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GENERALIZED GREEN FUNCTIONS
AND UNIPOTENT CLASSES
FOR FINITE REDUCTIVE GROUPS, 11

TOSHIAKI SHOJI

Abstract. This paper is concerned with the problem of the determination of
unknown scalars involved in the algorithm of computing the generalized Green
functions of reductive groups G over a finite field. In the previous paper, we
have treated the case where G = SL,. In this paper, we determine the scalars
in the case where G is a classical group Spa, or SOy for arbitrary characteristic.

§0. Introduction

This paper is a sequel to [S2]. Our aim is to remove an ambiguity from
the algorithm of computing generalized Green functions of reductive groups
due to Lusztig. Let G be a connected reductive group defined over a finite
field Fy with Frobenius map F. Let p be the characteristic of F,. In [S2],
we have treated the case where G = SL,,. In this paper we consider the
case where G = Spa, or SOy for arbitrary p. The case where G = Spiny
will be treated in a separate paper.

In [S1] it was shown, in the case of Spg, or SOxn with p # 2, that
there exists a representative in C* for each unipotent class C, called a
distinguished element there (in this paper we call it a split element) which
behaves well with respect to the computation of Green functions. Our
result in this paper shows that the split elements behave well for any type
of generalized Green functions. We also show, in the case where p = 2, that
such a good representative (called a split element) exists for G = Spa, or
SOs,,. This was not known even for the case of Green functions.

The main ingredient for the proof is a variant of the restriction theorem
([L1]) for the generalized Springer correspondence. The restriction theorem
is a powerful tool for determining the generalized Springer correspondence,
and it was used in [LS], [Sp2] quite effectively. We extend this theorem so
that it involves the information on the Frobenius action. In [S2], we have
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obtained the results by investigating the Frobenius action on the cohomology
group HX*" (P, £ ). But this requires a precise information on the geometry
of P, related to the local system €. In the case of classical groups, one can
avoid to deal with P, by considering the restriction theorem as above.

81. A variant of the restriction theorem

1.1. We follow the notation in Section 1 in [S2]. In particular, G is a
connected reductive group over a finite field F,, with Frobenius map F'. Let
k be an algebraic closure of F; and p the characteristic of k. Let P = LUp
be a parabolic subgroup of G, where L is a Levi subgroup of P and Up is the
unipotent radical of P, and let £ be a cuspidal local system on a unipotent
class C'in L. As in (1.2.2) in [S2], one can define a perverse sheaf K on
G associated to the triple (L, C,€). Then K is a semisimple perverse sheaf
with End K ~ Q;[W], where W = Ng(L)/L is a Coxeter group. Thus K is
decomposed as

(1.1.1) K= P Ve Kg,
EewA

where Kp is a simple perverse sheaf on G such that Vg = Hom(Kpg, K)
is an irreducible WW-module corresponding to £ € W”. Put d = dim Z9,
where Z, is the center of L. Let G,; be the unipotent variety of G, and Ng
the set of all the pairs (C’,£’), where C” is a unipotent class in G and £’ is a
G-equivariant simple local system on C’. Then it is known that K[—d]|q,,;
is a semisimple perverse sheaf on Gy, and it is decomposed as

(1.1.2) Kl-dlo,,~ @ Viee)®ICC,E)dim,

(C7 £eNG

where V(cr gy is the multiplicity space for the simple perverse sheaf
IC(C", €N[dim C’] on Gy (cf. [S2, (1.2.4)]). Thus Kg|a,,, coincides with
some IC(@’, &' up to shift, and Vicr g1y coincides with V. It turns out that
all the irreducible WW-modules are realized as V(¢ ¢y for some pair (C', £’).
Thus we have an injective map W" — Ng by E = V(v ¢y — (C',E"), whose
image we denote by Ng(C,€). Let Mg be the set of triples (L,C,&) up
to G-conjugacy, where L is a Levi subgroup of a parabolic subgroup of G
and & is a cuspidal local system on a unipotent class C of L. The above
injective maps form a bijection

(1.1.3) II We@)/o” — N

(L7C>£)€MG
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which is the so-called generalized Springer correspondence ([L1, 6.5]).

1.2. Let Q D P be a parabolic subgroup of G with the Levi subgroup
M such that M D L. Then W; = Nj(L)/L is in a natural way a subgroup
of W. Replacing G by M, we have a subset Ny (C,E) of Ny;. For each
(C', &) e Ng(CLE) (resp. (C1,&1) € Ny (CLE)), we denote by E (resp. E1)
the corresponding irreducible representation of W (resp. Wy) under (1.1.3).

Let mg : @ — M be the natural projection. Assume that (C1,&1) €
Nu(C,E), and that (C',&") € Ng. We denote by fc, cr : CiUgNC" — Cy
the restriction of mg. Then F = RQdChC’(fCLC/)!E’ is a semisimple M-
equivariant local system on Cj, where de, ¢v = (dimC’ — dim Cy)/2. We
define an integer mg, ¢/ to be the multiplicity of £; in F. Lusztig proved the
following restriction theorem on the generalized Springer correspondence.

THEOREM 1.3. (Lusztig [L1, Theorem 8.3]) Under the above setting,
(C", &) € Ng(C,€E) if and only if mg, g # 0. Moreover in that case we
have

mghg/ = <Res E7E1>W1,

where (|, ), is the inner product of two representations of Wy (regarded
as characters), and Res E is the restriction of E on Wj.

1.4. Letu € C' and v € (4, and consider the component group Ag(u)
and Aps(v). The set of G-equivariant simple local systems on C’ is in 1:1
correspondence with the set Ag(u)” of irreducible characters of Ag(u), and
a similar fact holds also for M. As described in [LS], the integer mg, ¢ can
be interpreted in terms of the representations of Ag(u) and Aps(v), which
we explain below. Let F, be the stalk of F at v € C';. Then we have

2d ’
(1.4.1) Fp =~ H, 9 (C'nwlg, &),

Let 7 : C' = ZL(u)\G — C', Z%(u)g — g 'ug be the finite covering of
C" with group Ag(u). Let X = (C' Nwlg) x¢r C' be the fibre product of
C' NwvUg with C’ over C', and let 7 : X — C'N vUq be the base change of
m. Then we have

2d ’ - = 2d / —
H, (0" nolUg, 7.Qu) ~ He V' (X, Qu),

and Ag(u) acts naturally on the right hand side. Now 7,Q; can be de-
composed as 7,Q; = Y p V, ® £€,, where p runs over all the irreducible
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characters of Ag(u). Here &, is the G-equivariant simple local system on C”
corresponding to p and V), is the corresponding irreducible representation
of Ag(u). It follows that

2d / 2d ’ —~ u
Hc C1,C (Clm’UUQ,gp) ~ (Hc Cq,C (X, Ql) ®Vp*)AG( )’

where p* is the dual representation of p. On the other hand, the semisim-
ple local system F can be written as F = >, my &, where £, is the
irreducible local system on C) corresponding to p1 € Ap(v)" and my,
is the multiplicity of £, in F. By taking the stalk at v, we have F, =
> p1 Mp1 (Epy)v- Here (€, )y is an irreducible Ap(v)-module corresponding
to p1. Note that if &' = &,, and & = &,,, we have mg, & = m,,. Now
Zy(v) acts on C' NwUg by conjugation, and it induces an action of Az (v)

2d ’
on H. V9 (C"'Nwlg, E"). We have

2d ’
me, g = <Hc e (C, N UUQ,EP),[J1>AM(U)
2d ’ =
= <HC e (Xa Ql) ® Vp*)AG(U)’p1>AM(U)a
where (, )4,,(») denotes the inner product of characters of Ay (v).
By Proposition 1.2 in [L1], it is known that dim X < d¢, ¢v. Thus

2d / —
H, ¢ (X, Q) has a basis corresponding to the set of irreducible compo-

2d¢, o ~
nents of X of dimension d¢, ¢, and the action of Ag(u) on H, X, Q)
coincides with the permutation action of Ag(u) on those irreducible com-
ponents of X. Since C' = Z2(u)\G, we have

