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ESTIMATES FOR THE PRODUCTS OF THE GREEN

FUNCTION AND THE MARTIN KERNEL

KENTARO HIRATA

Abstract. Let Ω be a proper subdomain of R
n, n ≥ 2, and let x0 ∈ Ω be

fixed. By GΩ and KΩ we denote the Green function and the Martin kernel for

Ω, respectively. Under a certain assumption on Ω near a boundary point ξ, we

show that the product GΩ(x, x0)KΩ(x, ξ) is comparable to |x− ξ|2−n for x in a

nontangential cone with vertex at ξ. We also give an estimate for the product

KΩ(x, ξ)KΩ(x, η) in a uniform domain, where η is another boundary point.

§1. Introduction

The purpose of this paper is to show a relationship between the bound-

ary decay of the Green function and the boundary growth of the Martin

kernel. This is motivated by the results [9], [10], [11], [12], [15] concerned

with the boundary decay of the Green function for a Lipschitz domain and

the result [18] concerned with the boundary growth of the Martin kernel

near singularity. Now, we denote a point in R
n by (x′, xn) ∈ R

n−1 × R.

Theorem A. Let φ : R
n−1 → R be a Lipschitz function such that

φ(0′) = 0, and let Φ = {(x′, xn) : xn > φ(x′)}. Denote by GΦ( · , e) and

KΦ( · , o) the Green function for Φ with pole at e = (0′, 1) and the Martin

kernel of Φ with pole at o = (0′, 0), respectively. Define

I+ =

∫

{|x′|<1}

max{φ(x′), 0}

|x′|n
dx′, I− =

∫

{|x′|<1}

max{−φ(x′), 0}

|x′|n
dx′.

Then the following statements hold.

(i) If I+ < +∞ and I− = +∞, then

lim
t→0+

GΦ(te, e)

t
= +∞ and lim

t→0+

KΦ(te, o)

t1−n
= 0.
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(ii) If I+ = +∞ and I− < +∞, then

lim
t→0+

GΦ(te, e)

t
= 0 and lim

t→0+

KΦ(te, o)

t1−n
= +∞.

(iii) If I+ < +∞ and I− < +∞, then limt→0+GΦ(te, e)/t and limt→0+

KΦ(te, o)/t1−n exist, and each of them is positive and finite.

The proof of Theorem A was based on the convergence of I+, I− and

the minimal fine topology. The following question is natural: is the product

GΦ(te, e)KΦ(te, o) comparable to t2−n for 0 < t < 1/2 ? We shall show such

an estimate in more general domains. Let Ω be a proper subdomain of R
n,

n ≥ 2, and let δΩ(x) stand for the distance from x to the boundary ∂Ω. By

B(x, r) and S(x, r), we denote the open ball and the sphere of center x and

radius r, respectively.

Definition 1.1. We say that ξ ∈ ∂Ω satisfies a local carrot condition

(abbreviated to LCC) if there exist constants κ ≥ 2, rξ > 0 and Aξ ≥ 1

with the following property: for each positive r ≤ rξ, there is a point

yr ∈ Ω ∩ S(ξ, r) with δΩ(yr) ≥ r/Aξ such that each x ∈ Ω ∩ B(ξ, r/κ) can

be connected to yr by a curve γ in Ω ∩B(ξ, κr) for which

(1.1) `(γ(x, z)) ≤ AξδΩ(z) for all z ∈ γ,

where `(γ(x, z)) denotes the length of the subarc γ(x, z) of γ from x to z.

Remark 1.2. In the study of minimal Martin boundary points of a John

domain, Aikawa, Lundh and the author introduced the notion “a system of

local reference points” by using the quasi-hyperbolic metric instead of the

stronger condition (1.1). See [4, Definition 2.1]. For the above question, we

do not need to assume a global condition on Ω, so we adopt (1.1) and the

terminology “a local carrot condition”.

Let x0 ∈ Ω be fixed and α > 1. A nontangential cone at ξ ∈ ∂Ω is

denoted by

Γα(ξ) = {x ∈ Ω ∩B(ξ, δΩ(x0)/2) : |x− ξ| ≤ αδΩ(x)}.

Note that Γα(ξ) ∩ B(ξ, r) is nonempty for each r > 0 whenever (1.1) holds

and α ≥ Aξ. By the symbol A, we denote an absolute positive constant

whose value is unimportant and may change from line to line. For two
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positive functions f1 and f2, we write f1 ≈ f2 if there exists a constant

A ≥ 1 such that f1/A ≤ f2 ≤ Af1. The constant A will be called the

constant of comparison. The LCC at ξ implies that ξ has a unique Martin

kernel (see Lemma 2.5). By GΩ( · , x0) and KΩ( · , ξ), we denote the Green

function for Ω with pole at x0 and the Martin kernel of Ω at ξ, respectively.

