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COMBINATORIAL DESCRIPTIONS OF

TORIC EXTREMAL CONTRACTIONS

HIROSHI SATO

Abstract. In this paper, we give explicit combinatorial descriptions for toric
extremal contractions under the relative setting, where varieties are not com-
plete. It is well-known that the complete case is settled by using Reid’s wall
theory which can not be applied to the non-complete case. Therefore, we can
achieve them by using the notion of extremal primitive relations. As applica-
tions, we can generalize some of Mustaţǎ’s results related to Fujita’s conjecture
on toric varieties for the relative case.

§1. Introduction

The purpose of this paper is to give explicit combinatorial descriptions

for extremal contractions from toric varieties.

If varieties are complete, it is well-known that the relative toric Mori

theory was studied in [R] and the above problem was settled completely

for this case ([Ma, Chapter 14] explained [R] more precisely). The walls of

the corresponding fan play important roles in the theory of [R]. We quickly

review Reid’s descriptions of toric extremal contraction morphisms.

Let f : X → Y be a projective toric morphism form a Q-factorical toric

n-fold X = X∆. For an extremal ray R ⊂ NE(X/Y ), let ϕR : X → W be

the associated extremal contraction. If X is complete, there exists a torus

invariant curve C on X which spans R. C corresponds to a wall, that is,

an (n − 1)-dimensional cone w ∈ ∆. Roughly speaking, W is obtained by

removing such walls from ∆.

However, if X is not complete, R is not necessarily generated by a torus

invariant curve (see [FS, Example 4.3]). Thus, Reid’s wall theory breaks in

the first step. In this paper, we avoid this difficulty by using the notion of

extremal primitive relations. This is a generalization of primitive relations

Received May 11, 2004.
2000 Mathematics Subject Classification: Primary 14M25; Secondary 14E30.
The author is partly supported by the Grant-in-Aid for JSPS Fellows, The Ministry

of Education, Science, Sports and Culture, Japan.



112 H. SATO

for smooth varieties introduced by [B] (see also [C] and [S]). There always

exists an extremal primitive relation corresponding to R. By using this

relation, we can construct W similarly as Reid’s construction. Furthermore,

the descriptions are much simpler than Reid’s. Fujino’s completion theorem

for toric contraction morphisms in [Fj2] is important for our theory.

We remark that the general theory of the relative toric Mori theory for

non-complete varieties were studied in [FS]. For examples, the existence

of contraction morphisms, the existence of flips and the termination of

flips were studied. Thus, the combinatorial aspect of the toric Mori theory

studied in this paper is a kind of supplement to [FS].

In addition, it seems very complicated to discuss the combinatorial as-

pect of the toric Mori theory without the Q-factoriality. There exist various

strange examples of contraction morphisms for non-Q-factorial varieties in

[Fj2].

The relative toric Mori theory for non-complete varieties is completed

by [Fj2], [FS] and this paper similarly as the toric Mori theory for complete

varieties in [R].

The content of this paper is as follows: Section 2 is a section for prepa-

ration. We review the local descriptions of toric extremal contractions when

varieties are complete. We introduce the notion of extremal primitive rela-

tions. It is useful for describing toric extremal contractions. In Section 3,

we give explicit descriptions for toric extremal contractions. Since we can

apply Fujino’s theorem, the problem becomes more elementary. In Sec-

tion 4, we give some generalizations of [Mu] related to Fujita’s conjecture

as applications of the results in Section 3.

Notation. Here, we summarize the some notation which we will use
in this paper.

(1) Let ∆ be a fan. For a cone σ ∈ ∆, we denote the corresponding closed
orbit by V(σ).

(2) For a variety X (resp. morphism f : X → Y ), we denote the Picard
number (resp. relative Picard number) by ρ(X) (resp. ρ(X/Y )).

(3) The symbols R≥0, Z>0 and Z<0 denote the set of non-negative real
numbers, the set of positive integers and the set of negative integers,
respectively.
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§2. Preliminaries

In this section, we review the toric Mori theory in [R]. For fundamental

properties of the toric geometry, see [Fl] and [O]. We recommend [Fj1], [FS]

and [Ma] for understanding the toric Mori theory.

Let X = X∆ be a Q-factorial toric n-fold associated to a fan ∆ in

N = Zn over an algebraically closed field. Let G(∆) be the set of primitive

generators of 1-dimensional cones in ∆, and put G(σ) := σ ∩ G(∆) for a

cone σ ∈ ∆. Assume that X is complete. The following notion introduced

in [B] is useful for describing extremal rays of X. See [B], [C] and [S] more

precisely.

