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SYMPLECTIC CAPACITIES OF TORIC MANIFOLDS

AND RELATED RESULTS

GUANGCUN LU∗

Abstract. In this paper we give concrete estimations for the pseudo sym-
plectic capacities of toric manifolds in combinatorial data. Some examples are
given to show that our estimates can compute their pseudo symplectic capaci-
ties. As applications we also estimate the symplectic capacities of the polygon
spaces. Other related results are impacts of symplectic blow-up on symplectic
capacities, symplectic packings in symplectic toric manifolds, the Seshadri con-
stant of an ample line bundle on toric manifolds, and symplectic capacities of
symplectic manifolds with S

1-action.

§1. Introduction and main results

The symplectic capacities are the important tools of study of symplectic

topology. There are several symplectic capacities. The typical two of them

are the Gromov symplectic width WG and Hofer-Zehnder capacity cHZ (cf.

[Gr] and [HZ]). However, for a general symplectic manifold (M,ω) it is

very difficult to compute or estimate WG(M,ω) and cHZ(M,ω); see [Gin],

[Lu3] and reference therein for the related results. It is well-known that the

toric manifolds are a very beautiful family of Kähler manifolds admitting

a combinatorial description. They also are rational and thus uniruled. So

their pseudo symplectic capacities all are finite (cf. [Lu3]). The main aim

of this paper is to estimate their (pseudo) symplectic capacities in terms

of combinatorial data. Part results were announced in [Lu2] though they

should be restricted to toric Fano manifolds as showed below.

Firstly, we briefly recall the typical pseudo symplectic capacity intro-

duced in [Lu3]. For its properties and applications the reader refer to

[Lu3]. Given a connected symplectic manifold (M,ω) of dimension 2n

and a smooth function H on it let XH denote the symplectic gradient
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of H. An isolated critical point p of H is called admissible if the spec-

trum of the linear transformation DXH(p) : TpM → TpM is contained

in C \ {λi | 2π ≤ ±λ < +∞}. For two given nonzero homology classes

α0, α∞ ∈ H∗(M) we denote by

Had(M,ω;α0, α∞) (resp. H◦
ad(M,ω;α0, α∞))

the set of all smooth functions on M for which there exist two smooth com-

pact submanifolds P and Q of M with connected smooth boundaries and of

codimension zero such that the following condition groups (a)(b)(c)(d)(e)(f)

(resp. (a)(b)(c)(d)(e)(f ′)) are satisfied:

(a) P ⊂ Int(Q) and Q ⊂ Int(M);

(b) H|P = 0 and H|M−Int(Q) = maxH;

(c) 0 ≤ H ≤ maxH;

(d) There exist chain representatives of α0 and α∞, still denoted by α0,

α∞, such that supp(α0) ⊂ Int(P ) and supp(α∞) ⊂M \Q;

(e) There are no critical values in (0, ε) ∪ (maxH − ε,maxH) for a small

ε = ε(H) > 0;

(f) The Hamiltonian system ẋ = XH(x) onM has no nonconstant periodic

solutions of period less than 1;

(f ′) The Hamiltonian system ẋ = XH(x) on M has no nonconstant con-

tractible periodic solutions of period less than 1.

If α0 ∈ H0(M) can be represented by a point we allow P to be an empty

set. If M is a closed manifold and α∞ ∈ H0(M) is represented by a point,

we also allow Q = M .

The pseudo symplectic capacities of Hofer-Zehnder type are defined by

(1.1)

{
C

(2)
HZ(M,ω;α0, α∞) := sup{maxH | H ∈ Had(M,ω;α0, α∞)},

C
(2◦)
HZ (M,ω;α0, α∞) := sup{maxH | H ∈ H◦

ad(M,ω;α0, α∞)}.

Denote by pt the generator of H0(M) represented by a point. Then we have

symplectic invariants

(1.2)

{
CHZ(M,ω) := CHZ(M,ω; pt, pt),

C◦
HZ(M,ω) := ĈHZ(M,ω; pt, pt).
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It had been proved in [Lu3] that CHZ is a symplectic capacity and that

WG ≤ CHZ ≤ cHZ . In fact, in Lemma 1.4 of the recent [Lu3, v9] we proved

that CHZ(M,ω) = cHZ(M,ω) and C◦
HZ(M,ω) = c◦HZ(M,ω) if either M is

closed or each compact subset K ⊂M \∂M may be contained in a compact

submanifold W ⊂ M with connected boundary and of codimension zero.

Without special statements we follow all notations and conventions in [Lu3].

Especially, we always make the convention that sup ∅ = 0 and inf ∅ = +∞
in this paper. Moreover, we shall omit the superscripts in C

(2)
HZ and C

(2◦)
HZ

without occurring of confusion.

A 2n-dimensional symplectic toric manifold is a closed connected sym-

plectic manifold (M,ω) equipped with an effective Hamiltonian action τ :

Tn → Diff(M,ω) of the standard (real) n-torus Tn = Rn/2πZn and with

a choice of a corresponding moment map µ : M → (Rn)∗. The image

4 = µ(M) ⊂ (Rn)∗ is a convex polytope, called the moment polytope. It

was proved in [Del] that the polytope satisfies: (i) there are n edges meeting

at each vertex p, (ii) the edges meeting at the vertex p are rational, i.e.,

each edge is of the form p + tvk, 0 ≤ t ≤ ∞, where vk ∈ (Zn)∗; (iii) the

v1, . . . , vn in (ii) can be chosen to be a basis of (Zn)∗. Such a polytope is

called a Delzant polytope. It can be uniquely written as

(1.3) 4 =

d⋂

k=1

{
x ∈ (Rn)∗ | 〈x, uk〉 = x(uk) ≥ λk

}
.

Here d is the number of the (n−1)-dimensional faces of 4, uk is a uniquely

primitive element of the lattice Zn ⊂ Rn (the inward-pointing normal to

the k-th face of 4), and λk is a real number. Delzant [Del] associated to

this 4 ⊂ (Rn)∗ a closed connected symplectic manifold (M4, ω4) of dimen-

sion 2n together with a Hamiltonian Tn-action τ4 : Tn → Diff(M4, ω4)

such that the image of the corresponding moment map µ4 : M4 → (Rn)∗

is precisely 4 and that (M,ω, τ) is isomorphic as a Hamiltonian Tn-space

to (M4, ω4, τ4). Two symplectic toric manifolds are isomorphic if they

are equivariantly symplectomorphic. Two Delzant polytopes in (Rn)∗ are

isomorphic if they are differ by the composition of a translation with an

element of SL(n,Z). Delzant showed in [Del] that two symplectic toric

manifolds are isomorphic if and only if their Delzant polytopes are iso-

morphic. Thus we reduce the study of symplectic topology of (M,ω, τ) to

that of (M4, ω4, τ4). Delzant’s construction also yielded a “canonical” Tn-

invariant complex structure J4 compatible with the symplectic form ω4.

In other words the quadruple (M4, ω4, J4, τ4) is a Kähler manifold.
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Such manifolds may be explained as a special class of projective vari-

eties. There exists a class of normal algebraic varieties, called toric varieties,

which are classified by combinatorial objects called fans. Let Σ be a com-

plete regular fan in Rn and G(Σ) = {u1, . . . , ud} be the set of all generators

of 1-dimensional cones in Σ. Denote by XΣ the compact toric manifold

associated with Σ. If it is projective, i.e., if XΣ admits a compatible sym-

plectic structure ω such that (XΣ, ω, J) is Kähler, then every Kähler form

on XΣ can be represented by a strictly convex support function ϕ for Σ

(cf. Section 2.2). Conversely every strictly convex support function for Σ

represents a Kähler form on XΣ. Therefore, in this paper we shall use the

same letter to denote a Kähler form on XΣ and the corresponding strictly

convex support function for Σ when the context makes our meaning clear.

For such a function ϕ setting

(1.4) 4ϕ = {x ∈ (Rn)∗ | 〈x,m〉 ≥ −ϕ(m) ∀m ∈ Rn},

it is a Delzant polytope in (Rn)∗. With S1 = {z ∈ C | |z| = 1} the action of

the maximal compact torus Tn = Rn/2πZn ∼= (S1)n ∈ (C∗)n is Hamiltonian

with respect to the symplectic structure 2π · ϕ and has moment polytope

4ϕ. In other words

(1.5) (XΣ, 2π · ϕ) = (M4ϕ
, ω4ϕ

).

For the Delzant polytope 4 in (1.3) we denote by Σ4 the complete

regular fan in Rn associated with it and by P4 = XΣ4
the corresponding

projective toric manifold (cf. Section 2.2). It follows from (1.5) that Σ is

the fan associated with 4ϕ. As showed in [Gu2] the set of all generators

of 1-dimensional cones in Σ4 is given by G(Σ4) = {u1, . . . , ud}, and under

the identity M4 = P4 the Kähler form ω4 is represented by the strictly

convex support function for Σ4 defined by ω4(ui) = −2πλi, i = 1, . . . , d.

Therefore 4ω4
= 2π4. So we can study the symplectic topology of toric

manifolds from two points of view. Let Z≥0 be the set of all nonnegative

integers. Denote by

(1.6) Λ(Σ, ϕ) := max

d∑

i=1

ϕ(ui)ai

where (a1, . . . , ad) ∈ Zn≥0 satisfies
∑d

i=1 aiui = 0 and 1 ≤ ∑d
i=1 ai ≤ n+ 1.

Our first result is:
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Theorem 1.1. For the above Σ and ϕ one has

0 < Λ(Σ, ϕ) ≤ (n+ 1)max
i
ϕ(ui) and(1.7)

WG(XΣ, ϕ) ≤ C(XΣ, ϕ; pt, PD([ϕ])) ≤ Λ(Σ, ϕ)(1.8)

for C = C
(2)
HZ , C

(2◦)
HZ and n ≥ 2. Moreover, for the interior Int(4ϕ) of 4ϕ

it always holds that

(1.9) WG(XΣ, ϕ) ≥ 1

2π
WG(Int(4ϕ) × Tn, ωcan),

where (Int(4ϕ) × Tn, ωcan) =
(
{(x, θ) | x ∈ Int(4ϕ), θ ∈ Rn/2πZn},∑d

k=1 dxk ∧ dθk
)
.

As a by-product of proof of (1.8) we obtain in Corollary 3.2 Mori’s

theorem on the existence of rational curves through any point on a uniruled

manifold with a different method. In Remark 1.5 below we shall give an

example to show that Λ(Σ, ϕ) may be much smaller than (n+1)maxi ϕ(ui).

In some condition the estimate in (1.8) can be improved.