X ={(y, Z&(u)g) € (C"NwlUqQ) x C' |y = g~ ug)
= {Z&(uw)g | g~ ug € vUq}
= Zg(u)\{g € G | g~'ug € vUq}.
Put Y., = {9 € G | g tug € vUg}. Then Zg(u) x Zy(v) acts on Yy,
by (z,2) : g — 292/ for z € Zg(u),7 € Zy(v), and the projection
Yo — X = Z%(u)\Yu,v gives a bijection between the set of irreducible

components of X and Y, ,, which is compatible with the action of Ag(u)
and Aps(v). Note that

dimY,,, = dim X + dim Z&(u)
= dC1,C’ + dim ng(u)
= (dim Zg(u) + dim Zp(v))/2 4+ dim Ug.
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Let X, , be the set of irreducible components of Y, , of dimension d¢, ¢ +
dim Z2(u). It follows from the above discussion, we have

COROLLARY 1.5. (Lusztig-Spaltenstein [LS, 0.4, (4)]) Let €y, be the
permutation representation of Ag(u) x Ay (v) on Xy.. Then we have

<Res E, E1>W1 =Mmg g = <5U,U’p ® pDAg(u)XA;y;(U)'

1.6. We want to consider a variant of Corollary 1.5 which involves
the Frobenius action. Assume that P is F-stable, and that the triple
(L,C,E) € Mg is F-stable. We choose ug € CI and fix an isomor-
phism ¢ : F*€ 5 &£ so that the induced isomorphism &,, — &,, is of
finite order. g induces an isomorphism ¢ : F*K = K. For each pair
(C', &) € N, we choose u € C'". We fix an isomorphism g : F*E' = &'
as follows; F' acts naturally on Ag(u), and we consider the semidirect prod-
uct Ag(u) = () x Ag(u), where 7 is the restriction of F on Ag(u). Since
(C',€") is F-stable, p is F-stable. We choose an extension p of p to Ag(u)
and fix an isomorphism g so that the induced isomorphism &/, — &/
corresponds to the action of 7 on p. Now g induces an isomorphism
Yer : F*IC(C,€)[dim €] 2 1C(C7, €')[dim C’]. The isomorphism ¢ also
induces an isomorphism F*K[—d|q,.. = K[—d]|a,,;, which we also denote
by . Then under the decomposition of (1.1.2), ¢ induces an isomorphism

Wclgl) X F* IC(UI, 8/)[(111’11 C,] —:/—> ‘/(Clgl) & IC(@I, 8')[d1m C,]

for each pair (C’,£’) € N, and one can define a linear isomorphism o(cr e
on V(cr gry such that this isomorphism can be written as o g ® {/;g/. Now
F acts naturally on W = Ng(L)/L, and o gy becomes W-semilinear,
namely we have a relation o(c gnw = F(w)ocr gy on Vier ery for each w €
W. Replacing G by M, we can define a Wi-semilinear map o (¢, g,) on
Viey &) for each pair (C1,&1) € N7, The irreducible W-module Vicr g1y can
be written as a VW;-module

(161) Wc/,g/) = Z ME1 ® FEq,
Eiewy

where Mg, is the multiplicity space of the irreducible Wi-module E; and
is realized as Mg, = Homyy, (E1, V(¢ gy). Suppose that By =~ Vg, ¢
under the generalized Springer correspondence for M. If E; is F-stable,
(C1,&) € NAZ, and we have an isomorphism T(Cy,&) OL F1. One can define
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a map og, ¢ : Mg, — Mg, by f— oreyofo 0(011,81)' The linear map
o(cr ey stabilizes the subspace Mg, ® E; and we have

(1.6.2) U(c/,g/)|ME1®E1 =088 @ 0(Cy,8)-

On the other hand, since F(C') = C', F(Cy) = Ci, the map fe, o
is F-equivariant. Hence ¢g : F*E 5 &' induces an isomorphism ¢¢, ¢ :
F*F X F, and so a linear isomorphism F, — F, which we denote by
the same symbol 9¢, . Now the local system F on Cj corresponds to a
representation V' of Ajs(v). V can be decomposed as

V= Z ]\4})1 & p1,
p1EAM (V)N

where M), = Homy,, )(p1,V) is the multiplicity space of the irreducible
representation p;. F acts on Apr(v), and as in the case of G we consider the
semidirect product Ays(v) = (1) x Ap(v), where 7 is the restriction of F
on Aps(v). For each (C1, &) € Nij, we fix an isomorphism g, : F*& = &
as in G by using an extension py of p1 to An (v). Now ¢, ¢ stabilizes the
subspace M,, ® p; for an F-stable p; € Ap(v)”, and as in (1.6.2) one can
define a linear map ,, , on M, such that

(1'6-3) wCl,C”Mm@m = wpl,p ® w&'

The following result gives an F-twisted version of the restriction theo-
rem (Theorem 1.3). The proof is done by chasing the argument in [L1].

ProprosITION 1.7.  Under the notation as above, we have
—d /+dim U,
Tr(051,5’7 Mg,) =q "° mue Tr(wphm Mpl)-

1.8. Let Y, , be as in 1.4. Assume that @ is F-stable. Since u, v are
F-stable, Y, , is F-stable, and so F' acts as a permutation on X,,. On
the other hand, F' acts naturally on A(u,v) = Ag(u) x Ap(v), and we
denote by A(u,v) the semidirect product group (r) x A(u,v). Then the
permutation representation e, is extended to a representation of g(u, v),
which we denote by €,,,. Now ¢ and 1)¢, determine an extension of p® p}

to g(u, v), which we denote by p ® pi. By chasing the argument in 1.4, we
see that

—_——

TI"Wpl,p, Mm) = <5~u,va P& p>{>A(U,’U)T7
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where in general

<‘/1’ V2>A(u,v)7’ = |A(u7 ’U)‘_l Z TI‘(CLT, Vvl) TI'((CLT)_l, V2)
a€A(u,v)

for representations Vi, Vo of Z(u, v). Hence combined with Proposition 1.7,
we have a variant of Corollary 1.5 involving the Frobenius action.

COROLLARY 1.9. Let the notations be as above. Then we have

—d, +dimUg /~
C1,¢’ Q <5u,v, 1Y b2y pT>A(U4,U)T‘

Tr(gfl,g” ME1) =(q

1.10. We shall connect the above results to the discussion on gener-
alized Green functions in [S2, Section 1]. Take j = (C',&') € NZ and
let g = e @ F*E 5 & be defined in 1.6. 1y determines the G¥-
invariant function on on the set G¥ . as in [S2, 1.3]. On the other hand,

uni
let W =W x (c) be the semidirect product, where ¢ is a Coxeter group
automorphism on W induced from the action of F'. In the decomposition
in (1.1.1), one can define an isomorphism ¢g : F*Kgr = Kg so that the in-
duced map 0}3 : Vg — Vg makes the irreducible W-module Vg the preferred
extension to W (cf. [L2, IV, (17.2)]). Put

ap = —dim Z9 — dim C’,
r = dim G — dim L 4 dim(C x Z9).

The we have
ag +r = (dim G — dim C’) — (dim L — dim C).

We have H% (Kg)|cr = £ and we define ¢ : F*E' =5 £ so that ¢(e0+7)/2q)
coincides with the map defined by ¢ : F*H*(Kg) = Kg. The function
Y; is defined as the characteristic function of £ through v, extended by 0
to the function on GE , (see [S2, 1.3]). Since £’ is a simple local system,
there exists v € Q? such that 1 = 19, and so Y; = nyjO. Our main
objective is the determination of this scalar 7. Note that the determination
of 7y is equivalent to the determination of the map o (cv ¢r). In this paper, we
determine 7 by investigating the map o(cr ¢). The following fact is easily
verified.

LEMMA 1.11.  Suppose that q*(ao”)/za((;/’g/) makes the VW-module
Vicr gr) the preferred extension to W. Then we have v=1.
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§2. Unipotent classes of classical groups

2.1. Let G be a connected classical group defined over F,. We consider
the following type of groups G.

(I) G = Span, p # 2,
(I) G = SO2n41, p # 2,
(IT) G = SO, p# 2.
(IV) G = Span, p =2,
(V) G =S0%, p=2.

