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AVERAGING FORMULA FOR NIELSEN COINCIDENCE

NUMBERS

SEUNG WON KIM and JONG BUM LEE

Abstract. In this paper we study the averaging formula for Nielsen coin-

cidence numbers of pairs of maps (f, g) : M → N between closed smooth

manifolds of the same dimension. Suppose that G is a normal subgroup of

Π = π1(M) with finite index and H is a normal subgroup of ∆ = π1(N) with

finite index such that f∗(G) ⊂ H and g∗(G) ⊂ H. Then we investigate the

conditions for which the following averaging formula holds

N(f, g) =
1

[Π : G]

X

ᾱ∈∆/H

N(ᾱf̄ , ḡ),

where (f̄ , ḡ) : MG → NH is any pair of fixed liftings of (f, g). We prove that

the averaging formula holds when M and N are orientable infra-nilmanifolds

of the same dimension, and when M = N is a non-orientable infra-nilmanifold

with holonomy group Z2 and (f, g) admits a pair of liftings (f̄ , ḡ) : M̄ → M̄ on

the nil-covering M̄ of M .

§1. Introduction

Let f, g : X → Y be a pair of maps between closed manifolds X, Y

with the same dimension n. Then we define

Coin(f, g) = {x ∈ X | f(x) = g(x)},

the coincidence set of f and g. The coincidence theory with f , g is a natural

extension of the fixed point theory with a self map f : X → X.

If X and Y are orientable, then there are two well-known invariants

which are the Lefschetz coincidence number L(f, g) and the Nielsen coin-

cidence number N(f, g). The Lefschetz coincidence number L(f, g) is an

integer and L(f, g) 6= 0 implies the existence of a coincidence for any maps

f ′, g′ which are homotopic to f , g respectively. The Nielsen coincidence
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number N(f, g) which was defined by Schirmer [17], is a non-negative in-

teger with the property that any two maps f ′, g′ which are homotopic to

f , g respectively, have at least N(f, g) coincidences. She showed that if

n ≥ 3, then there are two maps f ′, g′, homotopic to f , g respectively, such

that they have exactly N(f, g) coincidences. Thus the Nielsen coincidence

number is much more powerful than the Lefschetz coincidence number but

to compute the Nielsen coincidence number is very hard.

If X and Y are non-orientable, then L(f, g) and N(f, g) are not de-

fined in general. In [5], Dobreńko and Jezierski define the semi-index and

the generalized Nielsen coincidence number N(f, g) for maps f , g between

any two closed smooth manifolds of the same dimension. This generalized

Nielsen coincidence number is an extension of the ordinary Nielsen coinci-

dence number. That means that if both X and Y are orientable, then the

generalized Nielsen coincidence number N(f, g) is just the same as the ordi-

nary Nielsen coincidence number. They also show that if n ≥ 3, then there

are two maps f ′, g′, homotopic to f , g respectively, such that they have ex-

actly N(f, g), the generalized Nielsen coincidence number, coincidences. In

the following, every Nielsen coincidence number means generalized Nielsen

coincidence number.

The purpose of this paper is to investigate the relations between the

Nielsen coincidence numbers of maps (f, g) : M → N and those of liftings

(f̄ , ḡ) : M̄ → N̄ , if they exist, to finite regular coverings M̄ , N̄ of M , N .

We review the necessary background about coincidence set and coincidence

classes in the next section. In Section 3, we deal with some properties about

the semi-index. In Section 4, we first investigate the Nielsen coincidence

numbers under finite regular covering projections. These allow us to obtain

the general formula for Nielsen coincidence number on closed smooth man-

ifolds which is described at Theorem 4.6. This theorem is an extension of

[13, Theorem 3.1] (see also [14, Theorem 3.4]) which concerns with Nielsen

fixed point numbers on closed manifolds and is also an extension of the

McCord’s result in [16] which deals with only orientable manifolds. Since

the Nielsen coincidence number on nilmanifolds is well understood (see [4],

[6], [7], [10] and [19]) and every infra-nilmanifold admits a finite covering

by a closed nilmanifold, the averaging formula becomes a practical formula

on infra-nilmanifolds. At the end of this section, we show that the Nielsen

coincidence number of maps between two orientable infra-nilmanifolds of

the same dimension is calculated by the averaging formula. In Section 5,

we also show that the averaging formula for the Nielsen coincidence number
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is valid for self maps of a non-orientable infra-nilmanifold with holonomy

group Z2. Finally, we give two examples related to our results in the last

section.

§2. Preliminaries

In this section, we review the necessary background about coincidence

set and coincidence classes.

Let X and Y be compact connected polyhedra, and (f, g) : X → Y be

a pair of maps. Let Π and ∆ be the groups of covering transformations on

the universal coverings X̃ and Ỹ of X and Y , respectively.

In what follows, we will fix a pair of liftings of (f, g) : X → Y on their

universal coverings and denote this by (f̃ , g̃) : X̃ → Ỹ . For the fixed pair of

liftings (f̃ , g̃), we have homomorphisms ϕ,ψ : Π → ∆ defined by

f̃α = ϕ(α)f̃ , g̃α = ψ(α)g̃, α ∈ Π.

The homomorphisms ϕ, ψ define the Reidemeister action of Π on ∆ as

follows:

Π × ∆ −→ ∆, (γ, α) 7−→ ψ(γ)αϕ(γ)−1.

Denote the set of Reidemeister classes of ∆ determined by ϕ, ψ by R[ϕ,ψ].

Let p : X̃ → X be the universal covering projection. By definition, a

coincidence class S in the coincidence set Coin(f, g) is a subset of Coin(f, g)

of the form p(Coin(αf̃ , g̃)) for some α ∈ Π. Then it is well known that the

coincidence set Coin(f, g) splits into a disjoint union of coincidence classes.

That is,

Coin(f, g) =
∐

[α]∈R[ϕ,ψ]

p(Coin(αf̃ , g̃)).

Let G and H be normal subgroups of Π and ∆ with finite index such

that ϕ(G) ⊂ H and ψ(G) ⊂ H. Denote XG = G\X̃ and YH = H\Ỹ . Then

XG, YH are regular coverings of X, Y such that

p : X̃
p′
−→ XG

p̄
−→ X, q : Ỹ

q′
−→ YH

q̄
−→ Y

are covering projections. Since ϕ(G) ⊂ H and ψ(G) ⊂ H, (f̃ , g̃) induces
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the pair of liftings (f̄ , ḡ) : XG → YH of (f, g) so that the following diagram

X̃
f̃

−−−−→
g̃

Ỹ
yp′

yq′

XG
f̄

−−−−→
ḡ

YHyp̄
yq̄

X
f

−−−−→
g

Y

commutes.