Theorem 1.3. Let Ω be a proper subdomain of R
n, n ≥ 3, and suppose

that ξ ∈ ∂Ω satisfies the LCC. Then

(1.2) GΩ(x, x0)KΩ(x, ξ) ≈ |x− ξ|2−n for x ∈ Γα(ξ),

where the constant of comparison depends only on α, ξ and Ω.

Remark 1.4. In Section 4, we give a bounded domain such that (1.2)

fails to hold, which is also a simple counterexample to the 3G inequality.

We say that Ω is a uniform domain if there exists a constant A0 ≥ 1

such that each pair of points x, y ∈ Ω can be connected by a curve γ with

γ \ {x, y} ⊂ Ω for which

`(γ) ≤ A0|x− y|,

min{`(γ(x, z)), `(γ(z, y))} ≤ A0δΩ(z) for all z ∈ γ.
(1.3)

If Ω is a uniform domain, then all boundary points satisfy the LCC. More-

over, the constant of comparison in (1.2) can be taken independently of

ξ ∈ ∂Ω.

Corollary 1.5. Let Ω be a uniform domain in R
n, n ≥ 3. Then

GΩ(x, x0)KΩ(x, ξ) ≈ |x− ξ|2−n for ξ ∈ ∂Ω and x ∈ Γα(ξ),

where the constant of comparison depends only on α and Ω.

Only the upper bound in Corollary 1.5 follows from the following 3G

inequality. Let Ω be a bounded uniform domain in R
n, n ≥ 3. Then there

exists a constant A depending only on Ω such that

(1.4)
GΩ(x, y)GΩ(x, z)

GΩ(y, z)
≤ A

(
|x− y|2−n + |x− z|2−n

)
for x, y, z ∈ Ω.

See Cranston-Fabes-Zhao [13] for Lipschitz domains and Aikawa-Lundh [5]

for uniformly John domains, and also Bogdan [8] and Hansen [17] in which
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a certain global estimate for the Green function was obtained. If we let

z = x0 and let y → ξ ∈ ∂Ω, then for x ∈ Ω ∩B(ξ, δΩ(x0)/2),

KΩ(x, ξ)GΩ(x, x0) ≤ A(|x− ξ|2−n + |x− x0|
2−n) ≤ A|x− ξ|2−n.

Corollary 1.5 asserts that the product GΩ( · , x0)KΩ( · , ξ) is bounded from

below by the function | · − ξ|2−n as well.

The 3G inequality in two dimensions was proved by Bass-Burdzy [7]:

for any bounded domains Ω in R
2, there exists a constant A depending only

on Ω such that

GΩ(x, y)GΩ(x, z)

GΩ(y, z)
≤ A

(
1 + log+ 1

|x− y|
+ log+ 1

|x− z|

)
for x, y, z ∈ Ω.

If Ω is a bounded uniform domain in R
2, then the same reasoning as above

gives that for x ∈ Ω close to ξ ∈ ∂Ω,

KΩ(x, ξ)GΩ(x, x0) ≤ A log
1

|x− ξ|
.

When ξ is an isolated boundary point (i.e. B(ξ, ε) \ {ξ} ⊂ Ω for some

ε > 0), this is sharp. Indeed, letting δ = min{1, ε, |x0 − ξ|}/2, we obtain by

the Harnack inequality that for x ∈ B(ξ, δ) \ {ξ},

KΩ(x, ξ) =
GΩ∪{ξ}(x, ξ)

GΩ∪{ξ}(x0, ξ)
≥
GB(ξ,2δ)(x, ξ)

AGΩ(x0, x)
≥

2δ

AGΩ(x, x0)
log

1

|x− ξ|
.

However, if Ω is the unit disc of R
2, then KΩ(rξ, ξ)GΩ(rξ, o) ≈ 1 for ξ ∈ ∂Ω

and 1/2 < r < 1. To obtain comparison estimate (1.2) for n = 2, we need

some exterior condition. Let us define the Green capacity of a compact set

E in an open set U by

CapU (E) = µ(U),

where µ is the associated Riesz measure of the regularized reduced func-

tion R̂E
1 on U . We say that ξ ∈ ∂Ω satisfies a capacity density condition

(abbreviated to CDC) if there exist constants r ′ξ > 0 and A′
ξ > 0 such that

inf
0<r<r′

ξ

CapB(ξ,2r)(B(ξ, r) \ Ω) ≥ A′
ξ.

