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ENTIRE SOLUTIONS OF (uz1)
m + (uz2)

n = e
g

BAO QIN LI∗

Abstract. The paper is concerned with description of entire solutions of the
partial differential equations u

m
z1

+ u
n
z2

= e
g, where m ≥ 2, n ≥ 2 are integers

and g is a polynomial or an entire function in C
2. Descriptions are given and

complemented by various examples.

§1. Introduction

This paper is concerned with description of entire solutions of the par-

tial differential equations:

(1.1) um
z1

+ un
z2

= eg

in C2, where m ≥ 2, n ≥ 2 are integers and g is a polynomial or, more

generally, an entire function in C2.

The partial differential equations (1.1) in real variable case arise in

geometrical optics and wave propagation. For example, when m = n =

2, it is one of the main equations in geometric optics and describes the

wave fronts of light in an inhomogeneous medium with a variable index of

refraction eg (see e.g. [CH] and [G]). The partial differential equations (1.1)

are clearly related to the functional equations

fm
1 + fn

2 = eg.

The study of these equations goes back to Montel ([Mo]) and Cartan ([Ca]),

who showed that entire solutions f1 and f2 in the complex plane (and

thus in Cn) must be both constant for the equation fm
1 + fm

2 = 1 when

m ≥ 3 and for the more general equation fm
1 + fn

2 = 1 when 1
m

+ 1
n

<

1, respectively. This also follows from the fact that when 1
m

+ 1
n

< 1

the surface (z1)
m + (z2)

n = 1 is a Kobayashi hyperbolic manifold, which

implies that there are no nonconstant entire holomorphic mappings (f1, f2)
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from C (and thus from Cn) to the surface, i.e., entire solutions f1 and f2

of the equation fm
1 + fn

2 = 1 must be both constant when 1
m

+ 1
n

< 1

([Sh, p. 360]); and thus entire solutions of the partial differential equation

(uz1)
m + (uz2)

n = 1 must be linear in this case. In the “critical” case

that 1
m

+ 1
n

= 1, i.e., m = n = 2, the functional equation f 2
1 + f2

2 = 1

obviously has non-constant entire solutions: f1 = cos h and f2 = sinh for

any non-constant entire function h; however, an entire solution of the partial

differential equation (uz1)
2 + (uz2)

2 = 1 is still linear ([K], [Sa]).

The above result for the equations (1.1) with g ≡ 0 is however no

longer true when g is a general polynomial or entire function. For example,

when g = 2z2, which is a linear function, the transcendental entire function

u = ez2 sin z1 is a solution of (uz1)
2 + (uz2)

2 = eg(z).

The purpose of this paper is to describe entire solutions for the partial

differential equations (1.1) when g is a general polynomial or an entire

function in C2. Unlike the equations um
z1

+ un
z2

= 1, in which case g ≡ 0,

entire solutions of (1.1) are in general non-linear, and the results for the

cases 1
m

+ 1
n

< 1 and the case m = n = 2 are no longer the same; when m =

n = 2, whether g is transcendental or not also makes situations different;

and for some functions g the equations (1.1) even do not have any entire

solutions.

We will state the detailed results for the case m = n = 2 in Section 2

and for the case 1
m

+ 1
n

< 1 in Section 3, respectively. The main theorems

will be proved in Section 4. In the proofs, we will employ Nevanlinna

theory; we will assume that the reader is familiar with basics of the theory,

and also basics of one and several complex variables and partial differential

equations (see e.g. [BG], [J], [Kr], [St]). Note that neither the problem

nor the solution to the problem is based on Nevanlinna theory; it may be

possible to give elementary proofs to the results in the paper without using

Nevanlinna theory.

Acknowledgment. The author would like to thank the referee for
helpful comments and suggestions.

§2. The case m = n = 2

The following theorem is concerned with the partial differential equa-

tions (1.1) when 1
m

+ 1
n

= 1, or m = n = 2.
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Theorem 2.1. Let g be a polynomial in C2. Then u is an entire

solution of the partial differential equation

(2.1) (uz1)
2 + (uz2)

2 = eg

in C2 if and only if

(i) u = f(c1z1 + c2z2); or

(ii) u = φ1(z1 + iz2) + φ2(z1 − iz2),

where f is an entire function in C satisfying that

(2.2) f ′(c1z1 + c2z2) = ±e
1
2

g(z),

c1 and c2 are two constants satisfying that c2
1 + c2

2 = 1, and φ1 and φ2 are

entire functions in C satisfying that

(2.3) φ′
1(z1 + iz2)φ

′
2(z1 − iz2) =

1

4
eg(z).

Remark 2.2. We can express f in (2.2), and φ1 and φ2 in (2.3) in
terms of g. Restricting (2.2) to the complex line (z1, z2) = (c1ζ, c2ζ) and
then integrating it with respect to ζ, we obtain that for ζ ∈ C,

f(ζ) =

∫

±e
1
2

g(c1ζ,c2ζ)dζ.

Similarly, considering the complex lines (z1, z2) =
(

ζ
2 ,±i ζ

2

)

, we obtain
from (2.3) that

φ1(ζ) = A

∫

eg( ζ

2
,−i

ζ

2
)dζ,

and

φ2(ζ) = B

∫

eg( ζ

2
,i

ζ

2
)dζ,

where A
(

= 1
4φ′

2(0)

)

and B
(

= 1
4φ′

1(0)

)

are constants satisfying that AB

= 1
4 e−g(0,0) by (2.3).