Definition 2.1. A non-empty subset P ⊂ G(∆) is a primitive collec-

tion if P does not generate any cone in ∆, while every proper subset of P
generates a cone in ∆.

Remark 2.2. We can not define the primitive collection for non-simpli-
cial fan, since for a non-simplicial cone σ ∈ ∆, there exists a subset S ⊂
G(σ) which do not generate any cone in ∆.

Let f : X → Y be a projective toric morphism. For an extremal ray

R ⊂ NE(X/Y ), let w ∈ ∆ be the (n − 1)-dimensional cone corresponding

to R. By the completeness of X, there exist exactly two maximal cones

σ1, σ2 ∈ ∆ such that w ≺ σ1 and w ≺ σ2. We put G(w) := {v1, . . . , vn−1},

G(σ1) \ G(w) := {vn} and G(σ2) \ G(w) := {vn+1}. After rearranging the

elements in G(w), we obtain the equality

c1v1 + · · · + cαvα + cβ+1vβ+1 + · · · + cnvn + cn+1vn+1 = 0,

where c1, . . . , cα ∈ Z<0, cβ+1, . . . , cn+1 ∈ Z>0, gcd(c1, . . . , cn+1) = 1 and

{vβ+1, . . . , vn+1} is a primitive collection. We call this relation an extremal

primitive relation.

Remark 2.3. In [B], [C] and [S], the arguments are developed under
the assumption that varieties are smooth. However, combinatorial results
of them like Proposition 2.5 hold for the simplicial case too.
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Let σi be the cone generated by {vβ+1, . . . , vn+1} \ {vi} for β + 1 ≤ i ≤

n + 1. By definition, we have σi ∈ ∆. Put w′ := R≥0v1 + · · · + R≥0vα ≺ w.

The following proposition is one of the main results in [R].

Proposition 2.4. For any cone σ ∈ ∆ such that w′ ≺ σ, put σ = w′+
σ′ + τ , where σ′, τ ∈ ∆, G(σ′) ⊂ {vβ+1, . . . , vn+1} and G(τ) ∩ {v1, . . . , vα,
vβ+1, . . . , vn+1} = ∅. Then, w′ + σi + τ ∈ ∆ for any β + 1 ≤ i ≤ n + 1.

Proposition 2.4 is equivalent to the following. This one is simpler, since

we use the notion of primitive collections. We can confirm this equivalence

as in the proof of [S, Theorem 4.10].

Proposition 2.5. ([C, Proposition 3.4] and [S, Theorem 4.10]) If Q is

a primitive collection of ∆ such that Q 6= {vβ+1, . . . , vn+1} and Q ∩
{vβ+1, . . . , vn+1} 6= ∅, then (Q \ {vβ+1, . . . , vn+1}) ∪ {v1, . . . , vα} contains a

primitive collection.

By using Proposition 2.4, we can construct the extremal contraction

ϕR : X → W associated to R (see Section 3).

2.6. (Extremal primitive relations) Let f : X → Y , R and w as above.
We rewrite the extremal primitive relations with respect to R as

a1x1 + · · · + alxl = b1y1 + · · · + bmym,

where {x1, . . . , xl, y1, . . . , ym} ⊂ G(∆) and a1, . . . , al, b1, . . . , bm ∈ Z>0.
Namely, l = n−β +1, m = α, a1x1 + · · ·+alxl = cβ+1vβ+1 + · · ·+ cn+1vn+1

and b1y1 + · · · + bmym = −(c1v1 + · · · + cαvα). The following is obvious.

Proposition 2.7. For a torus invariant prime divisor D which cor-

responds to v ∈ G(∆) and a curve C which spans R, the following holds:

(D · C)





> 0

= 0

< 0

if and only if





v ∈ {x1, . . . , xl},

v 6∈ {x1, . . . , xl, y1, . . . , ym},

v ∈ {y1, . . . , ym}.

We can completely recover ∆ from three data: N , the primitive collec-
tions and the extremal primitive relations. This follows from the well-known
isomorphism

A1(X) ⊗ Q ∼=

{
(cx)x∈G(∆) ∈ QG(∆)

∣∣∣∣∣
∑

x∈G(∆)

cxx = 0

}
,
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where A1(X) is the Chow group of 1-cycles. In particular, if G(∆) generates
N , then we can recover ∆ from the primitive collections and the extremal
primitive relations. If ρ(X) = 1, then this condition is equivalent to the
one that X is a weighted projective space. This is well-known.