Theorem 1.2. If XΣ is also Fano, i.e., the anticanonical divisor

−KXΣ
is ample, then

(1.10)

Υ(Σ, ϕ) := inf

{ d∑

k=1

ϕ(uk)ak > 0
∣∣∣

d∑

k=1

akuk = 0, ak ∈ Z≥0, k = 1, . . . , d

}
>0,

and for C = C
(2)
HZ, C

(2◦)
HZ and any n ≥ 2,

(1.11) WG(XΣ, ϕ) ≤ C(XΣ, ϕ; pt, PD([ϕ])) ≤ Υ(Σ, ϕ).

By the definition it is easy to see that Υ(Σ, ϕ) ≤ Λ(Σ, ϕ). In Theo-

rem 2.3 we shall list three equivalent criterions to judge whether or not XΣ

is Fano from Σ.

Let 4n(a) := {(x1, . . . , xn) ∈ Rn
>0 | ∑n

k=1 xk < a}. For 4 in (1.3) the

following number

(1.12)

W(4) := sup{a > 0 | ∃Ψ ∈ SL(n,Z), x ∈ (Rn)∗ s.t. Ψ(4n(a)) + x ⊂ 4}

is an invariant of the Delzant polytopes in (Rn)∗ under the group generated

by elements of SL(n,Z) and translations. For each vertex p of 4 we can
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assign a positive number Ep(4) as follows. Let p1, . . . , pn be n vertex

adjacent to p. By the above definition of Delzant polytope we may assume

that pk sits in an edge of the form p+ tvk, t ≥ 0, k = 1, . . . , n. Denote by

rp(4)k = |p− pk|/|vk|, k = 1, . . . , n. Here |v| denotes the standard norm of

vector v in (Rn)∗. Then pk = p+ rp(4)kvk, k = 1, . . . , n. Let

(1.13) rp(4) =
{
rp(4)1, . . . , rp(4)n

}
and Ep(4) = min

1≤k≤n
rp(4)k.

Proposition 1.3. For the Delzant polytope 4 in (1.3) it holds that

(1.14)
1

2π
WG(Int(4) × Tn, ωcan) ≥ W(4) ≥ max

p∈Vert(4)
Ep(4).

We also want to derive the estimation in terms of 4. A n-dimensional

integral polytope 4 ⊂ (Rn)∗ was called reflexive in [Ba2] if it satisfies: (i)

Int(4) ∩ (Zn)∗ = {0}, and (ii) all facets F of 4 are supported by an affine

hyperplane of the form {m ∈ (Rn)∗ | 〈m, vF 〉 = −1} for some vF ∈ Zn.

A equivalent version is that 0 ∈ Int(4) and the polar 4◦ := {x ∈ Rn |
〈m,x〉 ≥ −1, ∀m ∈ 4} is also a n-dimensional integral polytope Rn. A

reflexive polytope 4 is called a Fano polytope if the fan Σ4 is regular.

Clearly, a reflexive and Delzant polytope is also Fano. Note that polytopes

4 and r ·4 yield the same fans for any r > 0, and that two toric manifolds

corresponding with two isomorphic Delzant polytopes have same Fanoness.

Thus a toric manifold P4 is Fano if and only if r ·(m+4) is a Fano polytope

for some m ∈ (Rn)∗ and r > 0. In Theorem 2.5 we shall show that the toric

manifold P4 associated with a Delzant polytope 4 in (1.3) is Fano if and

only if there exist m ∈ (Rn)∗ and r > 0 such that

Int(r · (m+ 4)) ∩ (Zn)∗ = {0} and

r · (λi + 〈m,ui〉) = ±1, ∀1 ≤ i ≤ d.
(1.15)

More sufficient and necessary conditions will be given there. Using this we

get the following corollary of Theorems 1.1 and 1.2.

Corollary 1.4. For the Delzant polytope 4 ⊂ (Rn)∗ in (1.3) let

Λ(4) (= Λ(Σ4, ω4)) be the maximum of −2π
∑d

i=1 λiai for all (a1, . . . , ad)

∈ Zn≥0 satisfying
∑d

i=1 aiui = 0 and 1 ≤ ∑d
i=1 ai ≤ n + 1. Then Λ(4) ≤

−2π(n+ 1)mini λi and for C = C
(2)
HZ , C

(2◦)
HZ and n ≥ 2,

(1.16) 2πW(4) ≤ WG(M4, ω4) ≤ C(M4, ω4; pt, PD([ω4])) ≤ Λ(4).
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If there exist r > 0 and m ∈ (Rn)∗ such that r · (m + 4) satisfies (1.15),
then

(1.17)

Υ(4) := inf

{
−

d∑

k=1

λkak > 0
∣∣∣

d∑

k=1

akuk = 0, ak ∈ Z≥0, k = 1, . . . , d

}
> 0,

and for C = C
(2)
HZ, C

(2◦)
HZ and any n ≥ 2 it holds that

(1.18) WG(M4, ω4) ≤ C(M4, ω4; pt, PD([ω4])) ≤ 2πΥ(4).

Remark 1.5. The polygon space associated with α = (α1, . . . , α5) =
(3/2, 1, 1, 1, 4/3) is a symplectic toric manifold (Pol(α), ωα) with moment
polytope 4α given by

{
(x1, x2) ∈ R2 | 1

2 ≤ x1 ≤ 5
2 ,

1
3 ≤ x2 ≤ 7

3 ,

x1 + x2 ≥ 1, x1 − x2 ≥ −1, x2 − x1 ≥ −1
}
.

(cf. [HaKn]). Using (1.15) one can prove that it is not Fano. We can also
compute that Λ(4α) = 25π/3 < 15π = −2π(n + 1)mini λi. This shows
that the second inequality in (1.7) may be strict. Since Ψ = diag(1,−1) ∈
SL(2,Z) and Ψ(42(1))+( 1

2 ,
3
2) is contained in 4α, we get that W(4α) ≥ 1.

From these we can use (1.16) to obtain

2π ≤ WG(Pol(α), ωα) ≤ C(Pol(α), ωα; pt, PD([ωα])) ≤ 25π/3.

Moreover, we can prove that Υ(4α) = 1/6. So the second inequality in
(1.18), i.e.,

C(Pol(α), ωα; pt, PD([ωα])) ≤ 2πΥ(4α) = π/3

can not hold because the first one in (1.18) always hold. These show that
the second inequalities in (1.11) and (1.18) do not necessarily hold for non-
Fano symplectic toric manifolds.

Notice that (a1, . . . , ad) ∈ Zn≥0 is only taken over a finite set in the
definition of Λ(Σ, ϕ). Using the formula in [Sp] it might be possible to get
the optimal estimation for any compact non-Fano toric manifold.

The rest of the paper is organized as follows. In Section 2 we give some

necessary preliminaries on toric manifolds; the readers only need to browse

through them. The main results are proved in Section 3. Three exam-

ples are given in Section 4. In Section 5 we estimate symplectic capacities
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of the polygon spaces. Finally four related results are given in Section 6;

They are impacts of symplectic blow-ups on symplectic capacities, sym-

plectic packings in toric manifolds and the estimate of Seshadri constants

of an ample line bundle on toric manifolds, and symplectic capacities of

symplectic manifolds with S1-action.

Acknowledgement. I am grateful to Professors V. V. Batyrev,
A. Givental, A. Kresch, H. Sato, B. Siebert and J. A. Wísniewski for clari-
fying some facts. The author also thanks ICTP at Italy and IHES at Paris
for their financial support and hospitality.

§2. Preliminaries on toric manifolds

The basic references for toric manifolds (in alphabetic order) are [Au],

[Ba1], [Ew], [Fu], [Gu2] and [Oda]. The description here will be presented

in the unity notations in [Ba1] and [Gu2].

2.1. Symplectic toric manifolds

Let (M4, ω4, J4, τ4) be the symplectic toric manifold associated with

Delzant polytope 4 ⊂ (Rn)∗ in (1.3), and µ4 : M4 → (Rn)∗ be the moment

map of the Tn-action τ4 on it. Denote by Fk the k-th (n− 1)-dimensional

face of 4 defined by the equation 〈x, uk〉 = λk. They yield complex and

symplectic submanifolds of M4 of real codimension 2,

(2.1) D1 = µ−1
4 (F1), . . . , Dd = µ−1

4 (Fd).

Let ck be the cohomology class in H2(M4,Z) dual to Dk. The cohomology

class [ω4] and the first Chern class of M4 are respectively given by

(2.2)
1

2π
[ω4] = −

d∑

k=1

λkck and c1(M4) =
d∑

k=1

ck

(cf. [Gu1]). As pointed out in [Ab] the arguments in [Gu1] gave a symplec-

tomorphism

(2.3) (Int(M4), ω4) ∼= (Int(4) × Tn, ωcan).

Here Int(M4) = φ−1
Tn (Int(4)) is an open dense subset in M4, x ∈ Int(4),

θ ∈ Rn/2πZn and ωcan =
∑d

k=1 dxk ∧ dθk. Thus (x, θ) may be viewed as

symplectic coordinates in Int(M4).
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2.2. Fans and toric varieties

For an integer k ≥ 1, a convex subset σ ⊂ Rn is called a regular k-

dimensional cone if there exists a Z-basis v1, . . . , vk, . . . , vn of Zn such that

σ = R≥0v1 + · · · + R≥0vk. Such v1, . . . , vk ∈ Zn are called the integral

generators of σ. The origin 0 ∈ Rn is called the regular zero dimensional

cone. The cones generated by subsets of the integral generators of σ are

called the faces of σ. A finite system Σ = {σ1, . . . , σs} of regular cones in

Rn is called a complete regular n-dimensional fan in Rn if (i) any face of

each cone σ ∈ Σ is also in Σ; (ii) the intersection σ1 ∩ σ2 of any two cones

σ1, σ2 ∈ Σ is a face of each; (iii) Rn = σ1∪· · ·∪σs. A toric variety is compact

and nonsingular if and only if its corresponding fan is complete and regular.

We always consider such a fan Σ below. The set of all k-dimensional cones

of Σ is denoted by Σ(k). For every σ ∈ Σ(1) there is a unique generator

u ∈ Zn such that σ = Z≥0 · u. Denote by G(Σ) = {u1, . . . , ud} the set of

all generators of elements of Σ(1). A nonempty subset P = {ui1 , . . . , uik} ⊂
G(Σ) is called a primitive collection if it is not the set of generators of a

k-dimensional cone in Σ, while for each generator uil ∈ P the elements of

P\{uil} generate a (k−1)-dimensional cone in Σ. Since Σ is complete there

exists a unique cone σ(P) ∈ Σ whose relative interior contains ui1 +· · ·+uik .

Let G(σ(P)) = {uj1 , . . . , ujm}. We get a linear relation

(2.4) ui1 + · · · + uik = cj1uj1 + · · · + cjmujm , cjs > 0, cjs ∈ Z.

(we allow m = 0 if ui1 + · · · + uik = 0.) It is called the primitive relation

for P. The integer deg(P) := k − (c1 + · · · + cm) is called the degree of P.