Theorem 1.6. Let Ω be a proper subdomain of R
2, and suppose that

ξ ∈ ∂Ω satisfies the LCC and the CDC. Then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ Γα(ξ),

where the constant of comparison depends only on α, ξ and Ω.
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A uniform domain Ω is said to be NTA if there are constants r0 > 0

and A > 1 such that for each ξ ∈ ∂Ω and 0 < r < r0, there is a ball

B(z, r/A) contained in B(ξ, r) \ Ω. Observe that all boundary points of an

NTA domain satisfy the CDC, and the constants r ′ξ and A′
ξ can be taken

uniformly for ξ ∈ ∂Ω.

Corollary 1.7. Let Ω be an NTA domain in R
2. Then

GΩ(x, x0)KΩ(x, ξ) ≈ 1 for ξ ∈ ∂Ω and x ∈ Γα(ξ),

where the constant of comparison depends only on α and Ω.

Remark 1.8. Since the Green function and the Martin kernel are con-

formal invariant (cf. [14, Section 6.3]), it is easy to see that if Ω is a Jordan

domain in R
2 and ξ ∈ ∂Ω, then GΩ(x, x0)KΩ(x, ξ) ≈ 1 for x ∈ ψ−1({(r, 0) :

1/2 < r < 1}), where ψ is a conformal mapping from Ω onto the unit disc

such that ψ(x0) = (0, 0) and ψ(ξ) = (1, 0). In view of this, the LCC is not

essential when n = 2. However ∂Ω does not need to be a Jordan curve and

may have infinitely many components.

Without the assumptions on I+, I− in Theorem A, we can obtain the

following relationships as a consequence of Corollaries 1.5 and 1.7.

Corollary 1.9. Let Φ be as in Theorem A and let α > 0. Then the

following hold :

(i) lim inf
t→0

GΦ(te, e)

tα
= 0 if and only if lim sup

t→0

KΦ(te, o)

t2−n−α
= +∞.

(ii) lim sup
t→0

GΦ(te, e)

tα
= +∞ if and only if lim inf

t→0

KΦ(te, o)

t2−n−α
= 0.

Next, we give an estimate for the product of two Martin kernels with

different singularities in a uniform domain. Let ξ, η ∈ ∂Ω and let γ be a

curve connecting ξ and η such that γ\{ξ, η} ⊂ Ω and (1.3) holds. We denote

by zξ,η the middle point of γ so that `(γ(ξ, zξ,η)) = `(γ(zξ,η, η)) = `(γ)/2,

and define

g(ξ, η) = max

{
1,

|ξ − η|2−n

GΩ(zξ,η, x0)2

}
.
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Theorem 1.10. Let Ω be a bounded uniform domain in R
n, n ≥ 2,

and let ξ, η ∈ ∂Ω be distinct. Suppose that γ is a curve connecting ξ and

η such that γ \ {ξ, η} ⊂ Ω and (1.3) holds. Then the following statements

hold.

(i) If n ≥ 3, then

(1.5) KΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)
(
|x−ξ|2−n+|x−η|2−n

)
for x ∈ γ,

where the constant of comparison depends only on Ω.

(ii) If n = 2 and Ω is a bounded NTA domain, then (1.5) holds.

Corollary 1.11. Let Ω be a bounded C1,1-domain in R
n, n ≥ 2, and

let ξ, η ∈ ∂Ω be distinct. Suppose that γ is a curve connecting ξ and η such

that γ \ {ξ, η} ⊂ Ω and (1.3) holds. Then

KΩ(x, ξ)KΩ(x, η) ≈
1

|ξ − η|n
(
|x− ξ|2−n + |x− η|2−n

)
for x ∈ γ,

where the constant of comparison depends only on Ω.

§2. Preparatory material

Throughout this section, we suppose that Ω is a proper subdomain of

R
n, n ≥ 2. The quasi-hyperbolic metric on Ω is defined by

kΩ(x, y) = inf
γ

∫

γ

ds(z)

δΩ(z)
,

where the infimum is taken over all rectifiable curves γ in Ω connecting x and

y, and ds stands for the line element on γ. We say that {B(xj, δΩ(xj)/2)}
N
j=1

is a Harnack chain joining x and y in Ω if x1 = x, xN = y and xj+1 ∈

B(xj, δΩ(xj)/2) for j = 1, . . . , N − 1. The number N is called the length of

the Harnack chain. Observe that the shortest length of the Harnack chain

joining x and y in Ω is comparable to kΩ(x, y) + 1. The following Harnack

inequality is valid.

Lemma 2.1. There exists a constant A > 1 depending only on the di-

mension n such that

exp(−A(kΩ(x, y) + 1)) ≤
h(x)

h(y)
≤ exp(A(kΩ(x, y) + 1)) for x, y ∈ Ω,

whenever h is a positive harmonic function on Ω.
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To apply Lemma 2.1 to the Green function, we need the following lemma

(cf. [4, Lemma 7.2]).

Lemma 2.2. Let z ∈ Ω. Then

kΩ\{z}(x, y) ≤ 3kΩ(x, y) + π for x, y ∈ Ω \B(z, δΩ(z)/2).

