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ESTIMATES FOR THE PRODUCTS OF THE GREEN
FUNCTION AND THE MARTIN KERNEL

KENTARO HIRATA

Abstract. Let Q be a proper subdomain of R™, n > 2, and let zop € 2 be
fixed. By Go and Kq we denote the Green function and the Martin kernel for
), respectively. Under a certain assumption on {2 near a boundary point £, we
show that the product Gq(z,z0)Ka(z,£) is comparable to |z —&|*™" for  in a
nontangential cone with vertex at £&. We also give an estimate for the product
Ko(z,§)Ka(z,n) in a uniform domain, where 7 is another boundary point.

§1. Introduction

The purpose of this paper is to show a relationship between the bound-
ary decay of the Green function and the boundary growth of the Martin
kernel. This is motivated by the results [9], [10], [11], [12], [15] concerned
with the boundary decay of the Green function for a Lipschitz domain and
the result [18] concerned with the boundary growth of the Martin kernel
near singularity. Now, we denote a point in R™ by (2/,z,) € R"~! x R.

THEOREM A. Let ¢ : R*™! — R be a Lipschitz function such that
#(0') =0, and let & = {(2/,xp) : , > ¢(2')}. Denote by Go(-,e) and
Ko(-,0) the Green function for ® with pole at e = (0',1) and the Martin
kernel of ® with pole at o = (0',0), respectively. Define

It :/ max{cb(x/),()} de'. I :/ maX{—¢(x/),0} da’.
{l="|<1} ’ {|='|<1}

2’| |z
Then the following statements hold.

(i) If I < 400 and I~ = 400, then

Gol(t
lim M =+oc0 and lim ——~
t—0+ t t—04+ ¢l
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(ii) If IT =+o00 and I~ < +o0, then

Go(t Ko(t
lim M =0 and lim M = +o00.
t—0+ t t—0+ tl-n
(ili) If IT < 400 and I~ < +oo, then lim;_ o+ Go(te,e)/t and lim;_ o4
Kg(te,0)/t'™ exist, and each of them is positive and finite.

The proof of Theorem A was based on the convergence of I™, I~ and
the minimal fine topology. The following question is natural: is the product
Go(te,e)Kg(te,0) comparable to t2~" for 0 < t < 1/2? We shall show such
an estimate in more general domains. Let 2 be a proper subdomain of R"”,
n > 2, and let dq(x) stand for the distance from x to the boundary 9€2. By
B(xz,r) and S(x,r), we denote the open ball and the sphere of center = and
radius r, respectively.

DEFINITION 1.1. We say that & € OS2 satisfies a local carrot condition
(abbreviated to LCC) if there exist constants x > 2, r¢ > 0 and A¢ > 1
with the following property: for each positive r < r¢, there is a point
yr € QN S(&,r) with do(y,) > r/A¢ such that each € QN B({,r/k) can
be connected to y, by a curve v in QN B(§, kr) for which

(1.1) U(y(z,2)) < Agda(z) forall z € v,
where £(v(x, z)) denotes the length of the subarc v(z, z) of v from x to z.

Remark 1.2. In the study of minimal Martin boundary points of a John
domain, Aikawa, Lundh and the author introduced the notion “a system of
local reference points” by using the quasi-hyperbolic metric instead of the
stronger condition (1.1). See [4, Definition 2.1]. For the above question, we
do not need to assume a global condition on €2, so we adopt (1.1) and the
terminology “a local carrot condition”.

Let g € Q be fixed and o > 1. A nontangential cone at & € 99 is
denoted by

La(§) = {z € QN B(&, 6a(20)/2) : & — £] < ada(x)}-

Note that ', (§) N B(&,r) is nonempty for each r > 0 whenever (1.1) holds
and a@ > A¢. By the symbol A, we denote an absolute positive constant
whose value is unimportant and may change from line to line. For two
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positive functions f; and fs, we write fi ~ fy if there exists a constant
A > 1 such that fi/A < fo < Af;. The constant A will be called the
constant of comparison. The LCC at £ implies that £ has a unique Martin
kernel (see Lemma 2.5). By Gq(-,zo) and Kq(-,&), we denote the Green
function for €2 with pole at zg and the Martin kernel of €2 at &, respectively.

