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LARGE DEVIATIONS FOR RADIAL RANDOM WALKS

ON HOMOGENEOUS TREES

KANJI ICHIHARA

Abstract. Donsker-Varadhan’s type large deviation will be discussed for the

pinned motion of a radial random walk on a homogeneous tree. We shall prove

that the rate function corresponding to the large deviation is associated with a

new Markov chain constructed from the above random walk through a harmonic

transform based on a positive principal eigenfunction for the generator of the

random walk.

§1. Introduction

In [5] Donsker-Varadhan’s type large deviation results have been ob-

tained for the pinned motions of two classes of diffusion processes (Brownian

motion on a hyperbolic plane and reversible, periodic diffusion processes on

R
n) which have a strong transience property in general. It has been shown

that the corresponding rate functions are related to new diffusion processes

defined through harmonic transforms based on positive principal eigenfunc-

tions for the generators associated with the original processes. This type of

large deviations seem to be of great importance for the study of Schrödinger

kernels.

Analogous large deviations can be considered for Markov chains. In

fact, Chiyonobu, Ichihara and Mituisi [1] have obtained large deviations for

a class of periodic, reversible Markov chains on Z
n. The main result in the

paper can be extended to a class of reversible Markov chains on a discrete

group of polynomial volume growth.

In this paper we shall discuss the above problem for random walks on

a class of trees. There occurs a crucial difference between discrete groups

of polynomial volume growth (euclidean type) and trees (hyperbolic type)

where principal eigenfunctions play an important role. Thus another scheme

is required.
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Let T
q+1 (q ≥ 2) be an infinite homogeneous tree of order q+1. Namely

it is a connected graph without loops or cycles and each vertex has (q + 1)-

nearest neighbours. One characteristic feature of the tree is that for every

pair of vertices x, y there is a unique path connecting x and y with length

d(x, y), where d(x, y) is the number of edges in the path and plays the role

of a distance on T
q+1.

Let Xn be a random walk on T
q+1. We are interested in an asymptotic

behaviour of the Feynman-Kac type expectation:

(1) E
P

(n,y)
(0,x)

{

exp

(

−

n−1
∑

k=0

m(Xk)

)}

as n → ∞

where P
(n,y)
(0,x) denotes the probability law of the process X· pinned as X0 =

x, Xn = y and m(x) is a bounded function on T
q+1. The first step to

investigate such a behaviour is to establish large deviation results for the

occupation time distribution of the pinned random walk.

From now on, we consider a random walk on T
q+1 whose one step

transition probability p(x, y) satisfies the following conditions:

(A.1) The transition probability p(x, y) depends only on the distance d(x, y).

(A.2) inf{p(x, y) | d(x, y) ≤ 1} > 0.

This type of random walk on a homogeneous tree has been treated in

Sawyer [8]. He has discussed asymptotic behaviors for the radial part of the

sample function and for the n-step transition probabilities. Some further

results in this direction can be found in [6], [7], [9], [10] and references

therein.

Define a difference operator L for a function u(x) on T
q+1 by

Lu(x) =
∑

y∈Tq+1

p(x, y)(u(y) − u(x)).

Denote by µ0 the counting measure on T
q+1. Then L is a self-adjoint oper-

ator in the Hilbert space L2(Tq+1, µ0).

Let M be the set of probability measures on T
q+1 endowed with the

weak topology. Let Ωx be the space of all sequences X0, X1, X2, . . . with

X0 = x and Xi ∈ T
q+1. We have a probability measure on Ωx induced by

p( · , · ), which is denoted by Px and is called the random walk associated
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with the transition probability {p(x, y)}. For each ω ∈ Ωx, each positive

integer n and a subset A of T
q+1, define

Ln(ω,A) =
1

n

n−1
∑

k=0

χA(Xk(ω))

and for a measurable subset B ⊆ M,

Q
(n,y)
(0,x)(B) = P

(n,y)
(0,x) (ω ; Ln(ω, · ) ∈ B).

In this paper a large deviation principle for Q
(n,y)
(0,x) will be investigated.