Denote by PC(Σ) the set of primitive collections of Σ. Let A(P) = {z ∈
Cd | zi = 0 if ui ∈ P} and Z(Σ) =

⋃
P A(P), where P takes over PC(Σ).

Put U(Σ) = Cd \ Z(Σ) and

R(Σ) = {µ = (µ1, . . . , µd) ∈ Zd | µ1u1 + · · · + µdud = 0}.

Clearly, R(Σ) is isomorphic to Zd−n. Let (e1, . . . , ed) be the standard basis

of Rd. Define a linear map β : Rd → Rn, ek 7→ uk, k = 1, . . . , d. It maps

Zd onto Zn. Note that the map β can be naturally extended to a map

βC : Cd → Cn that maps 2πiZd onto 2πiZn. We still denote by βC the

induced map from T d
C

:= Cd/2πiZd to T n
C

:= Cn/2πiZn. Let NC(Σ) be the

kernel of this map. Using the group isomorphism Ed : T d
C
→ (C∗)d given by

[w] = [(w1, . . . , wd)] 7−→ (ew1 , . . . , ewd),
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we get a subgroup of (C∗)d, D(Σ) := Ed(NC(Σ)). Explicitly, it is isomor-

phic to (C∗)d−n as the Lie group. Moreover, D(Σ) acts freely and properly

on U(Σ). Thus the quotient XΣ = U(Σ)/D(Σ) is a simply connected com-

pact complex manifold of dimension n, called the compact toric manifold

associated with Σ. Denote by

(2.5) Dk(Σ) = {[(z1, . . . , zd)] ∈ U(Σ)/D(Σ) | zk = 0}, k = 1, . . . , d.

They are complex submanifolds of XΣ of codimension one and form a basis

for the group TNDiv(XΣ) of TN = (C∗)n-invariant divisors.

A continuous function ϕ : Rn → R is called Σ-piecewise linear if it is a

linear function on every cone of Σ. Such a function is uniquely determined

by its values on elements uk ∈ G(Σ). We also call ϕ ∈ PL(Σ) integral if

ϕ(Zn) ⊂ Z. Denote by PL(Σ) the space of all Σ-piecewise linear functions

on Rn. For ϕ ∈ PL(Σ) and µ ∈ R(Σ) ⊗ R the degree of µ relative to ϕ is

defined by degϕ(µ) =
∑d

k=1 µkϕ(uk)

Theorem 2.1. For A ∈ H2(XΣ,Z) let µk(A) denote the intersection

numbers A ·Dk(Σ), k = 1, . . . , d. Then µ(A) = (µ(A)1, . . . , µ(A)d) ∈ R(Σ)
and the map

(2.6) H2(XΣ,Z) −→ R(Σ), A 7−→ µ(A)

is an isomorphism. Denote by ΞΣ the inverse of the isomorphism and its

natural extension R(Σ) ⊗ R → H2(XΣ,R). Moreover, the homomorphism

ϕ 7→ ∑d
k=1 ϕ(uk)PD(Dk(Σ)) from PL(Σ) to H2(XΣ,R) also induces an

isomorphism

(2.7) ΞΣ : PL(Σ)/MR −→ H2(XΣ,R).

In particular, under the isomorphism ΞΣ the first Chern class c1(XΣ) is

represented by the class of ϕc1 ∈ PL(Σ) such that ϕc1(u1) = · · · = ϕc1(ud) =
1. Furthermore, the degree-mapping induces the nondegenerate pairing deg :
PL(Σ)/MR ×R(Σ)⊗R → R which coincides with the canonical intersection

pairing H2(XΣ,R) ×H2(XΣ,R) → R.

A nonzero homology class A ∈ H2(XΣ,Z) is called very effective in [Kr]

if A ·D ≥ 0 for every toric divisor D. Let VNE(XΣ) denote the set of very

effective curve classes on XΣ. Then under the isomorphism (2.6) it is given

by VNE(XΣ) = Zd≥0 ∩ (R(Σ) \ {0}).
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For each cone σ = 〈ui1 , . . . , uin−1〉 ∈ Σ(n−1) let 〈ui1 , . . . , uin−1 , uin〉 and

〈ui1 , . . . , uin−1 , uin+1〉 are the n-dimensional cones in Σ which contains σ

as a face. Then there are unique integers bi ∈ Z, i = 1, . . . , n + 1 with

bn = bn+1 = 1, such that b1ui1 + · · · + bnuin + bn+1uin+1 = 0. We define

v(σ) = (v(σ)1, . . . , v(σ)d) ∈ R(Σ) by v(σ)r = bt for r = it and 1 ≤ t ≤ n+1,

and by v(σ)r = 0 otherwise. Under the isomorphism (2.6) it corresponds

to the class in H2(XΣ,Z) represented by the TN -stable closed subvariety

V (σ) ∼= CP 1. So the intersection number is

(2.8) (Dl(Σ) · V (σ)) =

{
bt l = it (1 ≤ t ≤ n− 1)

0 otherwise

If XΣ is projective the effective cone is given by NE(XΣ) =
∑

σ∈Σ(n−1)

R≥0v(σ).

A Σ-piecewise linear function ϕ ∈ PL(Σ) is called strictly convex sup-

port function for Σ if (i) it is upper convex, i.e., ϕ(x) + ϕ(y) ≥ ϕ(x + y)

∀x, y ∈ Rn, and (ii) the restrictions of it to any two different n-dimensional

cones σ1, σ2 ∈ Σ, are two different linear functions. Denote by ϕl ∈ PL(Σ)

the unique functions determined by ϕl(uk) = δkl, k, l = 1, . . . , d. It is easily

checked that they are all upper convex. Moreover, under the isomorphism

(2.7) the divisor Dl(Σ) ∈ H2(XΣ,R) corresponds to the class represented

by ϕl. Denote by K(Σ) the cone in H2(XΣ,R) ∼= PL(Σ)/(Rn)∗ consisting

of the classes of all upper convex ϕ ∈ PL(Σ), and by K ◦(Σ) the interior of

K(Σ), i.e., the cone consisting of the classes of all strictly convex support

functions ϕ ∈ PL(Σ). Then K◦(Σ) 6= ∅ if and only if XΣ is projective.

Theorem 2.2. For a complete regular fan Σ in Rn, ϕ ∈ PL(Σ) is a

strictly convex support function for it if and only if the following equivalent

conditions hold.

(i) For any primitive collection P = {ui1 , . . . , uik} ⊂ G(Σ) it holds that

ϕ(ui1) + · · · + ϕ(uik) > ϕ(ui1 + · · · + uik).

(ii) 4ϕ := {m ∈ (Rn)∗ | 〈m,x〉 ≥ −ϕ(x), ∀x ∈ Rn} is a Delzant polytope

in (Rn)∗. In this case, for each maximal cone σ ∈ Σ let ϕσ ∈ (Rn)∗ be

the unique element such that 〈ϕσ , x〉 = −ϕ|σ(x) ∀x ∈ σ, then different

maximal cone give different ϕσ ∈ (Rn)∗ and {ϕσ | σ ∈ Σ(n)} is exactly

the set of vertexes of 4ϕ.
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(iii) The divisor
∑d

k=1 ϕ(uk)Dk is ample, or equivalently

(( d∑

l=1

ϕ(ul)Dl(Σ)
)
· V (σ)

)
=

d∑

k=1

ϕ(uk)v(σ)k > 0 for all σ ∈ Σ(n−1).

(i) is Theorem 4.6 in [Ba1]. The first claim in (ii) follows from Corol-

lary 2.15 in [Oda], and the second is Lemma 2.12 in [Oda]. (iii) is Theo-

rem 2.18 in [Oda].

With the above fan Σ one can associate a polytope in Rn

(2.9) 4Σ :=
⋃

〈u1,...,uk〉∈Σ

conv(0, u1, . . . , uk)

where ui ∈ G(Σ) and 〈u1, . . . , uk〉 is the convex cone spanned on vectors

u1, . . . , uk.

Theorem 2.3. The compact toric manifold XΣ is Fano if and only if

the following equivalent conditions hold.

(i) Σ-piecewise linear function ϕc1 defined in Theorem 2.1 is strictly con-

vex for Σ.

(ii) Every primitive collection P of Σ has positive degree.

(iii) The polytope 4Σ is strictly convex in the sense that each face of it is

of the form conv(ui1 , . . . , uik) where 〈ui1 , . . . , uik〉 ∈ Σ.

(i) and (ii) come from [Ba1] and [Ba3] respectively. (iii) was obtained

on page 268 in [Wi].

There are only finitely many toric Fano varieties of dimension n up to

isomorphism. Toric Fano manifolds have been classified in low dimensions:

there exist exactly 5 different toric Del Pezzo surfaces, exactly 18 different

toric Fano 3-folds and exactly 124 different toric Fano 4-folds (see [Ba2],

[Ba3], [Oda] and references therein).

Since a compact nonsingular toric variety XΣ is projective (or Kähler)

if and only if its fan Σ comes from some Delzant polytope, we recall the

construction of the fan Σ4 associated with the Delzant polytope 4 in (1.3).

For each face F of 4 of codimension k there exists a unique multi-index

IF of length k, IF = (i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ d, such that F =

{x ∈ (Rn)∗ | x(ui) = λi, ∀i ∈ IF }. One has a regular k-dimensional cone

in Rn, σF = {∑ tiui | ti ≥ 0 ∀i ∈ IF} with generators {ui | i ∈ IF}. The
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origin 0 ∈ Rn is called the regular 0-dimensional cone. Then the set Σ4 :=

{σF | F is a face of 4} is a complete regular n-dimensional fan in Rn with

G(Σ4) = {u1, . . . , ud}, and the corresponding toric manifold P4 := XΣ4
is

projective. Audin showed in [Au] that there exists a biholomorphism from

(M4, J4) to P4 = U(Σ4)/D(Σ4) which maps Dk in (2.1) to Dk(Σ4) in

(2.5), k = 1, . . . , d. Later we shall not distinguish between M4 and P4

without special statements. By Theorem 2.2 (ii), if XΣ is projective then

any ϕ ∈ K◦(Σ) yields a Delzant polytope 4ϕ. It is easily proved that

the fan Σ associated with 4ϕ is exactly Σ. Moreover, for any m ∈ (Rn)∗

and r > 0, the above construction implies that Σm+r4 = Σ4 and thus

Pm+r4 = P4 because m+ r4 =
⋂d
k=1{x ∈ (Rn)∗ | x(uk) ≥ m(uk) + rλk}.

Theorem 2.4. For the Delzant polytope 4 in (1.3) the following as-

sertions hold :

(i) K◦(Σ4) 6= ∅, and the open cone K◦(Σ4) ⊂ H2(P4,R) = H1,1(P4,R)
consists of classes of Kähler (1, 1)-forms on P4. The support function

h4 : Rn → R for 4 defined by

h4(x) = − inf{〈v, x〉 | v ∈ 4} ∀x ∈ Rn,

is strictly convex for Σ4, and ω4 = 2πh4.