Lemma 2.3. Suppose that ξ ∈ ∂Ω satisfies the LCC. Then there exists

a constant A depending only on Aξ such that if 0 < r < rξ, then

kΩ∩B(ξ,κ3r)(x, yr) ≤ A log
r

δΩ(x)
+A for x ∈ Ω ∩B(ξ, r/κ),

where yr ∈ Ω ∩ S(ξ, r) is as in Definition 1.1.

Proof. This follows from (1.1).

Lemma 2.4. Suppose that ξ ∈ ∂Ω satisfies the LCC. Let 0 < r < rξ. If

z, w ∈ Ω \ B(ξ, κ3r), then

GΩ(x, z)

GΩ(x,w)
≈
GΩ(y, z)

GΩ(y, w)
for x, y ∈ Ω ∩B(ξ, r/κ3),

where the constant of comparison depends only on rξ, Aξ and Ω.

Proof. This can be proved by the similar way as in [4], so we just sketch

the proof. Note from Lemma 2.3 that ξ has a system of local reference points

yr of order 1 (see [4, Definition 2.1] for its definition). The existence of a

curve with (1.1) shows that there is τ > 0 such that
∫
Ω∩B(ξ,r)(r/δΩ(x))τ dx ≤

Arn for 0 < r < rξ (see [4, Lemma 4.1]). As in [4, Lemma 5.1], we can obtain

the following Carleson estimate: for x ∈ Ω∩S(ξ, r/κ2) and z ∈ Ω\B(ξ, κ3r),

(2.1) GΩ(x, z) ≤ AGΩ(yr, z).

Let ω(x,E,U) denote the harmonic measure of a Borel set E for an open

set U evaluated at x. Then the similar argument to [4, Lemma 6.1] gives

that for x ∈ Ω ∩B(ξ, r/κ3) and w ∈ Ω \ B(ξ, κ3r),

(2.2) ω(x,Ω ∩ S(ξ, r/κ2),Ω ∩B(ξ, r/κ2)) ≤ A
GΩ(x,w)

GΩ(yr, w)
.
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Therefore the maximum principle, together with (2.1) and (2.2), yields that

for x ∈ Ω ∩B(ξ, r/κ3) and z, w ∈ Ω \ B(ξ, κ3r),

GΩ(x, z) ≤ A
GΩ(yr, z)

GΩ(yr, w)
GΩ(x,w).

Changing the roles of z and w, we obtain the opposite inequality. Thus the

lemma follows.

Let ξ ∈ ∂Ω and let {yj} be a sequence in Ω converging to ξ. Observe that

there is a subsequence {yjk
} such that {GΩ( · , yjk

)/GΩ(x0, yjk
)} converges

to a positive harmonic function on Ω. We call such a limit function the

Martin kernel of Ω (with pole) at ξ. A positive harmonic function h is said

to be minimal if every positive harmonic function less than or equal to h

coincides with a constant multiple of h.

Lemma 2.5. Suppose that ξ ∈ ∂Ω satisfies the LCC. Then ξ has a

unique Martin kernel and it is minimal.

Proof. This follows from Lemma 2.4 and the Martin representation

theorem.

§3. Proofs of Theorems 1.3 and 1.6

Proof of Theorem 1.3. Suppose that ξ ∈ ∂Ω satisfies the LCC and put

A1 = max

{
κ3,

δΩ(x0)

rξ

}
.

We may assume without loss of generality that rξ ≤ δΩ(x0)/2. Let x ∈ Γα(ξ)

and let r = |x − ξ|/(κ3A1). Then κ3r < rξ, since |x − ξ| < δΩ(x0) ≤ A1rξ.

Also, we have |x − ξ| ≥ κ6r and |x0 − ξ| ≥ δΩ(x0) ≥ |x − ξ| ≥ κ6r. Let

yr ∈ Ω ∩ S(ξ, r) be such that δΩ(yr) ≥ r/Aξ. Then Lemma 2.4 gives

GΩ(x, y)

GΩ(x0, y)
≈

GΩ(x, yr)

GΩ(x0, yr)
for y ∈ Ω ∩B(ξ, r).

Letting y → ξ, we obtain

(3.1) KΩ(x, ξ) ≈
GΩ(x, yr)

GΩ(x0, yr)
.
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We claim

(3.2) GΩ(x0, yr) ≈ GΩ(x0, x).

To show this, we consider two cases.

Case 1: ρ := κ|x − ξ| < rξ. The LCC and Lemma 2.3 show that there is

yρ ∈ Ω ∩ S(ξ, ρ) with δΩ(yρ) ≥ ρ/Aξ such that

kΩ(z, yρ) ≤ A log
ρ

δΩ(z)
+A for z ∈ Ω ∩B(ξ, ρ/κ).