THEOREM 1.3. Let Q be a proper subdomain of R™, n > 3, and suppose
that & € 0N satisfies the LCC. Then

(1.2) Ga(z,z0)Ka(z, &) ~ |z — ™™ for x € Tu(£),
where the constant of comparison depends only on «, & and S2.

Remark 1.4. In Section 4, we give a bounded domain such that (1.2)
fails to hold, which is also a simple counterexample to the 3G inequality.

We say that  is a uniform domain if there exists a constant Ag > 1
such that each pair of points x,y € €2 can be connected by a curve v with

v\ {z,y} C Q for which

(7) < Aolz =y,
min{l(y(z, 2)),L(v(z,y))} < Agda(z) for all z € ~.

If Q is a uniform domain, then all boundary points satisfy the LCC. More-

(1.3)

over, the constant of comparison in (1.2) can be taken independently of

&€ 00.
COROLLARY 1.5. Let ) be a uniform domain in R™, n > 3. Then
Gal(z,x0)Kq(z,€) ~ |z — &*™™  for & € 90 and z € Ty (),
where the constant of comparison depends only on a and €.

Only the upper bound in Corollary 1.5 follows from the following 3G
inequality. Let 2 be a bounded uniform domain in R", n > 3. Then there
exists a constant A depending only on €2 such that

Gao(x,y)Galzx, 2)
GQ(?/’ Z)

See Cranston-Fabes-Zhao [13] for Lipschitz domains and Aikawa-Lundh [5]
for uniformly John domains, and also Bogdan [8] and Hansen [17] in which

(1.4) <Az =y "+ |z —2*") forz,y,z € Q.
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a certain global estimate for the Green function was obtained. If we let
z =xp and let y — £ € 09, then for x € QN B(§,00(x0)/2),

Ko(z,§)Ga(z,z0) < Alz — £ + |z — mo[*™) < Alz — 7"

Corollary 1.5 asserts that the product Gqo(-,z9)Kq(-,€) is bounded from
below by the function |- — &[?2~" as well.

The 3G inequality in two dimensions was proved by Bass-Burdzy [7]:
for any bounded domains € in R?, there exists a constant A depending only
on €2 such that

Ga(7,y)Gal(z,2) + log™ #> for x,y, z € QL.
GQ(?/,Z) |$_Z| -

If Q is a bounded uniform domain in R?, then the same reasoning as above
gives that for z € Q close to £ € 01,

< A(l +log™

|z — |

1
Kaq(z,£)Ga(r,z0) < Alog PRIk
When ¢ is an isolated boundary point (i.e. B(§,e) \ {£} C Q for some
e > 0), this is sharp. Indeed, letting 0 = min{1, e, |z¢ —&|}/2, we obtain by
the Harnack inequality that for z € B(¢,9) \ {{},

Gouggy (@, €) - G p(e,25) (7, ) - 20 log 1
Gougey(r0,€) — AGa(zo, ) — AGq(z,z0) = | —¢|

However, if 2 is the unit disc of R?, then Kq(r¢,£)Ga(r€, 0) ~ 1 for £ € 09
and 1/2 < r < 1. To obtain comparison estimate (1.2) for n = 2, we need
some exterior condition. Let us define the Green capacity of a compact set

Kﬂ(x’é) =

FE in an open set U by
Capy (E) = p(U),
where p is the associated Riesz measure of the regularized reduced func-

tion f%fj on U. We say that £ € 0f) satisfies a capacity density condition
(abbreviated to CDC) if there exist constants 7; > 0 and A; > 0 such that

inf Capp(e o) (B(&7)\ Q) > Ag.

