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LEVEL RINGS ARISING FROM MEET-DISTRIBUTIVE

MEET-SEMILATTICES

JÜRGEN HERZOG and TAKAYUKI HIBI

Abstract. The homogenized ideal dual complex of an arbitrary meet-semi-
lattice is introduced and described explicitly. Meet-distributive meet-semi-
lattices whose homogenized ideal dual complex is level are characterized.

Introduction

In the present paper we continue our discussion in [6] and [5], and

describe explicitly the generators of the homogenized ideal dual complex of

an arbitrary meet-semilattice (Theorem 2.1). In case of meet-distributive

meet-semilattices, a combinatorial formula (Proposition 1.2) to compute

the h-vector of the homogenized ideal dual complex is given.

It is known [5] that the homogenized ideal dual complex ΓL of a meet-

semilattice L is Cohen-Macaulay if and only if L is meet-distributive. Thus

it seems of interest to characterize the meet-distributive meet-semilattices

L for which ΓL is a level complex [8]. Our main theorem (Theorem 3.3) says

that the homogenized ideal dual complex ΓL is level if and only if a certain

simplicial complex coming from L is pure. In particular, in case that L is

a finite distributive lattice, ΓL is level if and only if the simplicial complex

consisting of all antichains of the poset of all join-irreducible elements of L

is pure (Corollary 3.4).

§1. The h-vector of a finite meet-distributive meet-semilattice

First of all, we prepare notation and terminologies on finite lattices and

finite posets (partially ordered sets). In a finite poset P we say that α ∈ P

covers β ∈ P (or β is a lower neighbor of α) if β < α and β < γ < α for no

γ ∈ P . Let N(α) denote the set of lower neighbors of α ∈ P . A poset ideal
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of P is a subset I of P such that α ∈ I and β ∈ P together with β ≤ α

imply β ∈ I.

Let L be a finite meet-semilattice [7, p. 103] and 0̂ its unique minimal

element. Since L is a meet-semilattice, it follows from [7, Proposition 3.3.1]

that L is a lattice if and only if L possesses a unique maximal element 1̂. In

other words, if L is a meet-semilattice and is not a lattice, then L∪{1̂} with

a new element 1̂ such that α < 1̂ for all α ∈ L becomes a lattice. Thus, in

a finite meet-semilattice L, each element of L is the join of elements of L.

A join-irreducible element of L is an element α ∈ L such that one cannot

write α = β ∨ γ with β < α and γ < α. In other words, a join-irreducible

element of L is an element α ∈ L which covers exactly one element of L.

Let L be a finite meet-semilattice and P ⊂ L the set of join-irreducible

elements of L. We will associate each element α ∈ L with the subset

(1) `(α) = {p ∈ P : p ≤ α}.

Thus `(α) is a poset ideal of P , and α ∈ `(α) if and only if α is join-

irreducible. Moreover, for α and β belonging to L, one has `(α) = `(β) if

and only if α = β.

Lemma 1.1. One has `(α ∧ β) = `(α) ∩ `(β) for all α, β ∈ L.

Proof. Let γ = α ∧ β. Then `(γ) ⊂ `(α) ∩ `(β). Since L ∪ {1̂} with a
new element 1̂ is a lattice, if `(γ) 6= `(α)∩`(β) and if p ∈ (`(α)∩`(β))\`(γ),
then δ = γ ∨ p ∈ L with γ < δ ≤ α and δ ≤ β. This contradicts γ = α ∧ β.

Let K be a field and K[x,y] = K[{xp, yp}p∈P ] denote the polynomial

ring in 2|P | variables over K with each deg xp = deg yp = 1. We associate

each element α ∈ L with the squarefree monomial

uα =
(

∏

p∈`(α)

xp

)(

∏

p∈P\`(α)

yp

)

∈ K[x,y]

and set

HL = (uα)α∈L ⊂ K[x,y].

Since the ideal HL is squarefree, there is a simplicial complex ΣL on the

vertex set {xp, yp}p∈P whose Stanley-Reisner ideal IΣL coincides with HL.

We call ΣL the homogenized ideal complex of L.
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Let ΓL denote the Alexander dual ([2], [4]) of ΣL and call ΓL the ho-

mogenized ideal dual complex of L. We write F(ΓL) for the set of facets

(maximal faces) of ΓL. One has

(2) F(ΓL) = {Fα : α ∈ L}

where

Fα = {xq : q ∈ P \ `(α)} ∪ {yq : q ∈ `(α)}.

Hence,

IΓL =
⋂

α∈L

(

{xp : p ∈ `(α)} ∪ {yq : q ∈ P \ `(α)}
)

.