Observe that x, yr ∈ Ω∩B(ξ, ρ/κ), δΩ(x) ≥ |x−ξ|/α = ρ/(ακ) and δΩ(yr) ≥

ρ/(AξA1κ
4). Therefore

kΩ(x, yρ) ≤ A and kΩ(yr, yρ) ≤ A.

Since x, yr, yρ ∈ Ω \ B(x0, δΩ(x0)/2), it follows from Lemmas 2.1 and 2.2

that

GΩ(x0, yr) ≈ GΩ(x0, yρ) ≈ GΩ(x0, x).

Thus (3.2) holds in this case.

Case 2: κ|x − ξ| ≥ rξ. Since r ≥ rξ/(A1κ
4), it follows from the Harnack

inequality on the compact set Γα(ξ) \ B(ξ, rξ/(A1κ
4)) that GΩ(x0, yr) ≈

GΩ(x0, x), where the constant of comparison depends only on ξ and Ω.

Thus (3.2) follows.

We next claim

(3.3) GΩ(x, yr) ≈ |x− ξ|2−n.

Let w ∈ S(yr, δΩ(yr)/2). Then the similar argument as above gives

(3.4) GΩ(x, yr) ≈ GΩ(w, yr) ≈ |w − yr|
2−n.

Since |w − yr| ≈ r ≈ |x − ξ|, we obtain (3.3). Combining (3.1), (3.2) and

(3.3), we complete the proof of Theorem 1.3.

Proof of Corollary 1.5. If Ω is a uniform domain, then κ, rξ and Aξ can

be taken uniformly for ξ ∈ Ω. Therefore (5.1) gives (3.2) and (3.3) with the

comparison constant depending only on α and Ω.
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Proof of Theorem 1.6. The proofs of (3.1), (3.2) and the first estimate

in (3.4) are independent of the dimension. It is enough to show that

GΩ(w, yr) ≈ 1 for w ∈ S(yr, δΩ(yr)/2). This will be shown in Proposi-

tion 3.2 below.

Lemma 3.1. Let Ω be a proper subdomain of R
n, n ≥ 2, and let z, w ∈

Ω satisfy |z − w| ≤ δΩ(z)/4. Suppose that u is a subharmonic function

on B(z, δΩ(z)) ∪ B(w, δΩ(w)) such that u ≤ M . If u ≤ (1 − θ)M on

B(z, δΩ(z)/8) for some 0 < θ < 1, then

u ≤
(
1 −

( 4

17

)n
θ
)
M on B(w, δΩ(w)/8).

Proof. Let x ∈ B(w, δΩ(w)/8). Observe that

B(z, δΩ(z)/8) ⊂ B(x, 17δΩ(z)/32) ⊂ B(w, δΩ(w)).

Write E1 = B(x, 17δΩ(z)/32) and E2 = E1 \ B(z, δΩ(z)/8). By the mean

value inequality, we have

u(x) ≤
1

|E1|

∫

E1

u(y) dy ≤
1

|E1|

(
(1 − θ)M |E1 \E2| +M |E2|

)

≤M
(
1 −

( 4

17

)n
θ
)
,

where |E| denotes the volume of a set E. Thus the lemma follows.

Proposition 3.2. Let Ω be a proper subdomain of R
2 and suppose that

ξ ∈ ∂Ω satisfies the LCC and the CDC. Then

GΩ(x, y) ≈ 1 for x ∈ Γα(ξ) and y ∈ S(x, δΩ(x)/2),

where the constant of comparison depends only on α, ξ and Ω.

Proof. Clearly, GΩ(x, y) ≥ GB(x,δΩ(x))(x, y) ≈ 1 for y ∈ S(x, δΩ(x)/2).

Let us show

(3.5) GΩ(x, y) ≤ A for x ∈ Γα(ξ) and y ∈ S(x, δΩ(x)/2).

The method is based on Aikawa [3, Proof of Lemma 2]. The CDC at ξ

implies that

(3.6) CapB(ξ,2r)(B(ξ, r) \ Ω) ≥ A whenever 0 < r < δΩ(x0),
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where A > 0 depends only on r′ξ, A
′
ξ and δΩ(x0). Let r = δΩ(x)/2 and

let M = supS(x,r)GΩ(x, · ). Then the maximum principle gives that for

z ∈ Ω ∩B(ξ, r),

GΩ(x, z) ≤Mω(z, S(x, r),Ω \ B(x, r)) ≤Mω(z, S(ξ, r), B(ξ, r) \ E),

where E = B(ξ, r/2) \Ω and ω(z, F, U) is the harmonic measure of a set F

for an open set U evaluated at z. By [1, Lemma 3] and (3.6), we have

sup
B(ξ,r/2)

ω( · , S(ξ, r), B(ξ, r) \ E) ≤ 1 −
1

A
CapB(ξ,r)(E) ≤ 1 − θ,

where 0 < θ < 1. Therefore

(3.7) GΩ(x, z) ≤M(1 − θ) for z ∈ Ω ∩B(ξ, r/2).