/
0<r<7"E

THEOREM 1.6. Let Q be a proper subdomain of R?, and suppose that
& € 09 satisfies the LCC and the CDC. Then

Ga(r,x0)Ka(z,§) =1 for x € To(§),

where the constant of comparison depends only on «, & and €.
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A uniform domain €2 is said to be NTA if there are constants rg > 0
and A > 1 such that for each £ € 90 and 0 < r < 7, there is a ball
B(z,r/A) contained in B(&,r) \ ©. Observe that all boundary points of an
NTA domain satisfy the CDC, and the constants ré and A’g can be taken
uniformly for £ € 99).

COROLLARY 1.7. Let Q be an NTA domain in R%. Then
Ga(z,x0)Kqo(z,6) =1 for& € 09 and v € T'y(§),
where the constant of comparison depends only on « and ).

Remark 1.8. Since the Green function and the Martin kernel are con-
formal invariant (cf. [14, Section 6.3]), it is easy to see that if €2 is a Jordan
domain in R? and ¢ € 99, then Gq(z,70)Kq(z,¢) ~ 1 for x € = 1({(r,0) :
1/2 < r < 1}), where 9 is a conformal mapping from  onto the unit disc
such that ¥ (z¢) = (0,0) and (£) = (1,0). In view of this, the LCC is not
essential when n = 2. However 0f) does not need to be a Jordan curve and
may have infinitely many components.

Without the assumptions on I, I~ in Theorem A, we can obtain the
following relationships as a consequence of Corollaries 1.5 and 1.7.

COROLLARY 1.9. Let ® be as in Theorem A and let o > 0. Then the
following hold:

Go(t Kot
(i) h?i}glf % =0 if and only if ]ir?_%Jp % = +00.
Ga(t Kot
W)mg$p¥%§fzz+m>Ummomygn?gf?§§§lzg

Next, we give an estimate for the product of two Martin kernels with
different singularities in a uniform domain. Let &7 € 00 and let v be a
curve connecting & and 7 such that v\{&, n} € Q and (1.3) holds. We denote
by z¢, the middle point of v so that £(y(&, z¢y)) = €(V(2e.1)) = £(7)/2,

and define
€ —n*" }
,n) =maxq 1, ———— 5.
g(é 77) { GQ(Z§777,-71'0)2
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THEOREM 1.10. Let Q be a bounded uniform domain in R™, n > 2,
and let £,m € 0N) be distinct. Suppose that v is a curve connecting & and
n such that v\ {&,n} C Q and (1.3) holds. Then the following statements
hold.

(i) If n >3, then
(15) Ko(x,9)Ka(z,n) ~ g(&n)(lz—& " +|lz—n>™) forz e,

where the constant of comparison depends only on ).

(ii) If n =2 and Q is a bounded NTA domain, then (1.5) holds.

COROLLARY 1.11. Let Q be a bounded CY'-domain in R™, n > 2, and
let £,n € ON) be distinct. Suppose that v is a curve connecting & and n such
that v\ {&,n} C Q and (1.3) holds. Then

Kﬂ(%f)Kﬂ(%n) ~ (‘x_g‘an_i_ ‘x_n‘an) fOT'.Z' €,

& = nl"
where the constant of comparison depends only on Q.

§2. Preparatory material

Throughout this section, we suppose that €2 is a proper subdomain of
R™ n > 2. The quasi-hyperbolic metric on 2 is defined by

. ds(z)
ka(z,y) = 1ry1f : NEE

where the infimum is taken over all rectifiable curves v in ) connecting = and
y, and ds stands for the line element on . We say that {B(x;, da(z;)/2) ;VZI
is a Harnack chain joining  and y in Q if 21 = 2, xy = y and z;11 €
B(zj,00(x;)/2) for j =1,...,N — 1. The number N is called the length of
the Harnack chain. Observe that the shortest length of the Harnack chain
joining z and y in Q is comparable to kq(z,y) + 1. The following Harnack
inequality is valid.