In order to introduce a rate function appropriate for our formulation, we

first discuss a generalized eigenvalue problem for the difference operator L

related to the random walk (Xn, Px).

Let Sk(x) be the sphere centered at x with radius k ∈ N ∪ {0} i.e.

Sk(x) = {y ; d(x, y) = k, y ∈ T
q+1}.

Evidently, |S0(x)| = 1 and |Sk(x)| = (q + 1)qk−1 (k ≥ 1).

Under the assumption (A.1), we may set

p(x, y) = A(d) = Ad, d = d(x, y)

and

P
(

d(Xn+1, Xn) = d | Xn = x
)

= A∗
d = qd−1(q + 1)Ad, d > 0

with A∗
0 = A0. Note that the numbers {Ad} satisfy a relation

A0 +
∞
∑

d=1

qd−1(q + 1)Ad = 1.

For a fixed point x0 ∈ T
q+1, define

(2) u0(x) =

(

1 +
q − 1

q + 1
d(x0, x)

)

q−d(x0,x)/2, x ∈ T
q+1

and

(3) λ0 = 1 −

∞
∑

d=0

q−d/2

(

1 +
q − 1

q + 1
d

)

A∗
d.

It is easily verified that λ0 ∈ (0, 1).
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Theorem 1. It holds that for u0(x) and λ0 defined above,

Lu0(x) + λ0u0(x) = 0, x ∈ T
q+1.

It should be remarked that the number λ0 is the greatest lower bound

of the L2-spectrum of the difference operator −L, see [10] and that u0(x) is

a corresponding (generalized) eigenfunction. This theorem is an immediate

consequence of the following lemma which is implicit in Proposition 2.4,

Chapter II, [4].

Lemma 1. For x ∈ T
q+1, m ∈ N

∑

y:d(x,y)=m

u0(y) = qm/2−1(q + 1)

(

1 +
q − 1

q + 1
m

)

u0(x).

Making use of the function u0(x) above, a new transition probability

function p0(x, y) is defined by

p0(x, y) =
p(x, y)u0(y)

(1 − λ0)u0(x)
, x, y ∈ T

q+1.

Let (X0
n, P 0

x ) be the Markov chain on T
q+1 induced by {p0(x, y)}. From

the definition of p0(x, y), the Markov chain (X0
n, P 0

x ) is reversible with re-

spect to u2
0 i.e. u0(x)2p0(x, y) = u0(y)2p0(y, x). Denote by p0

n(x, y) the n-

step transition probability of the Markov chain X 0
n. Then p0

n(x, y) satisfies

p0
n(x, y) = u0(y)

(1−λ0)nu0(x)pn(x, y).

Set

π0u(x) =
∑

y∈Tq+1

p0(x, y)u(y).

Denote by U the set of positive functions u on T
q+1 for each of which there

exist constants a and b such that 0 < a ≤ u(x) ≤ b < ∞ for all x ∈ T
q+1.

We now introduce a functional on M which plays the role of a rate

function in our case.

I0(µ) = − inf
u∈U

∑

x∈Tq+1

log

(

π0u

u

)

(x)µ(x), µ ∈ M.

Note that I0(µ) < ∞ for any µ ∈ M. In fact, under the assumption (A.2),

we have that for any x ∈ T
q+1

π0u(x) ≥
p(x, x)

1 − λ0
u(x) =

p(x0, x0)

1 − λ0
u(x).
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Hence

−I0(µ) = inf
u∈U

∑

x∈Tq+1

log

(

π0u

u

)

(x)µ(x) ≥ log

(

p(x0, x0)

1 − λ0

)

> −∞,

which implies that I0(µ) < ∞ for any µ ∈ M.

Our main results are the following.

Theorem 2. (i) For any compact C ⊆ M,

lim sup
n→∞

1

n
log Q

(n,y)
(0,x)(C) ≤ − inf

µ∈C
I0(µ).

(ii) For any open G ⊆ M,

lim inf
n→∞

1

n
log Q

(n,y)
(0,x)(G) ≥ − inf

µ∈G
I0(µ).