2n»

These groups are realized as a group of transformations preserving the
various forms. Let V be a vector space over k with dimV = N. Assume
that p # 2. Then Spy (resp. Oy) is the subgroup of GL(V) leaving f
invariant, where f is an alternating form (resp. a symmetric bilinear form)
on V and N = 2n in the case of Sp. SOy is the connected component of
Oy, and SO;En corresponds to two F,-forms of f, one is split, the other is
non-split.

Assume that p = 2. Then Spa, is the subgroup of GL(V) with N = 2n
leaving an alternating form (= a symmetric bilinear form) f invariant. The
quadratic form ) on V is defined by the property that the map V x V —
k,(z,y) — Q(z+y) —Q(z) — Q(y) gives rise to a non-singular bilinear form,
which we may take the alternating form f. Let Os, be the subgroup of
GL(V) leaving @ invariant. Then we have Og, C Spa,, and let SOq, be
the connected component of Og,. It is known by [D] that there exists two
F,-forms of @ as follows. We regard @ as the quadratic form on Vj = Fg”.
Then there exists a basis of V{y such that, for x = (x1,...,z9,) € V) with
respect to this basis, Q(x) can be expressed as

(2.1.1) Q(x) = 120401 + - + TpTop,
(2.1.2) Q(z) = x1xpy1 + -+ Tp_1Ton—1 + omci + TpTon + omc%n,

where o € Fy is an element such that aX?+ X + « is an irreducible polyno-
mial in F,[X]. We denote by O (resp. O,,) the group Os,, associated to
the form in (2.1.1) (resp. (2.1.2)), and let SO3., be the connected component
of O;En.

2.2. We shall describe the unipotent classes in G. As is well-known, in
the case where p # 2, the unipotent classes of G are described by unipotent
classes in GL(V') which are parametrized by partitions of N through Jordan
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normal form. Let 5>\ be the unipotent class in GL(V') corresponding to a
partition A of N. We write Aas A= (A < Ao <+ < A ) with Y, A =N
or A= (1¢,2% ...), where r = [()) is called the length of A. Assume that
G = Spap,. Then C), = 5>\ N G is non-empty if and only if ¢; is even for odd
i, and in that case C) is a single conjugacy class in G. While for G= On,
Cy\ = C NN G is non-empty if and only if ¢; is even for even 4, and in that
case C), form a single class in G. Now C) is already contained in G = SOy,
and so gives a unipotent class in G in almost all cases. The exceptions are
the cases where A satisfies the condition; ¢; = 0 if ¢ is even, and ¢; is even
for all odd 4. In that case, C) is divided into two classes C'} and C} in G.

2.3. In the case where p = 2, the parametrization of unipotent classes
is more complicated. We shall describe it following Spaltenstein [Spl, 2.6].
First assume that G = Sps, with p = 2, and let f be the associated alter-
nating form. Then the unipotent classes in G are parametrized by a pair
(A, e), where A\ is a partition of 2n such that ¢; is even for odd ¢, and ¢
is an assignment € : i — ¢g; € {0,1} for even ¢ such that ¢; # 0. Here
gi = 1if ¢; is odd, and ¢; = 0 or 1 if ¢; is even. The correspondence with
unipotent classes are given as follows. Let u be a unipotent element in G.
Then as an element in GL(V'), u is parametrized by a partition A\ of 2n,
which satisfies a similar condition as in the case of p # 2. Now take even
i such that ¢; is even non-zero. We define a function h; on Ker(u — 1) by
hi(z) = f((u—1)""'z,z). Then we put

0 ifh; =0,
(2.3.1) g = s
1  otherwise.

The pair (), €) is the one corresponding to the unipotent class in G contain-
ing u. We denote by C) . the unipotent class in G corresponding to (A, ¢).
For a convenience sake, we extend e to the function on N by € : i — g,
where g; = w for i not appeared above (w is a symbol not contained in
{0,1). )

Next assume that G = SO,, with p = 2. We have G = O, C Spa,.
Let éxﬁ be the unipotent class in Spa,, corresponding to (A, €). Then C)y . =
5>\7€ NG is a unipotent class in G. Thus unipotent classes in G are in 1:1
correspondence with unipotent classes in Spa,. Now C) . is contained in G
if and only if [()) is even. Assume that [()\) is even. Then C) . forms a
single unipotent class in G except for the case where ¢; = 0 for all odd 1,
and ¢; = 0 for all even ¢ such that ¢; # 0 (here ¢; is even for even 7). In the
latter case, C) . splits into two classes Cf _ and CY _ in G.
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2.4. Let G beasin 2.1. For a convenience sake, we introduce a function
g on N also in the case of p # 2. Assume that p # 2. In the case of G = Spay,,
we put g; = 1 if ¢ is even and ¢; # 0, and put &; = w otherwise. In the
case of Oy, we put g; = 1 if ¢ is odd and ¢; # 0, and put g; = w otherwise.
Under this convention, we denote the class C in Sp,, or SOy by C) .. For
u € G, let Ag(u) be the component group of Z;(u) as before. In the case
of G = Oy, we also consider Az(u) = Zé(u)/Z%(u) for u € G. Following
[Sp1, 2.9], we shall describe the structure of Ag(u) and Az(u).

Assume that G = Spa, with p # 2. Take u € C) .. We consider the
generator a; corresponding to each \;. Then Ag(u) is an abelian group
generated by a; such that e()\;) = 1 under the condition that a? = 1 and
that a; = aj if )\Z == )‘j'

Next assume that G = Oy with p # 2. Take u € Che- Then Az(u) is
an abelian group generated by a;, exactly by the same condition as the case
of Span. Now Ag(u) is the subgroup of Az(u) of index 2 generated by a;a;
for each i # j.

Next assume that G = Spa, with p = 2. Take u € C).. Again we
consider the generators a; corresponding to A\;. Then Ag(u) is an abelian
group generated by a; such that €()\;) # 0 under the condition that a? =1
and that a; = a; if \; = A\j or if \; = A\;j +1 orif \; is even and \; = \; + 2.

Finally assume that G = Oy, with p = 2, and G = S50,,. Take
u € Cy.. Then Aé(u) is an abelian group generated by a;, exactly by the
same condition as the case of Spag, with p = 2. Ag(u) is the subgroup of
Ag(u) of index 2 generated by a;a; for i # j.

2.5. In what follows, we shall construct a normal form of unipotent
elements in G¥. As a preliminary for this, we consider the case where
G = SO, with p = 2. So assume given a vector space V over F, of
dimension N = 2n with a basis ej,...,exn, endowed with an alternating
form f. We define an element v € GL(V) by (v — 1)e; = ej_1 (with a
convention eg = 0), and assume that v leaves f invariant. We consider the
following condition on f.

(251) f(elyeN) =1,
(2.5.2)  f(eien)=0 fori=n+1,...,N,
(2.5.3)  f(eiser)+ f(eit1,ex) + f(eisexr1) =0 for 0 <ik < N —1.

Note that (2.5.3) is equivalent to the condition that v leaves f invariant.
Also note that the conditions (2.5.1)—(2.5.3) determines the alternating form
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f invariant by v uniquely. In fact, it follows from (2.5.2) and (2.5.3) that
(2.5.4) f(eiej) =0 forn+1<i,j<N.

Also it follows from (2.5.1) and (2.5.3), we have

0 ifi+j<N,
2.5.5 €, €)= -
(25:5) flewes) {1 ifi+j=N+1

Hence it is enough to show that f(e;, e;) is determined for 1 < i < n and
n+1 < j < N. By (2.5.5) we have f(ey,ent1) = 1. Since f(en41,€5) = 0 for
Jj >n+1, we have f(en,e;) =1for j > n+1 by (2.5.3). Then f(e;,e;) =
f(ei,ej—1) + f(eit1,€ej—1) is determined for 1 < ¢ < n by induction on j
(n+1<j<N).