LEMMA 2.1. There exists a constant A > 1 depending only on the di-
mension n such that

exp(—Alka(z.y) + 1)) < % < exp(Alka(z,y) + 1)) for 2.y €,

whenever h is a positive harmonic function on €.

~—
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To apply Lemma 2.1 to the Green function, we need the following lemma
(cf. [4, Lemma 7.2]).

LEMMA 2.2. Let z € Q. Then

LEMMA 2.3. Suppose that & € O satisfies the LCC. Then there exists
a constant A depending only on A¢ such that if 0 < r < r¢, then

r
kQﬂB(ﬁ,/{P’r)(xayT) < Alog 59(1’) +A forzeQn B(f,?"/lﬁ),

where y, € QN S(E,r) is as in Definition 1.1.
Proof. This follows from (1.1). U

LEMMA 2.4. Suppose that & € 0N satisfies the LCC. Let 0 <r <r¢. If
z,w € Q\ B(&,k3r), then

Ga(z,2) - Galy, 2)
Gao(z,w)  Galy,w)

for x,y € QN B(§,7“//<;3),

where the constant of comparison depends only on r¢, A¢ and S.

Proof. This can be proved by the similar way as in [4], so we just sketch
the proof. Note from Lemma 2.3 that £ has a system of local reference points
yr of order 1 (see [4, Definition 2.1] for its definition). The existence of a
curve with (1.1) shows that there is 7 > 0 such that meB(g,r) (r/dq(x))" dx <
Ar™for 0 < r < r¢ (see [4, Lemma 4.1]). Asin [4, Lemma 5.1], we can obtain
the following Carleson estimate: for x € QNS(&,7/k?) and z € Q\ B(£, x37r),

(2.1) Ga(z,z) < AGa(yr, 2).

Let w(x, E,U) denote the harmonic measure of a Borel set E for an open
set U evaluated at z. Then the similar argument to [4, Lemma 6.1] gives
that for z € QN B(&,7/k3) and w € Q\ B(&, k37),

Ga(z,w)

(2.2) w(z, QN S, r/K2), QN B(&,r/K?)) < AGQ(% )"
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Therefore the maximum principle, together with (2.1) and (2.2), yields that
for v € QN B(&,r/k3) and z,w € Q\ B(&, K3r),

GQ(yT’7 Z)

< A
Go(x,z) < Galyr )

Ga(z,w).
Changing the roles of z and w, we obtain the opposite inequality. Thus the
lemma follows. []

Let & € 0Q and let {y;} be a sequence in €2 converging to . Observe that
there is a subsequence {y;, } such that {Ga(-,y;,)/Ga(xo,yj,)} converges
to a positive harmonic function on 2. We call such a limit function the
Martin kernel of Q (with pole) at §. A positive harmonic function h is said
to be minimal if every positive harmonic function less than or equal to h
coincides with a constant multiple of h.

LEMMA 2.5. Suppose that & € 0N satisfies the LCC. Then & has a
unique Martin kernel and it is minimal.

Proof. This follows from Lemma 2.4 and the Martin representation
theorem. [

83. Proofs of Theorems 1.3 and 1.6
Proof of Theorem 1.3. Suppose that & € 9N satisfies the LCC and put
A = max{ﬂ?’, M}
Te

We may assume without loss of generality that ¢ < do(x0)/2. Let z € T'o ()
and let r = |z — £|/(k®A1). Then K3r < rg, since |z — &| < da(zg) < Aqre.
Also, we have |z — &| > k57 and |2zg — €| > dq(z0) > |x — €] > KOr. Let
yr € QN S(E,r) be such that do(y,) > r/Ae. Then Lemma 2.4 gives

GQ(-TJ, y) ~ Gﬂ(x7 yr)
GQ(.YJO, y) GQ(Z'O, yT’)

Letting y — &, we obtain

for y € QN B, 7).

Gﬂ(xvyr)

(3.1) KQ(.%',{) ~ GQ(Z’O,yT‘).
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We claim
(3.2) Ga(zo,yr) = Ga(zg, ).