For the pair of liftings (f̄ , ḡ), we have homomorphisms

ϕ̄, ψ̄ : Π/G→ ∆/H defined by f̄ ᾱ = ϕ̄(ᾱ)f̄ , ḡᾱ = ψ̄(ᾱ)ḡ, ᾱ ∈ Π/G

ϕ′, ψ′ : G→ H defined by f̃γ = ϕ′(γ)f̃ , g̃γ = ψ′(γ)g̃, γ ∈ G

so that the following diagram commutes:

1 −−−−→ G
i

−−−−→ Π
u

−−−−→ Π/G −−−−→ 1

ϕ′

yψ′ ϕ

yψ ϕ̄

yψ̄

1 −−−−→ H
j

−−−−→ ∆
v

−−−−→ ∆/H −−−−→ 1

Similar to the homomorphisms ϕ, ψ, the homomorphisms ϕ′, ψ′ : G → H

and ϕ̄, ψ̄ : Π/G → ∆/H define the Reidemeister actions of G on H and

Π/G on ∆/H, respectively. Denote the sets of Reidemeister classes of H,

∆/H determined by ϕ′, ψ′, ϕ̄, ψ̄ by R[ϕ′, ψ′], R[ϕ̄, ψ̄], respectively. Then

we have a short sequence of sets

R[ϕ′, ψ′]
ĵ

−→ R[ϕ,ψ]
v̂

−→ R[ϕ̄, ψ̄] −→ 1,

where v̂ is surjective and v̂−1([1̄]) = im(ĵ) where 1̄ is the identity element

of ∆/H. For each ᾱ ∈ ∆/H and α ∈ v−1(ᾱ), αf̃ is a lifting of ᾱf̄ and

f , and ᾱf̄ is a lifting of f . They induce homomorphisms ταϕ, τᾱϕ̄ and

ταϕ
′, where τα denotes conjugation by α. In the following, for any group

homomorphisms η, θ : A→ B,

coin(η, θ) = {a ∈ A | η(a) = θ(a)}.
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Then the following diagram

1 −−−−→ G
iα−−−−→ Π

uα−−−−→ Π/G −−−−→ 1

ταϕ′

yψ′ ταϕ

yψ τᾱϕ̄

yψ̄

1 −−−−→ H
jα

−−−−→ ∆
vα−−−−→ ∆/H −−−−→ 1

commutes, and the following sequence of groups

1 −→ coin(ταϕ
′, ψ′)

iα−→ coin(ταϕ,ψ)
uα−→ coin(τᾱϕ̄, ψ̄)

is exact, and the following sequence of sets

R[ταϕ
′, ψ′]

ĵα
−→ R[ταϕ,ψ]

v̂α−→ R[τᾱϕ̄, ψ̄] −→ 1

satisfies that v̂α is surjective and v̂−1
α ([1̄]) = im(ĵα).

If α′ = ψ(σ)αϕ(σ)−1 , then τσ : coin(ταϕ,ψ) → coin(τα′ϕ,ψ) is an

isomorphism. In particular, if α ∼ α′, then |coin(ταϕ,ψ)| = |coin(τα′ϕ,ψ)|.

The following lemma is a straightforward extension of [13, Lemma 2.1].

Lemma 2.1. For each γ ∈ H and α ∈ ∆, we have

(1) |v̂−1([ᾱ])| = |v̂−1
α ([1̄])|,

(2) |R[ϕ,ψ]| =
∑

[ᾱ]∈R[ϕ̄,ψ̄]|v̂
−1([ᾱ])| =

∑
[ᾱ]∈R[ϕ̄,ψ̄]|v̂

−1
α ([1̄])|

=
∑

[ᾱ]∈R[ϕ̄,ψ̄]|im(ĵα)|,

(3) |R[ταϕ
′, ψ′]| =

∑
[γ]∈im(ĵα)|ĵ

−1
α ([γ])|,

(4) |ĵ−1
α ([γ])| = [coin(τᾱϕ̄, ψ̄) : uγα coin(τγαϕ,ψ)],

(5) |R[ταϕ
′, ψ′]| =

∑
[γ]∈im(ĵα)[coin(τᾱϕ̄, ψ̄) : uγα coin(τγαϕ,ψ)].

The coincidence classes of (f, g) are labelled by the Reidemeister classes

R[ϕ,ψ] of (ϕ,ψ). We may relabel them in terms of the Reidemeister classes

R[ϕ̄, ψ̄] and R[ταϕ
′, ψ′]. This relabelling is useful in comparing the Nielsen

number N(f, g) of (f, g) with the Nielsen numbers N(ᾱf̄ , ḡ) of (ᾱf̄ , ḡ).

Lemma 2.2. (Decomposition of the Coincidence Set) Let f, g : X →

Y be maps between compact connected spaces. Then

(1) p̄(Coin(ᾱf̄ , ḡ)) =
∐

[γ]∈im(ĵα) p(Coin(γαf̃ , g̃)),
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(2) Coin(f, g) =
∐

[ᾱ]∈R[ϕ̄,ψ̄]

∐
[γ]∈im(ĵα) p(Coin(γαf̃ , g̃)).

Actually these results make sense for any spaces X, Y with universal cov-

ering spaces.

Proof. Just like as the universal covering case, we can decompose the

coincidence set Coin(f, g) for the regular covering,

Coin(f, g) =
∐

[ᾱ]∈R[ϕ̄,ψ̄]

p̄(Coin(ᾱf̄ , ḡ)).

For α ∈ ∆, let ᾱ = v(α) ∈ ∆/H. Also we have

Coin(ᾱf̄ , ḡ) =
∐

[γ]∈R[ταϕ′,ψ′]

p′(Coin(γαf̃ , g̃)).(∗)

Thus

p̄(Coin(ᾱf̄ , ḡ)) =
⋃

[γ]∈R[ταϕ′,ψ′]

p(Coin(γαf̃ , g̃)),

Coin(f, g) =
∐

[ᾱ]∈R[ϕ̄,ψ̄]

p̄(Coin(ᾱf̄ , ḡ))

=
∐

[ᾱ]∈R[ϕ̄,ψ̄]

⋃

[γ]∈R[ταϕ′,ψ′]

p(Coin(γαf̃ , g̃))

= a union of fixed point classes of f.

By Lemma 2.1, the number of different coincidence classes p(Coin(γαf̃ ,

g̃)) involved in p̄(Coin(ᾱf̄ , ḡ)) is |im(ĵα)|. Hence

p̄(Coin(ᾱf̄ , ḡ)) =
∐

[γ]∈im(ĵα)

p(Coin(γαf̃ , g̃)),

Coin(f, g) =
∐

[ᾱ]∈R[ϕ̄,ψ̄]

∐

[γ]∈im(ĵα)

p(Coin(γαf̃ , g̃)).

This proves the result.