We consider a quadratic form @ such that Q(z +y) — Q(z) — Q(y) =
f(x,y), which is left invariant by v. We have the following lemma.

LEMMA 2.6. Let the notations be as above. Assume that Q(en) = 0.
Then Q is determined uniquely, which is non-degenerate of split type.

Proof. Since @ is invariant by v, it is known by [Sp1, 6.10] that Q(e;) =
fles,eipq) fori=1,..., N—1. Hence @ is determined uniquely by f and by
the condition Q(exn) = 0. It is easy to see that this @ actually gives rise to
a quadratic form invariant by v. In order to show that () is non-degenerate
of split type, it is enough to see that there exists a basis ef,... e}y of V
satisfying the property

(2.6.1) Q(e}))=0 fori=1,...,N,
1 ifi+j=N+1
6476/- = ’
fe J) {0 otherwise.

We show (2.6.1). We consider the square matrix A = (f(ei, en—j+1))1<i,j<n
of degree n. By (2.5.5) A is a lower unitriangular matrix. For £k =0,1,...,
we denote by A, the principal minor matrix of A of degree 2¥. We have
Ap = (1). We show that

(2.6.2) The matrix Ay, has the following property; for k such that 281 < n,

we have
A, O
A = .
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If 25 < n < 281 A is of the form

A 0
a= (4 )

where Aj is the minor matrix of Ay, of type (n — 2¥,2%) consisting of the
first (n —2%)-rows and all the columns, and A7 is the principal minor matrix
of Ay, of degree n — 2F.

In fact, assume that 281 < n. By induction we may assume that (2.6.2)
holds for k — 1. Put A = (CLZ']‘) with Ai5 = f(ei,eN_j_H). Then by (253),
we have

(2.6.3) Qij = Gi-1,j + QGi—1,5-1.

By induction, we see that the last row of Ay is of the form (1,...,1).
Hence (2.6.3) implies that the (2¥ 4+ 1)-th row of Agy; is of the form
(1,0,...,0,1,0,...,0) (1 appears in the first and the (2* + 1)-th coordi-
nates), which coincides with the first row of the matrix (A, Ax). Since the
(2F 4- 2)-th row of A1 is determined by (2 4- 1)-th row by (2.6.3), and so
on, we see that the minor matrix of Ay, of type (2¥,2%+1), consisting of the
last 2¥-rows and all the columns, coincides with (A, Az). (Note that since
the last column of Ay is of the form ¥(0,...,0,1), the interaction between
two Ay, does not occur in this computation). Thus (2.6.2) holds for the case
where 281 < n. The case where 2 < n < 2F+1 is dealt similarly.

For j such that 2! < j < 2% we define a marked matrix AY) as
follows. In the matrix A,, the (j,7) entry is contained in a minor matrix
A; = (19), where the (j,j)-entry corresponds to the (1,1)-entry (resp.
(2,2)-entry) of A; if j is odd (resp. even). We define a marked matrix AP
by replacing the minor matrix A; in A, by A}, where

. [1° 0 . /10
Al = <1. 1.> or Al = (1 1.)

according as (j,j) corresponds to (1,1) or (2,2) in A;. In each of the
matrices the marks e are attached to some entries in A,. For example, for
2 < j <22 Agj) is given as

10 0 O 1 00 O
11 0 O 110 0
or
1 0 1* 0 1 01 O
11 1° 1° 111 1°
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according to the case where j = 3 or j = 4. For k > a, we define Al(g)
inductively as in (2.6.2) by replacing Ay by A,(Cj), starting from Agj). Then
we define the matrix AU) for 28 < n < 25+1 by replacing A}, A/ by (zéll,gj))’7
(Al(g ))” which is defined similarly.

By a direct observation, we have

(2.6.4) The matrix AU) has the following properties.
(i) In each row, the number of marked 1 is even except the j-th row,

where the number is 1.

(ii)) In each column containing the marked 1’s, the entries except the
marked 1 are all zero.

. /
We now define, for j = 1,...,n, the vector eN_jt1 by
/ —
€N7j+1 = 5 EN—k+1,
k

where the sum is taken over 1 < k < n such that k-th column in AU)
contains a marked 1. It follows from (2.6.4) that we have
1 ifi=j

2.6.5 i€ i) = ’
( ) feiey JH) {0 otherwise
for 1 <4,5 <n.

We now consider the values of Q. Since @) satisfies the relation Q(e;) =
f(ei,eir1), it follows, by (2.5.4) and (2.5.5) together with our assumption
that Q(en) = 0, that

(2.6.6) Qes) = {O iz m,

1 ifi=n.

Note that we have €/, ; = e,41 by the previous computation. Put e], =
én + en+1. Then we have

(2.6.7) Q(en,) = Qlen) + Qlen+1) + flen, eny1) =0,
f(e/m e;H—l) = f(en + ent1, en) =1
Now put e, =¢; for i =1,...,n — 1. Then by (2.5.4) and (2.5.5), together

with (2.6.5)—(2.6.7), we see that the basis {€],...,€/y} satisfies the relation
(2.6.1). The lemma is proved. U
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2.7. Let G be as in 2.1. We assume that G¥" is of split type. For each
F-stable unipotent class C' in G, we shall construct a normal form u, called
a split element, in C¥. The G¥-conjugacy class of u is called the split class
in CF. In the case where p = 2, we construct u following [Sp1, II, 6.19].
First consider the case where G = Spa, with p = 2. Take a unipotent class
Che of G. For each j > 1, put

)\j if 6()\]') = 1,
(2.7.1) nj=qXN+1 ife())=¢,
Aj+2 ife()) =0

We consider the vector space V; over Fy of dimension n; with basis e, ...,

el ;- Assume that a non-degenerate alternating form (= a symmetric bilinear
form) f; on Vj is given. Let H(V}) be the subgroup of GL(V}) consisting
of g € GL(V;) which leaves the form f; invariant. Put H = Spy;(k). Then
H(Vj) is regarded as a subgroup HY of H under the natural Fy-structure
Fon H.

One can construct v; € H(Vj) such that (v; — 1)6? = eg_l for ¢ =
1,...,n; (under the convention that eé = 0) with respect to the alternating
form f; satisfying the property as given in 2.5 (with f = f;, N = n;).

We also note that

(2.7.2) The image of v; € Zg(v;) to Ap(v;) gives a generator a; of Ap(vj),
where Ap(v;) is of order 1 or 2.

For each h = \;, we shall construct a vector space M; over F, with an
alternating form fjo, and u; € H(Mj;) as follows.

(a) e(h) = 1. In this case, h is even and ¢y is odd or even. We put
M; =V; apd uj = vj. Thus u; € H(M;) with respect to fjo = f; on M;.
Since f(en;,e]) = 1, we see that the function z — f2((u; — 1)" 'z, z) is
non-trivial on Ker(u; — 1)".

(b) e(h) = w. In this case h is odd and ¢, is even. Assume that
Aj = Aj—1 = h, and let (V}, f;) and (Vj_1, fj—1) be as before. Note that
dimV; =dimV;_; =nj; = h+1 by (2.7.1). We define an alternating form
fon V; @ V;_; by the condition that f'|v. = f;, f'lv,_, = f;—1 and that
V;LV;_1. Let L be a line in V; @ V;_1 generated by e]i + e{_l. Then L is
an isotropic line by (2.5.5) and we put M; = L+/L. We have dim M; = 2h.
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Since v;(e]) = €], vj_1(e] ") = €] 7!, we see that vj + v;_; fixes L, and so
it induces a linear transformation on M}, which we denote by u;. The form
f! induces an alternating form f]O . We have u; € H(Mj).

By (2.5.1) and (2.5.5), L* has a basis
o=l il

J Jj—=1 i Jj—1
€yt €y €, _1,Ep_1s---5€9,Ey €] F €]

HenceL /L has a basis

5l 4 gi—1l 5 5I—1 5l =1z -1
€, + €, €, 1,6, _1,---,€9,65 T,€1 =¢€1 ,

where ej

! denote the image of e gfl on (V; @ V;_1)/L.