Theorem 3. For any bounded function m(x) on T
q+1,

lim
n→∞

1

n
log E

P
(n,y)
(0,x)

{

exp

(

−

n−1
∑

k=0

m(Xk)

)}

= − inf
µ∈M

{

I0(µ) +
∑

x∈Tq+1

m(x)µ(x)

}

.

§2. Proof of Theorem 2: Upper bound

We shall first prove the upper bound in Theorem 2.

Set for a function u ∈ U ,

V (x) = π0u(x), W (x) = log

(

V (x)

u(x)

)

.

From the definition of the pinned process,

E
P

(n,y)
(0,x)

{

u(Xn−1) exp

(

−

n−1
∑

k=0

W (Xk)

)}

=
1

pn(x, y)
EPx

{

u(Xn−1) exp

(

−

n−1
∑

k=0

W (Xk)

)

p(Xn−1, y)

}

=
1

pn(x, y)

∑

x1,...,xn−1∈Tq+1

u(xn−1) exp

(

−

n−1
∑

k=0

W (xk)

)

× p(xn−1, y)p(x, x1)p(x1, x2) · · · p(xn−2, xn−1),
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inserting p(x, y) = (1 − λ0)u0(x)p0(x, y)/u0(y) into the above,

=
(1 − λ0)

n−1u0(x)

pn(x, y)

∑

x1,...,xn−1∈Tq+1

u(xn−1) exp

(

−

n−1
∑

k=0

W (xk)

)

×
p(xn−1, y)

u0(xn−1)
p0(x, x1)p

0(x1, x2) · · · p
0(xn−2, xn−1)

=
(1 − λ0)

n−1u0(x)

pn(x, y)
EP 0

x

{

u(X0
n−1) exp

(

−
n−1
∑

k=0

W (X0
k)

)

p(X0
n−1, y)

u0(X
0
n−1)

}

.

Making use of the boundedness of p(z, y)/u0(z) in z for a fixed y and an

estimate of pn(x, y) for a large n, see Theorem 19.30 in [10], page 215, we

have

E
P

(n,y)
(0,x)

{

u(Xn−1) exp

(

−
n−1
∑

k=0

W (Xk)

)}

≤ C1
(1 − λ0)

n−1u0(x)

pn(x, y)
EP 0

x

{

u(X0
n−1) exp

(

−
n−1
∑

k=0

W (X0
k)

)}

≤ C2n
3/2u0(y)eC3d(x,y)2/nEP 0

x

{

u(X0
n−1) exp

(

−
n−1
∑

k=0

W (X0
k)

)}

,

following arguments in [2], page 8

= C2n
3/2u0(y)eC3d(x,y)2/nu(x).

Thus we have obtained

(4) E
P

(n,y)
(0,x)

{

exp

(

−
n−1
∑

k=0

W (Xk)

)}

≤ C2
n3/2u0(y)eC3d(x,y)2/nu(x)

infx∈Tq+1 u(x)
.

The definition of Q
(n,y)
(0,x) implies

E
P

(n,y)
(0,x)

{

exp

(

−
n−1
∑

k=0

W (Xk)

)}

= E
P

(n,y)
(0,x)

{

exp

(

−n
∑

z∈Tq+1

W (z)Ln(ω, {z})

)}

= E
Q

(n,y)
(0,x)

{

exp

(

−n
∑

z∈Tq+1

W (z)µ(z)

)}

.
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Consequently it follows that for any measurable subset C of M

E
Q

(n,y)
(0,x)

[

exp

(

−n
∑

z∈Tq+1

W (z)µ(z)

)]

(5)

≥ Q
(n,y)
(0,x)(C) exp

(

−n sup
µ∈C

∑

z∈Tq+1

W (z)µ(z)

)

.

Combining (4) and (5), we obtain

Q
(n,y)
(0,x)(C) ≤ C2

n3/2u0(y)eC3d(x,y)2/nu(x)

infx∈Tq+1 u(x)
· exp

(

n sup
µ∈C

∑

z∈Tq+1

W (z)µ(z)

)

.

