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BASE CHANGE OF INVARIANT SUBRINGS

MITSUYASU HASHIMOTO

Abstract. Let R be a Dedekind domain, G an affine flat R-group scheme, and

B a flat R-algebra on which G acts. Let A → BG be an R-algebra map. Assume

that A is Noetherian. We show that if the induced map K ⊗A → (K ⊗B)K⊗G

is an isomorphism for any algebraically closed field K which is an R-algebra,

then S ⊗ A → (S ⊗ B)S⊗G is an isomorphism for any R-algebra S.

§1. Introduction

In this paper, we prove the following.

Theorem 1. Let R be a Dedekind domain, G an affine flat R-group

scheme, and M an R-flat G-module. Let A be a Noetherian R-algebra, and

V a finitely generated A-module. Let ϕ : V → MG be an R-linear map. If

the induced map ϕK : K ⊗ V → (K ⊗M)K⊗G is an isomorphism for any

algebraically closed field K which is an R-algebra, then the canonical map

ϕS : S ⊗ V → (S ⊗M)S⊗G is an isomorphism for any R-algebra S.

As a corollary, we have the following.

Corollary 2. Let R be a Dedekind domain, G an affine flat R-group

scheme, and B a flat R-algebra on which G-acts. Let A be a Noetherian

R-algebra, and ϕ : A→ BG an R-algebra map. If the induced map ϕK : K⊗

A → (K ⊗ B)K⊗G is an isomorphism for any algebraically closed field K

which is an R-algebra, then the canonical map ϕS : S⊗A→ (S ⊗B)S⊗G is

an isomorphism for any R-algebra S.

So we may work only over algebraically closed field instead of general

commutative ring, once we know that the action and the candidate of the

generator and the relation of the invariant subring are given over a Dedekind

domain (e.g., Z), and the group scheme in problem is flat over the Dedekind

domain.
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De Concini and Procesi [3] calculated the invariant subrings for several

important group scheme actions over an arbitrary commutative ring. In [6],

a simple proof (for the action of the general linear group and the symplectic

group) utilizing a geometric argument over a field is given. In order to

reduce the case of general base ring to the case of base field, the knowledge

of good filtrations is utilized in [6], but this was a completely general theory

as above, since we know that the general linear group and the symplectic

group are flat over Z.

In Section 2, we prove the theorem above. In Section 3, we give an

example of applications.

§2. The proof of the main theorem

Let R be a commutative ring, and G a flat R-group scheme. Let

C be the coordinate ring R[G] of G. It is an R-flat commutative R-

Hopf algebra. A G-module is nothing but a right C-comodule, see [7,

Chapter 2]. For a G-module M , MG = {m ∈ M | ω(m) = m ⊗ 1},

where ω : M → M ⊗ C is the coaction. By means of the natural inclusion

HomG(R,M) ↪→ HomR(R,M) = M , the R-module HomG(R,M) is identi-

fied with MG, where R is equipped with the trivial G-module structure.

In general, an R-module V is considered as a trivial G-module. So, for

a G-module M and an R-module V , V ⊗M is a G-module with the coaction

1V ⊗ ωM : V ⊗M → V ⊗M ⊗ C

where ωM is the coaction of M .

The category of G-modules is abelian, with enough injectives, see [5,

Lemma I.3.3.3] and [5, Lemma I.3.5.9]. For a G-moduleM and an R-algebra

S, the right S ⊗ C-comodule structure of S ⊗M is given by the composite

S ⊗M
1S⊗ω
−−−→ S ⊗M ⊗ C

α
−→ (S ⊗M) ⊗S (S ⊗ C),

where α is the isomorphism given by α(s⊗m⊗ c) = (s⊗m) ⊗ (1 ⊗ c). In

particular, (S ⊗M)S⊗G = (S ⊗M)G. So (S ⊗M)G is an S-module.

Let ϕ : V → MG be an R-linear map. Then we define ϕS : S ⊗ V →

(S⊗M)G by ϕS(s⊗v) = s⊗ϕ(v). For an R-algebra map S → S ′, we define

ρS′,S : S′ ⊗S (S ⊗M)G → (S′ ⊗M)G by

ρS′,S

(

s′ ⊗
(

∑

i

si ⊗mi

))

=
∑

i

s′si ⊗mi.



BASE CHANGE OF INVARIANT SUBRINGS 167

We denote ρS,R : S ⊗MG → (S ⊗M)G by ρS . So ρS(s ⊗m) = s ⊗m for

s ∈ S and m ∈MG. Note that ϕS is the composite

S ⊗ V
1⊗ϕ
−−→ S ⊗MG ρS−→ (S ⊗M)G.

For a G-module M , we denote Exti
G(R,M) by H i(G,M), and call it

the ith G-cohomology of M . In particular, H0(G,M) = MG.