(c) a(h) = 0. In this case, h is even and ¢ is even. Assume that
Aj = Aj_1, and consider the vector spaces V; and V;_; as before. By (2.7.1),
we have n; = dim V; = dim V;_; = h + 2. We consider the alternating form
fon V; ® Vj 1as before Let N be the subspace of V; & V;_1 spanned
by €] + ¢ ! and 6’2 + €} ". Then N is an isotropic subspace of V; ® Vj_;
of dimensmn 2, and we put M; = N*+/N. We have dim M; = 2h. The
alternating form f’ induces an alternating form f]O on M;. Now v; +vj_1
stabilized IV, and so induces a linear transformation on M; which we denote
by u;. We see that u; € H(Mj;).

By (2.5.1) and (2.5.5), N+ has a basis

J Jj—=1 _j 1 j Jj—1 j i1
€p T €n n 1+€n 1€p—2€p—2,---,€1,€61 -

Hence N+ /N has a basis

o i1 -1 -1 N A S R S |
€nteén €1t € 1,6y 9,6 9,563,635 6 =6 ,6 =6
where ej /=1 denotes the i image of e on (V; @ Vj_1)/N. The action of u;

on this ba81s is easily described, and by using the formulas in 2.5, one can
check that fjo((uj — 1)1z, 2) = 0 for all z € Ker(uj — 1), For example,

@ +e e e =2fel. ) =0,

and the other cases are dealt similarly.

We now define a vector space V as V = @ M so that dim V' = 2n, and
let f = @ fo be the alternating form obtalned from fO Put u = H uj €
H(V). It follows from the previous construction, we have
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(2.7.3) H(V) can be identified with G¥', and under this isomorphism, the
element u € GF' corresponding to @ gives an element in Cf’ .- Wecall u a

split element in C’f: £

The structure of the group Ag(u) is also described as follows (cf. [Spl,
I1, 6.19]) Take A; such that e(\;) # 0. We denote by a; an automorphism
of @~ Vi defined by v — v;(v) for v € V}, and v — v for v € V}, such that
k # j. Then a; induces an automorphism on V commuting with @, which
we denote also by @;. It is checked that a; € H(V), and so this gives an
element of Zg(u). The image of a; on Ag(u) coincides with the generator
a; stated in 1.4. In particular, we see that F' acts trivially on Ag(u). This

implies, since Ag(u) is abelian, that
(2.7.4) For any v’ € CF_, F acts trivially on Ag(u).

2.8. Next we consider the case where G = SO,, with p = 2. Take a
unipotent class Cy ¢ of G, and let n;j be as in (2.7.1). We consider the vector
space V; over F with basis ef, ... ,e%j and a unipotent element v; € GL(Vj)
as in 2.7. By Lemma 2.6, one can construct a split quadratic form @ ; on V;
which is invariant by v;. Let H(V;) be the subgroup of GL(V;) consisting
of g which leaves @); invariant. Let H = Onp, (k). Since Q; is of split
type, H(V;) can be identified with the subgroup HE of ﬁ[, where F is a
split Frobenius map. Then by a similar argument as in 2.7, we obtain
uj € H(Mj;) for each case (a), (b) or (c), where H(Mj;) is the group of
invariants with respect to the induced quadratic from Q? Note that the
explicit computation in the proof of Lemma 2.6 shows that Q? is of split
type. As in 2.7, we define a vector space V = @j M;j and Q = @j Q?, and

put @ = [];u; € H(V). We have

(2.8.1) Let G = O . Then H(V) can be identified with GF with split
Frobenius map F', and under this isomorphism, the element u € GF corre-
sponding to @ gives an element in 5’{ .- In the ordinary case u € C§ .- In
the exceptional case we have u € ( S\,E)F and o(u) € ( S\CE)F, where o is

the graph automorphism on SO2,. We call u and o(u) the split elements
in Cf .

2.9. Next we consider the case where G = Spa, or SOyn with p # 2.
We assume that F' is a split Frobenius map. Let g be the Lie algebra of G.

Since the unipotent classes in G are in bijection with the nilpotent orbits in
g with F-structure, we consider the normal form of nilpotent orbits instead
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of unipotent classes. Let O) . be the nilpotent orbit in g corresponding to
the unipotent class C . in G. For each \j;, we construct a vector space M;
over F, and a nilpotent transformation X; on Mj; as follows.

(a) e(A;) = 1. We consider a vector space M; of dimension h = \;
with basis ef,...,e}. We define a non-degenerate alternating form (resp. a
symmetric bilinear form) f; on Mj; in the case where G = Spay, (resp. SOn)
by

2.9.1 filed ey =(=1)%"" fori=1,...,h,
I\"h—i+10 >4
where
o )\j/2+j if G = Span,
Tl =1)/2+5 i G=SO0y.

We put the value of f; zero for any other pair of the basis. We define a
nilpotent transformation X; on M; by X;(e!) = e/_; (under the convention
that eg = 0). Then X; € h(M;), where h(M;) is the subalgebra of gl(M;)

consisting of X such that f;(Xz,y) + f;j(z, Xy) =0 for z,y € M;.

(b) €(A\j) = w. In this case ¢ is even for A\; = h. We assume that
Aj = Aj—1. We consider a vector space M; of dimension 2h = 2); with basis
el ... ,eil, ejlfl, e ,eifl. We define an alternating form (resp. a symmetric

bilinear form) f; on Mj in the case where G = Spa, (resp. G = SOp) by
(2.9.2) fj(ei_H_l, e =cefiel ™, ei_i_‘_l) = (-1 fori=1,...,h,

where ¢ = —1 (resp. ¢ = 1) if G = Spa, (resp. G = SOpx). We put the
values of f; zero for any other pair of the basis. We define a nilpotent
transformation X; on M; by Xjef = eg_l, Xjeg_l = eg__

6671 = 0 as before). Then X; € h(M;).

11 (we put €} =

We define a vector space V by V = @j M; so that dim V = N, and let
f=> ; fj be an alternating form (resp. a symmetric bilinear form) on V
obtained from f;. Put X = @D, X; € H(V). Then it is known by [SS],

(2.9.3) h(V) can be identified with g¥. Under this correspondence X gives
an element X € (’)f .» which we call a split element in (’)ﬁm .- X also deter-
mines the GF-class in C'f’ > which we call the split class in Cf’ .
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2.10. We consider the case where G = SO,,, with non-split Frobenius
F (for arbitrary p). Let Fy be the split Frobenius map. Then one can write
F = Fyo with the graph automorphism o. We may choose s € G \ G such
that ¢ = ads, and fix it for all. Let u € Gf® be a split element in Che-
Since Az(u) # Ag(u), there exists a € Az(u) \ Ag(u). Let @ € Zz(u) be a
representative of a. Since [G : G| = 2, there exists g € G such that a = gs.
It follows that 9"u = u. Now there exists a € G such that a ' F(a) = g,
and we have v/ = aua™! € C/{E. It is easy to see that the GF'-conjugacy
class of ¢’ is uniquely determined by a € Z é(u) For the exceptional case,
we have u' € (Cg\’a)F and o(u') € (C’;\'76)F. In what follows, we fix a split
element v’ € Cf, . as follows.

(2.10.1) Let G = S0O,,,. Let u be the split element in Cf\mf; or (6’3\76)F0. We
choose a = a; € Ag(u) such that e(\;) = 1 (resp. e(\;) # 0) in the case
where p # 2 (resp. p = 2) and that \; is minimal under this condition. Take
a representative a; € Zz(u) as in 2.7, and define u' € Cf’a by using a;. (In
the exceptional case, define u' € (C} )" and o(u') € (CY_)".) We call u/
the split element in C')Ij .

Under the notation above, aFy = gF acts trivially on Ag(u) by (2.7.4).
It follows that F' acts trivially on Ag(u’). Since Ag (') is abelian, we have

(2.10.2) The statement (2.7.4) holds also for the case where F' is of non-split
type.