§3. Semi-index

We first recall the definition of the semi-index [5]. Let V1, V2 be finite-

dimensional real vector spaces, and let α, β be the orientations determined
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by the ordered bases {v1, . . . , vk} and {vk+1, . . . , vk+`} of V1 and V2, respec-

tively. Then α ∧ β denotes the orientation of V1 ⊕ V2 determined by the

ordered basis {v1, . . . , vk, vk+1, . . . , vk+`}.

The pair of maps (f, g) : M → N between smooth manifolds is called

transversal if both f and g are smooth maps and, for any x ∈ Coin(f, g),

the difference of the induced tangent maps

Txf − Txg : TxM −→ Tf(x)N

is an epimorphism.

It is well-known (cf. [9, Lemma 5.1.5]) that any map on smooth mani-

folds can be approximated by smooth maps homotopic to it. Moreover, the

following is an easy consequence of “Transversality Homotopy Theorem”

([8]):

Lemma 3.1. Any pair of smooth maps f, g : M → N is homotopic to

a transversal pair.

Lemma 3.2. Two smooth maps f, g : M → N are transversal if and

only if the graphs G(f) and G(g) of f and g are transversal as the sub-

manifolds of M × N , that is, for any x ∈ M with f(x) = y = g(x), the

“transversality assumption” holds:

T(x,y)G(f) + T(x,y)G(g) = T(x,y)M ×N.

Proof. Since the tangent space to G(f) at the point (x, f(x)) is the

graph of Txf : TxM → Tf(x)N , it is sufficient to show the following: For a

pair of linear maps φ, ψ : V →W , φ−ψ : V →W is an epimorphism if and

only if G(φ) +G(ψ) = V ⊕W .

Suppose G(φ) + G(ψ) = V ⊕ W . Then for any w ∈ W , there are

v1, v2 ∈ V such that

(0, w) = (v1, φ(v1)) + (v2, ψ(v2)).

Thus v2 = −v1 and w = φ(v1)−ψ(v1). Conversely suppose φ−ψ : V →W

is an epimorphism. For any (v, w) ∈ V ⊕W , since φ−ψ is an epimorphism,

there is v1 ∈ V such that w − ψ(v1) = φ(v1) − ψ(v1). This show that

(v, w) = (v1, φ(v1)) + (v − v1, ψ(v − v1)) ∈ V ⊕W .
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Remark 3.3. For f, g : M → N , let F,G : M →M ×N be given by

F (x) = (x, f(x)), G(x) = (x, g(x))

and let h : M → N × N be given by h(x) = (f(x), g(x)). Then it is

easy to see that f is transversal to g if and only if F is transversal to G,

equivalently h is transversal to the inclusion ∆N → N ×N in the sense of

[3, Definition II.15.1].

If two smooth maps f, g : M → N are transversal, then by [8, The-

orem 1.5], G(f) ∩ G(g) is a submanifold of M × N . Since Coin(f, g) is

diffeomorphic to G(f) ∩G(g), Coin(f, g) is a submanifold of M . Moreover,

the dimension of Coin(f, g) equals dimM − dimN . For,

dimCoin(f, g) = dimG(f) ∩G(g)

= dimT(x,y)(G(f) ∩G(g))

= dimT(x,y)G(f) ∩ T(x,y)G(g)

= dimG(Txf) ∩G(Txg)

= dimCoin(Txf, Txg)

= dimker(Txf − Txg)

= dimM − dimN,

where x is any element of M with f(x) = y = g(x).

In what follows, we assume that M , N are closed smooth connected

manifolds of the same dimension, and (f, g) : M → N is a transversal pair.

Then Coin(f, g) is a finite set, and for any x ∈ Coin(f, g) with f(x) = y =

g(x)

T(x,y)G(f) ⊕ T(x,y)G(g) = TxM ⊕ TyN.

We fix local orientations, αx and βx, of the graphs G(f) and G(g),

respectively, at the point (x, y). Then γx = αx ∧ βx is a local orientation of

M ×N at this point.

Definition 3.4. We say that x, x′ ∈ Coin(f, g) reduce one another if

there exists a path ω in M from x to x′ such that

(1) fω ' gω (relative to endpoints), and thus x and x′ belong to the same

coincidence class,
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(2) if αx′ and βx′ denote the translations of αx and βx in G(f) and G(g)

along the paths (ω, fω) and (ω, gω), respectively, and if γx′ denotes

the translation of γx in M ×N along the path (ω, fω), then

αx′ ∧ βx′ = −γx′ .

In this case, we say that the path ω reverses orientation in graphs.

Let A ⊂ Coin(f, g) be any subset. It may be represented as

A = {a1, b1, . . . , ak, bk; c1, . . . , cs}

where ai, bi reduce one another and ci, cj do not reduce one another for

any i 6= j. We call the elements {c1, . . . , cs} free in this representation

of A ⊂ Coin(f, g). The number of free elements does not depend on the

representation of A ([5, Lemma 1.3]).

Lemma 3.5. ([5, Lemma 2.1]) Let x̄, ȳ ∈ p′(Coin(γ′αf̃ , g̃)) and let ω̄ be

a path from x̄ to ȳ such that f̄ ω̄ ' ḡω̄. Then for x = p̄x̄, y = p̄ȳ, ω = p̄ω̄, we

have x, y ∈ p(Coin(γαf̃ , g̃)) and ω is a path from x to y satisfying fω ' gω.

Under these assumptions ω̄ reverses orientations in graphs if and only if so

does ω.

Lemma 3.6. ([5, Corollary 2.2]) If the points x, y ∈ p(Coin(γαf̃ , g̃))

reduce one another, then p̄−1({x, y}) ∩ p′(Coin(γ′αf̃ , g̃)) splits into pairs

of points reducing one another.

Definition 3.7. A coincidence point x ∈ Coin(f, g) is called self-

reducing if it reduces itself. A coincidence class is called defective if it

contains a self-reducing point.

Lemma 3.8. ([11, Lemma 2.2]) For x ∈ p(Coin(αf̃ , g̃)), x is self-reduc-

ing if and only if

coin(ταϕ,ψ) ∩ Π+ 6= coin(ταϕ,ψ) ∩ (ταϕ)−1(∆+),

where Π+ and ∆+ are the subgroups of Π and ∆, respectively, which consist

of all orientation preserving elements. In particular, a defective coincidence

class consists of self-reducing points.
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Lemma 3.9. Suppose that x ∈ p(Coin(αf̃ , g̃)) and x̄ ∈ p′(Coin(α′f̃ , g̃))

where p̄(x̄) = x and α′ ∈ [α] ∈ R[ϕ,ψ]. Then the following are equivalent :

(1) There is γ ∈ coin(ταϕ,ψ) such that x̄ and γ̄x̄ reduce one another.