Example 2.8. Let X = X∆ be a Q-factorial terminal toric Q-Fano
3-fold with Picard number 1 whose extremal primitive relation is x1 +x2 +
x3 +x4 = 0. Then, there exist exactly two possibilities for such ∆ (see [K]).

§3. Relative toric Mori theory

In this section, we deal with the relative toric Mori theory from the

combinatorial viewpoint. We remark that varieties are not necessarily com-

plete. For the general theory, see [FS].

Remark 3.1. [Ma, Chapter 14] and [R] are good references to the toric
Mori theory, too. However, in [Ma, Chapter 14] and [R], varieties are
assumed to be complete. In particular, there is a meaningless statement in
[Ma, Proposition 14-1-5].

Let f : X = X∆ → Y be a projective surjective toric morphism with

dimX = n. We assume that X is Q-factorial. For an extremal ray R ⊂

NE(X/Y ), let ϕ := ϕR : X → W be the associated extremal contraction.

The following Fujino’s theorem in [Fj2] is the key to the main result of this

section.

Theorem 3.2. ([Fj2, Theorem 2.10]) There exist equivariant comple-

tions

X
ϕ

−−−−→ W
↘ ↙

Y

of toric morphisms

X
ϕ

−−−−→ W,
↘ ↙

Y

where

(1) X, Y and W are equivariant completions of X, Y and W , respectively,

(2) X is Q-factorial,
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(3) ϕ : X → W , X → Y and W → Y are projective and

(4) ρ(X/W ) = 1.

Thus, we fix an equivariant completion ϕ : X → W of ϕ as in The-

orem 3.2. Let ∆ be the fan associated to X and w ∈ ∆ an (n − 1)-

dimensional cone such that ϕ(V(w)) is a point. Then, as in Section 2, we

have an extremal primitive relation a1x1 + · · · + alxl = b1y1 + · · · + bmym

for w, where x1, . . . , xl, y1, . . . , yn ∈ G(∆). As in Section 2, we define

w′ := R≥0y1 + · · · + R≥0ym ≺ w and put σi ∈ ∆ be the cone generated by

{x1, . . . , xl} \ {xi} for 1 ≤ i ≤ l.

Lemma 3.3. w′ + σi ∈ ∆ for any 1 ≤ i ≤ l.

Proof. Obviously, x1, . . . , xl, y1, . . . , ym are contained in the inverse
image of a cone in ∆Y . So, by the properness of f , we complete the proof.

Thus, we call a1x1+ · · ·+alxl = b1y1+ · · ·+bmym an extremal primitive

relation in this case, too.

Proposition 2.4 also holds for this case. This immediately follows from

the properness of ϕ and Proposition 2.4. Though the setting is distinct

from the one in Proposition 2.4, the statement is completely similar. We

repeat it.

Theorem 3.4. For any cone σ ∈ ∆ such that w′ ≺ σ, put σ = w′ +
σ′+τ , where σ′, τ ∈ ∆, G(σ′) ⊂ {x1, . . . , xl} and G(τ)∩{x1, . . . , xl, y1, . . . ,
ym} = ∅. Then, w′ + σi + τ ∈ ∆ for any 1 ≤ i ≤ l.

In the remaining part of this section, we give an explicit combinatorial

description for ϕ : X → W by using Theorem 3.4.

3.5. (Fano contractions) Suppose that ϕ is a Fano contraction, that
is, dimX > dimW . This condition is equivalent to m = 0. Put N ′ :=
N/(Zx1 + · · · + Zxl). Then, we obtain the fan ∆W in N ′ associated to W
by sending the cones in ∆ through N → N ′. The general fiber F of ϕ is
the complete Q-factorical toric variety of Picard number 1 whose extremal
primitive relation is a1x1 + · · · + alxl = 0. In particular, if {x1, . . . , xl}
generates the lattice, then F ∼= P(a1, . . . , al) (see Example 2.8 and its front).
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3.6. (Birational contractions) Suppose that ϕ is birational. This con-
dition is equivalent to m > 0. Put

w̃ := R≥0y1 + · · · + R≥0ym + R≥0x1 + · · · + R≥0xl.

We remark that if m = 1, then y1 ∈ R≥0x1 + · · · + R≥0xl. For w′ ≺ σ ∈ ∆,
put σ′ and τ as in Theorem 3.4. The fan ∆W in N associated to W is as
follows:

∆W =
(
∆ \ {σ ∈ ∆ | w′ ≺ σ}

)
∪ {w̃ + τ | w′ ≺ σ = w′ + σ′ + τ ∈ ∆}.