Remark 2.11. The definition of the split elements for Spo, or SO (for
p # 2) in 2.9, 2.10 is essentially the same as the one used in [S1, 3.3, 3.7]
(where they are called distinguished elements). Note that in the case where
¢ =1 (mod 4), §; can be removed in the formula (2.9.1) by a suitable base
change. Also note that the definition of f; involves the case where e(h) =1
and ¢y, is even, which is necessary for later discussions, though these cases
are ignored in [S1].

In the case of non-split groups with p # 2, our definition of split ele-
ments is not the same as in [S1, 3.7], where it is defined by using a = a;
corresponding to A; of maximal length instead of minimal length. This is
not essential, but the definition here is more convenient since it produces
preferred extensions of WW-modules as will be seen in Theorem 4.3. (The
elements defined in [S1, 3.7] do not necessarily produce them).



GENERALIZED GREEN FUNCTIONS 151

83. Generalized Springer correspondence

3.1. We review here the generalized Springer correspondence for clas-
sical groups following [L1] and [LS]. In what follows, we denote by W,, the
Weyl group of type C,,, and by W), the Weyl group of type D,,. Through-
out the whole cases, for a given (L,C,E) € Mg, the cuspidal pair (C,E)
is uniquely determined by L. So, we just describe L which has a cuspidal
pair.

(a) Let G = Spay, with p # 2. Then (L,C,&) € Mg if and only if L
is of type Cy, for some m of the form m = 1d(d — 1) with d > 1. We have
Ng(L)/L ~ Wn—%d(d—l)' Since the set {d(d — 1) | d > 1} coincides with
the set {d(d — 1) | d € Z,d : odd}, the generalized Springer correspondence
(1.1.3) is given by a bijection

Ne — TT W, 144-0)"
deZ
d odd
(b) Let G = SOpN with p # 2. Then (L,C,E) € Mg if and only if L is
of type By, (resp. Dy,) for some m such that m = 1(d®>—1) (resp. m = 3d?)
and that d = N (mod 2) in the case where N is odd (resp. N is even) with
m > 0. We have Ng(L)/L =~ Wy_gy/2 if m > 1, and Ng(L)/L ~ W,
(resp. W)) if m = 0, namely if L is a maximal torus T, in the case where
N is odd (resp. N is even). Thus the generalized Springer correspondence
is given by a bijection

NG H (W(N7d2)/2)/\ (N :odd),

d>1
d odd
Ng — W,’TH( H (W(N_dz)/Q)A> (N : even).
d>0
d even

(¢) Let G = Spa, with p = 2. Then (L,C,E) € Mg if and only if L
is of type C,, for some m of the form m = d(d — 1) with d > 1. We have
Ng(L)/L ~ W,_4(4—1)- Hence as in the case (a), the generalized Springer
correspondence is given by

Ng — H (W—g(a—1)"-

deZ
d odd
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(d) Let G = SOgy, with p = 2. Then (L,C,&) € Mg if and only if L
is of type D,, for some m of the form m = d? with d > 0, even. We have
Ng(L)/L ~ W,_g if d > 1 and Ng(L)/L ~ W/ if d = 0, namely if L is
a maximal torus of (G. Hence the generalized Springer correspondence is

Ng W,’LH( I1 (Wn_dQ)A)

d>0
d even

given by

3.2. The generalized Springer correspondence for classical groups is
described in terms of symbols. We review the notion of symbols following
[L1], [LS]. Let r,s € Zs1, d € Z. For each integer n > 1 let X% be the
set of all ordered pairs (4, B), where A = {a1,...,am+q}, B = {61; ooy b}
(for some m) are subsets of Zx( satisfying the following conditions.

(3.2.1)
ai—ai—1>r+s (1<i<m-+d),
bi—bi_1>r+s (1<i<m),
by > s,

D oait Y bi=n+(r+s)(m+[d/2)(m+d - [d/2]) - r(m+ [d/2).

(In the case where r + s = 0, A or B contains elements with multiplicities.
In that case, we regard it as a sequence of integers.)
Note that if r = s = 1 and d is odd the fourth condition is written as

(3.2.2) Zai—l—Zbi:n+%(2m+d)(2m+d—1),

and if r = 2, s = 0 it is written as
1
(3.2.3) Zai—i-Zbi:n+§((2m+d—1)2—1).

Let X be the set of equivalence classes on )Z':LZ for the equivalence
relation generated by

(4,B) ~ ({0} U (At 7+ 5), {s} U (B +7+5).
where A+ 7+ s denotes the set {a1 + (r+s),...,am+q+ (r+ )} and so on

for B. We put
xpr= 1 x5
d odd
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An element in X ;Z is called an (r, s)-symbol of rank n and defect d, which
we also denote by (A, B).

We consider the special case where s = 0. In that case, (4, B) — (B, A)
defines a bijection from X 0 4 to X ;0 _4 and so induces an involution of each
of the following sets,

r,0 7,0 rO 7,0
Xn even — H Xn,d’ n odd — H Xnd
d even d odd

Let Y,/ ,4q (vesp. Y,

_even) De the set obtained as the quotient of X ;’700 4qq (resp.
X ,’;Oeven) by this involution, with the convention that the symbol invariant by
the involution, i.e., the symbol (A, A) which we call the degenerate symbol
is counted twice. For d > 0, the image of X ;’7?1 in Y7 49 or Yy

even

denoted by Y, ;. One can regard the element in Y ; as a symbol (A, B) in

7,0 . .
X, considered as an unordered pair.
b

3.3. The set W, is parametrized by ordered pairs of partitions (a, 3)
such that |a| + |3] = n. For a fixed d € Z, one can express the partitions
a,fasa:ar <ag << amag, B 01 < G < -0 < Gy, for a suitable m,
by allowing 0 in the entries. Then (A, B) € )?2:2 for A ={aq,...,amia},
B = {ﬁh ..y Bm}, and this induces a well-defined bijection between W,/
and X > 0 . The same map induces a bijection between W, and Y nd ifd > 1.
On the other hand, the set (W))" is parametrized by unordered pairs of
partitions («, 3) such that ||+ |5| = n, under the convention that (o, &) is
counted twice. Thus in a similar way as above, we have a natural bijection
between (W;,)" and Y.

For a given r, s, d, we define a symbol A);° = (A, B) as follows.

A={0,(r+s),....,(d=1)(r+s), B=10 if d >0,
A=0, B={s,s+(r+s),...,s+(—d—1)(r+s)} ifd<0,
A=0, B=0 if d =0.

It is easy to see that Ay” € X, with ng = (r +s)[d/2](d — [d/2]) — s[d/2],
and that the set X :L’OS 4 consists of a unique element AZ’S. In the case where
s = 0, let A7, be the image of /12’0 under the map X;ﬁd — Y, 4. For each
d € Z, one can define a map

(3.3.1) X0 g XS, A A+ AT

n— 'I’L()7
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which gives a bijection X * ~ X ;Z (Note, in general, that the sum of

n—ng,d —
two symbols A, A’ with the same defect is defined by choosing representa-
tives A = (4, B), A" = (A, B') such that |A| + |B| = |4’| + |B’|, namely of
the same shape, and then by adding entry-wise.) Similarly for each d > 0,
one can define a bijection
(3.3.2) Yr?—no,d — Yo Ar— A+ AL

Combining (3.3.1) with the bijection W =~ ~ ng)no 4 above, we have
a bijection
(3.3.3) wh o — X,
Similarly, combining (3.3.2) with the bijections W, ~Y? ., ford >0
and (W) _, )" ~Y?

n—no _no,0» We have bijections

(3 3 4) Wré\—no I Y?I,d (d > 0)7
a (Wyeng)* — Ya g (d=0).

n—ng

3.4. A symbol (A4, B) € X% is said to be distinguished if d = 0 or 1,
and
a; < by <az < by

a1 < b <ag < b

e < g < by (d =0),

<
< Zam < by < amg (d:1)

A symbol (A, B) € Y, ;for d > 0 is said to be distinguished if it is an image
of a distinguished symbol in X :L’(C)l.