(ii) 4ω4
= 2π4, and if ϕ ∈ PL(Σ4) is strictly convex for Σ4 then one

has

4ϕ =
d⋂

i=1

{m ∈ (Rn)∗ | 〈m,ui〉 ≥ −ϕ(ui)} and

(M4ϕ
, ω4ϕ

) = (P4, 2πϕ).

(i) follows from Theorem 2.7 in [Oda]. To prove (ii), it is showed before

that each (n − 1)-dimensional face Fi = {m ∈ 4 | 〈m,ui〉 = λi} gives a

corresponding 1-dimensional cone σFi
= R≥0ui in Σ4. By Lemma 2.12 in

[Oda] this cone yields a (n−1)-dimensional face F ϕ
i := {m ∈ 4ϕ | 〈m,ui〉 =

−ϕ(ui)} again.

Theorem 2.5. The projective toric manifold M4 = P4 is Fano if and

only if the following equivalent conditions hold.

(i) There exist r > 0 and m ∈ (Rn)∗ such that Int(r · (m+ 4)) ∩ (Zn)∗ =
{0} and that r · (λi + 〈m,ui〉) = ±1 for i = 1, . . . , d.
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(ii) There exist r > 0 and m ∈ Rn such that 0 ∈ Int(m+4) and that each

vertex of r · (m+4) is a primitive vector in (Zn)∗ in the sense that its

coordinates are relatively prime.

Proof. To prove (i), note that P4 = Pµ(m+4). By Exercise 3.6 on
page 70 of [Gu2], the vertices of the polytope r · (m + 4) lie on integer
lattice points if and only if all r · (λi + 〈m,ui〉) are integers, i = 1, . . . , d.
Moreover it was proved in [Ba2] that Pr·(m+4) is Fano if and only if the
integral polytope r · (m+4) is a reflexive polytope. These imply (i). As to
(ii) it was proved in [Ew] that Pr·(m+4) is Fano if and only if the integral
polytope r · (m + 4) is a Fano ploytope. The condition in (ii) just right
guarantees that r · (m+ 4) is a Fano polytope.

§3. Proof of the Main Theorems

Let (M,ω) be a closed symplectic manifold. For nonzero classes

α0, α∞ ∈ H∗(M,Q), using the Gromov-Witten invariant homomorphism

ΨA,g,m+2 : H∗(Mg,m+2; Q) × H∗(M ; Q)m+2 → Q, we defined in [Lu3] a

number GWg(M,ω;α0, α∞) by the infimum of the ω-areas ω(A) of the ho-

mology classes A ∈ H2(M ; Z) for which ΨA,g,m+2(κ;α0, α∞, β1, . . . , βm) 6= 0

for some homology classes β1, . . . , βm ∈ H∗(M ; Q), κ ∈ H∗(Mg,m+2; Q) and

integer m > 0. It was proved in Theorem 1.10 and Remark 1.11 of [Lu3]

that for C = C
(2)
HZ , C

(2◦)
HZ ,

C(M,ω;α0, α∞) ≤ GW0(M,ω;α0, α∞) and(3.1)

GWg(M,ω; pt, PD([ω])) = inf{GWg(M,ω; pt, α) | α ∈ H∗(M,Q)}.(3.2)

These are the starting points of proof of our main results.

3.1. Rational curves on uniruled manifolds

A smooth projective variety X over C is called uniruled if it satisfies

the following equivalent conditions:

(i) There is a nonempty open subset U ⊂ X such that for every x ∈ U

there is a morphism f : CP 1 → X satisfying x ∈ f(CP 1).

(ii) For every x ∈ X there is a morphism f : CP 1 → X satisfying x ∈
f(CP 1).

The following proposition is a key to prove Theorem 1.1. Its proof was

actually contained in Kollar’s arguments in [Ko] and Proposition 7.3 in

[Lu3]. For convenience of the readers we shall prove it in detail.
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Proposition 3.1. Let X be a uniruled manifold of positive dimension

n. Then there exist homology classes A ∈ H2(X; Z) with 1 ≤ c1(A) ≤ n+1,
α ∈ H2n−2(X,Q) and β ∈ H∗(X; Q) such that

(3.3) ΨA,0,3(pt; pt, α, β) 6= 0.

Proof. Firstly, note that (3.3) and dimension condition in the definition
of GW-invariants imply

2 + 2n+ (2n− dimβ) = 2n+ 2c1(A).

It follows that 1 ≤ c1(A) ≤ n+1 because 0 ≤ dimβ ≤ 2n. So we only need
to prove (3.3).

Our proof ideas are based on the proof of Theorem 4.2.10 in [Ko] and
simple arguments of Gromov-Witten invariants. Recall the proof of Theo-
rem 4.2.10 in [Ko]. Fix a very general point x ∈ X and a very ample divisor
H ⊂ X. Since X is uniruled there exists a rational curve C through x such
that (C ·H) is minimal. Let B =: [C]. Fix a point z0 ∈ CP 1 and let k be
the complex dimension of the space of morphisms f : CP 1 → X such that
f∗([CP

1]) = B and f(z0) = x. Then k ≥ 2 because the isotropic subgroup
of automorphism group of CP 1 at z0 has real dimension 4. Then for general
divisors H1, . . . ,Hk linearly equivalent to H,

(3.4) ΨB,0,k+1(pt; pt,H1, . . . ,Hk) 6= 0.

If k = 2 then (3.3) holds for A = B. If k = 3 it follows from (6) in [Mc]
that

ΨB,0,4(pt; pt,H1,H2,H3)

=
∑

B=B1+B2

∑

l

ΨB1,0,3(pt; pt,H1, el)ΨB2,0,3(pt; fl,H2,H2)

where {el}l is a basis for the homology H∗(X; Q) and {fl}l is the dual
basis with respect to the intersection pairing. This identity implies that
ΨB1,0,3(pt; pt,H1, el) 6= 0 for some l. Taking A = B1 one gets (3.3) again.
If k ≥ 4 the composition law of the GW-invariants gives

ΨB,0,k+1(pt;H1, . . . ,Hk)

=
∑

B=B1+B2

∑

a,b

ΨB1,0,4(pt; pt,H1,H2, βa)η
abΨB2,0,k−1(pt;βb,H3, . . . ,Hk).
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Here {βb}Lb=1 is a homogeneous basis of H∗(X,Q). It follows from (3.4) that

ΨB1,0,4(pt; pt,H1,H2, βa) 6= 0

for some B1 ∈ H2(X; Z) and 1 ≤ a ≤ L. As in case k = 3 we can also get
(3.3). Clearly we has always (H ′ ·A) ≤ (H ′ ·B) for any very ample divisor
H ′ on X.

Corollary 3.2. For a uniruled manifold X of positive dimension n,
through any general point of X there is a rational curve C with 0 < (−KX ·
C) ≤ n+ 1.

This result is not new. It is an easy part of the celebrated Mori’s

theorem in [Mor1], [Mor2]. For more general versions of Corollary 3.2 the

reader may refer to [KoMor].

3.2. Proof of Theorem 1.1

Since XΣ is uniruled, Proposition 3.1 yields homology classes A ∈
H2(XΣ; Z) with 1 ≤ c1(A) ≤ n+ 1, α ∈ H2n−2(XΣ,Q) and β ∈ H∗(XΣ; Q)

such that ΨA,0,3(pt; pt, α, β) 6= 0. Note that the Gromov-Witten invariants

are deformation invariants. For any ϕ ∈ K◦(Σ) one has

〈[ϕ], A〉 =

d∑

i=1

ϕ(ui)µ(A)i > 0.

Now K(Σ) is the closure of K◦(Σ) in H2(XΣ,R). Therefore 〈[ψ], A〉 =∑d
i=1 ψ(ui)µ(A)i ≥ 0 for any ψ ∈ K(Σ). In particular we have

(3.5) 〈[ϕl], A〉 =
d∑

i=1

ϕl(ui)µ(A)i = µ(A)l ≥ 0, l = 1, . . . , d.

These show that A is very effective. By Theorem 2.1, c1(A) =
∑d

i=1 µ(A)i.

So 1 ≤ ∑d
i=1 µ(A)i ≤ n+ 1. By the definition of Λ(Σ, ϕ) we have

0 < 〈[ϕ], A〉 =

d∑

i=1

ϕ(ui)µ(A)i ≤ Λ(Σ, ϕ)

and thus GW0(M,ω; pt, α) ≤ Λ(Σ, ϕ). Moreover it is clear that

d∑

i=1

ϕ(ui)µi ≤
∑

ϕ(ui)>0

ϕ(ui)µi ≤ (n+ 1)max
i
ϕ(ui)
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for each µ ∈ Zn≥0 satisfying
∑d

i=1 µiui = 0 and 1 ≤ ∑d
i=1 µi ≤ n + 1. By

(3.1) and (3.2) we get the desired (1.8).

The proof of (1.9) is direct. Note that 4ϕ may be written as

4ϕ =

d⋂

k=1

{x ∈ (Rn)∗ | 〈x, uk〉 = x(uk) ≥ −ϕ(uk)}.

By Theorem 2.4 (ii) it is a Delzant polytope in (Rn)∗, and (M4ϕ
, ω4ϕ

) =

(P4ϕ
, 2πϕ) = (XΣ, 2πϕ). Using (2.3) we can give a symplectic embedding

from (Int(4ϕ) × Tn, ωcan) to (M4ϕ
, ω4ϕ

). Then (1.9) follows from these

and the monotonicity of symplectic capacities.

3.3. Proof of Theorem 1.2

For every A = ΞΣ(a) ∈ VNE(XΣ), by Theorem 9.1 in [Ba1] the moduli

space M(A,XΣ) consisting of holomorphic maps f : CP 1 → XΣ with

f∗([CP
1]) = A is irreducible and the virtual dimension of it is equal to

n + c1(XΣ)(A) = n +
∑d

k=1 ak. Denote by m = 1 +
∑d

k=1 ak and by

ck ∈ H2(XΣ,Z) the Poincare dual of [Dk(Σ)], k = 1, . . . , d. It was stated

in [Ba1] that

(3.6) ca11 · · · cad

d = qA

holds in QH∗(XΣ). The author incorrectly admitted it in [Lu2]. Actually

one only can prove (3.6) for all A ∈ VNE(XΣ) in the toric Fano manifolds.

The first proof was given by Givental in [Giv] (also see [Kr] for an elementary

proof for a class of Fano toric manifolds, and [CiS] for another different proof

for Fano toric manifolds with minimal Chern number at least two). In terms

of GW-invariants (3.6) means

(3.7) ΨXΣ
A,0,m+1(pt; pt,D1(Σ), . . . , D1(Σ)︸ ︷︷ ︸

a1

, . . . , Dd(Σ), . . . , Dd(Σ)︸ ︷︷ ︸
ad

) = 1.