(2) There is γ ∈ coin(ταϕ,ψ) such that sgn(τᾱϕ̄(γ̄)) · sgn(γ̄) = −1.

(3) uα coin(ταϕ,ψ) ∩ Π+G/G 6= uα coin(ταϕ,ψ) ∩ (τᾱϕ̄)−1(∆+H/H).

In this case, x is self-reducing.

Proof. Suppose that x̄ and γ̄x̄ reduce one another. Then there exists a

path ω̄ from x̄ to γ̄x̄ so that ω̄ reverses orientation in graphs and ᾱ′f̄ ω̄ ' h̄ω̄.

Since ω̄ is a path from x̄ to γ̄x̄, the loop pω̄ at x represents an element γ ∈ Π

so that it projects to γ̄ ∈ Π/G. Let ω̃ be the lift of ω̄ starting at x̃. Then

ω̃(1) = γx̃ and p′(γx̃) = x̄. Since ᾱ′f̄ ω̄ ' h̄ω̄, α′f̃ ω̃ ' h̃ω̃ and hence γx̃ ∈

Coin(α′f̃ , h̃). This implies that γ ∈ coin(τα′ϕ,ψ) and ᾱ′f̄ ω̄(1) = ᾱ′f̄(γ̄x̄) =

τᾱ′ϕ̄(γ̄) · ᾱ′f̄(x̄) = τᾱ′ ϕ̄(γ̄) · ᾱ′f̄ ω̄(0). Thus the path ᾱ′f̄ ω̄ represents the

element τᾱ′ ϕ̄(γ̄) ∈ ∆/H. Since ω̄ is graph-orientation-reversing, it follows

that sgn(τᾱ′ ϕ̄(γ̄)) · sgn(γ̄) = −1. Recalling that α′ ∈ [α] ∈ R[ϕ,ψ], we see

that sgn(τᾱ′ ϕ̄(γ̄)) = sgn(τᾱϕ̄(γ̄)). Therefore, sgn(τᾱϕ̄(γ̄)) · sgn(γ̄) = −1.

This is equivalent to that either τᾱϕ̄(γ̄) /∈ ∆+H/H or γ̄ /∈ Π+G/G.

For the converse, we take a path from x̄ to γ̄x̄ which represents the

element γ̄. Since sgn(τᾱ′ ϕ̄(γ̄)) · sgn(γ̄) = −1, it follows that the path ω̄ is

graph-orientation-reversing.

In the course of the proof, we have γ ∈ coin(τα′ϕ,ψ) which projects to

γ̄. Since sgn(τᾱ′ϕ̄(γ̄)) · sgn(γ̄) = −1, it follows that

coin(τα′ϕ,ψ) ∩ Π+ 6= coin(τα′ϕ,ψ) ∩ (τα′ϕ)−1(∆+).

Recalling α′ ∈ [α], we see that the subgroups coin(ταϕ,ψ) and coin(τα′ϕ,ψ)

are conjugate. Furthermore, since ∆+ is a normal subgroup of ∆, it follows

that (ταϕ)−1(∆+) = (τα′ϕ)−1(∆+). Therefore,

coin(ταϕ,ψ) ∩ Π+ 6= coin(ταϕ,ψ) ∩ (ταϕ)−1(∆+).

Now Lemma 3.8 implies that x is self-reducing.

Definition 3.10. The semi-index of A ⊂ Coin(f, g) is the number of

free elements in any representation of A and is denoted by |ind|(f, g;A).

Note that the definition of semi-index for a pair of transversal maps is

extended over arbitrary pair of maps ([5, Lemma 1.4]). The semi-index has

the following properties:
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(i) Existence of coincidences. If |ind|(f, g; S) 6= 0, then Coin(f, g) 6= ∅
where S is a coincidence class in Coin(f, g).

(ii) Homotopy invariance. If (f0, g0)
F,G
' (f1, g1) : M → N , then

|ind|(f0, g0; S0) = |ind|(f1, g1; S1)

where a coincidence class S0 corresponds to the coincidence class S1

along the given homotopy.

(iii) Additivity. For any coincidence classes Si in Coin(f, g),

|ind|(f, g;
⋃

Si) =
∑

i

|ind|(f, g; Si).

Definition 3.11. Let (f, g) : M → N be maps. A coincidence class

S ⊂ Coin(f, g) is called essential if |ind|(f, g; S) 6= 0. Otherwise, it is called

inessential. We define the Nielsen coincidence number of (f, g) as the num-

ber of its essential classes, and we denote it by N(f, g).

It is known from [5, Lemma 1.6] that for any pair of maps (f, g) :

M → N between orientable manifolds of the same dimension and for any

coincidence class S ⊂ Coin(f, g),

|ind|(f, g; S) = |ind(f, g; S)|

where the right side denotes the absolute value of the ordinary coincidence

index. Therefore the above definitions relative to semi-index generalize the

ordinary definitions relative to classical index. In particular, the Nielsen

coincidence numbers for orientable manifolds are the same as the ordinary

Nielsen coincidence numbers where the ordinary Nielsen coincidence number

is the number of coincidence classes which have non-zero ordinary coinci-

dence indices.

§4. Nielsen coincidence numbers for covering spaces

Let M and N be closed smooth connected manifolds of the same di-

mension, and (f, g) : M → N a pair of transversal maps. Let Π and ∆ be

the groups of covering transformations on the universal coverings M̃ and Ñ

of M and N , respectively. Let (f̃ , g̃) : M̃ → Ñ be a fixed pair of liftings of

(f, g). We denote the homomorphisms induced by (f̃ , g̃) by

ϕ, ψ : Π −→ ∆.
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Suppose G and H are normal subgroups of Π and ∆ with finite index such

that ϕ(G) ⊂ H and ψ(G) ⊂ H. Then the fixed (f̃ , g̃) of (f, g) induces the

pair of liftings (f̄ , ḡ) : MG → NH of (f, g) so that the following diagram

M̃
f̃

−−−−→
g̃

Ñyp′
yq′

MG
f̄

−−−−→
ḡ

NHyp̄
yq̄

M
f

−−−−→
g

N

commutes.

Now we compare the Nielsen coincidence number N(f, g) of (f, g) with

the Nielsen coincidence numbers N(ᾱf̄ , ḡ) of the pair of liftings (ᾱf̄ , ḡ),

(ᾱ ∈ ∆/H), of (f, g). First, we consider the relation of coincidence class of

(f, g) and coincidence class of (ᾱf̄ , ḡ).

Lemma 4.1.

p̄−1p(Coin(γαf̃ , g̃)) =
⋃

γ′∈[γ]

p′(Coin(γ′αf̃, g̃)),

where [γ] ∈ R[ταϕ,ψ].