Let M be a G-module. Then by [5, Lemma I.3.6.16], H i(G,M) ∼=
Hi(CobarC(M,R)), where F(M) := CobarC(M,R) is the complex

M
δ0

−→M ⊗ C
δ1

−→M ⊗ C ⊗ C
δ2

−→ · · ·

whose boundary map is given by

δn = (−1)n+1ωM ⊗ 1C⊗n +

n−1
∑

i=0

(−1)n−i1M ⊗ 1C⊗i ⊗ ∆C ⊗ 1C⊗n−i−1

+ 1M ⊗ 1C⊗n ⊗ u,

where ∆C : C → C ⊗ C is the coproduct, and u : R → C is the unit map.

By definition, for an R-module V , F(V ⊗M) ∼= V ⊗ F(M). If M is R-flat,

then F(M) is an R-flat complex. By the universal coefficient theorem [5,

Lemma III.2.1.2] and its proof, we have the following.

Lemma 3. If R is a Dedekind domain and M is an R-flat G-module,

there is an exact sequence

0 → S ⊗MG ρS−→ (S ⊗M)G → TorR
1 (S,H1(G,M)) → 0.

Proof of Theorem 1. Let R, G, A, V , and M be as in the theorem.

First, we prove the theorem for the case where S is a field. Let K be the

algebraic closure of S. Taking the tensor product of ϕS : S⊗V → (S⊗M)G

with K over S, we get 1 ⊗ ϕS : K ⊗ V → K ⊗S (S ⊗ M)G. As K is

faithfully flat over S, it suffices to show that this map is an isomorphism.

The composite

K ⊗ V
1⊗ϕS
−−−→ K ⊗S (S ⊗M)G ρK,S

−−−→ (K ⊗M)G

is ϕK , which is an isomorphism. Since K is S-flat, ρK,S is an isomorphism

by Lemma 3. So 1 ⊗ ϕS is an isomorphism as desired, and the theorem is

true for the case that S is a field.
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Next, we show that H1(G,M) is R-flat. Since R is Noetherian, it

suffices to show that TorR
1 (R/P,H1(G,M)) = 0 for any prime ideal P

of R. Since R is a one dimensional domain, it suffices to show that

TorR
1 (R/m,H1(G,M)) = 0 for any maximal ideal m of R. On the other

hand, ϕR/m
, which is the composite

R/m ⊗ V
1⊗ϕ
−−→ R/m ⊗MG ρR/m

−−−→ (R/m ⊗M)G,

is an isomorphism by the last paragraph. So ρR/m
is surjective. By Lem-

ma 3, TorR
1 (R/m,H1(G,M)) = 0. Hence H1(G,M) is R-flat, as desired.

Since H1(G,M) is R-flat,

ρS : S ⊗MG → (S ⊗M)G

is an isomorphism for any R-algebra S by Lemma 3. Since the composite

K ⊗ V
1⊗ϕ
−−→ K ⊗MG ρK

−−→ (K ⊗M)G,

which agrees with ϕK , is an isomorphism and ρK is also an isomorphism for

any field K which is an R-algebra, we have that 1 ⊗ ϕ : K ⊗ V → K ⊗MG

is an isomorphism.

Next, we show that V is R-flat. First, we prove this for the case that

R is a DVR. Let t be a generator of the maximal ideal of R. Since V is a

Noetherian A-module, the torsion part Vtor =
⋃

r≥0(0 :V tr) as an R-module

agrees with (0 :V tr) for some r. Assume that Vtor 6= 0 for a contradiction.

Then r ≥ 1. We take r as small as possible. Take a ∈ (0 : tr) \ (0 : tr−1).

If a ∈ tV , then a = ta′ for some a′ ∈ V . Then a′ ∈ Vtor = (0 : tr). So

tr−1a = tra′ = 0. This contradicts the choice of a. So a /∈ tV . Thus

1 ⊗ a ∈ R/tR ⊗R V is nonzero. Since 1 ⊗ ϕ : R/tR ⊗R V → R/tR ⊗MG

is an isomorphism, 1 ⊗ ϕ(a) ∈ R/tR ⊗MG is nonzero. This shows that

ϕ(a) 6= 0 in MG. Since MG is a torsion free R-module, ϕ(tra) = trϕ(a) is

nonzero. This contradicts the assumption tra = 0. Hence V is R-torsion

free. Since R is a DVR, V is R-flat. Now consider the general case. Let

m be a maximal ideal of R. Applying the discussion above to R′ = Rm,

A′ = R′ ⊗ A, V ′ = R′ ⊗ V and M ′ = R′ ⊗M , we have that Vm is Rm-flat

for any m. This shows that V is R-flat.

