0. Let Cλ′,ε′ ↔ Λ′ with v ∈ CF
λ′,ε′ . There

exists (C1, E1) ∈ NM (C1 = Cλ′,ε′) corresponding to E1 ∈ W
∧
1 such that E1

occurs in the restriction of E. By making use of 4.11, we see that Y F
u,v 6= ∅

for a split element v ∈ Cλ′,ε′, and so F acts trivially on Xu,v by Lemma 4.8.

Now Lemma 4.6 can be applied to show that the theorem holds for σ(C′,E ′).

Thus it is enough to consider the case where the distance of I, I ′ is

≤ 4. Let I = Iω
h . There are three possibilities for I ′ with distance ≤ 4, i.e.,

I ′ = Iω
h−2, I

1
h−1 or I0

h−1. For each case, one can find (C1, E1) ↔ E1 with

a split element v ∈ CF
1 = CF

λ′,ε′ , to which Lemma 4.6 can be applied. For

example consider the case where I ′ = I0
h−1. Then by (4.15.1),

I ′ = {. . . , a− 4, a− 4}, I = {a, a+ 1, . . . , }

for some a. It follows that a is the tail of an interval. One can replace I

by J = {a, a, . . . } which produces a new symbol Λ′ corresponding to Cλ′,ε′.

This works also for a symbol (A,B) similar to Λ, where (A,B) ↔ E. Now

λ′ is obtained from λ by replacing two rows of length h by two rows of length

h− 1. Since ε(h− 1) = 0, we have ε′(h− 1) = 0 and 4.11 can be applied to

show that Y F
u,v 6= ∅ for a split element v ∈ CF

λ′,ε′ , and we get the assertion

in a similar way as above. The other cases are dealt similarly.

Now we may assume that Iw
h does not appear in Λ, i.e., assume that λ

consists of even rows. Assume that there exists h such that ε(h) = 0, and

consider a semi-interval I = I0
h. There are two possibilities for I ′ whose

distance is ≤ 4, i.e., I ′ = I1
h−2 or I0

h−2. First assume that I ′ = I1
h−2. Then

I, I ′ is written as

I ′ = {. . . , a− 6, a− 4}, I = {a, a, a+ 4, a+ 4, . . . }

by (4.15.1). Then one can replace the tail a of I by a − 1, which divide I

into two semi-intervals

J1 = {a− 1, a}, J2 = {a+ 4, a+ 4, . . . },
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and I ′ ∪ J1 form a part of some interval. The situation is the same for a

symbol (A,B) similar to Λ. This produces a new symbol Λ′ ↔ Cλ′,ε′ where

λ′ is obtained from λ by replacing two rows of length h by two rows of

length h − 1 where ε′(h − 1) = ω. Hence by 4.11, we have Y F
u,v 6= ∅ for a

split element v ∈ Cλ′,ε′ . Another case is dealt similarly.

Finally we may assume that λ consists of even rows h with ε(h) = 1.

We consider I = I1
h, I ′ = I1

h−2. Then we have

I ′ = {. . . , a− 5, a− 3}, I = {a, a + 2, a+ 4, . . . }.

Note that I, I ′ are a part of a common interval. By replacing a by a − 1,

we have new semi-intervals

J ′ = {. . . , a− 5, a− 3, a− 1}, J = {a+ 2, a+ 4, . . . }.

This produces a new symbol Λ′ ↔ Cλ′,ε′ , where λ′ is obtained from λ by

replacing one row of length h by one row of length h−2. Since ε(h−2) = 1,

the argument in 4.11 can be applied, and we get the assertion of the theorem.

Theorem 4.2 is now proved.

4.16. We shall prove Theorem 4.3. So assume that F is of non-split

type. First consider the case where L 6= T . In this case the proof is done

almost similar to the proof of Theorem 4.2, by using Lemma 4.13 instead of

Proposition 4.10 and 4.11. However, we have to be careful for the choice of

v (cf. the condition of a and a′ in 4.12) in applying Lemma 4.13. In the case

where p = 2, this is done along the line in 4.15, by choosing the decreasing

number suitably. In the case where p 6= 2, Proposition 4.10 cannot be

applied directly, and we have to apply a similar argument as in 4.15. But

this is easier than the case of p = 2; the semi-intervals are of the form

I1
h = {a, a+ 1, a+ 2, . . . } or Iω

h = {a, a, a + 2, a+ 2, . . . }, and only I1
h gives

an interval. The distance of two semi-intervals I, I ′ is ≥ 2. If the distance

is ≥ 3, no interaction occurs for I, I ′ in decreasing one entry. Then the

assertion (i) of the theorem is obtained by considering the following (I, I ′).

(Iω
h , I

ω
h−2), (Iω

h , I
1
h−1), (I1

h, I
ω
h−1), (I1

h, I
1
h−2).

The details are omitted.

Next we consider the case where L = T . Hence W = W ′
n, and we

regard it as a subgroup of Wn = W ′
n〈σ〉. We consider the decomposition

of E = V(C′,E ′) in (1.6.1). Assume that E is F -stable, and let Ẽ be the
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extension of E by σ(C′,E ′). Let Ẽ1 be the extension of E1 = V(C1 ,E1) through

σ(C1 ,E1). Note that in our case dimME1
= 1, and so σE ′,E is a scalar map.

By multiplying σ−1 on the both side of (1.6.2), one can write

σ−1 ◦ σ(C′,E ′)|ME1
⊗E1

= σE ′,E1
⊗ σ−1 ◦ σ(C1,E1).

Since F acts trivially on AG(u) andAM (v), the extension ρ̃⊗ ρ∗1 is the trivial

extension. Thus if F acts trivially on Xu′,v′ , then Corollary 1.9 implies that

σE ′,E1
is a scalar map by q−dC1,C′+dim UQ . Now assume that E corresponds

to the symbol Λ and E1 is an irreducible component of E corresponding

to the symbol Λ′, where Λ′ is obtained from Λ by decreasing an entry by

1, under the condition in 4.12. (Note that Λ is not a degenerate symbol

since E is F -stable.) Let Ẽ and Ẽ1 be the preferred extensions of E, E1,

respectively. Then it is easy to check that Ẽ1 occurs in the restriction of Ẽ

on Wn−1. Thus again by using the arguments in 4.15 (see also the remark

for the case where L 6= T with non-split case), thanks to Lemma 4.13, the

verification of Theorem 4.3 (ii) is reduced to the case where n = 2, namely

G ' G1 × G1, where G1 is of type A1, and F acts as a permutation of

two factors. This case is checked as follows (cf. [S1, Lemma 3.11]). Since

the class C ′ is F -stable, u′ is the product of two regular elements in G1 or

the product of two identity elements in G1. Let Bu′ be the variety of Borel

subgroups of G containing u′. Then F acts trivially on the one dimensional

W ′
n-module H2du′ (Bu′), where du′ = dimBu′ . Hence Wn-module H2du′ (Bu′)

coincides with the identity representation or the long sign representation

η (i.e., takes the value η(rα) = 1, η(rβ) = −1, where rα (resp. rβ) is the

reflection with respect to the short root α (resp. long root β) of the root

system of type B2.) according to the cases where u′ is regular or identity.

The corresponding symbol is (2; 0) for the former, and (12; 01) for the latter.

The both are preferred extensions, and the theorem follows.
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