Assume that r > 1. The two symbols (A,B),(A',B') € X;;* are said
to be similar if AUB = A’UB’, AN B = A’ N B’, namely under some
shift, A U B coincides with A’ U B’ with multiplicities. This defines an
equivalence relation on the set X,’°, and an equivalence class is called a
similarity class in X,’°. A similarity class in Y, even O Y, oqq is defined
in a similar way. A similarity class in Y, .., containing (A; A) is called a
degenerate class, which consists of two copies of (A, A). It is easy to see
that each (non-degenerate) similarity class contains a unique distinguished
symbol.

It is known by [L1], [LS] that a similarity class in X7°, Y7 oyen o1 Y, 44
is in a natural way regarded as a vector space over Fs as follows. Let
A = (A, B) be a distinguished symbol in a similarity class C in X,°, Y,"

,even
or V' 4q- We assume that A # B if (4, B) € Y] syen, and put S = (AU
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B)\(AN B). Then S # 0 and it is written as S = {c1,¢c2,...,¢} in an
increasing order. A non-empty subset I = {¢;,¢iq1,...,¢j} of S is called an
interval if cx11 —cx <7+ s for i < k < j and it is maximal with respect to
this condition. We say that ¢; is the tail of 1. An interval is called an initial
interval if ¢; < s. Hence the initial interval exists only in the case where
s > 0, and in that case, it exists uniquely after some shift. S is a disjoint
union of intervals.

Assume that C C X,®. Let I be an interval which is not initial with the
tail ¢. If ¢ € A (resp. ¢ € B), then there exists a unique (A’, B’) € C such
that ¢ € B (resp. ¢ € A) and that ANJ = A’'NJ, BNJ = B’'NJ for all other
intervals J. This means that (A’, B') is obtained from (A, B) by permuting
the entries in the interval I. All the symbols in C are obtained from (A, B)
by permuting the entries in certain intervals. Let Z be the set of non-initial
intervals in S and P(Z) the set of all subsets of Z. The above argument
shows that C is in bijection with the set P(Z), which has a natural structure
of Fy vector space with origin A and is denoted by V;**. In the case where
C C Y eyen O C C Y, 4q (C: non-degenerate), C is in bijection with the
quotient set of P(Z) under the relation K ~ Z\K for K € P(Z). Hence C is
identified with the Fo vector space V]{’O /L, where L is a line generated by
7 € P(Z), which we denote by V7.

3.5. Let G be as in 3.1. We associate the sets X", Y2

2
,even? an odd

for Span, SOz, SOans1 with p # 2 and Xi%, Vil o\, for Span, SO, with
p = 2. Recall ng in 3.3.

(a) The case Xp''. We have r = s = 1, and ng = 2d(d — 1) for odd d.
Hence (3.3.3) implies a bijection

xte— ] (W 1q(a—1)"-
deZ
d odd

(b) The case Y2 or Yn2,odd‘ We have r = 2, s = 0, and ng = d*

,even

for even d and ng = 3(d? — 1) for odd d. Hence (3.3.4) implies bijections

2 A
Yn,odd — H (ané(del)) )
a>1
d odd

Ynz,even — (erz)/\ H< H (Wn—%cﬂ)/\)'

d>0
d even
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(¢) The case X;?. We have r = s = 2, and ng = d(d — 1) for odd d.
Hence (3.3.3) implies a bijection

n<—’H Wh—d(d-1))"

deZ
d odd

(d) The case Y} We have r = 4,5 = 0, and ng = d? for even d.

Hence (3.3.4) implies a bijection

v = W TI( TT )

even*

d>0
d even
Let X = X1 v2 . y2 X232 y4 di G =
3.6. Let n s Yy oddr Yo, even OF Xn'™s Yy yen according as =

Spon, SOo2,41, SOg, with p # 2, or G = Spay,, SO, with p = 2. In view
of the bijections in 3.5 and the discussion in 3.1, the generalized Springer
correspondence can be described by giving a bijection between Ng and X.
By [L1], [LS], this bijection is given explicitly in such a way that the set
Gni/~ of unipotent classes in G is in bijection with the set X/~ of similarity
classes in X. In what follows, we define a map p : Gyni/~ — X/~ by
associating a distinguished symbol A = p(C') € X for each unipotent class
Cin G.

(a) G = Spa, with p # 2. Let C) be a unipotent class of G as
in 2.2, where A is a partition of 2n. We express A as A1 < Ay < --- <
Ao, for some m, by allowing 0 in the entries if necessary. We divide the

sequence {A1, A2, ..., A2, } into the union of blocks as follows. If A; is even,
let {\;} be a block. If \; = h is odd, the sequence Ay = {\ | \p = h}
consisting of even elements, which we write as {\q, \g+1,...,Ap} for some

b > a. Then we divide Aj into a disjoint union of two elements blocks
{Aa; Aar1 T U{ a2, a3 U -U{\p—1, \p}. We define a sequence vy, ..., vay,
as follows. Put

vi=N/2+1 if {\;} is a block,
Vi = Viy1 = ()‘z + 1)/2 +1 if {)\Z, )\fL'Jrl} is a block,

and put A = {0,v9,vy4,...,vom}, B = {v1, yg, ..o yvom—1}. Then A = (A, B)
gives rise to a dlstlngulshed symbol in X\ , which is independent of the
choice of m, and C) — A gives the required bijection p. Actually, the map
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p was defined in [L1, 11.6]. Although the definition given there is not the
same as ours, it is easily checked that they coincide with each other.

(b) G = SOy with p # 2. Let C) be a unipotent class of G as
in 2.2, where X is a partition of N. We choose M such that M = N
(mod 2) and express A as A\; < Ay < -+ < Ay We divide the sequence
{A1,A2,..., Ay} into the union of blocks as follows. If \; is odd, let {\;}
be a block. If \; = h is even, the sequence A, = {\; | A\x = h} consists of
even elements. As in the case (a), we divide A, as a disjoint union of two
elements blocks, {A\g, Aa+1} U {Aat2, Aass} U U {1, \p}. We define a

sequence v1, s, ...,V as follows. Put
vi=(N—3)/2+1 if {\;} is a block,
Vi = Vi1 = ()\Z — 2)/2 +1 if {)\Z‘, )‘H—l} is a block,

and put A= {Vl, v3,... 7V[(M+1)/2]}7 B = {V27 [Z/P 7V[M/2]}- Then A =
(A, B) gives rise to a distinguished symbol in Yn% odd O Yn% even according
as N is odd or even, which is independent of the choice of M. The map
C) — A gives the required bijection p. The proof follows, as in the case (a),
from the discussion in [L1, 11.7].

(¢) G = Spa, with p = 2. The map p is defined in [LS, 2.1]. The
following definition is slightly modified from the original one so as to fit to
the case (a). Let C). be a unipotent class of G as in 2.3, where X is a
partition of 2n. Here A is the same as in the case (a), and we express it
as A\p < -+ < Agyy, for some m. We use the convention that €(0) = 1. We
divide the set {1, A2, ..., Aoy } into a disjoint union of blocks as follows. If
e(A;) = 1, then {\;} is a block. If £(\;) = 0 or w for \; = h, the sequence
Ap = {Mx | \x = h} has even cardinality, and it is divided into blocks as in
the case (a). We define a sequence v, ..., vo, as follows.

(i) If {\;} is a block, put
(i) If {\;, Ni+1} is a block and e()\;) = w, put
vi=(Ai+1)/2+2i,
Vigr = Vi + 1
(iii) If {\i, Aix1} is a block and €();) = 0, put

Vit1 = Vi
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Put A = {0,va,v4,...,vom}, B = {vi,vs,...,v9m—1}. Then by [LS, 2.2],
A = (A, B) gives rise to a distinguished symbol in X 22 which is independent
of the choice m, and C) . — A gives the required bijection

(d) G =802, with p = 2. The map p is defined in [LS, 3.1]. Let C) .
be a unipotent class in G. A is the same as in the case (c), and we define the
block in the same way as the case (c). However, here we use the convention
that €(0) = 0. Note that in the sequence {1, ..., A2} the multiplicity of
0 is even since the number of non-zero \; is even (cf. 2.3). We define a
sequence U1, ..., Vo, as follows.