The exceptional locus A of ϕ is V(w′), while B := ϕ(A) = V(w̃). We
have codimA = m and dimB = n − l − m + 1. We note that A is irre-
ducible. This does not necessarily hold for non-Q-factorial varieties (see
[Fj2, Example 4.1]).

3.7. (Flips, flops and anti-flips) Suppose that ϕ is a small contraction,
that is, codimA ≥ 2. This condition is equivalent to m ≥ 2. We use the
same notation as above. Put

w+ := R≥0x1 + · · · + R≥0xl.

Then, we obtain a fan ∆+ in N by star-subdividing ∆W along w+. Let X+

be the associated toric variety. Then, the diagram

X 99999K X+

↘ ↙
W

is 



a flip

a flop

an anti-flip

if a1 + · · · + al − (b1 + · · · + bm)





> 0,

= 0,

< 0.

We remark that b1y1+· · ·+bmym = a1x1+· · ·+alxl is an extremal primitive
relation of ∆+.

§4. Applications

As applications of the results in the previous section, we can generalize

some results in [Mu] (cf. [Fj1, Remark 3.3] and [Fj2, Theorem 3.13]). We

use the same notation as in Sections 2 and 3. In addition, for the case of a

Fano contraction, put A := X and B := W .
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Let f : X → Y be a projective surjective toric morphism as in the

previous sections. We assume that X is smooth. For an extremal ray of

NE(X/Y ), let ϕR : X → W be the extremal contraction with respect to

R. Then, the general fiber of ϕR : A → B is a projective space, since X is

smooth. So, let CR be a line in a general fiber of A → B. The following is

obvious.

Lemma 4.1. CR spans R, and for any torus invariant prime divisor

D on X, we have (D · CR) ≤ 1.

Remark 4.2. If R contains a numerical equivalence class of torus in-
variant curves, then the local description of the extremal contraction ϕR

coincides with Reid’s. Therefore, if R contains a numerical equivalence
class of torus invariant curves, then we can make CR torus invariant. This
is obvious by Reid’s description of ϕR.

Proposition 4.3. Let f : X → Y be as above, L an line bundle on X
and l a positive integer. Assume that X is smooth. If (L ·CR) ≥ l for every

extremal ray R of NE(X/Y ), then for every torus invariant prime divisor

D on X, we have (L(−D) ·CR) ≥ l−1. In particular, if L is f -ample, then

L(−D) is f -free.

Proof. The first part is obvious by Lemma 4.1. The last part follows
from the equivalence of f -freeness and f -nefness on toric varieties.

Proposition 4.3 is a relative version of [Mu, Proposition 4.3 and Lem-

ma 4.4].

Proposition 4.4. Let f : X → Y be as above and L an f -ample line

bundle on X. Assume that X is smooth. For two distinct torus invariant

prime divisors D1 and D2 on X, let v1 and v2 be the corresponding elements

in G(∆), respectively. Then, L(−D1 −D2) is not f -free if and only if there

exists an extremal ray R of NE(X/Y ) whose extremal primitive relation is

a1x1 + · · · + alxl = b1y1 + · · · + bmym such that {v1, v2} ⊂ {x1, . . . , xl} and

(L · CR) = 1.

Proof. If there exists an extremal ray R as above, then (L(−D1−D2) ·
CR) = −1. Therefore, L(−D1 − D2) is not f -nef, that is, not f -free.

So, suppose that L(−D1 − D2) is not f -nef. There exists an extremal
ray R of NE(X/Y ) such that (L(−D1 − D2) · CR) < 0. Since (L · CR) ≥ 1,
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(D1·CR) ≤ 1 and (D2·CR) ≤ 1, we have (L·CR) = (D1·CR) = (D2·CR) = 1.
This completes the proof by Proposition 2.7.

Proposition 4.4 is the generalization of [Mu, Proposition 4.5], while the

following is the one of [Mu, Proposition 4.6]. The proof is similar.

Proposition 4.5. Let f : X → Y be as above and L an f -ample

line bundle on X. Assume that X is smooth. For a torus invariant prime

divisor D on X, let v be the corresponding element in G(∆). Then, L(−D)
is not f -ample if and only if there exists an extremal ray R of NE(X/Y )
whose extremal primitive relation is a1x1 + · · · + alxl = b1y1 + · · · + bmym

such that v ∈ {x1, . . . , xl} and (L · CR) = 1.
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