Its enumerative interpretation is that for a given general point p0 on XΣ and

generic distinct points z0, zk,i, i = 1, . . . , ak and k = 1, . . . , d on CP 1 there

exists precisely one morphism f ∈ M(A,XΣ) such that f(z0) = p0 and

f(zk,i) ∈ Dk(Σ) for i = 1, . . . , ak and k = 1, . . . , d. In particular ϕ(A) > 0.

But Theorem 2.1 shows that ϕ(A) =
∑d

k=1 ω(uk)ak. Therefore for a given

a ∈ Zd≥0 ∩R(Σ), ΞΣ(a) ∈ VNE(XΣ) if and only if
∑d

k=1 ϕ(uk)ak > 0. Now
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(1.10) can easily follow from this and the Gromov compactness theorem.

Hence (3.2) and (3.7) give

GW0(XΣ, ϕ; pt, PD([ϕ])) ≤ ϕ(A) =

d∑

k=1

ϕ(uk)ak

for any A = ΞΣ4
(a) ∈ VNE(XΣ), and thus

GW0(XΣ, ϕ; pt, PD([ϕ])) ≤ Υ(Σ, ϕ).

This and (3.1) give (1.11).

Remark 3.3. For a symplectic toric manifold (Pol(α), ωα) in Remark
1.5 it is easily seen that (3.6) cannot hold for all A ∈ VNE(Pol(α)).

3.4. Proof of Proposition 1.3

Denote by ω0 =
∑n

k=1 dxk∧dθk and ωcan =
∑n

k=1 dxk∧dθk the standard

symplectic form on R2n = Rn × Rn and its descending symplectic form on

Rn × Tn = Rn × (Rn/2πZn) respectively. For ak > 0, bk > 0, k = 1, . . . , n,

we also denote by

E(r1, . . . , rn) =

{
(x1, y1, . . . , xn, yn) ∈ R2n

∣∣∣
n∑

j=1

(x2
j + y2

j )/r
2
j < 1

}
,(3.8)

4(a1, . . . , an) =

{
(x1, . . . , xn) ∈ Rn

>0

∣∣∣
n∑

k=1

xk/ak < 1

}
⊂ Rn,

�(b1, . . . , bn) = {(θ1, . . . , θn) ∈ Rn | 0 < θk < bk ∀1 ≤ k ≤ n}

and abbreviate 4n(a) := 4(a1, . . . , an) and �
n(b) := �(b1, . . . , bn) if a1 =

· · · = an = a and b1 = · · · = bn = b. The following two lemmas will be also

used in Section 6.

Lemma 3.4. ([Sik]) Let U, V ⊂ Rn be two connected open sets with

H1(U) = 0 and H1(V ) = 0. For the symplectic submanifolds U × Tn and

V × Tn of (Rn × Tn, ωcan), the following two statements are equivalent :

(i) (U × Tn, ωcan) and (V × Tn, ωcan) are symplectomorphic;

(ii) there exists a unimodular matrix Φ ∈ Zn×n and a vector x ∈ Rn such

that V = ΦU + x.
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Lemma 3.5. ([Sch, Lemma 3.11]) Let E(c1, . . . , cn) be as above. Then

for all ε > 0,

(i) (E(
√

2a1 − ε, . . . ,
√

2an − ε), ω0) embeds symplectically in (4(a1, . . . ,
an) × �

n(2π), ω0) in such a way that for all α ∈ (0, 1), αE(
√

2a1 −
ε, . . . ,

√
2an − ε) is mapped into ((α+ ε)4(a1, . . . , an)) × �

n(2π);

(ii) (4(a1 − ε, . . . , an − ε)×�
n(2π), ω0) embeds symplectically in E(

√
2a1,

. . . ,
√

2an) in such a way that for all α ∈ (0, 1), (α4(a1 − ε, . . . , an −
ε)) × �

n(2π) is mapped into (α+ ε)E(
√

2a1, . . . ,
√

2an).

Now we are in position to prove Proposition 1.3. By Lemma 3.4, if

Ψ(4n(a)) + x ⊂ 4 for some Ψ ∈ SL(n,Z) and x ∈ (Rn)∗ then there

exists a symplectic embedding from (4n(a)×Tn, ωcan) into (4×Tn, ωcan).

Moreover, Lemma 3.5 can give a symplectic embedding from (B2n(
√

2a −
ε), ω0) into (4n(a) × �

n(2π), ω0) ⊂ (4n(a) × Tn, ωcan) for any given small

ε > 0. The definition of W(4) and the monotonicity of the symplectic

capacities yield the first inequality in (1.14).

In order to prove the second inequality in (1.14) let p ∈ Vert(4) such

that

Ep(4) = max{Eq(4) | q ∈ Vert(4)}.

Suppose that p1, . . . , pn ∈ Vert(4) are the adjacent n vertexes as described

above Proposition 1.3. Then there exists a unique unimodular matrix A ∈
SL(n,Z) such that Ae∗k = vk, k = 1, . . . , n. So the map

(3.9) Φ : (Rn)∗ −→ (Rn)∗, x 7−→ Ax− p

maps the vertexes p and p1, . . . , pn to the origin and rp(4)1e
∗
1, . . . , rp(4)ne

∗
n.

It follows that Φ maps the convex combination conv(p, p1, . . . , pn) onto

conv(0, rp(4)1e
∗
1, . . . , rp(4)ne

∗
n). Since conv(p, p1, . . . , pn) ⊂ 4, the in-

verse map Φ−1 of Φ maps conv(0, rp(4)1e
∗
1, . . . , rp(4)ne

∗
n) into 4. But

4n(Ep(4)) is contained in conv(0, rp(4)1e
∗
1, . . . , rp(4)ne

∗
n). The second

inequality in (1.14) is obtained immediately.

§4. Examples

Example 4.1. In [CdFKM] Candelas, de la Ossa, Font, Katz, and
Morrison resolved the curve of Z2 singularities of the weighted projective
space CP 4(1, 1, 2, 2, 2) to obtain a compact toric manifold X = XΣ. Here
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the one-dimensional cones in the fan Σ are spanned by

u1 = −e1 − 2e2 − 2e3 − 2e4, u2 = e1, u3 = e2,

u4 = e3, u5 = e4, u6 =
1

2
(u1 + u2)

for the standard basis e1, e2, e3, e4 in C4. The maximal cones of Σ are as
follows:

σ1 = 〈u1, u3, u4, u5〉, σ5 = 〈u2, u3, u4, u5〉
σ2 = 〈u1, u4, u5, u6〉, σ6 = 〈u2, u4, u5, u6〉
σ3 = 〈u1, u3, u5, u6〉, σ7 = 〈u2, u3, u5, u6〉
σ4 = 〈u1, u3, u4, u6〉, σ8 = 〈u2, u3, u4, u6〉.

The only two primitive collections are {u1, u2} and {u3, u4, u5, u6}. By
Theorem 2.2 a Σ-piecewise linear function ϕ ∈ PL(Σ) is a strictly convex
support function for Σ if and only if ϕ(u3) + ϕ(u4) + ϕ(u5) + ϕ(u6) > 0
and ϕ(u1) + ϕ(u2) > 2ϕ(u6). Note that u1 + u2 = 2u6. ϕc1 ∈ PL(Σ) is not
a strictly convex support function for Σ. By Theorem 2.3, X is not Fano.
Let ω be the unique Σ-piecewise linear function determined by ω(u1) = 1,
ω(u3) = 1 and ω(ui) = 0 for i = 2, 4, 5, 6. It is easily checked that it is a
strictly convex support function for Σ. So X is projective and ω is a Kähler
symplectic form. Theorem 1.1 yields

(4.1) WG(X,ω) ≤ C(X,ω; pt, PD([ω])) ≤ Λ(Σ, ω) = 1

for C = C
(2)
HZ , C

(2◦)
HZ . Moreover, by Theorem 2.2 (ii) we can calculate all

vertexes of 4ω as follows:

t1 = (−1,−1, 0, 0), t2 = (1, 0, 0, 0), t3 = (3, 1, 1, 0),

t4 = (1,−1, 0, 1), t5 = (0,−1, 0, 0), t6 = (0, 0, 0, 0),

t7 = (0,−1, 1, 0), t8 = (0,−1, 0, 1).

Since the matrix

Φ =




t2 − t6
t5 − t6
t7 − t6
t8 − t6


 =




1 0 0 0
0 −1 0 0
0 −1 1 0
0 −1 0 1
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belongs to SL(4,Z) and maps Cl(4n(1)) = conv{0, e1, e2, e3, e4} onto

conv{t6, t2, t5, t7, t8} ⊂ 4ω.

It follows from Theorem 1.1 and Proposition 1.3 that

WG(X,ω) ≥ 1

2π
WG(4ω × Tn, ωcan) ≥ W(4ω) ≥ 1.

Combing (4.1) we get

WG(X,ω) =
1

2π
WG(4ω × Tn, ωcan) = W(4ω) = 1.

Example 4.2. Let (CP n, ωFS) be n-dimensional projective space
equipped with the Fubini-Study ωFS. We assume that

∫
CP 1 ωFS = 2π.

Then (CP n, ωFS) is a 2n-dimensional toric manifold and its Delzant poly-
tope has vertices q0 = 0 and qi = ei, i = 1, . . . , n. Here e1, . . . , en are the
standard basis of Rn and we have identified (Rn)∗ with Rn. Let p ∈ CP n

be a fixed point of action of T n on it corresponding vertex qn under the
moment map. Since CP n is Fano it easily follows from Corollary 1.4 that

for C = C
(2)
HZ , C

(2◦)
HZ ,

WG(CP n, ωFS) = C(CP n, ωFS; pt, PD([ωFS])) = 2π.

Now take τ ∈ (0, 1) and consider the τ -blow up of (CP n, ωFS) at p we

get a symplectic toric manifold (C̃P
n

τ , ωτ ). By Theorem 1.12 in [Gu2] the
vertices of its Delzant polytope 4τ are q0 = 0, qn = δen, and qi = ei,
qn+i = δen + δei, i = 1, . . . , n− 1. Here δ = 1 − τ . It is easy to see that

4τ =

n+2⋂

k=1

{x ∈ Rn | (x, uk) − λk ≥ 0}

where ui = ei and λi = 0, i = 1, . . . , n, and un+1 = −∑m
i=1 ei, un+2 = −en,

λn+1 = −1 and λn+2 = −δ. Note that all Delzant polytopes 4τ generate

the same fan. All toric manifolds C̃P
n

τ are same as complex manifolds.
If τ = 1/2 it is easily checked that 2

(
41/2 − (1

2 , . . . ,
1
2)

)
satisfies (1.15).

So C̃P
n

1/2 is Fano. In particular we get that (3.7) holds for XΣ = C̃P
n

1/2.