Since u is an arbitrary element of U , we have

(6) lim sup
n→∞

1

n
log Q

(n,y)
(0,x)(C) ≤ inf

u∈U
sup
µ∈C

∑

z∈Tq+1

log

(

π0u

u

)

(z)µ(z).

The upper bound in Theorem 2 now follows from the same reasoning as in

[2], page 9.

§3. Proof of Theorem 2: Lower bound

We need some auxiliary results from [3].

Let MTq+1×Tq+1 be the space of all probability measures on T
q+1×T

q+1

and let Mα,β be the set of all λ ∈ MTq+1×Tq+1 with first marginal α and

second marginal β. U1 denotes the set of functions u(x, y) on T
q+1×T

q+1 for

each of which there are constants a and b such that 0 < a ≤ u(x, y) ≤ b < ∞

on T
q+1 × T

q+1. For any λ ∈ MTq+1×Tq+1 , we define

Ī(λ) = − inf
u∈U1

{

log

{

∑

Tq+1×Tq+1

u(x, y)λ0(x, y)

}

−
∑

Tq+1×Tq+1

log u(x, y) · λ(x, y)

}

where λ0(x, y) = γ(x)p0(x, y), γ being the first marginal of λ.

Let a probability measure µ ∈ M have full support. As is remarked

after the introduction of the rate function I0(λ), I0(λ) < ∞ for any λ ∈ M.

Applying Theorem 2.1 in [3], we see that

(7) I0(µ) = inf
λ∈Mµ,µ

Ī(λ).
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Since Ī(λ) is lower semicontinuous and since Mµ,µ is compact, the infimum

in (7) is actually attained. Denote the element of Mµ,µ where this infimum

is attained by λ̄, i.e., Ī(λ̄) = I0(µ). We write λ̄(x, y) = µ(x)p̄0(x, y), for all

(x, y) ∈ T
q+1 ×T

q+1. Note that p̄0(x, y) becomes the transition probability

of a new Markov process on T
q+1. The probability measure µ is an invariant

measure for p̄0, since µ is not only a first marginal for λ̄ but also a second

marginal. Denote by P̄ 0 the probability for the stationary discrete param-

eter Markov process having p̄0(x, y) as its transition probability and the

invariant measure µ as initial distribution. Denote by P̄ 0
x the corresponding

probabilities for this process starting at x. In the proof of lower bound in

Theorem 2, we need the fact that the stationary process P̄ 0 is ergodic. In

order to show this, we proceed as follows. From the definition of I0(µ), there

exists a sequence {un} in U such that

lim
n→∞

∑

x∈Tq+1

log

(

π0un

un

)

(x)µ(x) = −I0(µ).

Let

λn(x, y) = µ(x)
un(y)

(π0un)(x)
p0(x, y)

and let λ̄ be as above.

Since I0(µ) < ∞, Lemma 2.4 in [3] implies that

lim
n→∞

‖λn − λ̄‖ = 0

where the norm is the variation norm. Taking the discrete situation into

account, this gives that for any (x, y) ∈ T
q+1 × T

q+1

lim
n→∞

λn(x, y) = λ̄(x, y).

From this, we get

Lemma 2. Under the assumption that supp(µ) = T
q+1

h(x, y) := lim
n→∞

un(y)

π0un(x)

exists and is strictly positive for all (x, y) ∈ T
q+1 × T

q+1.
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Proof. First note that (A.1) together with the hypotheses guarantees

the existence of limn→∞ un(y)/π0un(x) for all x and y satisfying d(x, y) ≤ 1.

Since I0(µ) < ∞ and π0un(x)/un(x) is uniformly bounded below by a

positive constant p0(x0, x0)/(1 − λ0), we have

lim
n→∞

π0un(x)

un(x)
< ∞, x ∈ T

q+1.

For x and y such as d(x, y) ≥ 2, choose a sequence xk, k = 0, 1, . . . , n0 such

that

x0 = x, x1, . . . , xn0 = y

d(xk, xk+1) = 1, k = 0, 1, . . . , n0 − 1.