In particular ΓL is a pure simplicial complex of dimension |P | − 1.

A finite meet-semilattice L is called meet-distributive [7, p. 156] if each

interval [α, β] = {γ ∈ L : α ≤ γ ≤ β} of L such that α is the meet of the

lower neighbors of β in [α, β] is boolean. For example, every poset ideal of

a finite distributive lattice is a meet-distributive meet-semilattice.

Let L be an arbitrary finite meet-distributive meet-semilattice and, as

before, P ⊂ L the set of join-irreducible elements of L. The distributive

closure of L is the finite distributive lattice J (P ) consisting of all poset

ideals of P ordered by inclusion.

Recall that Birkhoff’s fundamental structure theorem on finite distribu-

tive lattices [7, Theorem 3.4.1] guarantees that every finite distributive lat-

tice is of the form J (P ) for a unique finite poset P . In fact, if P is the set

of join-irreducible element of a finite distributive lattice L, then L = J (P ).

It is not difficult to see that the map ` : L → J (P ) defined by (1)

is an embedding of meet-semilattices if and only if L is meet-distributive.

Consult [3] for further information about meet-distributive lattices.

Proposition 1.2. Let L be a finite meet-distributive meet-semilattice

and ΓL its homogenized ideal dual complex. Let h(ΓL) = (h0, h1, . . . ) be its

h-vector. Then, for all i, one has

hi = |{α ∈ L : |N(α)| = i}|.

Proof. Let α ∈ L with |N(α)| = i and `(α) = {q1, . . . , qδ}. Let N(α) =
{r1, . . . , ri} with each `(rj) = `(α) \ {qδ−j+1}. Let r = r1 ∧ · · · ∧ ri. Thus

`(r) =
⋂i

j=1 `(rj) = {q1, . . . , qδ−i} and the interval [r, α] in L is the boolean
lattice of rank i. Since a subset A ⊂ `(α) is contained in none of the sets
`(r1), . . . , `(ri) if and only if A contains {qδ, qδ−1, . . . , qδ−i+1}, it follows that
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the number of subsets A ⊂ `(α) with |A| = k such that A ⊂ `(q) for no
q ∈ L with q < α is

(

δ−i
k−i

)

. In other words, the number of those faces
F ⊂ Fα of Γ with |F | = j + 1 such that F ⊂ Fq for no q ∈ L with q < α is
∑δ

k=i

( |P |−δ
j−k+1

)(

δ−i
k−i

)

, which is equal to
( |P |−i
j−i+1

)

=
( |P |−i
|P |−j−1

)

. Thus the number

of faces F of ΓL with |F | = j + 1 is

fj(ΓL) =

j+1
∑

i=0

(

|P | − i

|P | − j − 1

)

|{α ∈ L : |N(α)| = i}|.

On the other hand, in general, one has

fj(ΓL) =

j+1
∑

i=0

(

|P | − i

|P | − j − 1

)

hi(ΓL).

Hence hi(ΓL) = |{α ∈ L : |N(α)| = i}|, as desired.

Corollary 1.3. Let L be a finite meet-distributive meet-semilattice,

P the set of join-irreducible elements of L and ΓL the homogenized ideal

dual complex of L. Let n = |P | and (h0, h1, . . . , hn) the h-vector of ΓL.

Then h1 = n, and the a-invariant of ΓL (which is the nonpositive integer

max{i : hi 6= 0} − n) is equal to max{|N(α)| : α ∈ L} − n.

Example 1.4. Let B[n] denote the boolean lattice of rank n and L a
poset ideal of B[n] which contains all join-irreducible elements (i.e., {1}, . . . ,
{n}) of B[n]. Then the meet-distributive meet-semilattice L is a simplicial
complex on [n] and the h-vector of ΓL coincides with the f -vector of L.

(a) By using (2) the Stanley-Reisner ideal IΓL of ΓL is generated by
those squarefree monomials

∏

q∈`(β) yq such that β ∈ B[n] is a minimal
nonface of L and by the quadratic monomials x{i}y{i} for all i ∈ [n].

(b) Let T = K[y{1}, . . . , y{n}] and J ⊂ T the ideal generated by those
squarefree monomials

∏

q∈`(β) yq such that β ∈ B[n] is a minimal nonface of

L and by y2
{i} for all i ∈ [n]. The quotient ring T/J is 0-dimensional and

its h-vector is (f−1, f0, . . .), the f -vector of L with f−1 = 1. It turns out
that IΓL is the polarization [1, Lemma 4.3.2] of the ideal J . Since T/J is
Cohen-Macaulay, it follows immediately that ΓL is Cohen-Macaulay. This
fact is a special case of [5, Corollary 1.6].