Proof. Noting that

p̄p′(Coin(ψ(σ)γαϕ(σ)−1α−1 · αf̃ , g̃)) = p(Coin(ψ(σ) · γα · ϕ(σ)−1f̃ , g̃))

= p(Coin(γαf̃ , g̃)),

we have p̄−1p(Coin(γαf̃ , g̃)) ⊇
⋃
γ′∈[γ] p

′(Coin(γ′αf̃ , g̃)).

Let x̄ ∈ p̄−1p(Coin(γαf̃ , g̃)). Then p̄(x̄) = p(x̃) for some x̃ ∈ Coin(γαf̃ ,

g̃). Then there exists σ̄ ∈ ∆/H such that x̄ = σ̄ · p′(x̃). Let σ ∈ v−1(σ̄) and

ỹ = σx̃. Then σ−1ỹ = x̃ ∈ Coin(γαf̃ , g̃) and p′(ỹ) = x̄; ỹ ∈ Coin(ψ(σ) · γα ·

ϕ(σ)−1f̃ , g̃). Thus x̄ ∈ p′(Coin(γ′αf̃ , g̃)), where γ ′ = ψ(σ)γταϕ(σ)−1 and

hence p̄−1p(Coin(γαf̃ , g̃)) ⊆
⋃
γ′∈[γ] p

′(Coin(γ′αf̃, g̃)).
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Lemma 4.2. Let γ ∈ H and α ∈ ∆. Then for any γ ′ ∈ [γ] (∈

R[ταϕ,ψ]),

|p′(Coin(γ′αf̃ , g̃))| = |uγ′α coin(τγ′αϕ,ψ)| · |p(Coin(γαf̃ , g̃))|

= |uγα coin(τγαϕ,ψ)| · |p(Coin(γαf̃ , g̃))|

= |p′(Coin(γαf̃ , g̃))|.

In particular, the number of different coincidence classes p′(Coin(γ′αf̃ , g̃))

involved in p̄−1p(Coin(γαf̃ , g̃)) is the index [Π/G : uγα coin(τγαϕ,ψ)].

Proof. Let γ ∈ H and α ∈ ∆, and take any [γ] ∈ R[ταϕ,ψ]. Then Π

acts on [γ] as follows: σ ·γ = ψ(σ)γταϕ(σ)−1. This induces the Π action on

the set of coincidence classes {p′(Coin(γ′αf̃ , g̃)) | γ ′ ∈ [γ]}:

(σ, p′(Coin(γ′αf̃ , g̃))) 7−→ p′(Coin((σ · γ ′)αf̃ , g̃))

= p′(Coin((ψ(σ)γ ′ταϕ(σ)−1)αf̃ , g̃)).

Let σ ∈ G. If γ ′ ∈ H, then γ ′ ∼ ψ(σ)γ′ταϕ(σ)−1. Thus p′(Coin(γ′αf̃ , g̃)) =

p′(Coin(ψ(σ)γ ′αϕ(σ)−1f̃ , g̃)). If γ ′ /∈ H, write γ ′ = γ0β where γ0 ∈ H.

Then

(ψ(σ)γ′ταϕ(σ)−1)αf̃ = (ψ(σ)γ0βαϕ(σ)−1α−1)αf̃

= (ψ(σ)γ0βαϕ(σ)−1α−1β−1)βαf̃

= (ψ(σ)γ0τβαϕ(σ)−1)βαf̃

∼ (γ0)βαf̃

= γ′αf̃ .

Therefore if σ ∈G, then p′(Coin(γ′αf̃ , g̃)) = p′(Coin(ψ(σ)γ ′ταϕ(σ)−1αf̃ , g̃)).

This implies that we have an action:

Π/G× {p′(Coin(γ′αf̃, g̃)) | γ ′ ∈ [γ]} −→ {p′(Coin(γ′αf̃ , g̃)) | γ ′ ∈ [γ]},

which is transitive. The isotropy subgroup at p′(Coin(γαf̃ , g̃)) is

{σ̄ ∈ Π/G | γ = ψ(σ)γταϕ(σ)−1} = {σ̄ ∈ Π/G | σ ∈ coin(τγαϕ,ψ)}

= uγα coin(τγαϕ,ψ).

Hence the number of different coincidence classes p′(Coin(γ′αf̃ , g̃)) involved

in p̄−1p(Coin(γαf̃ , g̃)) is the index [Π/G : uγα coin(τγαϕ,ψ)].
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This Lemma amounts to saying for each x ∈ p(Coin(γαf̃ , g̃)), there are

|uγα coin(τγαϕ,ψ)| points in each p′(Coin(γ′αf̃ , g̃)) ∩ p̄−1(x).

Corollary 4.3.

p̄−1p(Coin(γαf̃ , g̃)) =
∐

[Π/G :uγα coin(τγαϕ,ψ)]

p′(Coin(γ′αf̃ , g̃)).

Proof. Follows from Lemma 4.1 and Lemma 4.2.

Definition 4.4. Let γ ∈ H, α ∈ ∆ and γ ′ ∈ [γ] ∈ R[ταϕ,ψ]. Define

ε′γ′α and εγα as follows:

ε′γ′α =

{
1, p′(Coin(γ′αf̃ , g̃)) is an essential coincidence class of (ᾱf̄ , ḡ);

0, p′(Coin(γ′αf̃ , g̃)) is an inessential coincidence class of (ᾱf̄ , ḡ),

εγα =

{
1, p(Coin(γαf̃ , g̃)) is an essential coincidence class of (f, g);

0, p(Coin(γαf̃ , g̃)) is an inessential coincidence class of (f, g).

Remark 4.5. Recall that the coincidence class p(Coin(γαf̃ , g̃)) is essen-

tial if any of the covering coincidence classes p′(Coin(γ′αf̃ , g̃)) is essential.

Therefore, from Corollary 4.3, we have the following:
∑

[Π/G :uγα coin(τγαϕ,ψ)]

ε′γ′α ≤ [Π/G : uγα coin(τγαϕ,ψ)] · εγα,

and if uγα coin(τγαϕ,ψ) = {1}, then, by Lemma 3.5 and Lemma 3.6, the

equality occurs.

In the case that the ordinary Nielsen coincidence numbers are defined,

McCord proves in [16, Corollary 5.10] that if coin(ταϕ,ψ) ⊂ G for each

α ∈ ∆ with p(Coin(αf̃ , g̃)) an essential coincidence class, then

N(f, g) =
1

[Π : G]

∑

ᾱ∈∆/H

N(ᾱf̄ , ḡ).