Then we have

un(y)

π0un(x)
=

un(x1)

π0un(x0)

π0un(x1)

un(x1)

un(x2)

π0un(x1)
· · ·

· · ·
un(xn0−1)

π0un(xn0−2)

π0un(xn0−1)

un(xn0−1)

un(xn0)

π0un(xn0−1)
.

Hence letting n → ∞, from the above we get the existence of limn→∞

un(y)/π0un(x) for all x and y in T
q+1. Applying Lemma 2.5 in [3], we get

that there exist two functions a(x) and b(y) such as

h(x, y) := lim
n→∞

un(y)

π0un(x)
=

a(x)

b(y)

where 0 ≤ a(x) < ∞ and 0 < b(y) ≤ ∞. Since h(x, x) > 0,

0 < a(x), b(y) < ∞

for any x, y. This completes the proof of Lemma 2.

We shall now complete the proof of the lower bound in Theorem 2.

Assume µ ∈ G has full support on T
q+1. Denote by λ̄ an element of Mµ,µ

for which Ī(λ̄) = I0(µ) as before. Define p̄0(x, y) by λ̄(x, y) = µ(x)p̄0(x, y).

Since

λ̄(x, y) = µ(x)
a(x)

b(y)
p0(x, y),
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it follows from Lemma 2.1 in [2] that

I0(µ) =
∑

Tq+1×Tq+1

log(a(x)/b(y))λ̄(x, y).

It is possible to find a sphere S(µ, ε) with center µ and radius ε > 0 with

respect to the Prokhorov metric such that S(µ, ε) ⊆ G. Set

Fn,ε =

{

ω = (xj)j≥0 ∈ Ωx ;
1

n − 1

n−1
∑

j=1

log(a(xj−1)/b(xj)) ≤ I0(µ) + ε

}

.

Let P̄ 0 and P̄x
0

be the probabilities introduced before. The P̄ 0 process is a

stationary process and, by Lemma 2, is a mixing process. Hence by virtue

of the ergodic theorem, we have

P̄ 0
x (ω ; Ln(ω, · ) converges to µ as n → ∞) = 1

P̄ 0
x

(

ω ; lim
n→∞

1

n − 1

n−1
∑

j=1

log
(

a(X̄0
j−1)/b(X̄

0
j )
)

=
∑

Tq+1×Tq+1

log(a(x)/b(y))λ̄(x, y)

)

= 1.

Making use of the same harmonic transform as in the proof of the upper

bound, we get

P
(n,y)
(0,x) (ω ; Ln(ω, · ) ∈ G) ≥ P

(n,y)
(0,x) (ω ; Ln(ω, · ) ∈ S(µ, ε))

=
(1 − λ0)

n−1u0(x)

pn(x, y)
EP 0

x

{

p(X0
n−1, y)

u0(X0
n−1)

; Ln ∈ S(µ, ε)

}

,

which is expressed by means of the Markovian measure (X̄0
n, P̄ 0

x ) as

(1 − λ0)
n−1u0(x)

pn(x, y)

× EP̄ 0
x

{

p(X̄0
n−1, y)

u0(X̄0
n−1)

exp

(

−

n
∑

j=1

log h(X̄0
j−1, X̄

0
j )

)

; Ln ∈ S(µ, ε)

}
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≥
(1 − λ0)

n−1u0(x)

pn(x, y)

× EP̄ 0
x

{

p(X̄0
n−1, y)

u0(X̄
0
n−1)

exp(−(n − 1)[I0(µ) + ε]) ; Ln ∈ S(µ, ε)

}

≥
(1 − λ0)

n−1u0(x)

pn(x, y)
exp(−(n − 1)[I0(µ) + ε])

× EP̄ 0
x

{

p(X̄0
n−1, y)

u0(X̄0
n−1)

; {Ln ∈ S(µ, ε)} ∩ Fn,ε

}

.

Combining the estimate for pn(x, y) and the boundedness of p( · , y)/u0( · )

with the ergodicity of the process X̄0
n, we get by letting n → ∞ and ε → 0

that

(8) lim
n→∞

1

n
log Q

(n,y)
(0,x)(G) ≥ −I0(µ).

Let M0 be the set of probability measures on T
q+1 with full support.