(c) Since T/J is a level ring [8, p. 91] if and only if the simplicial
complex L is pure, it follows that the homogenized ideal dual complex ΓL

of L is a level complex if and only if the simplicial complex L is pure.
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(d) Let ∆ be a simplicial complex on the vertex set V = {y{1}, . . . , y{n}},

and let W = {x{1}, . . . , x{n}}. We write ∆] for the simplicial complex on
the vertex set V ∪ W whose facets are those of ∆ together with all edges
{x{i}, y{i}} for i = 1, . . . , n. By the observation (a) for a simplicial complex
L (⊂ B[n]) on [n] one has a simplicial complex ∆ on V such that the facet

ideal of ∆], i.e., the ideal generated by all monomials corresponding to the
facets, coincides with the Stanley-Reisner ideal IΓL of ΓL. Conversely, given
a simplicial complex ∆ on V , there is a simplicial complex L (⊂ B[n]) on

[n] such that the facet ideal of ∆] coincides with IΓL . Since ΓL is always
Cohen-Macaulay, the facet ideal of ∆] is Cohen-Macaulay. This argument
is a direct and easy proof of [5, Corollary 4.4].

(e) By using (b) and (c), it follows that every f -vector of a pure sim-
plicial complex is the h-vector of a level complex.

It would, of course, be of interest to generalize the fact (c) of Exam-

ple 1.4 to arbitrary meet-distributive meet-semilattices L.

§2. Alexander duality of meet-distributive meet-semilattices

A nice description of the homogenized ideal dual complex of a finite

distributive lattice is obtained in [6, Lemma 3.1]. On the other hand, the

homogenized ideal dual complex of a meet-distributive meet-semilattice of

a special kind, namely, a poset ideal of a finite distributive lattice is de-

scribed in [5, Theorem 4.2]. An explicit description of the homogenized

ideal dual complex of an arbitrary finite meet-semilattice will be obtained

in Theorem 2.1 below.

If, in general, P is a finite poset and B ⊂ P , then we write 〈B〉 for the

poset ideal of P generated by B, i.e., p ∈ P belongs to 〈B〉 if and only if

p ≤ q for some q ∈ B.

Theorem 2.1. Let L be an arbitrary finite meet-semilattice and P the

set of join-irreducible elements of L. Then the Stanley-Reisner ideal IΓL of

the homogenized ideal dual complex ΓL of L is generated by the following

squarefree monomials:

(i) xpyq, where p, q ∈ P with p < q;

(ii)
∏

q∈B yq, where B is an antichain of P with 〈B〉 6⊂ `(α) for all α ∈ L;

(iii) xp

∏

q∈B yq, where B is an antichain of P with `(β) 6= 〈B〉 for all β ∈

L, but with 〈B〉 ⊂ `(α) for some α ∈ L and where p ∈ `
(
∧

〈B〉⊂`(α) α
)

\
〈B〉.
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Proof. Let A ⊂ P and B ⊂ P with A∩B = ∅. We write xAyB for the
squarefree monomial

∏

p∈A xp

∏

q∈B yq of K[x,y]. By the definition of the
Stanley-Reisner ideal IΓL of ΓL, it follows that xAyB belongs to IΓL if and
only if there is no facet Fα of ΓL with {xp : p ∈ A} ∪ {yq : q ∈ B} ⊂ Fα.
Thus by using (2) one has xAyB ∈ ILΓ

if and only if there is no α ∈ L such
that A ⊂ P \ `(α) and B ⊂ `(α). In other words, one has xAyB ∈ ILΓ

if
and only if the following condition (∗) is satisfied:

(∗) each α ∈ L with B ⊂ `(α) satisfies A ∩ `(α) 6= ∅.

We say that a pair (A,B), where A ⊂ P and B ⊂ P with A ∩ B = ∅, is an
independent pair of L if the condition (∗) is satisfied. Thus ILΓ

is generated
by all monomials xpyp with p ∈ P together with those monomials xAyB

such that (A,B) is an independent pair of L.

Let M(B) denote the set of maximal elements of B. Thus one has
〈B〉 = 〈M(B)〉. Hence (A,B) is independent if and only if (A,M(B)) is
independent. Since xAyM(B) divides xAyB and since M(B) is an antichain
of P , it follows that ILΓ

is generated by all monomials xpyp with p ∈ P
together with those monomials xAyB such that (A,B) is an independent
pair of L and B is an antichain of P .