To show this, we consider two cases.

Case 1: p = kl|r — {| < 1¢. The LCC and Lemma 2.3 show that there is
y, € QN S(&, p) with da(y,) > p/Ae such that

ka(z,y,) < Alog +A forze QN B, p/K).

p
0a(z)

Observe that z,y, € QNB(§, p/k), da(x) > |[z—£|/a = p/(ak) and dq(y,) >
p/(A¢A1k*). Therefore

ko(z,y,) <A and  ko(yr,y,) < A.

Since z,yr,y, € Q\ B(zo,00(x0)/2), it follows from Lemmas 2.1 and 2.2
that

Ga(zo,yr) = Ga(zo,y,) = Ga(xo, ).
Thus (3.2) holds in this case.
Case 2: |z — | > re. Since 7 > re/(Ajx*), it follows from the Harnack
inequality on the compact set ' (&) \ B(f,rg/(Alm‘l)) that Gq(xo,yr) =~
Gq(xp,x), where the constant of comparison depends only on ¢ and €.

Thus (3.2) follows.
We next claim

(3.3) Go(z,yr) ~ |z — &>
Let w € S(yr, 6a(yr)/2). Then the similar argument as above gives
|2—n.

(3'4) GQ($,yr) ~ GQ(wayr) ~ |w —Yr

Since |w — y,| = r ~ |z — |, we obtain (3.3). Combining (3.1), (3.2) and
(3.3), we complete the proof of Theorem 1.3. 0

Proof of Corollary 1.5. If 2 is a uniform domain, then «, r¢ and A¢ can
be taken uniformly for £ € 2. Therefore (5.1) gives (3.2) and (3.3) with the
comparison constant depending only on « and §2. 0
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Proof of Theorem 1.6. The proofs of (3.1), (3.2) and the first estimate
in (3.4) are independent of the dimension. It is enough to show that
Ga(w,y,) ~ 1 for w € S(yr,0a(yr)/2). This will be shown in Proposi-
tion 3.2 below. 0

LEMMA 3.1. Let Q2 be a proper subdomain of R™, n > 2, and let z,w €

Q satisfy |z — w| < dq(z)/4. Suppose that u is a subharmonic function
on B(z,0q(z)) U B(w,dq(w)) such that u < M. Ifu < (1 —0)M on
B(z,00(z)/8) for some 0 < 0 < 1, then

u < <1 — (%)nﬁ)M on B(w,dq(w)/8).

Proof. Let z € B(w,dq(w)/8). Observe that
B(z,00(2)/8) C B(x,170q(2)/32) C B(w,dq(w)).

Write By = B(z,176q(2)/32) and Ey = E; \ B(z,00(2)/8). By the mean
value inequality, we have

u(z) < ﬁ [ utyay < L (1= )ME\ By + M|E))

| Ex |
4\n
<m(1-()"0),
- 17
where |E| denotes the volume of a set E. Thus the lemma follows. U

PROPOSITION 3.2. Let ) be a proper subdomain of R? and suppose that
& € 0N satisfies the LCC and the CDC. Then

Go(z,y) =1 forxzely(&) andy € S(z,0q(x)/2),
where the constant of comparison depends only on «, £ and €.

Proof. Clearly, Go(7,y) > GB.50(2)) (7, y) = 1 for y € S(x,a(x)/2).
Let us show

(3.5) Gao(z,y) <A for x € Ty(§) and y € S(x,0q(x)/2).