Then it is easy to prove that under our assumptions

inf
µ∈G

I0(µ) = inf
µ∈G∩M0

I0(µ)

for any open subset G ⊆ M.

This together with (8) completes the proof of the lower bound.

§4. Proof of Theorem 3

In this section we shall discuss an asymptotic behavior of the Feynman-

Kac type functional associated with the walk.

Let L2(Tq+1, u2
0) be the set of real valued functions on T

q+1 which are

square integrable with respect to the measure u2
0. Denote by 〈f, g〉 the inner

product on L2(Tq+1, u2
0) i.e. 〈f, g〉 =

∑

x∈Tq+1 f(x)g(x)u0(x)2.

Let h be a bounded function on T
q+1. Introduce an operator Ah for a

bounded function f on T
q+1 by

Ahf(x) = e−h(x)/2
∑

y∈Tq+1

p0(x, y)e−h(y)/2f(y) = e−h(x)/2π0(e−h/2f)(x).

It can be easily seen that the operator Ah defines a bounded operator on

L2(Tq+1, u2
0) and that

〈Ahf, g〉 = 〈f,Ahg〉, f, g ∈ L2(Tq+1, u2
0),
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holds. Hence Ah is self-adjoint on L2(Tq+1, u2
0).

Let u be in U . We follow the same notations V (x) = π0u(x) and

W (x) = log(V (x)/u(x)) as in the proof of Theorem 2.

On the other hand, by the same reasoning as in [2], page 8,

EP 0
x
{

u(X0
n−1) exp{−[W (X0

0 ) + W (X0
1 ) + · · · + W (X0

n−1)]}
}

= u(x).

Thus

(9) EP 0
x
{

exp{−[W (X0
0 ) + W (X0

1 ) + · · · + W (X0
n−1)]}

}

≤
u(x)

infy∈Tq+1 u(y)
.

This implies the left hand-side in (9) is uniformly bounded for a fixed func-

tion u in U .

It is easy to see that

An
Wf(x) = eW (x)/2EP 0

x
{

exp{−[W (X0
0 ) + W (X0

1 ) + · · · + W (X0
n)]}(10)

× eW (X0
n)/2f(X0

n)
}

.

In particular, An
W 1 is uniformly bounded on T

q+1 by a constant depending

only on u.

We have for f ∈ L2(Tq+1),

(11) 〈An
W f,An

Wf〉 =
∑

x∈Tq+1

(An
W f)2(x)u0(x)2,

the Schwartz inequality applied to (An
W f)2 together with the uniform

boundedness of AW 1 and the symmetry of the operator AW implies,

≤
∑

x∈Tq+1

An
W (f2)An

W 1(x)u0(x)2 ≤ C
∑

x∈Tq+1

An
W (f2)u0(x)2

= C
∑

x∈Tq+1

An
W1(x)f(x)2u0(x)2 ≤ C2

∑

x∈Tq+1

f(x)2u0(x)2 = C2〈f, f〉.

Hence we get ‖An
W ‖L2(Tq+1,u2

0)
≤ C, n = 1, 2, . . . . Denoting by λW the

upper bound of the L2 spectrum for AW , the above implies that λW is less

than or equal to 1 i.e.

λW = sup
f :〈f,f〉=1

〈AW f, f〉 ≤ 1.
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Thus we have for a nonnegative function f with 〈f, f〉 = 1,

0 ≥ log〈AW f, f〉

= log

(

∑

x,y∈Tq+1

e−W (x)/2p0(x, y)e−W (y)/2f(y)f(x)u2
0(x)

)

= log

(

∑

x,y∈Tq+1

e

n

−
W (x)

2
+

m(x)
2

o

+
n

−
W (y)

2
+

m(y)
2

o

×
e−m(x)/2p0(x, y)e−m(y)/2f(x)f(y)u0(x)2

〈Amf, f〉

)

+ log〈Amf, f〉,

by virtue of Jensen’s inequality

≥
∑

x,y∈Tq+1

(

{

−
W (x)

2
+

m(x)

2

}

+

{

−
W (y)

2
+

m(y)

2

}

)

×
e−m(x)/2p0(x, y)e−m(y)/2f(x)f(y)u0(x)2

〈Amf, f〉
+ log〈Amf, f〉

=
∑

x∈Tq+1

(−W (x) + m(x))
(Amf)(x)f(x)u0(x)2

〈Amf, f〉
+ log〈Amf, f〉.