Let p and q belong to P . Since `(q) = 〈{q}〉 ∈ L for all q ∈ L, the pair
({p}, {q}) with p 6= q is an independent pair of L if and only if p < q. Let
`(β) = 〈B〉 for some β ∈ L. Then a pair (A,B) is independent if and only
if A ∩ 〈B〉 6= ∅. On the other hand, A ∩ 〈B〉 6= ∅ if and only if there are
p ∈ A and q ∈ B with p < q.

Consequently, ILΓ
is generated by all monomials xpyq, where p, q ∈

P with p < q together with those monomials xAyB , where (A,B) is an
independent pair of L such that B is an antichain of P with `(β) = 〈B〉 for
no β ∈ L and with A ∩ 〈B〉 = ∅.

Now, let B be an antichain of P with `(β) = 〈B〉 for no β ∈ L and
A ⊂ P with A ∩ 〈B〉 = ∅.

(a) First, if 〈B〉 ⊂ `(α) for no α ∈ L, then (A,B) is independent for all
A ⊂ P with A∩B = ∅. Thus in particular (∅, B) is an independent pair of
L.

(b) Second, if 〈B〉 ⊂ `(α) for some α ∈ L, then (A,B) is independent
if and only if A ∩

(
⋂

〈B〉⊂`(α) `(α)
)

6= ∅. Since
⋂

〈B〉⊂α `(α) = `
(
∧

〈B〉⊂α α
)

,
it follows that (A,B) is independent if and only if there is p ∈ A with
p ∈ `

(
∧

〈B〉⊂α α
)

\ 〈B〉.
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§3. Level rings arising from meet-distributive meet-semilattices

It is known [5, Corollary 1.6] that the homogenized ideal dual complex

ΓL of a finite meet-semilattice L is Cohen-Macaulay if and only if L is meet-

distributive. The problem when the homogenized ideal dual complex of a

meet-distributive meet-semilattice is a level ring is now studied.

Recall that a Cohen-Macaulay graded ring R = R0 ⊕ R1 ⊕ · · · over

a field K = R0 is called level [8, p. 91] if the canonical module of R is

generated in one degree. Every Gorenstein ring is level.

Let L be a finite meet-distributive meet-semilattice and P the set of

join-irreducible elements of L. Let, as before, K[x,y] = K[{xp, yp}p∈P ]

denote the polynomial ring in 2|P | variables over a field K with each

deg xp = deg yp = 1.

For each α ∈ L we write α′ ∈ L for the meet of all β ∈ N(α), where

N(α) is the set of lower neighbors of α. Since L is a meet-distributive

meet-semilattice, it follows that the interval

Bα = [α′, α] = {γ ∈ L : α′ ≤ γ ≤ α}

of L is a boolean lattice. Let S(α) ⊂ P denote the antichain

S(α) = `(α) \ `(α′).

Each element belonging to S(α) is a maximal element of `(α), and t ∈ `(α)

belongs to S(α) if and only if `(β) = `(α) \ {t} for some β ∈ N(α).

Lemma 3.1. If α and β belong to L with α 6= β, then S(α) 6= S(β).

Proof. Let γ = α ∧ β. If S(α) = S(β), then S(α) ⊂ S(γ). In fact,
for each t ∈ S(α) = S(β), there are α0 ∈ N(α) and β0 ∈ N(β) with
`(α0) = `(α) \ {t} and `(β0) = `(β) \ {t}. By using Lemma 1.1, one has
`(α0∧β0) = `(γ)\{t}. Hence t ∈ S(γ). Now, since γ < α, one has δ ∈ N(α)
with γ ≤ δ < α. Since `(δ) = `(α) \ {t} for some t ∈ S(α), it follows that
t 6∈ `(γ). This contradict S(α) ⊂ S(γ). Hence S(α) 6= S(β), as desired.

Recall from the proof of Theorem 2.1 that a pair (A,B), where A ⊂ P

and B ⊂ P with A ∩ B = ∅, is said to be an independent pair of L if each

α ∈ L with B ⊂ `(α) satisfies A ∩ `(α) 6= ∅.

Lemma 3.2. Let α ∈ L and T ⊂ S(α). Then the pair (∅, T ) cannot

be independent. Moreover, for p ∈ S(α) \ T , the pair ({p}, T ) cannot be

independent.
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Proof. Since T ⊂ `(α), the pair (∅, T ) cannot be an independent pair
of L. On the other hand, since p ∈ S(α), one has β ∈ N(α) with `(β) =
`(α) \ {p}. Since T ⊂ `(β) and since {p} ∩ `(β) = ∅, it follows that ({p}, T )
cannot be an independent pair of L, as desired.