The method is based on Aikawa [3, Proof of Lemma 2]. The CDC at &
implies that

(3.6) Cappe o (B(§m) \ Q) > A whenever 0 < 7 < da(z0),
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where A > 0 depends only on r¢, A; and do(zo). Let r = do(z)/2 and
let M = supg(,,)Ga(z, -). Then the maximum principle gives that for
z€QNBE,r),

Gao(z,z) < Mw(z,S(x,r),Q\ B(z,r)) < Mw(z,S(,r),B&, 1)\ E),

where E = B(£,7/2) \ Q2 and w(z, F,U) is the harmonic measure of a set F
for an open set U evaluated at z. By [1, Lemma 3] and (3.6), we have

1
sup w(-,S(&,r),B¢r)\E)<1- 1 Cappe,n(E) <1-10,
B(&r/2)

where 0 < 6 < 1. Therefore
(3.7) Ga(z,z) < M(1—-0) for ze QN B(&r/2).

Fix z € QN S(§,r/4) with dq(z) > r/(4a), and let w € S(x,3r/2). Then
do(w) > r/2 and |z —w| < Ar. We observe, as in the proof of Theorem 1.3,
that

ko (2} (2, w) < 3ka(z,w) +m < A,

where A depends only on «, £ and 2. Therefore z and w can be joined
by {B(wj, d\ (o) (w;)/4) é}le such that w1 = 2z, wy = w and wji; €
B(wj, 0o\ (23 (w;)/4) for j = 1,...,N — 1, where N depends only on a, {
and Q. Note from (3.7) that Gq(z, -) < M(1 —0) on B(ws, o)\ (23 (w1)/8)-

Apply Lemma 3.1 repeatedly. Then

(3.8) Go(z,w) < M<1 - (%)nNH) for w € S(:c, gr>

Observe that for y € B(z,3r/2),

Gwarsy (@) = Galw,y) — Ry V2 (y),

where Rgg(w . is the reduced function of Gq(z, -) relative to a set F' in €.
By (3.8),

4 \nN 3
SS(up) Ga(z, ) — M(l - <ﬁ) 9) < SS(up) GB(e,3r/2) (@, ) = log .

Hence we obtain M < log(3/2) - (17/4)™" /6§, and thus (3.5) holds. [
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84. Counterexample

In this section, we give an example of a domain on which (1.2) fails
to hold. Let us denote a point # € R by (2/,7,) € R" ! x R, and write
o= (0,0).

ExXaMPLE 4.1. Suppose that n > 3. Let € be the inverse of Q* with
respect to S(o, 1), where

O ={(2',z,) : |2'] <1/2, z,, > 0} \ B(o, 1).
Let 2o = (0/,1/2). Then

= —|—OO,

(41) Jim sup Ga(z,70)Kq(z,0)

r—o,2€E |$|2711

where E = {(0/,z,,) : 0 < z,, < 1/4}.

Figure 1: © and Q*.

Proof. Suppose to the contrary that there is a constant A such that
Ga(z,z0)Kq(z,0) < Alz|*™ for z € E.

Let Kq=(-,+00) denote the Martin kernel of Q* at +o0, i.e. the limit func-
tion of Gox (-, (v, yn))/Gax (x5, (v, yn)) as yn — +00. Since Kq-(z, +00) =
(2/|z|)"2Kq(x/|z|?,0) and Gos(z,z8) = (2|x])> "Galx/|z|?, z0) for = €

Q*, it follows that for x € E*,
(4.2) G- (x, 75) Ko (z,+00) = 2> Ga(z/|x |, m0) Ka(z/|x|?, 0)
. < Al

Let w = {(2/,zy) : |2/| < 1/2, —00 < x, < 4+00}. Note that Q* C w and
O*n{x, > 1} =wn{x, > 1}, and that the Martin kernels of w at +o00 and
—oo are respectively of the form

(4.3) K,(z,400) =™ f(2') and K, (z,—00) = Ae """ f(a'),
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3

* e

Ty = 2

Figure 2: Positions of § and ye.

where 7 > 0 and A > 0 are constants and f is a positive function on
{2/ € R*! . |2/| < 1/2} vanishing continuously on {2’ : |2’| = 1/2}. Let
£ =(¢,2) € Ow, and let y¢ be the point in the line segment £z such that
lye — &| = 1/4. The boundary Harnack principle gives