When f, g : M → N are maps on the non-orientable manifolds and they

admit liftings on the orientable double coverings of M , N , Dobreńko and

Jezierski prove in [5, Theorem 2.5] that if coin(ταϕ,ψ) ⊂ G for each α ∈ ∆

with p(Coin(αf̃ , g̃)) an essential coincidence class, then

N(f, g) =
1

2

(
N(f̄ , ḡ) +N(ᾱf̄ , ḡ)

)
.
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We may ask whether Dobreńko and Jezierski’s result is true in case

when the pair of maps (f, g) admit liftings on some regular coverings. In

Theorem 4.6 below, we prove that McCord’s result and the question related

to Dobreńko and Jezierski’s result above are not only necessary but also

sufficient.

Theorem 4.6. Let (f, g) : M → N be a pair of maps between closed

smooth connected manifolds of the same dimension. Suppose G is a normal

subgroup of Π = π1(M) with finite index and H is a normal subgroup of

∆ = π1(N) with finite index such that f∗(G) ⊂ H and g∗(G) ⊂ H. Then

N(f, g) ≥
1

[Π : G]

∑

ᾱ∈∆/H

N(ᾱf̄ , ḡ),

and equality occurs if and only if coin(ταϕ,ψ) ⊂ G for each α ∈ ∆ with

p(Coin(αf̃ , g̃)) an essential coincidence class.

Proof. By the equality (∗) in the proof of Lemma 2.2,

p̄−1(Coin(f, g)) =
∐

ᾱ∈∆/H

Coin(ᾱf̄ , ḡ)

=
∐

ᾱ∈∆/H

∐

[γ]∈R[ταϕ′,ψ′]

p′(Coin(γαf̃ , g̃)).

By Lemma 2.2.(2) and Corollary 4.3,

Coin(f, g) =
∐

[ᾱ]∈R[ϕ̄,ψ̄]

∐

[γ]∈im(ĵα)

p(Coin(γαf̃ , g̃))

p̄−1p(Coin(γαf̃ , g̃)) =
∐

[Π/G :uγα coin(τγαϕ,ψ)]

p′(Coin(γ′αf̃, g̃)).

Thus we have a relabelling of the set of all the coincidence classes of the

liftings (ᾱf̄ , ḡ) of (f, g), ᾱ ∈ ∆/H:

∐

ᾱ∈∆/H

∐

[γ]∈R[ταϕ′,ψ′]

p′(Coin(γαf̃ , g̃))

=
∐

[ᾱ]∈R[ϕ̄,ψ̄]

∐

[γ]∈im(ĵα)

∐

[Π/G :uγα coin(τγαϕ,ψ)]

p′(Coin(γ′αf̃ , g̃)).
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Therefore,
∑

ᾱ∈∆/H

N(ᾱf̄ , ḡ) =
∑

ᾱ∈∆/H

∑

[γ]∈R[ταϕ′,ψ′]

ε′γα

=
∑

ᾱ∈R[ϕ̄,ψ̄]

∑

[γ]∈im(ĵα)

∑

[Π/G :uγα coin(τγαϕ,ψ)]

ε′γ′α

≤
∑

ᾱ∈R[ϕ̄,ψ̄]

∑

[γ]∈im(ĵα)

[Π/G : uγα coin(τγαϕ,ψ)] · εγα

≤ |Π/G|
∑

ᾱ∈R[ϕ̄,ψ̄]

∑

[γ]∈im(ĵα)

εγα

= |Π/G|N(f, g).

The inequalities above become equalities if and only if for each γ ∈ H

and ᾱ ∈ ∆/H with p(Coin(γαf̃ , g̃)) an essential coincidence class, we have

uγα coin(τγαϕ,ψ) = {1}.

Corollary 4.7. If Π = G in Theorem 4.6, then

N(f, g) =
∑

ᾱ∈∆/H

N(ᾱf̄ , ḡ).

Proof. For any γ ∈ H and α ∈ ∆, coin(τγαϕ,ψ) ⊂ Π = G. Hence the

equality follows from Theorem 4.6.

Let L be a simply connected nilpotent Lie group and let C a maximal

compact subgroup of Aut(L). A discrete and cocompact subgroup Π of

L o C ⊂ Aff(L) = L o Aut(L) is called an almost crystallographic group.

Moreover, if Π is torsion-free, then Π is called an almost Bieberbach group

and the quotient space Π\L an infra-nilmanifold. In particular, if Π ⊂ L,

then Π\L is called a nilmanifold. Recall from [15] that Γ = Π ∩ L is the

maximal normal nilpotent subgroup of Π with finite quotient group Ψ =

Π/Γ, called the holonomy group of Π\L. Thus the nilmanifold Γ\L is a finite

regular covering of Π\L. This nilmanifold Γ\L is called the nil-covering of

Π\L.

Now, suppose that M and N are infra-nilmanifolds of the same dimen-

sion and that MG and NH are nilmanifolds.

Lemma 4.8. Let (f, g) : M → N be a pair of maps. For any α ∈ Π

with p(Coin(αf̃ , g̃)) an essential coincidence class, if there exists α′ ∈ [α] ∈

R[ϕ,ψ] such that p′(Coin(α′f̃ , g̃)) is essential, then coin(ταϕ,ψ) = {1}.
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Proof. Since p′(Coin(α′f̃ , g̃)) is essential, it follows that coin(ταϕ
′, ψ′) =

{1}, see [6]. Since Π is torsion-free and Π/G is finite, we obtain that

coin(ταϕ,ψ) = {1} from the exact sequence

1 −→ coin(ταϕ
′, ψ′)

iα−→ coin(ταϕ,ψ)
uα−→ coin(τᾱϕ̄, ψ̄).

Theorem 4.9. Let (f, g) : M → N be a pair of maps between ori-

entable infra-nilmanifolds of the same dimension. Suppose that f∗(G) ⊂ H

and g∗(G) ⊂ H. Then

N(f, g) =
1

[Π : G]

∑

ᾱ∈∆/H

N(ᾱf̄ , ḡ).

Proof. Suppose that p(Coin(αf̃ , g̃)), α ∈ Π, is an essential coincidence

class and that p′(Coin(α′f̃ , g̃)), α′ ∈ [α] ∈ R[ϕ,ψ], is an inessential co-

incidence class. Then for each free element x ∈ p(Coin(αf̃ , g̃)), all el-

ements in p̄−1(x) ∩ p′(Coin(α′f̃ , g̃)) are not free in p′ Coin(α′f̃ , g̃). This

implies that x must be a self-reducing element and thus the coincidence

class p(Coin(αf̃ , g̃)) is defective. However, there are no defective classes in

orientable manifolds. Thus our result follows from Lemma 4.8 and Theo-

rem 4.6.