Let IΓL denote the Stanley-Reisner ideal of L and K[ΓL] = K[x,y]/IΓL

the Stanley-Reisner ring of ΓL. Since the dimension of ΓL is |P |−1 and the

Krull dimension of K[ΓL] coincides with |P |, it follows easily that {xp−yp :

p ∈ P} is a linear system of parameters of K[ΓL]. Since K[ΓL] is Cohen-

Macaulay, by using Proposition 1.2, the Hilbert series of the quotient ring

K[ΓL]/(xp − yp : p ∈ P )

is h0 + h1λ + h2λ
2 + · · · , where (h0, h1, h2, . . .) is the h-vector of ΓL.

Let JΓL be the monomial ideal of K[x] = K[{xp}p∈P ] generated by

those monomials

(i) xpxq, where p, q ∈ P with p < q;

(ii)
∏

q∈B xq, where B is an antichain of P with 〈B〉 ⊂ `(α) for no α ∈ L;

(iii) xp

∏

q∈B xq, where B is an antichain of P with `(β) = 〈B〉 for no β ∈

L, but with 〈B〉 ⊂ `(α) for some α ∈ L and where p ∈ `
(
∧

〈B〉⊂`(α) α
)

\
〈B〉.

By virtue of Theorem 2.1 it follows that

K[x]/JΓL = K[ΓL]/(xp − yp : p ∈ P ).

We associate each α ∈ L with the monomial

uα =
∏

p∈S(α)

xp

of degree |N(α)|.

Theorem 3.3. Let L be a finite meet-distributive meet-semilattice, P
the set of join-irreducible elements of L, and K[x] = K[{xp}p∈P ] the poly-

nomial ring in |P | variables over a field K. Then the set of monomials

{uα ; α ∈ L} is a K-basis of the quotient ring K[x]/JΓL . Thus in partic-

ular {S(α) : α ∈ L} is a simplicial complex on the vertex set {xp : p ∈ P}
whose f -vector coincides with the h-vector of L.
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Proof. Lemma 3.2 says that, for each α ∈ L, the monomial uα does not
belongs to JΓL . Moreover, Lemma 3.1 guarantees that, for α 6= β belonging
to L, one has uα 6= uβ. Hence, for each i = 0, 1, 2, . . . , the number of
monomials uα with α ∈ L of degree i is equal to hi. Since the Hilbert series
of K[x]/JΓL is h0 + h1λ + h2λ

2 + · · · , it follows that {uα ; α ∈ L} is a
K-basis of K[x]/JΓL , as required.

We now come to the combinatorial characterization for the homoge-

nized ideal dual complex ΓL of a finite meet-distributive meet-semilattice

L to be level.

Corollary 3.4. The homogenized ideal dual complex ΓL of a finite

meet-distributive meet-semilattice L is a level complex if and only if the

simplicial complex {S(α) : α ∈ L} is pure. Thus in particular the homog-

enized ideal dual complex ΓL of a finite distributive lattice L = J (P ) is

level if and only if the simplicial complex consisting of all antichains of P
is pure.

Consider the following example of a meet-distributive meet-semilattice

L

with the following poset of join-irreducible elements

By using Theorem 2.1 the Stanley-Reisner ideal of the homogenized ideal

dual complex of L is generated by the following monomials:
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(i) x1y1, . . . , x5y5, x2y4, x2y5, x3y4 and x3y5;

(ii) y1y4 and y1y5;

(iii) x2y1y3.

The h-vector of L is (1, 5, 4). By using Corollary 3.4 the homogenized ideal

dual complex ΓL is level.

In the following meet-distributive meet-semilattice L the facets of the

simplicial complex {S(α) : α ∈ L} are {1, 2}, {1, 3, 4} and {2, 3, 4}. Since

this simplicial complex is not pure it follows from Corollary 3.4 that ΓL is

not level. The h-vector of L is (1, 4, 6, 2).

By Theorem 3.3 the h-vector of the homogenized ideal dual complex of a

meet-distributive meet-semilattice is just the f -vector of a simplicial com-

plex, and the h-vector of a level simplicial complex coming from a meet-

distributive meet-semilattice is just the f -vector of a pure simplicial com-

plex. These facts lead us to the following

Question 3.5. (a) Characterize the h-vectors of the homogenized
ideal dual complex of finite distributive lattices.

(b) Characterize the h-vectors of the homogenized ideal dual complex
of meet-distributive lattices.

(c) Find a nice class of level simplicial complexes whose h-vector is not
the f -vector of a pure simplicial complex.

For example (1, 3, 3) is the h-vector of the the homogenized ideal dual

complex of the meet-distributive lattice B[3] \ {1, 3}, but is not the h-vector

of the homogenized ideal dual complex of a distributive lattice.
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