Note that the Kähler forms on C̃P
n

1/2 and C̃P
n

τ are deformedly equivalent
because they sit in a Kähler cone on a complex manifold. Using the fact
that the Gromov-Witten invariants are symplectic deformation invariants
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we still obtain (3.7) for XΣ = C̃P
n

τ . As in the proof of Theorem 1.2 it
follows from this and (3.1) that

C(C̃P
n
, ωτ ; pt, PD([ωτ ])) ≤ 2πΥ(4τ ) = 2πδ

for C = C
(2)
HZ , C

(2◦)
HZ . On the other hand the first inequality in (1.16) leads

to
WG(C̃P

n
, ωτ ) ≥ 2π(1 − τ)

because 4n(1 − τ) ⊂ 4. Hence

(4.2) WG(C̃P
n
, ωτ ) = C(C̃P

n
, ωτ ; pt, PD([ωτ ])) = 2π(1 − τ)

for C = C
(2)
HZ , C

(2◦)
HZ . On the other hand it is easily checked that Λ(4) ≥

π(n + 1)(1 − τ). So (1.18) gives better upper bound than (1.16) for

CHZ(C̃P
n
, ωτ ; pt, PD([ωτ ])).

Example 4.3. Consider the following 4-dimensional toric Fano mani-
fold W due to Hiroshi Sato [Sa, Ex. 4.7], which was missed in the table of
Batyrev [Ba3]. Let e1, e2, e3, e4 be the standard basis in R4. Denote by
u1 = e1, u2 = e2, u3 = −e1 − e2 and u4 = e3, u5 = e4, u6 = −e3 − e4. Let
W be the equivariant blow-ups of CP 2 × CP 2 along three TN -invariant 2-
dimensional irreducible closed subvarieties orb({u1, u4}), orb({u2, u5}) and
orb({u3, u6}). The set of all generators of 1-dimensional cones in its fan Σ is
G(Σ) = {u1, u2, u3, u4, u5, u6, u7, u8, u9}, where u7 = u1 + u4, u8 = u2 + u5

and u9 = u3 + u6. Σ has 23 maximal cones as follows:

σ1 = 〈u1, u2, u7, u8〉, σ2 = 〈u1, u2, u6, u8〉, σ3 = 〈u1, u2, u6, u7〉,
σ4 = 〈u1, u3, u5, u7〉, σ5 = 〈u1, u3, u5, u9〉, σ6 = 〈u1, u3, u7, u9〉,
σ7 = 〈u1, u5, u6, u8〉, σ8 = 〈u1, u5, u6, u9〉, σ9 = 〈u1, u5, u7, u8〉,
σ10 = 〈u1, u6, u7, u9〉, σ11 = 〈u2, u3, u4, u9〉, σ12 = 〈u2, u3, u8, u9〉,
σ13 = 〈u2, u3, u4, u5〉, σ14 = 〈u2, u4, u7, u8〉, σ15 = 〈u2, u4, u6, u7〉,
σ16 = 〈u2, u4, u6, u9〉, σ17 = 〈u2, u6, u8, u9〉, σ18 = 〈u3, u4, u5, u7〉,
σ19 = 〈u3, u4, u7, u9〉, σ20 = 〈u3, u5, u8, u9〉, σ21 = 〈u4, u5, u7, u8〉,
σ22 = 〈u4, u6, u7, u9〉, σ23 = 〈u5, u6, u8, u9〉.

Since W is Fano, ϕc1 ∈ PL(Σ) defined by ϕc1(ui) = 1, i = 1, . . . , 9 gives a
symplectic structure on W . It is easily checked that

Υ(Σ, ϕc1) = inf

{ 9∑

i=1

ni > 0
∣∣∣

9∑

i=1

niui = 0, (n1, . . . , n9) ∈ (Z≥0)
9\{0}

}
= 1.
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By Theorem 1.2 we get that for C = C
(2)
HZ , C

(2◦)
HZ ,

(4.3) WG(W,ϕc1) ≤ C(W,ϕc1 ; pt, PD([ϕc1 ])) ≤ 1.

By Theorem 2.2 (ii) we can calculate all vertexes of 4ϕc1
as follows:

t1 = (1, 1, 0, 0), t2 = (1, 1,−1, 0), t3 = (1, 1, 0,−1),

t4 = (1,−2, 0, 1), t5 = (1,−2,−1, 1), t6 = (1,−2, 0, 0),

t7 = (1, 0,−2, 1), t8 = (1,−1,−2, 1), t9 = (1, 0, 0, 1),

t10 = (1,−1, 0,−1), t11 = (−2, 1, 1,−1), t12 = (0,−1,−2,−2),

t13 = (−2, 1, 1, 1), t14 = (0, 1, 1, 0), t15 = (0, 1, 1,−2),

t16 = (−2,−1, 0,−1), t17 = (−1, 1,−1, 0), t18 = (0,−1, 1, 1),

t19 = (0,−1,−1,−1), t20 = (−1, 0,−1, 1), t21 = (0, 0, 1, 1),

t22 = (0, 0, 1,−2), t23 = (0, 0,−2, 1).

Note that the matrix

Φ =




t2 − t1
t3 − t1
t9 − t1
t14 − t1


 =




0 0 −1 0
0 0 0 −1
0 −1 0 −1
−1 0 1 0




belongs to SL(4,Z) and maps Cl(4n(1)) = conv{0, e1, e2, e3, e4} onto

conv{t1, t2, t3, t9, t14} − t1 ⊂ 4ϕc1
− t1.

It follows from Theorem 1.1 and Proposition 1.3 that

WG(W,ϕc1) ≥
1

2π
WG(4ϕc1

× Tn, ωcan) ≥ W(4ϕc1
) ≥ 1.

Combing (4.3) we arrive at

(4.4) WG(W,ϕc1) = C(W,ϕc1 ; pt, PD([ϕc1 ])) = 1

for C = C
(2)
HZ , C

(2◦)
HZ .

§5. Symplectic capacities of polygon spaces

Let α = (α1, . . . , αm) ∈ Rm
+ . Following [HaKn] the polygon space

Pol(α), abelian polygon space APol(α) and upper path space UP(α) for α
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are given by

Pol(α) =

{
(ρ1, . . . , ρm) ∈ (R3)m

∣∣∣ ∀i, |ρi| = αi,

m∑

i=1

ρi = 0

}/
SO3,

APol(α) =

{
(ρ1, . . . , ρm) ∈ (R3)m

∣∣∣ ∀i, |ρi| = αi, ζ
( m∑

i=1

ρi

)
= αm

}/
SO2,

UP(α) =

{
(ρ1, . . . , ρm−1) ∈ (R3)m−1

∣∣∣ ∀i, |ρi| = αi, ζ
(m−1∑

i=1

ρi

)
≥ αm

}/
∼

respectively, where SO3 acts on (R3)m diagonally, ζ : R3 → R is the projec-

tion ζ(x, y, z) = z, and ρ ∼ ρ′ if ρ = ρ′ or if ζ
(∑m−1

i=1 ρi
)

= αm and [ρ] = [ρ′]

in APol(α). When α is generic, i.e., the equation
∑m

i=1 εiαi = 0 has no

solution with εi = ±1 they are respectively closed symplectic manifolds of

dimensions 2(m−3), 2(m−2) and 2(m−1). Moreover Pol(α) is a codimen-

sion 2 symplectic submanifold of APol(α), and the latter is a codimension

2 symplectic submanifold of UP(α). In particular APol(α) and UP(α) are

respectively toric manifolds with moment polytopes

Ξα =

{
(x1, . . . , xm−1) ∈

m−1∏

i=1

[−αi, αi]
∣∣∣
m−1∑

i=1

xi = αm

}
,

Ξ̂α =

{
(x1, . . . , xm−1) ∈

m−1∏

i=1

[−αi, αi]
∣∣∣
m−1∑

i=1

xi ≥ αm

}
.

Note that Ξ̂α may viewed as a Delzant polytope. Indeed, with the standard

basis e1, . . . , em−1 of Rm−1 we set ui = ei, um−1+i = −ei, i = 1, . . . ,m− 1

and u2m−1 =
∑m−1

i=1 ei. Then with λm−1+i = λi = −αi, i = 1, . . . ,m − 1,

and λ2m−1 = αm we have

Ξ̂α =

2m−1⋂

k=1

{
x ∈ Rm−1 | (x, uk) − λk ≥ 0

}
.

For nonnegative integers µk, k = 1, . . . , 2m−1 the direct computation gives

rise to 



2m−1∑

k=1

µkuk =

m−1∑

i=1

(µi − µm−1+i + µ2m−1)ei

−
2m−1∑

k=1

λkµk =

m−1∑

i=1

αi(µi + µm−1+i) − αmµ2m−1.
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So
∑2m−1

k=1 µkuk = 0 ⇔ µm−1+i = µi + µ2m−1, i = 1, . . . ,m − 1, and thus

1 ≤ ∑2m−1
i=1 µi ≤ m⇔ 1 ≤ 2

∑m−1
i=1 µi +mµ2m−1 ≤ m. In this case

−
2m−1∑

k=1

λkµk = 2

m−1∑

i=1

αiµi +

(m−1∑

i=1

αi − αm

)
µ2m−1.

Setting bi = µi, i = 1, . . . ,m− 1, and bm = µ2m−1 we get

(5.1) Λ(Ξ̂α) = 2πmax

{
2
m−1∑

i=1

αibi +
(m−1∑

i=1

αi − αm

)
bm

∣∣∣

1 ≤ 2
m−1∑

i=1

bi +mbm ≤ m, bi ∈ Z≥0

}
.

By (1.7) it is less than or equal to 2mπmax{αi | 1 ≤ i ≤ m−1}. Moreover,

it is easily checked that conv(0, δe1, . . . , δem−1) ⊂ Ξ̂α for δ = min{αi | 1 ≤
i ≤ m− 1}. By Theorem 1.1 we have:

Proposition 5.1. Let ω̂α denote the symplectic form on UP(α). Then

for C = C
(2)
HZ , C

(2◦)
HZ ,

2πmin{αi | 1 ≤ i ≤ m− 1} ≤ WG(UP(α), ω̂α)

≤ C(UP(α), ω̂α; pt, PD([ω̂α])),

and for m ≥ 3 it holds that

C(UP(α), ω̂α; pt, PD([ω̂α])) ≤ Λ(Ξ̂α)(5.2)

≤ 2mπmax{αi | 1 ≤ i ≤ m− 1}.
Since Ξα is isomorphic to the Delzant polytope

4α =

{
(y1, . . . , ym−2) ∈

m−2∏

i=1

[−αi, αi]
∣∣∣ αm−αm−1 ≤

m−2∑

i=1

yi ≤ αm+αm−1

}
,

as in the proof of Proposition 5.1 we can derive from Theorem 1.1:

Proposition 5.2. Let ωα denote the symplectic form on APol(α).
Then

Λ(4α) = max

{
2

m−2∑

i=1

µiαi + µm−1 ·
(m−1∑

i=1

αi − αm

)

+ µm ·
(
αm−1 + αm −

m−2∑

i=1

αi

)}
,
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where µi ∈ Z≥0, i = 1, . . . ,m, satisfy

1 ≤ 2

m−2∑

i=1

µi + (m− 1)µm−1 + (m− 3)µm ≤ m− 1.