(i) If {\;} is a block, put
v = (N — 6)/2 + 2.
(i) If {Ai, Ni+1} is a block and e()\;) = w, put

vi=(\i —5)/2 + 2,

vivi =vi + 1.
(iii) If {\i, Aix1} is a block and €();) = 0, put

vi = (A —4)/2 + 24,

Vit1 = Vi

Put A ={v1,vs,...,vom-1}, B={vo,v4,...,v2m}. Then by [LS, 3.2], A =

(A, B) gives rise to a distinguished symbol in Y,ﬁ even» Which is independent

of the choice of m, and C) . — A gives the required bijection.

3.7. We return to the setting in the beginning of 3.6, and let p :
Guni/~ — X/~ be the bijection constructed in 3.6. By making use of
p, we shall construct a bijection p : Ng — X. For a unipotent class C in
G, let C be the similarity class in X containing the distinguished symbol
A = p(C). Take v € C. As discussed in 3.4, C has a natural structure of
Fy-vector space V™ for X = X4t or X2? with the basis corresponding to
the set of intervals. Since Ag(u) is an elementary abelian 2-group, it has a
natural structure of Fa-vector space, and so does the dual group Ag(u)”.
It was shown in [L1, 11], [LS, 2.2] that V}® is naturally identified with
Ag(u)™, where the set of intervals is in bijection with the set of generators
in Ag(u) given in 2.4; if I is an interval corresponding to the generator a;
of Ag(u), we associate the character x; of Ag(u) which takes the value —1



GENERALIZED GREEN FUNCTIONS 159

for a; and 1 for other generators. Similar argument also works for the case
where X = Y2 1, Y2 on and Y,! ., and by [L1, 11], [LS, 3.2] V[ is natu-
rally identified with Ag(u)™. Hence the similarity class C can be identified
with Ag(u)™.

On the other hand, for a fixed C, G-equivariant simple local systems on
C' are parametrized by Ag(u)”. Thus combining with the above argument,
we obtain a bijection p : Ng — X. This bijection describes combinatorially

the generalized Springer correspondence, namely,

THEOREM 3.8. ([L1, 12.3, 13.3], [LS, 2.4, 3.3]) Let G be asin 3.1. Then
the composite of p with the bijection in 3.5 gives the generalized Springer
correspondence in 3.1.

§4. Main results

4.1. Let G be as in 2.1 and we apply the argument in Section 1 for
G. First consider the case where G is of split type. For each unipotent
class C' in G, we choose a split element u € C’ F described in Section 2, 1i.e.,
(2.9.3) for G = Spa, or SON with p # 2, (2.7.3) for G = Spg, with p = 2,
(2.8.1) for G = SOy with p = 2. For each pair (C",&") € N, we fix an
isomorphism g = ¥g : F*&' — £’ in 1.6 so that the induced isomorphism
&, — & is identity. (Note that F acts trivially on Ag(w). This is known
by [SS] for the case where p # 2, and follows from (2.7.4) for the case where
p =2.) Take (L,C,E) € ME. Then L is of the same type as G of split
type. Thus we choose the split element ug € CF. We fix an isomorphism
o : F*€ — £ in 1.6 so that the induced isomorphism &,, — &,, is identity.
Let V(¢r g1y be the irreducible W-module and o (¢ g1y be the isomorphism on
Vicr ey given in 1.6. Since F' is of split type, F' acts trivially on W and so
o(cr ey commutes with the action of W. It follows that o(cr ¢y is a scalar
map.

Next consider the case where G = SO,, with F' = Fyo of non-split
type. We choose the split elements v/ € C' and uh € CF as in 2.10, and
fix 19 = e, o as above. (Again F acts trivially on Ag(u’) by (2.10.2).)
Let (L,C,E) € Mg If L #T,W is a Weyl group of type B and so F' acts
trivially on W. Hence o(cr ¢y is a scalar map. While if L =T, W = W}, is
the Weyl group of type D,, and F acts non-trivially on W. Note that o acts
on W), and the semidirect product W) x (o) is isomorphic to W,,. Assume

that Vicr gy = E is F-stable. Then E can be extended to an irreducible

1

representation £ of W, via the map o(cr /). Since 0~ 0 o(¢r g1y commutes
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with the action of W, it acts as a scalar on E. Thus in order to describe
the map o g1y, we have only to determine this scalar together with the
representation E.

We recall the preferred extension E of W,, due to [L2, IV, 17.2]. An F-
stable irreducible representation E of W/ is parametrized by an unordered
pair (a; 3) of partitions such that |o| + |3| = n and that o # 5. We write
a:a1 << apm, B: P < < By, and define a symbol Ag associated
to E by an unordered pair (A;p) with A\; = a; +i—1, puj = 6 + 5 — 1.
(This is a different type of symbols from those appeared in Section 3.)
Irreducible representations of W,, are parametrized in a similar way, but
by using an ordered pair (a; ) and its associated symbol (A; ). For an
F-stable irreducible representation E, there exists two extensions to W,
which correspond to two symbols (A\; 1) and (u; A) for W,,. An extension E
of I is called the preferred extension of E if in the symbol Az, the smallest
number which does not appear in both entries appears in the second entry.
For example, (n;0) is the symbol associated to the unit representation of
W/, and it is extended to the unit representation (n;0) or the long sigh
representation (0;n) of W,,. In this case, (n;0) is the preferred extension.

We can state our main results.

THEOREM 4.2. Let G = Spay,, SOn with F of split type (N is even if
p=2). Then o(cr ey is ¢\ t)/2 times identity.

THEOREM 4.3. Let G = SOs, with F of non-split type.

(i) Suppose L # T. Then o(cr g1y is ¢\ @+)/2 times identity.

(i) Suppose L = T. Then ocrg = ¢\ %+ 20 and W/ {(o)-module E
coincides with the preferred extension of E.

In view of Lemma 1.11, we have the following corollary.

COROLLARY 4.4. Let G be as in 2.1. For each (C',&") € NE, choose
Yo : F*E' 25 & by choosing a split element u € C'F". Let v be the constant
gwen in 1.10. Then we have v = 1, namely we have Y; = on forj=(C"¢&.

4.5. We prove the theorem by making use of the restriction formula
in Corollary 1.9. We choose a standard parabolic subgroup ¢ = MUg such
that the Levi subgroup M of @ is of the same type as G with semisimple
rank n — 1. Take (L,C,€) € ME and let P be the F-stable standard
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parabolic subgroup of G whose Levi subgroup is L. Then we have P C Q
and L ¢ M. Take (C",&") € N, and take a split element u € c't. Also
take (C1,&1) € N¥;, and choose a split element v € Cf'. Let p (resp. p;1) be
the irreducible representation of Ag(u) (resp. Apr(v)) corresponding to &’
(resp. &1). Since F' acts trivially on Ag(u) and Ay (v), the extension ;@;{
to g(u,v) in 1.8 is just the trivial extension of p ® p]. Then we have the
following lemma.

LEMMA 4.6. Assume that F' acts trivially on W and on Wy. Let E €
WA (resp. E1 € WY) be corresponding to (C',E") € Ng (resp. (C1,&1) €
Nur), and assume that Ey occurs in the restriction of E to Wy. Suppose
that the theorem holds for o(cy gy If Xuv # 0 and F acts trivially on X, ,,
then the theorem holds for o(cr gry.

Proof. We follow the notation in Section 1. Since F; occurs in the
restriction of £ to Wi, Mg, # 0 in (1.6.1). Since o(cr gy and o(c, g, is
a scalar map, og, ¢ is also a non-zero scalar map by (1.6.2). Since F acts
trivially on X, 5, €, is the trivial extension of &,, ,, to g(u, v) = (1) x A(u,v).
It follows that

<gu,va PR pDA(u,U)T = <5u,v, P& pDA(u,v)'
Then Corollary 1.9 together with Corollary 1.5 implies that

—d +dim U, .
Tr(og, g, Mp,) = q "0 T 2Q dim Mg,

and we see that og, ¢/