By [5, Lemma I.2.1.4], ϕ : V → MG is injective, and C := Cokerϕ is

R-flat. Since K ⊗ C = 0 for any field K which is an R-algebra, we have

that C = 0 by [5, Corollary I.2.1.6]. Hence ϕ is an isomorphism.
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Let S be any R-algebra. The composite

S ⊗ V
1⊗ϕ
−−→ S ⊗MG ρS−→ (S ⊗M)G

is an isomorphism, since 1 ⊗ ϕ and ρS are. This is what we wanted to

prove.

§3. An application

Let R be a commutative ring. For an R-scheme Z, we denote Γ(Z,OZ)

by R[Z]. For v ≥ 0 and finite free R-modules F and G, we denote by

Yv(F,G) the closed subscheme of HomR(F,G) consisting of R-linear maps

of rank at most v. We denote the kernel of the map R[HomR(F,G)] →

R[Yv(F,G)] by Iv+1(F,G). If F and G are of rank f and g, respectively,

then R[HomR(F,G)] is identified with the polynomial ring R[xij]1≤i≤g, 1≤j≤f

in fg variables, and Iv+1(F,G) is identified with the ideal of R[xij ] generated

by the all (v + 1)-minors of the matrix (xij). Note that if v ≥ min(f, g),

then Yv(F,G) = HomR(F,G), and Iv+1(F,G) = 0.

Letm,n, r, s, t ∈ Z≥0 such that s ≤ m, r and t ≤ n, r. Set u := min(s, t).

Let V := Rn, W := Rm, E := Rr, X := Ys(E,W ) × Yt(V,E), and Y :=

Yu(V,W ). We define π : X → Y by π(ϕ,ψ) = ϕ ◦ ψ. Let G := GL(E) and

G′ := GL(W ) × GL(V ). Then G × G′ acts on X by (g, (g1, g2)) · (ϕ,ψ) =

(g1ϕg
−1, gψg−1

2 ) for g ∈ G, g1 ∈ GL(W ), g2 ∈ GL(V ), ϕ ∈ Ys(E,W ), and

ψ ∈ Yt(V,E). Letting G×G′ act on Y by (g, (g1, g2)) ·ρ = g1ρg
−1
2 for g ∈ G,

g1 ∈ GL(W ), g2 ∈ GL(V ), and ρ ∈ Y , the morphism π is G×G′-equivariant.

Note that G acts on Y trivially.

As an application of Theorem 1, we prove the following.

Theorem 4. The morphism π : X → Y induces an isomorphism

π# : R[Y ] → R[X]G.

Proof. By Theorem 1, we may assume that R = K is an algebraically

closed field.

Let us recall some basic facts from representation theory. A G-module

M is said to have good filtrations if Ext1
G(∆G(λ),M) = 0 for any dominant

weight λ, where ∆G(λ) denotes the Weyl module of highest weight λ, see

[7, (II.4.16)].

For a partition λ = (λ1, . . . , λk) with λ1 ≤ r, the Schur module [1] LλE
∗

is a dual Weyl module. In fact, LλE
∗ ∼= (

∧rE∗)⊗k ⊗ LµE, where µ = (r −

λk, . . . , r−λ1). By the Cauchy formula [1], K[Hom(E,W )] ∼= Sym(E⊗W ∗),
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Is+1(E,W ), K[Ys(E,W )], K[Hom(V,E)] ∼= Sym(V ⊗ E∗), It+1(V,E), and

K[Yt(V,E)] have good filtrations as G-modules. Since modules with good

filtrations are closed under tensor products [9], [4], [8] and extensions, the

kernel I of the canonical surjective map

ρ : K[Hom(E,W ) × Hom(V,E)] → K[Ys(E,W ) × Yt(V,E)]

has good filtrations, since there is a short exact sequence

0 → Is+1(E,W ) ⊗K[Hom(V,E)] → I → K[Ys(E,W )] ⊗ It+1(V,E) → 0.

Hence H1(G, I) = 0. It follows that ρ induces a surjective map

ρG : K[Hom(E,W ) × Hom(V,E)]G → K[Ys(E,W ) × Yt(V,E)]G = K[X]G.

By the following theorem due to De Concini and Procesi [3], π# : K[Y ] →

K[X]G is surjective.

Theorem 5. The composition

Hom(E,W ) × Hom(V,E) → Yr(V,W ) ((ϕ,ψ) 7→ ϕψ)

induces an isomorphism K[Yr(V,W )] → K[Hom(E,W ) × Hom(V,E)]G.

It remains to prove that π# : K[Y ] → K[X]G is injective. As we know

that K[Y ] is an integral domain (see e.g., [2, (6.3)]), it suffices to show that

π is dominating. By linear algebra, for each i such that 0 ≤ i ≤ u, the set of

linear maps V → W of rank i forms one G′-orbit. Moreover, the G′-orbit of

rank u linear maps is dense in Y . Since π is G′-invariant, it suffices to show

that π(X) contains at least one linear map of rank u. But this is trivial.
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