Moreover, for m ≥ 4 and C = C
(2)
HZ, C

(2◦)
HZ it holds that

WG(APol(α), ωα) ≤ C(APol(α), ωα; pt, PD([ωα])) ≤ Λ(4α)(5.3)

≤ 2(m− 1)πmax{α1, . . . , αm−2, αm−1 + αm}.

By Proposition 1.3 in [HaKn], for generic α ∈ Rm
+ and δ >

∑m−1
j=1 αj

one has a symplectomorphism

APol(α1, . . . , αm) ∼= Pol(α1, . . . , αm−1, δ + αm, δ).

So it follows from Proposition 5.2 that

Proposition 5.3. Let ω′
α denote the symplectic form on Pol(α). Then

for every generic α ∈ Rm
+ satisfying αm−1 > αm > 1

2

∑m−1
j=1 αj the polygon

space Pol(α1, . . . , αm) is symplectomorphic to APol(α1, . . . , αm−2, αm−1 −
αm). So with α′ = (α1, . . . , αm−1, αm−1 − αm),

Λ(4α′) = max

{
2

m−3∑

i=1

µiαi + µm−2 ·
( m∑

i=1

αi − 2αm−1

)

+ µm−1 ·
(
2αm−1 + 2αm−2 −

m∑

i=1

αi

)}
,

where µi ∈ Z≥0, i = 1, . . . ,m− 1, satisfy

1 ≤ 2
m−3∑

i=1

µi + (m− 2)µm−2 + (m− 4)µm−1 ≤ m− 2.

Moreover, for m ≥ 5 and C = C
(2)
HZ, C

(2◦)
HZ it holds that

WG(Pol(α), ω′
α) ≤ C(Pol(α), ω′

α; pt, PD([ω′
α])) ≤ Λ(4α′)(5.4)

≤ 2(m− 2)πmax{α1, . . . , αm−3, αm−2 + αm−1 − αm}.

It was shown in Section 6 of [HaKn] that for generic α ∈ R5
+ and β ∈ R6

+

both Pol(α) and Pol(β) are toric manifolds if α1 6= α2 and α4 6= α5, and if

β1 6= β2 and β5 6= β6.
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§6. Related results

6.1. Impacts on symplectic capacities of symplectic blow-ups

If we always require the class κ to be a single point one pt in the

definition of the number GWg(M,ω;α0, α∞) at the beginning of Section 3,

the corresponding infimum is denoted by

(6.1) ĜWg(M,ω;α0, α∞).

Then GWg(M,ω;α0, α∞) ≤ ĜWg(M,ω;α0, α∞).

Firstly, it is easy to see that the symplectic blow up operation for a

symplectic manifold must decrease the volume of it. One easily find a non-

compact symplectic manifold for which a suitable symplectic blowing up

does not decrease its Gromov symplectic width. Therefore it is a compli-

cated problem. For simplicity we restrict our attention to the case of a

symplectic blow up of a closed 2n-dimensional symplectic manifold (M,ω)

at k distinct points. Let ψ =
∐
i ψi :

∐
i(B

2n(ri), ω0) → (M,ω) be a sym-

plectic embedding of k disjoint standard symplectic balls of radii r1, . . . , rk,

and Θ : (M̃ψ , ω̃ψ) → (M,ω) be the symplectic blow-up associated with ψ

at pi = ψi(0), i = 1, . . . , k. Let Hj(M) (resp. Hj(M)) denote Hj(M,Z)

(resp. Hj(M,Z)) modulo torsion. Denote by Σi = Θ−1(0) ≈ CPn−1 the

exceptional divisor corresponding to pi. Let E1, . . . , Ek denote the homol-

ogy classes of the exceptional divisors in H2n−2(M̃) and e1, . . . , ek ∈ H2(M̃ )

be their Poincaré duals. Then

(6.2) [ω̃] = [Θ∗ω] −
k∑

i=1

πr2i ei

in H2(M̃,R) ([McP]). Let E ′
i ∈ H2(M̃ ) be the classes of lines in the ex-

ceptional divisors Σi such that PD(E ′
i) = −(−ei)n−1. Let {T0, . . . , Tq}

be a homogeneous basis of H2(M) of increasing codimension such that

T0 is the fundamental class and Tq = pt. With p = q + k(n− 1) we define

T̃q+1, . . . , T̃p to be the classes eji ∈ H2(M̃ ), i = 1, . . . , k and j = 1, . . . , n−1.

Denote by T̃i = Θ∗Ti, i = 1, . . . , q. Then {T̃1, . . . , T̃p} is a homogeneous

basis of H2(M̃). The classes T̃1, . . . , T̃q (resp. T̃q+1, . . . , T̃p) are called non-

exceptional (resp. exceptional). Note that

T̃j · T̃j′ = Θ∗(Tj · Tj′), T̃j · emi = 0

emi · em′

i′ = δii′e
m+m′

i , eni = (−1)n−1pt
(6.3)
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on M̃ for 1 ≤ j, j ′ ≤ q, 1 ≤ i, i′ ≤ k and 1 ≤ m,m′ ≤ n − 1. One has a

canonical decomposition

H2(M̃ ) = H2(M) ⊕ ZE′
1 ⊕ · · · ⊕ ZE′

k.

By (6.3) the classes PD(E ′
i) ∈ H2(M̃) satisfy PD(E ′

i) ·Ej = Ej(E
′
i) = −δij.

So one has

H2(M̃ ,R) = H2(M,R) ⊕ Ren−1
1 ⊕ · · · ⊕ Ren−1

k .

As usual we denote by Θ! the transfer map PDfM
◦Θ∗ ◦PDM from H∗(M)

to H∗(M̃) and call the image Θ!(A) the corresponding non-exceptional class

of A ∈ H2(M). Using (6.2) and (6.3) it is not hard to derive that

(6.4) 〈[ω̃],Θ!(A)〉 = 〈[ω], A〉.

Let ptM (resp. ptfM
) denote the single point class in H0(M) (resp. H0(M̃ ))

such that 〈PDM (ptM ), [M ]〉 = 1 (resp. 〈PDfM
(ptfM

), [M̃ ]〉 = 1). Note that

H2n(M̃,R) = R[ω̃n] and H2n(M,R) = R[ωn]. It is easily checked that

(6.5) Θ!(ptM ) = ptfM
and

k∑

i=1

r2ni (−πei)n = −
(
πn

k∑

i=1

r2ni

)
PDfM

(ptfM
).

It was proved in [Ga] and [Hu] that

(6.6) Ψ
fM
Θ!(A),0,m(pt; Θ!(γ1), . . . ,Θ!(γm)) = ΨM

A,0,m(pt; γ1, . . . , γm)

for any A ∈ H2(M) and γi ∈ H∗(M̃), i = 1, . . . ,m. We here use the

homology classes for convenience. It follows from this, (6.1) and (6.4) that

(6.7) ĜW0(M̃, ω̃; Θ!(α0),Θ!(α∞)) ≤ ĜW0(M,ω;α0, α∞).

Note that the first identity in (6.5) and (6.6) give

Ψ
fM
Θ!(A),0,m+1(pt; ptfM

,Θ!(γ1), . . . ,Θ!(γm))(6.8)

= ΨM
A,0,m+1(pt; ptM , γ1, . . . , γm).

By (3.2), GW0(M̃, ω̃; ptfM
, PD([ω̃])) is equal to the infimum of the ω̃-areas

ω̃(A) of the classes A ∈ H2(M̃) for which Ψ
fM
A,0,m+1(κ; ptfM

, β1, . . . , βm) 6= 0
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for some classes β1, . . . , βm ∈ H∗(M̃ ; Q), κ ∈ H∗(M0,m+1; Q) and integer

m > 1. Hence it follows from (6.8) that

GW0(M̃ , ω̃; ptfM
, PD([ω̃]))(6.9)

≤ inf{ω(A) | ΨM
A,0,m+1(pt; ptM , γ1, . . . , γm) 6= 0},

where the infimum is taken for A ∈ H2(M) and γi ∈ H∗(M). By (3.1) and

(6.7) we obtain:

Theorem 6.1. For any nonzero classes α0, α∞ ∈ H∗(M,Q) it holds

that

CHZ(M̃ , ω̃; Θ!(α0),Θ!(α∞)) ≤ ĜW0(M,ω;α0, α∞) and

CHZ(M̃ , ω̃; ptfM
, PD([ω̃]))

≤ inf{ω(A) | ΨM
A,0,m+1(pt; ptM , γ1, . . . , γm) 6= 0}.

Notice that the blow-ups of a toric manifold at its toric fixed points are

also toric manifolds. However, the blow up of a toric Fano manifold is not

necessarily Fano again. By (3.7) and Theorem 6.1 we get:

Theorem 6.2. Let XeΣ be a toric manifold obtained by a sequence of

blowings up of a toric Fano manifold at toric fixed points. So G(Σ) =
{u1, . . . , ud} ⊂ G(Σ̃). Then for any strictly convex support function ϕ for

Σ̃ (also strictly convex for Σ) it holds that

(6.10) WG(XeΣ
, ϕ) ≤ C(XeΣ

, ϕ; pt, PD([ϕ])) ≤ 2π · Υ(Σ, ϕ).

for every n ≥ 2 and C = C
(2)
HZ , C

(2◦)
HZ . Here Υ(Σ, ϕ) is given by (1.10) and

is always more than zero though Υ(Σ̃, ϕ) might equal to zero in the case XeΣ
is not Fano.

The fan Σ̃ may be obtained from Σ by a sequence of regular stellar

operations. For the Delzant polytope 4 in (1.3) and a vertex p of it, let the

rays p+ tvi, t ≥ 0, form the edges of 4 at p as in the definition of Delzant

polytope above, we choose 0 < ε < Ep(4) and replace the vertex p by the

n vertices p + εvi, i = 1, . . . , n to get a new Delzant polytope 4ε. Then

the symplectic toric manifold (M4ε
, ω4ε

) is the symplectic ε blow-up of the

symplectic toric manifold (M4, ω4, τ4, µ4) at a fixed point q = µ4(p) of

the Tn-action τ4.
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Corollary 6.3. Suppose that there exist r > 0 and m ∈ (Rn)∗ such

that r · (m + 4) satisfies (1.15), i.e., M4 is Fano. Then for C = C
(2)
HZ ,

C
(2◦)
HZ and any n ≥ 2 it holds that

WG(M4ε
, ω4ε

) ≤ C(M4ε
, ω4ε

; pt, PD([ω4ε
])) ≤ 2πΥ(4).