Fix z ∈ Ω ∩ S(ξ, r/4) with δΩ(z) ≥ r/(4α), and let w ∈ S(x, 3r/2). Then

δΩ(w) ≥ r/2 and |z−w| ≤ Ar. We observe, as in the proof of Theorem 1.3,

that

kΩ\{x}(z, w) ≤ 3kΩ(z, w) + π ≤ A,

where A depends only on α, ξ and Ω. Therefore z and w can be joined

by {B(wj , δΩ\{x}(wj)/4)}
N
j=1 such that w1 = z, wN = w and wj+1 ∈

B(wj , δΩ\{x}(wj)/4) for j = 1, . . . , N − 1, where N depends only on α, ξ

and Ω. Note from (3.7) that GΩ(x, · ) ≤M(1 − θ) on B(w1, δΩ\{x}(w1)/8).

Apply Lemma 3.1 repeatedly. Then

(3.8) GΩ(x,w) ≤M
(
1 −

( 4

17

)nN
θ
)

for w ∈ S
(
x,

3

2
r
)
.

Observe that for y ∈ B(x, 3r/2),

GB(x,3r/2)(x, y) = GΩ(x, y) −R
Ω\B(x,3r/2)
GΩ(x, · ) (y),

where RF
GΩ(x, · ) is the reduced function of GΩ(x, · ) relative to a set F in Ω.

By (3.8),

sup
S(x,r)

GΩ(x, · ) −M
(
1 −

( 4

17

)nN
θ
)
≤ sup

S(x,r)
GB(x,3r/2)(x, · ) = log

3

2
.

Hence we obtain M ≤ log(3/2) · (17/4)nN/θ, and thus (3.5) holds.
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§4. Counterexample

In this section, we give an example of a domain on which (1.2) fails

to hold. Let us denote a point x ∈ R
n by (x′, xn) ∈ R

n−1 × R, and write

o = (0′, 0).

Example 4.1. Suppose that n ≥ 3. Let Ω be the inverse of Ω∗ with

respect to S(o, 1), where

Ω∗ = {(x′, xn) : |x′| < 1/2, xn > 0} \B(o, 1).

Let x0 = (0′, 1/2). Then

(4.1) lim sup
x→o, x∈E

GΩ(x, x0)KΩ(x, o)

|x|2−n
= +∞,

where E = {(0′, xn) : 0 < xn < 1/4}.

Ω∗ xn

Ω

x∗= x

|x|2

⇐⇒

Figure 1: Ω and Ω∗.

Proof. Suppose to the contrary that there is a constant A such that

GΩ(x, x0)KΩ(x, o) ≤ A|x|2−n for x ∈ E.

Let KΩ∗( · ,+∞) denote the Martin kernel of Ω∗ at +∞, i.e. the limit func-

tion of GΩ∗( · , (y′, yn))/GΩ∗(x∗0, (y
′, yn)) as yn → +∞. Since KΩ∗(x,+∞) =

(2/|x|)n−2KΩ(x/|x|2, o) and GΩ∗(x, x∗0) = (2|x|)2−nGΩ(x/|x|2, x0) for x ∈

Ω∗, it follows that for x ∈ E∗,

GΩ∗(x, x∗0)KΩ∗(x,+∞) = |x|2(2−n)GΩ(x/|x|2, x0)KΩ(x/|x|2, o)

≤ A|x|2−n.
(4.2)

Let ω = {(x′, xn) : |x′| < 1/2, −∞ < xn < +∞}. Note that Ω∗ ⊂ ω and

Ω∗∩{xn > 1} = ω∩{xn > 1}, and that the Martin kernels of ω at +∞ and

−∞ are respectively of the form

(4.3) Kω(x,+∞) = eτxnf(x′) and Kω(x,−∞) = Ae−τxnf(x′),
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xn

xn = 2

x∗0

yξ

ξ

Figure 2: Positions of ξ and yξ.

where τ > 0 and A > 0 are constants and f is a positive function on

{x′ ∈ R
n−1 : |x′| < 1/2} vanishing continuously on {x′ : |x′| = 1/2}. Let

ξ = (ξ′, 2) ∈ ∂ω, and let yξ be the point in the line segment ξx∗0 such that

|yξ − ξ| = 1/4. The boundary Harnack principle gives

GΩ∗(y, x∗0)

Kω(y,−∞)
≈

GΩ∗(yξ, x
∗
0)