GQ*(yaxzk]) ~ GQ*(yg,CUEk])
Kw(y’ _OO) Kw(yf’ _OO)

for y = (y',2) € wN B(&,1/4),

where the constant of comparison is independent of y, y¢ and £. Observe
from the Harnack inequality that Go-(y,z§) > A > 0 and K, (y, —00) ~
K, (x§, —o0) = 1 for y = (v, 2) with d,(y) > 1/4. Therefore

(4.4) K, (y,—0) < AGq-(y, zj)

for y = (v/,2) € (wnN B(£,1/4)) U {du(y) > 1/4}. The arbitrariness of
&= (¢,2) € Ow shows that (4.4) holds for all y = (y',2) € w, and so for all
y € {(¥,yn) € w: y, > 2} by the maximum principle. It follows from (4.2)
and (4.3) that for z € E*,

KQ* (.%', +OO)

~ K (x,—00)Kq < Alz|>™.
Ko (. 00) w(T, —00)Kq« (7, +00) < Alx|

As r € E* and x,, — 400, we have a contradiction, because

Ko« ((0
(4.5) lim sup o+ (0, 2n), +00)

>0
wn—too Ku((0/, 1), +00)

(see Remark 4.2 below). Hence (4.1) holds. U
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Remark 4.2. We see from [6, Theorems 9.2.6 and 9.3.3] that

Ko« ((2
lim sup o+ (2, ), +00)

> 0.
Tp—+00 Kw((xla 1’n), +OO)

As in the proof of Example 4.1, the boundary Harnack principle and the
usual Harnack inequality give that for each z,, > 2,

Ko- (2, 2p), +00) _ Ko (', 20), +00)
Ko((@', xp), +00) - Ko((0, zp), +00)
Thus (4.5) follows.

for |2| < 1/2.

Remark 4.3. Aikawa and Lundh [5] constructed a bounded domain in
R™, n > 3, such that 3G inequality (1.4) fails to hold. A domain  in
Example 4.1 is also one of conterexamples to (1.4). Indeed, as stated in
the introduction, (1.4) implies that Gq(z,70)Kq(z,0) < Alx[>~" for x €
close to o. But this contradicts (4.1).

85. Proof of Theorem 1.10

If © is a uniform domain, then the constants x, r¢ and A¢ in (1.1) can be
taken uniformly for £ € 9€). In this case, Lemma 2.4 is restated as follows:
there is a constant r; > 0 depending only on €2 such that if £ € 9 and
0 <r <rq, then

Ga(r,2) _ Galy,2)
Ga(z,w) ~ Ga(y,w)

for z,y € QN B(&,r) and z,w € Q\ B(&, k%), where the constant of
comparison depends only on Q. This was indeed proved in [2] and is called
the uniform boundary Harnack principle (abbreviated to UBHP). Recall
that a uniform domain 2 is characterized in terms of the quasi-hyperbolic
metric (cf. [16]):

|z — |
1 k < Al 1 A f Q0.
(5.1) a(z,y) < Alog <min{5g(m),5g(y)} +1)+ or z,y €

The following lemma is an elementary consequence of (5.1) and Lemma 2.1.

LEMMA 5.1. Let Q be a uniform domain in R™, n > 3, or an NTA
domain in R2. If x,y € Q satisfy da(y)/2 < |v —y| < Ay min{éq(x),da(y)}
for some constant Ao, then

Go(z,y) = |z —y|*™",

where the constant of comparison depends only on As and €.
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Proof of Theorem 1.10. We give a proof only when n > 3. We may
assume without loss of generality that 6q (z¢) > (k542)Agr1, where Ag is the
constant in (1.3). Let £, € 09 be distinct and let v be a curve connecting
¢ and 1 such that v\ {£,7} C © and (1.3) holds. Put r = [ — n|/(x% + 2).

We consider two cases.