6.2. Symplectic packings in symplectic toric manifolds

We here presents a symplectic packing result in symplectic toric mani-

folds via symplectic ellipsoid of form (3.8) (see [Bi], [Gr], [McP], [Ka], [Tr],

[Sch] and references therein for the exposition and related results). Denote

by Vert(4) the vertex set of the Delzant polytope 4 in (1.3). For each

p ∈ Vert(4) let p1, . . . , pn be its adjacent n vertexes. If ]Vert(4) > n + 1

there must exist another p′ ∈ Vert(4) and adjacent n vertexes p′1, . . . , p
′
n

corresponding to it such that

(6.11) (conv(p, p1, . . . , pn))
◦ ∩ (conv(p′, p′1, . . . , p

′
n))

◦ = ∅.

Hereafter S◦ denotes the interior of the set S. In this case we say that

the vertexes q and q′ are simplicially separating in 4. Notice also that

each conv(p, p1, . . . , pn) determines a family of open symplectic ellipsoids

E(4, p, ε) := E(
√

2rp(4)1 − ε, . . . ,
√

2rp(4)n − ε) for 0 ≤ ε ≤ Ep(4).

Theorem 6.4. If any two points of a given subset {q1, . . . , qm} ⊂
Vert(4) are simplicially separating in 4, then for any small ε > 0 there

exists a symplectic packing of (M4, ω4) via the ellipsoids E(4, qk, ε), k =
1, . . . ,m.

Proof. By (2.3) it suffices to prove that for any small ε > 0 there exists
a symplectic embedding of a disjoint union of the open ellipsoids E(4, qk, ε),
k = 1, . . . ,m. For each k = 1, . . . ,m, as in proof of Proposition 1.3 we
have the unimodular matrixes Ak ∈ SL(n,Z) such that the corresponding
transformations

Φk : (Rn)∗ −→ (Rn)∗, x 7−→ Akx− qk,

map qk, pk1, . . . , pkn to 0, ak1e
∗
1, . . . , akne

∗
n, k = 1, . . . ,m, respectively. Here

pk1, . . . , pkn are the adjacent n vertexes to qk, and aki = rqk(4)i, i =
1, . . . , n, and k = 1, . . . ,m. Now each Φk induces a symplectomorphism Ak

of ((Rn)∗ × Tn, ωcan) to itself that maps conv(qk, pk1, . . . , pkn) × Tn onto
conv(0, ak1e

∗
1, . . . , akne

∗
n) × Tn, k = 1, . . . ,m. Note that

(conv(0, ak1e
∗
1, . . . , akne

∗
n))

◦ = 4(ak1, . . . , akn), k = 1, . . . ,m,
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provided that (Rn)∗ is identified with Rn by the isomorphism

x1e
∗
1 + · · · + xne

∗
n 7−→ x1e1 + · · · + xnen.

We can use Lemma 3.5 to find symplectic embeddings Bk of

E(4, qk, ε) = E(
√

2ak1 − ε, . . . ,
√

2akn − ε)

into (4(ak1, . . . , akn) × �
n(2π), ω0) and thus into (4(ak1, . . . , akn) × Tn,

ωcan), k = 1, . . . ,m. Then it is easily checked that the compositions A−1
k ◦

Bk, k = 1, . . . ,m, give the desired symplectic embeddings.

Remark 6.5. Let a = (a1, . . . , an) be a vector of positive weights and
4n(a) := 4(a1, . . . , an). Also denote by E(

√
2a) := E(

√
2a1, . . . ,

√
2an).

The above proof actually shows that if for some 4n(a(k)) ⊂ Rn ≡ (Rn)∗

there exist Ak ∈ SL(n,Z) and qk ∈ (Rn)∗, k = 1, . . . ,m, such that the sets
Ak(4n(a(k)))+qk ⊂ 4, k = 1, . . . ,m, are mutually disjoint, then (M4, ω4)

admits a symplectic packing via m open ellipsoids E(
√

2a(k)), k = 1, . . . ,m.

Example 6.6. Consider the polygon space (Pol(α), ωα) in Remark 1.5.
Its moment polytope 4α has vertexes: q1 = (1/2, 3/2), q2 = (4/3, 7/3),
q3 = (5/2, 7/3), q4 = (5/2, 3/2), q5 = (4/3, 1/3), q6 = (2/3, 1/3) and q7 =
(1/2, 1/2). It is easily computed that

E(4, q1) = E(
√

2,

√
5
√

2/3), E(4, q2) = E(

√
5
√

2/3,
√

7/3),

E(4, q3) = E(
√

7/3,
√

5/3), E(4, q4) = E(
√

5/3,

√
7
√

2/3),

E(4, q5) = E(

√
7
√

2/3,
√

4/3), E(4, q6) = E(
√

4/3,

√√
10/3),

E(4, q7) = E(

√√
10/3,

√
2).

By Theorem 6.4, for any ε > 0 sufficiently small, (Pol(α), ωα) admits the
symplectic packings via the following groups of ellipsoids:

{E(4, q1, ε), E(4, q3, ε), E(4, q5, ε)}, {E(4, q1, ε), E(4, q3, ε), E(4, q6, ε)},
{E(4, q2, ε), E(4, q4, ε), E(4, q6, ε)}, {E(4, q2, ε), E(4, q4, ε), E(4, q7, ε)},
{E(4, q3, ε), E(4, q5, ε), E(4, q7, ε)}, {E(4, q1, ε), E(4, q4, ε), E(4, q6, ε)},
{E(4, q2, ε), E(4, q5, ε), E(4, q7, ε)}.
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6.3. Seshadri constants

Let (M,J) be a compact complex manifold of dimension n, and L→M

an ample line bundle. Demailly [Dem] defined the Seshadri constant of L

at a point x ∈ M to be the infimum ε(L, x) of
∫
C c1(L)/multxC, where C

takes over all irreducible curves passing through the point x, and multxC

is the multiplicity of C at x. The global Seshadri constant is defined by

ε(L) := infx∈M ε(L, x). For the toric manifold XΣ as in Theorem 1.1 let

Lk → P4 be the corresponding line bundles to the toric divisors Dk(Σ) in

(2.5), k = 1, . . . , d. It is well-known that the Chern class c1(Lk) is Poincaré

dual to [Dk] ∈ H2(XΣ,Z) for each k.

Theorem 6.7. Let Σ be a complete regular fan in Rn. Then for any

ample line bundle L → XΣ and any strictly convex support function ϕL
representing the class c1(L) it holds that

(6.12) ε(L) ≤ 2π · Λ(Σ, ϕL).

Furthermore, if XΣ is also Fano then

(6.13) ε(L) ≤ 2π · Υ(Σ, ϕL).

Proof. Recall that in Definition 1.26 of [Lu3, v9] we defined

GW(M,ω) = inf GWg(M,ω; pt, α),

where the infimum is taken over all nonnegative integers g and all homology
classes α ∈ H∗(M ; Q) \ {0} of degree degα ≤ dimM − 1. Using Proposi-
tion 6.3 in [BiCi] we showed in Theorem 1.36 of [Lu3, v9] that for a closed
connected complex manifold (M,J) of dimension dimR M > 2 and any am-
ple line bundle L → M it holds that ε(L) ≤ GW(M,ωL). Here ωL is any
J -compatible Kähler form (the curvature form for a suitable metric con-
nection on L) representing the cohomology class c1(L). From the proofs of
Theorems 1.1 and 1.2 it is easily seen that for a toric manifold XΣ and a
strictly convex support ϕ for Σ one has

GW(XΣ, ϕ) ≤ 2πΛ(Σ, ϕ) and GW(XΣ, ϕ) ≤ 2πΥ(Σ, ϕ)

in general case and Fano case respectively.
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6.4. Symplectic capacities of symplectic manifolds with S1-

action

The symplectic toric manifolds are a special class of symplectic man-

ifolds with the Hamiltonian S1-action. Let {λt} = λ : S1 = R/Z →
Ham(M,ω) be a Hamiltonian circle action on a connected symplectic man-

ifold of dimension 2n. Let H : M → R be the Hamiltonian function for

the action. It means that the circle action is generated by the Hamiltonian

vector field XH . This action is called semi-free if it is free on M \M S1
.

For each fixed point p of the action there exist integers m1, . . . ,mn such

that the induced linear symplectic S1-action on the tangent space TpM is

isomorphic to the action on (Cn, ω0) generated by the moment map

H0(z1, . . . , zn) = π
n∑

j=1

mj |zj |2.

The integers m1, . . . ,mn, uniquely determined up to permutation, are called

the isotropy weights at p. An Hamiltonian S1-action on (M,ω) is semi-free

if and only if the only isotropy weights at every fixed point are ±1.

Theorem 6.8. Let (M,ω) be a 2n-dimensional, connected closed sym-

plectic manifold with a semi-free Hamiltonian circle action with isolated

fixed points. Then

(6.14) WG(M,ω) ≤ C(M,ω; pt, PD([ω])) ≤ maxH − minH

for C = C
(2)
HZ, C

(2◦)
HZ and any n ≥ 2, where H is the associated Hamiltonian

function. Moreover, if [ω] ∈ H2(M,Q) and the only isotropy weights at

every fixed point is ±1 then

(6.15) WG(M,ω) ≥ π

m
.

Here m > 0 is the smallest integer such that m[ω] ∈ H 2(M,Z).

Proof. Following the notations in [Go] let S = {1, . . . , n}. Each subset
I ⊂ S may determine a homology class AI ∈ H2(M) in Proposition 2.11
of [Go] such that ω(AI) = maxH − H(pIc) with Ic = S \ I. By (14) in
Corollary 3.14 of [Go] one has xS ∗ xI = xIc ⊗ eAI . It follows that Gromov-
Witten invariant

(6.16) ΨAI ,0,3(pt;PD(xS), PD(xI), PD(xJ )) 6= 0



182 G. LU

for some J ⊂ S. Note that xS is the positive generator H2n(M,Z) (cf.
Remark 2.10 in [Go].) (6.16) shows that (M,ω) is strong 0-symplectic
uniruled in the sense of Definition 1.14 in [Lu3, v9]. As in [Lu1] and [Lu3],
using the the reduction formula of the Gromov-Witten invariants we can
also derive from (6.16) that

ΨAI ,0,4(π
−1(pt); pt, PD([ω]), α) 6= 0

for some α ∈ H∗(M,R). So it follows from (12) and Theorem 1.13 in [Lu3,
v9] that

WG(M,ω) ≤ C
(2)
HZ(M,ω; pt, PD([ω]))

≤ C
(2◦)
HZ (M,ω; pt, PD([ω]))

≤ GW0(M,ω; pt, PD([ω]))

≤ ω(AI)

≤ maxH −H(pIc)

≤ maxH − minH.

(6.14) is proved.
For the second claim, by Proposition 2.8 in [KaTo] there exists a sym-

plectic embedding from (B2n(1), ω0) to (M,mω). So WG(M,mω) ≥ π.
(6.15) follows.
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