Kω(yξ,−∞)
for y = (y′, 2) ∈ ω ∩B(ξ, 1/4),

where the constant of comparison is independent of y, yξ and ξ. Observe

from the Harnack inequality that GΩ∗(y, x∗0) ≥ A > 0 and Kω(y,−∞) ≈

Kω(x∗0,−∞) ≈ 1 for y = (y′, 2) with δω(y) ≥ 1/4. Therefore

(4.4) Kω(y,−∞) ≤ AGΩ∗(y, x∗0)

for y = (y′, 2) ∈ (ω ∩ B(ξ, 1/4)) ∪ {δω(y) ≥ 1/4}. The arbitrariness of

ξ = (ξ′, 2) ∈ ∂ω shows that (4.4) holds for all y = (y ′, 2) ∈ ω, and so for all

y ∈ {(y′, yn) ∈ ω : yn ≥ 2} by the maximum principle. It follows from (4.2)

and (4.3) that for x ∈ E∗,

KΩ∗(x,+∞)

Kω(x,+∞)
≈ Kω(x,−∞)KΩ∗(x,+∞) ≤ A|x|2−n.

As x ∈ E∗ and xn → +∞, we have a contradiction, because

(4.5) lim sup
xn→+∞

KΩ∗((0′, xn),+∞)

Kω((0′, xn),+∞)
> 0

(see Remark 4.2 below). Hence (4.1) holds.
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Remark 4.2. We see from [6, Theorems 9.2.6 and 9.3.3] that

lim sup
xn→+∞

KΩ∗((x′, xn),+∞)

Kω((x′, xn),+∞)
> 0.

As in the proof of Example 4.1, the boundary Harnack principle and the

usual Harnack inequality give that for each xn ≥ 2,

KΩ∗((x′, xn),+∞)

Kω((x′, xn),+∞)
≈
KΩ∗((0′, xn),+∞)

Kω((0′, xn),+∞)
for |x′| < 1/2.

Thus (4.5) follows.

Remark 4.3. Aikawa and Lundh [5] constructed a bounded domain in

R
n, n ≥ 3, such that 3G inequality (1.4) fails to hold. A domain Ω in

Example 4.1 is also one of conterexamples to (1.4). Indeed, as stated in

the introduction, (1.4) implies that GΩ(x, x0)KΩ(x, o) ≤ A|x|2−n for x ∈ Ω

close to o. But this contradicts (4.1).

§5. Proof of Theorem 1.10

If Ω is a uniform domain, then the constants κ, rξ and Aξ in (1.1) can be

taken uniformly for ξ ∈ ∂Ω. In this case, Lemma 2.4 is restated as follows:

there is a constant r1 > 0 depending only on Ω such that if ξ ∈ ∂Ω and

0 < r ≤ r1, then
GΩ(x, z)

GΩ(x,w)
≈
GΩ(y, z)

GΩ(y, w)

for x, y ∈ Ω ∩ B(ξ, r) and z, w ∈ Ω \ B(ξ, κ6r), where the constant of

comparison depends only on Ω. This was indeed proved in [2] and is called

the uniform boundary Harnack principle (abbreviated to UBHP). Recall

that a uniform domain Ω is characterized in terms of the quasi-hyperbolic

metric (cf. [16]):

(5.1) kΩ(x, y) ≤ A log

(
|x− y|

min{δΩ(x), δΩ(y)}
+ 1

)
+A for x, y ∈ Ω.

The following lemma is an elementary consequence of (5.1) and Lemma 2.1.

Lemma 5.1. Let Ω be a uniform domain in R
n, n ≥ 3, or an NTA

domain in R
2. If x, y ∈ Ω satisfy δΩ(y)/2 ≤ |x− y| ≤ A2 min{δΩ(x), δΩ(y)}

for some constant A2, then

GΩ(x, y) ≈ |x− y|2−n,

where the constant of comparison depends only on A2 and Ω.
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Proof of Theorem 1.10. We give a proof only when n ≥ 3. We may

assume without loss of generality that δΩ(x0) ≥ (κ6+2)A0r1, where A0 is the

constant in (1.3). Let ξ, η ∈ ∂Ω be distinct and let γ be a curve connecting

ξ and η such that γ \ {ξ, η} ⊂ Ω and (1.3) holds. Put r = |ξ − η|/(κ6 + 2).

We consider two cases.

Case 1: r ≤ r1. Let x ∈ γ ∩ B(ξ, r). Then x, x0 ∈ Ω \ B(η, κ6r). The

UBHP gives

(5.2) KΩ(x, η) ≈
GΩ(x,wη)

GΩ(x0, wη)
,

where wη ∈ γ∩S(η, r) ⊂ Ω\B(ξ, κ6r). We again apply the UBHP to obtain

(5.3)
GΩ(x,wη)

GΩ(x, x0)
≈
GΩ(wξ, wη)

GΩ(wξ , x0)
,

where wξ ∈ γ ∩ S(ξ, r). Note from (1.3) that x ∈ ΓA0
(ξ). Therefore (5.2),

(5.3) and Corollary 1.5 give

(5.4) KΩ(x, η) ≈
GΩ(wξ, wη)

GΩ(wξ, x0)GΩ(wη, x0)

|x− ξ|2−n

KΩ(x, ξ)
.