Case 1: 7 < r;. Let z € yN B(&,7). Then z,79 € Q\ B(n,x5). The
UBHP gives

(5.2) Ko(z,n) ~ gs& Ij"nn))’

where w,, € yNS(n,r) C Q\ B(£, k). We again apply the UBHP to obtain

Gﬂ(xywn) ~ Gﬂ(wfawn)
Gao(z,z0)  Galwe, xo)’

where wg € v N S(&,7). Note from (1.3) that « € I'4,(&). Therefore (5.2),
(5.3) and Corollary 1.5 give

(5.3)

o Go(wgwy)  Jo—¢gP™"
(54) KQ('%.777) ~ Gﬂ(w&xo)GQ(ZUn,l'O) KQ(I',f) .

Let z¢, be the middle point of 7. Observe from (1.3) that do(we), do(wy),
da(z¢,n) are greater than r/Ag, and that |we — 2z¢ 5|, |wy — 2¢ | are bounded
by £(v) < Aol§ —n| = Ao(k® + 2)r. Therefore ko(we,ze,) < A and
kq(wy, z¢y) < Aby (5.1). Since we, wy, z¢, € 2\ B(x0,d0(0)/2), it follows
from Lemmas 2.1 and 2.2 that

(5.5) Galwe, x0) = Galzen, o) = Gao(wy, o).
Also, we have by Lemma 5.1

(5.6) Go(we, wy) = Jwe — wy[>" = 127"~ ¢ — P
Combining (5.4), (5.5) and (5.6), we obtain

€ — ™

_ ¢12—n
GQ(Z&WUO)Z‘% ¢l

(5.7) Ko(z,§)Ka(z,n) ~

whenever x € YN B(&,r). If © € y(&,2¢,) \ B(&,7), then [z —we| < Ar <
Adq(x) by (1.3). Therefore Lemma 2.1 and (5.1) give

Ka(z,§)Ka(x,m) = Ka(we, §) Ka(we,n).
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Since |z — | = r = |we — ¢, it follows from (5.7) with x = we that (5.7)
holds for € (&, z¢,). Observe that |z —&[*7" &~ [z — &> + |z —n|> ™ for
z € (&, zey) and |€ — 0> /Ga(ze n, x0)* > A(2) > 0. Hence we obtain

(5.8) Ko(x,9)Ka(z,n) =~ g(&.n)(lx — &> " + |z —n|*™")

for x € v(§, z¢,,). Similarly, we can obtain (5.8) for = € y(z¢, 7).

Case 2: r > r;. Let z € yN B(&,r1) and let wg € yN S(E,71). Then
Kq(wo,n) =1 and Ggq(wo,zo) ~ 1,

where the constants of comparisons depend on 71, do(zg) and diam(S2).
Note that |¢ — 5| = (k% + 2)r > k%1. By the UBHP and Corollary 1.5,

Kaq(wo,n) G

R N e A N e et/ |
Ga(wo, xo) '

Ko(z,8) Ko(z, )

If © € v(§, z¢y) \ B(&,71), then dq(x) > 71 /A by (1.3), and so

Kﬂ(x777) ~

a(r,z0) =

where the constants of comparisons depend on 71 /Ay, dq(xg) and diam(£2).
Since [ —n|?7"/Ga(2¢,n, 20)? < A(S2), we obtain Kq(z, &) Ka(z,n) ~ g(&,n)
(Jo — &2 + |x — n>™™) for x € (£, 2,). Similarly, we obtain this for
x € y(z¢,n,n). Thus the proof of Theorem 1.10 is complete. 0

Proof of Corollary 1.11. Let v be a curve connecting £ and 7 such that
v\ {&n} C Q2 and (1.3) holds, and let z¢, be the middle point of 7. Then

1 1
S 16— 1l £ 006 2e0)) < balen) < €16 ) < A€ =1,

It is known that if 2 is a bounded C1l-domain, then G (z,z0) ~ dq(z) for
z € Q\ B(xg,dq(xo)/2). Hence Corollary 1.11 follows from Theorem 1.10.
0
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