§5. Two fold orientable covering

Let M and N be closed non-orientable smooth manifolds of the same

dimension, and (f, g) : M → N a pair of transversal maps. Let Π and ∆

be the groups of covering transformations on the universal coverings M̃ and

Ñ of M and N , respectively. Let Π+ and ∆+ be the subgroups of Π and

∆, respectively, which consist of all orientation preserving elements and let

p̄ : M̄ → M and q̄ : N̄ → N be the two fold orientable coverings of M

and N , respectively. In this section, let us suppose that f , g admit liftings

f̄ , ḡ : M̄ → N̄ , i.e.,

ϕ(Π+) ⊂ ∆+, ψ(Π+) ⊂ ∆+.

Recall from Theorem 4.6 that

N(f, g) ≥
1

2

∑

ᾱ∈∆/∆+

N(ᾱf̄ , ḡ),
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and equality occurs if and only if it holds coin(ταϕ,ψ) ⊂ Π+ for each α ∈ ∆

with p(Coin(αf̃ , g̃)) an essential coincidence class.

On the other hand, recalling from Lemma 3.8, we see that

p(Coin(αf̃ , g̃)) is defective

⇐⇒ coin(ταϕ,ψ) ∩ Π+ 6= coin(ταϕ,ψ) ∩ (ταϕ)−1(∆+)

⇐⇒ coin(ταϕ,ψ) * Π+ and ταϕ(Π) ⊂ ∆+.

Thus we have the following result.

Proposition 5.1. The condition that all of the essential coincidence

classes of (f, g) are not defective is a necessary condition for the equality

N(f, g) =
1

2

∑

ᾱ∈∆/∆+

N(ᾱf̄ , ḡ).

Now, we suppose further that ϕ(Π) ⊂ ∆+ and ψ(Π) ⊂ ∆+. Then we

have the commuting diagram

M̄
ᾱf̄

ḡ
//

p̄

��

N̄

p̄

��
M

f

g
//

ᾱf̂
ĝ

>>
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~

N

By Corollary 4.7, we have

N(f, g) =
∑

ᾱ∈∆/∆+

N(ᾱf̂ , ĝ).

In particular, S = p(Coin(αf̃ , g̃)) ⊂ Coin(f, g) is essential if and only if

Ŝᾱ = p(Coin(αf̃ , g̃)) ⊂ Coin(ᾱf̂ , ĝ) is essential.

Recalling from Corollary 4.3 that

p̄−1p(Coin(αf̃ , g̃)) =
∐

[Π/Π+ :uα coin(ταϕ,ψ)]

p′(Coin(α′f̃ , g̃)),
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we see that

S = p(Coin(αf̃ , g̃)) is defective

⇐⇒ coin(ταϕ,ψ) ∩ Π+ 6= coin(ταϕ,ψ) ∩ (ταϕ)−1(∆+)

⇐⇒ coin(ταϕ,ψ) * Π+

⇐⇒ uα coin(ταϕ,ψ) = Π/Π+

⇐⇒ the coincidence class S = p(Coin(αf̃ , g̃)) is covered by

a unique coincidence class S̄ = p′(Coin(α′f̃ , g̃)),

and S = p(Coin(αf̃ , g̃)) is not defective if and only if S is covered by two

coincidence classes S̄1 = p′(Coin(α′f̃ , g̃)) and S̄2 = p′(Coin(α′′f̃ , g̃)) for some

α′, α′′ ∈ [α].

It is easy to observe the following, cf. [18, Corollaries 4.2 and 4.3].

Corollary 5.2. Under the notation above, we have:

(1) If S is not defective, then

ind(ᾱf̄ , ḡ; S̄1) = − ind(ᾱf̄ , ḡ; S̄2), |ind|(f, g; S) = |ind|(ᾱf̄ , ḡ; S̄i).

(2) If S is defective, then ind(ᾱf̄ , ḡ; S̄) = 0.

Corollary 5.3. Under the notation above, we have:

(1) L(ᾱf̄ , ḡ) = 0.

(2) N(ᾱf̄ , ḡ) is even.

(3) N(f, g) ≥ 1
2

∑
ᾱ∈∆/∆+ N(ᾱf̄ , ḡ), and the equality holds if and only if

all essential coincidence classes of (f, g) are not defective.

(4) N(ᾱf̄ , ḡ) = 0 if and only if all essential coincidence classes of (ᾱf̂ , ĝ)

are defective.

In the rest of this section, we consider the case of non-orientable infra-

nilmanifolds with holonomy group Z2.

Theorem 5.4. Let M = Π\L be a non-orientable infra-nilmanifold

with holonomy group Ψ = Z2. Then for any pair of self maps (f, g) : M →
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M which admit liftings f̄ , ḡ : M̄ → M̄ on the nil-covering M̄ of M ,

N(f, g) =
1

2

(
N(f̄ , ḡ) +N(ᾱf̄ , ḡ)

)

=
1

2

(
|L(f̄ , ḡ)| + |L(ᾱf̄ , ḡ)|

)

=
1

|Ψ|

∑

A∈Ψ

|det(G∗ −A∗F∗)|,

where A∗, F∗, G∗ are the linear transformations on the Lie algebra L of L

induced by A, f , g, respectively.

Proof. Suppose that ϕ(Π) * Π+ or ψ(Π) * Π+, and suppose that

there exists an essential coincidence class pCoin(αf̃ , g̃) with coin(ταϕ,ψ) *
Π+. Then uα coin(ταϕ,ψ) = Π/Π+. We may assume that f and g are

transversal so that p(Coin(αf̃ , g̃)) consists of one point x. Since ϕ(Π) * Π+

or ψ(Π) * Π+ and coin(ταϕ,ψ) * Π+, we have (τᾱϕ̄)−1(1̄) = 1̄. Thus,

Lemma 3.9 implies that there is β /∈ Π+ such that the coincidence class

p′(Coin(αf̃ , g̃)) = {x̄, β̄x̄} and x̄ and β̄x̄ do not reduce one another. Hence

p′(Coin(αf̃ , g̃)) is essential. But this is a contradiction, since coin(ταϕ,ψ) =

{1} ⊂ Π+ by Lemma 4.8. Therefore whenever p(Coin(αf̃ , g̃)) is an essential

coincidence class, we have coin(ταϕ,ψ) ⊂ Π+.

Suppose next that ϕ(Π) ⊆ Π+ and ψ(Π) ⊆ Π+. We will show that

all coincidence classes are inessential. Since M̄ is a nilmanifold, Π+ is a

nilpotent group. Thus γn(Π
+) = [γn−1(Π

+),Π+] = 1 for some integer n.

Since Π+ = Π ∩ L is the maximal normal nilpotent subgroup of Π, Π is

not a nilpotent group and thus γn(Π) 6= 1. Let K = kerϕ ∩ kerψ. Then

γn(Π) ⊆ K and this implies that the Hirsch rank of K is bigger than 1. Let

r = Π → Π/K be the natural projection. Then ϕ and ψ factor through

Π/K:

Π
r

−−−−→ Π/K
ϕ′

−−−−→
ψ′

Π+ ⊂ Π.