Let zξ,η be the middle point of γ. Observe from (1.3) that δΩ(wξ), δΩ(wη),

δΩ(zξ,η) are greater than r/A0, and that |wξ − zξ,η|, |wη − zξ,η| are bounded

by `(γ) ≤ A0|ξ − η| = A0(κ
6 + 2)r. Therefore kΩ(wξ , zξ,η) ≤ A and

kΩ(wη, zξ,η) ≤ A by (5.1). Since wξ, wη , zξ,η ∈ Ω\B(x0, δΩ(x0)/2), it follows

from Lemmas 2.1 and 2.2 that

(5.5) GΩ(wξ, x0) ≈ GΩ(zξ,η, x0) ≈ GΩ(wη, x0).

Also, we have by Lemma 5.1

(5.6) GΩ(wξ, wη) ≈ |wξ − wη|
2−n ≈ r2−n ≈ |ξ − η|2−n.

Combining (5.4), (5.5) and (5.6), we obtain

(5.7) KΩ(x, ξ)KΩ(x, η) ≈
|ξ − η|2−n

GΩ(zξ,η, x0)2
|x− ξ|2−n

whenever x ∈ γ ∩ B(ξ, r). If x ∈ γ(ξ, zξ,η) \ B(ξ, r), then |x − wξ| ≤ Ar ≤

AδΩ(x) by (1.3). Therefore Lemma 2.1 and (5.1) give

KΩ(x, ξ)KΩ(x, η) ≈ KΩ(wξ, ξ)KΩ(wξ, η).
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Since |x − ξ| ≈ r = |wξ − ξ|, it follows from (5.7) with x = wξ that (5.7)

holds for x ∈ γ(ξ, zξ,η). Observe that |x− ξ|2−n ≈ |x− ξ|2−n + |x−η|2−n for

x ∈ γ(ξ, zξ,η) and |ξ − η|2−n/GΩ(zξ,η, x0)
2 ≥ A(Ω) > 0. Hence we obtain

(5.8) KΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)
(
|x− ξ|2−n + |x− η|2−n

)

for x ∈ γ(ξ, zξ,η). Similarly, we can obtain (5.8) for x ∈ γ(zξ,η, η).

Case 2: r > r1. Let x ∈ γ ∩B(ξ, r1) and let w0 ∈ γ ∩ S(ξ, r1). Then

KΩ(w0, η) ≈ 1 and GΩ(w0, x0) ≈ 1,

where the constants of comparisons depend on r1, δΩ(x0) and diam(Ω).

Note that |ξ − η| = (κ6 + 2)r ≥ κ6r1. By the UBHP and Corollary 1.5,

KΩ(x, η) ≈
KΩ(w0, η)

GΩ(w0, x0)
GΩ(x, x0) ≈

|x− ξ|2−n

KΩ(x, ξ)
≈

|x− ξ|2−n + |x− η|2−n

KΩ(x, ξ)
.

If x ∈ γ(ξ, zξ,η) \ B(ξ, r1), then δΩ(x) ≥ r1/A0 by (1.3), and so

KΩ(x, ξ) ≈ 1 ≈ KΩ(x, η) and |x− ξ| ≈ 1 ≈ |x− η|,

where the constants of comparisons depend on r1/A0, δΩ(x0) and diam(Ω).

Since |ξ−η|2−n/GΩ(zξ,η, x0)
2 ≤ A(Ω), we obtain KΩ(x, ξ)KΩ(x, η) ≈ g(ξ, η)

(|x − ξ|2−n + |x − η|2−n) for x ∈ γ(ξ, zξ,η). Similarly, we obtain this for

x ∈ γ(zξ,η, η). Thus the proof of Theorem 1.10 is complete.

Proof of Corollary 1.11. Let γ be a curve connecting ξ and η such that

γ \ {ξ, η} ⊂ Ω and (1.3) holds, and let zξ,η be the middle point of γ. Then

1

2A0
|ξ − η| ≤

1

A0
`(γ(ξ, zξ,η)) ≤ δΩ(zξ,η) ≤ `(γ(ξ, zξ,η)) ≤ A0|ξ − η|.

It is known that if Ω is a bounded C1,1-domain, then GΩ(z, x0) ≈ δΩ(z) for

z ∈ Ω \B(x0, δΩ(x0)/2). Hence Corollary 1.11 follows from Theorem 1.10.
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