Introduce a probability measure on T
q+1 defined by

µm,f (x) :=
(Amf)(x)f(x)u0(x)2

〈Amf, f〉
.

Then the above inequality implies

∑

x∈Tq+1

log

(

π0u

u

)

(x)µm,f (x) −
∑

x∈Tq+1

m(x)µm,f (x) ≥ log〈Amf, f〉, u ∈ U ,

taking the infimum of the left hand-side over U , we get

−I0(µm,f ) −
∑

x∈Tq+1

m(x)µm,f (x) ≥ log〈Amf, f〉.
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Noting that µm,f is an element of M, we finally see

sup
µ∈M

{

−I0(µ) −
∑

x∈Tq+1

m(x)µ(x)

}

(12)

≥ sup
〈f,f〉=1

f≥0

{

−I0(µm,f ) −
∑

x∈Tq+1

m(x)µm,f (x)

}

(13)

≥ sup
〈f,f〉=1

f≥0

log〈Amf, f〉 = log λm.(14)

Thus we have obtained

− inf
µ∈M

{

I0(µ) +
∑

x∈Tq+1

m(x)µ(x)

}

≥ log λm.

Combining this with Theorem 2, (ii), we get

lim inf
n→∞

1

n
log E

P
(n,y)
(0,x)

{

exp

(

−

n−1
∑

k=0

m(Xk)

)}

(∗)

≥ − inf
µ∈M

{

I0(µ) +
∑

x∈Tq+1

m(x)µ(x)

}

≥ log λm.

Consequently, in order to prove Theorem 3, it suffices to show

(15) lim sup
n→∞

1

n
log E

P
(n,y)
(0,x)

{

exp

(

−

n−1
∑

k=0

m(Xk)

)}

≤ log λm.

From the definition of the pinned process

E
P

(n,y)
(0,x)

{

exp

(

−

n−1
∑

k=0

m(Xk)

)}

=
1

pn(x, y)
EPx

{

exp

(

−

n−1
∑

k=0

m(Xk)

)

p(Xn−1, y)

}

,
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making use of the same harmonic transform as in the proof of Theorem 2
(upper bound),

=
(1 − λ0)

n−1u0(x)

pn(x, y)
EP 0

x

{

exp

(

−
n−1
∑

k=0

m(X0
k)

)

p(X0
n−1, y)

u0(X
0
n−1)

}

=
(1 − λ0)

n−1u0(x)

pn(x, y)
e−m(x)/2An−1

m

(

e−m( · )/2 p( · , y)

u0( · )

)

(x).

Applying the Schwarz inequality, we get from the above

An−1
m

(

e−m( · )/2 p( · , y)

u0( · )

)

(x) = AmAn−2
m

(

e−m( · )/2 p( · , y)

u0( · )

)

(x)

≤ e−m(x)/2

√

√

√

√

∑

z∈Tq+1

p0(x, z)2e−m(z)

u0(z)2

×

√

√

√

√

∑

z∈Tq+1

[

An−2
m

(

e−m( · )/2
p( · , y)

u0( · )

)

(z)

]2

u0(z)2

≤ Cx,y

√

〈

An−2
m

(

e−m( · )/2
p( · , y)

u0( · )

)

, An−2
m

(

e−m( · )/2
p( · , y)

u0( · )

)〉

where Cx,y is a positive constant depending only on x, y and m. Since

e−m( · )/2p( · , y)/u0( · ) is square integrable with respect to the measure u2
0,

we get

An−1
m

(

e−m( · )/2 p( · , y)

u0( · )

)

(x)

≤ Cx,yλ
n−2
m

√

〈

e−m( · )/2
p( · , y)

u0( · )
, e−m( · )/2

p( · , y)

u0( · )

〉

.

This implies that the inequality (15) is valid.
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