Since K ⊆ kerϕ and Π, Π+ are torsion-free virtually polycyclic group, the

quotient group Π/K is a torsion-free virtually polycyclic group. By [1,

Theorem 1] or [2, Theorem 1.2], there is a closed infra-solvmanifold N with

π1(N) ∼= Π/K. Since M and N are aspherical, there are maps

M
π

−−−−→ N
f ′

−−−−→
g′

M.



AVERAGING FORMULA FOR NIELSEN COINCIDENCE NUMBERS 89

such that f ′ ◦ π, g′ ◦ π are homotopic to f , g respectively. We may assume

that f ′, g′ are transversal. Since dimN < dimM , [3, Theorem II.15.2]

induces that (f ′ × g′) ∩ ∆M = ∅, i.e., Coin(f ′, g′) = ∅. This implies that

Coin(f ′ ◦ π, g′ ◦ π) = ∅. Hence f , g are homotopic to coincidence free maps.

In all, we have shown that whenever pCoin(αf̃ , g̃) is an essential coin-

cidence class, we have coin(ταϕ,ψ) ⊂ Π+. Hence the first equality follows

from Theorem 4.6. The second equality is well-known (cf. [4], [10]) and the

third equality follows from Theorem 2.4 of [12].

Remark 5.5. For every self map f on the Klein bottle, there is a map

f ′ on the Klein bottle such that f ′ is homotopic to f and f ′ admits a lifting

on the torus. As an application of Theorem 5.4, using the averaging formula

we can easily compute the Nielsen coincidence number of any pair of self

maps on the Klein bottle. In [5], Dobreńko and Jezierski showed the same

result on the Klein bottle using the fiber structure of the Klein bottle. In

the following section we will consider other examples.

§6. Examples

In this section we illustrate, by some examples, how practical the aver-

aging formula on infra-nilmanifolds is.

Example 6.1. Let

a =




1
2
0
0


 , A =



1 0 0
0 −1 0
0 0 −1


 .

Then A has period 2, and (a,A)2 = (a+Aa, I3) = (




1
0
0


 , I3) ∈ R3oAut(R3).

Let Γ be the integral matrices of R3. Then it forms a lattice in R3. It is

easy to check that the subgroup

Π = 〈Γ, (a,A)〉 ⊂ R3 o Aut(R3)

generated by the lattice Γ and the element (a,A) is discrete and torsion

free. Furthermore, Γ is a normal subgroup of Π of index 2. Thus Π is an

almost Bieberbach group.
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Let D,E ∈ Aut(R3) be given by

D =




3 0 0
0 1 1
0 1 2


 , E =



1 0 0
0 2 −1
0 1 0


 .

It is not difficult to check that DA = AD, EA = AE and the conjugation by

({0, 0, 0}, D), (a,E) ∈ R3oAut(R3) map Π into Π (and Γ into Γ). Thus, the

affine maps ({0, 0, 0}, D), (a,E) : R3 → R3 induce φD, φ(a,E) : Γ\R3 → Γ\R3

and ΦD,Φ(a,E) : Π\R3 → Π\R3 so that the following diagram commutes:

R3 ({0,0,0},D)
−−−−−−−→

(a,E)
R3

y
y

Γ\R3 φD
−−−−→
φ(a,E)

Γ\R3

y
y

Π\R3 ΦD−−−−→
Φ(a,E)

Π\R3

Note that all the vertical maps are the natural covering maps. In particular,

Γ\R3 → Π\R3 is the nil-covering and the holonomy group of Π\R3 is Ψ =

{I,A} ∼= Z2. Thus by Theorem 5.4, the Nielsen coincidence number of the

maps ΦD,Φ(a,E) : Π\R3 → Π\R3 is:

N(ΦD,Φ(a,E)) =
1

|Ψ|

∑

A∈Ψ

|det(E −AD)|

=
1

2
(|det(E −D)| + |det(E −AD)|)

=
1

2
(|4| + |−12|) = 8.

Example 6.2. Let L be the 3-dimensional Heisenberg group. That is,

L =








1 x z
0 1 y
0 0 1


 : x, y, z ∈ R



 .

We denote this general element by {x, y, z}. Let Γ is the subgroup of L

which is generated by

{1, 0, 0}, {0, 1, 0}, a = {0, 0, 1
2}.
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Then Γ is a lattice of L.

Let A : L→ L be the automorphism of L given by

A({x, y, z}) = {−x,−y, z}.

Then A has period 2, and (a,A)2 = (a2, I) = ({0, 0, 1}, I) ∈ L o Aut(L),

where I is the identity automorphism of L. The subgroup

Π = 〈Γ, (a,A)〉 ⊂ Lo Aut(L)

generated by the lattice Γ and the element (a,A) is discrete and torsion

free, and Γ is a normal subgroup of Π of index 2. Thus Π is an almost

Bieberbach group, Π\L is an infra-nilmanifold with holonomy group Ψ =

Π/Γ = {1, A} ∼= Z2, and Γ\L→ Π\L is the nil-covering.

Let D,E : L→ L be the automorphisms of L given by

D({x, y, z}) = {x+ y, x,−z + 1
2x

2 + xy},

E({x, y, z}) = {y,−x+ 3y, z − xy + 3
2y

2}.

Clearly the conjugations by ({0, 0, 0}, D), ({0, 0, 0}, E) ∈ L o Aut(L)

map Π into Π (and Γ into Γ). The affine maps ({0, 0, 0}, D), ({0, 0, 0}, E) :

L → L induce φD, φE : Γ\L → Γ\L and ΦD,ΦE : Π\L → Π\L so that the

following diagram commutes:

L
({0,0,0},D)
−−−−−−−→
({0,0,0},E)

L
y

y

Γ\L
φD

−−−−→
φE

Γ\L
y

y

Π\L
ΦD−−−−→
ΦE

Π\L

We take an ordered (linear) basis for the Lie algebra L of L as follows:

e1 =




0 0 1
0 0 0
0 0 0


 , e2 =



0 1 0
0 0 0
0 0 0


 , e3 =




0 0 0
0 0 1
0 0 0


 .

With respect to this basis, the differentials of A, D and E are

A∗ =



1 0 0
0 −1 0
0 0 −1


 , D∗ =



−1 0 0
0 1 1
0 1 0


 , E∗ =



1 0 0
0 0 1
0 −1 3


 .
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Thus by Theorem 5.4, the Nielsen coincidence number of the maps ΦD,ΦE :

Π\L→ Π\L is:

N(ΦD,ΦE) =
1

|Ψ|

∑

A∈Ψ

|det(E∗ −A∗D∗)|

=
1

2
(|det(E∗ −D∗)| + |det(E∗ −A∗D∗)|)

=
1

2
(|−6| + |6|) = 6.
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