As we mentioned in the introduction, when g is identically zero, an

entire solution of (2.1) is linear. This result is clearly a simple consequence

of Theorem 2.1, since when g = 0, the functions f , φ1 and φ2 are all linear

and thus u is linear by (i) and (ii) of Theorem 2.1.
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Note that not every polynomial g can satisfy the conditions (2.2) or

(2.3) of Theorem 2.1. Therefore, Theorem 2.1 also implies a necessary and

sufficient condition for the equation (2.1) to admit an entire solution. In

fact, we have the following

Corollary 2.3. Let g be a polynomial in C2. Then the partial dif-

ferential equation (2.1) admits an entire solution in C2 if and only if

(i) g(z1, z2) ≡ g(c1(c1z1 + c2z2), c2(c1z1 + c2z2)) + 2kπ for an integer k

and some constants c1, c2 with c2
1 + c2

2 = 1; or

(ii) g(z1, z2)+g(0, 0) ≡ g
(

1
2 (z1+iz2),−

i
2 (z1+iz2)

)

+g
(

1
2 (z1−iz2),

i
2 (z1−

iz2)
)

+ 2kπ for an integer k.

Proof. If (i) holds, then we set u = f(c1z1 + c2z2), where f(ζ) is the
entire function defined in Remark 2.2. Then it is easy to verify that (2.2)
holds. Thus u is an entire solution of the equation (2.1) by Theorem 2.1(i).
If (ii) holds, then we set u = φ1(z1 + iz2) + φ2(z1 − iz2), where φ1(ζ) and
φ2(ζ) are the entire functions defined in Remark 2.2. Then it is easy to
verify that (2.3) holds and thus u is an entire solution of the equation (2.1)
by Theorem 2.1(ii).

Conversely, if the equation (2.1) has an entire solution u, then one of (i)
and (ii) of Theorem 2.1 holds. If Theorem 2.1(i) holds, then by Remark 2.2

we have that f ′(ζ) = ±e
1
2

g(c1ζ,c2ζ), which clearly implies the conclusion
(i) of the corollary by virtue of (2.2). If Theorem 2.1(ii) holds, then by

Remark 2.2 we have that φ′
1(ζ) = Aeg( ζ

2
,− iζ

2
) and φ′

2(ζ) = Beg( ζ

2
,

iζ

2
), where

AB = 1
4 e−g(0,0), which clearly implies the conclusion (ii) of the corollary

by virtue of (2.3).

Example 2.4. By way of illustration, we give three explicit examples
for the case that the equation (2.1) does not have any entire solutions, and
for the cases that the equation (2.1) has entire solutions of the forms (i)
and (ii) in Theorem 2.1.

(1) Let g(z1, z2) = z2
1 + z2

2 . Then it is easy to verify that neither of
Corollary 2.3(i) and Corollary 2.3(ii) can hold. Thus, by Corollary 2.3, the
equation (uz1)

2 + (uz2)
2 = eg does not have any entire solutions.

(2) Let g = 2cd(z1 + z2)
d, where d ≥ 0 is an integer and c = 1√

2
.

Then u = f(cz1 + cz2), where f(w) =
∫ w

0 ewd

dw, is an entire solution of
(uz1)

2 +(uz2)
2 = eg, which is of the form (i) of Theorem 2.1, and f satisfies

(2.2).



ENTIRE SOLUTIONS OF (uz1
)m + (uz2

)n = eg 155

(3) Let g = 2z2. Then u = ez2 sin z1 = ez2+iz1−ez2−iz1

2i
is an entire

solution of (uz1)
2 + (uz2)

2 = eg, which is of the form (ii) of Theorem 2.1
with φ1(w) = − 1

2i
e−iw and φ2(w) = 1

2i
eiw, which satisfy (2.3).

A relation between the equations (1.1) when g is linear and Monge-

Ampère type equations was noted in [Sa, p. 373]; and it was claimed there

that entire solutions u of (1.1) when g is linear has the form u = e
g

2 (c1z1 +

c2z2)+ c, where c1, c2, c ∈ C. This is however incorrect, as we see from the

example in Examples 2.4(3).

The function g in Theorem 2.1 is assumed to be a polynomial in C2.

A natural question is whether or not g can be generalized to be a transcen-

dental entire function in Theorem 2.1. The answer is negative, as shown by

the following

Proposition 2.5. There exists a transcendental entire function g in

C2 such that the partial differential equation (uz1)
2 + (uz2)

2 = eg has an

entire solution u with the following properties:

(i) u 6≡ f(c1z1 + c2z2) for any entire function f in C and any constants

c1 and c2; and

(ii) u 6≡ φ1(z1 + iz2) + φ2(z1 − iz2) for any entire functions φ1 and φ2 in

C.

Proof. Consider the partial differential equation (uz1)
2 + (uz2)

2 = eg,
where g(z) = iz1 +z2 +G(z) and G(z) = iz1−z2 +eiz1+z2 . Let us show that

the solution u := ie
1
2

G has the properties (i) and (ii) in the proposition.
The conclusion (i) is obvious when c1 and c2 are all zero. When at least

one of c1 and c2 is not zero, consider the restriction of z to the complex
plane c1z1 + c2z2 = 0. On this plane, f(c1z1 + c2z2) = f(0) is a constant
for any entire function f in C, while u is a non-constant entire function of
one complex variable. Thus, (i) follows.

To show (ii), suppose, to the contrary, that

(2.4) u = φ1(z1 + iz2) + φ2(z1 − iz2)

for some entire functions φ1 and φ2 in C. We may assume that one of φ1

and φ2, say φ1, is not a constant. We consider two cases: φ2 is a constant
and φ2 is not a constant. If φ2 is a constant, then on the complex plane
z1 + iz2 = 0, u is a non-constant entire function of one complex variable,
while φ1(z1 + iz2) + φ2(z1 − iz2) is a constant, a contradiction to (2.4). If
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φ2 is not a constant, we can take two points a and b in the complex plane
such that φ2(a) 6= φ2(b). Consider (2.4) on the complex plane z1 − iz2 = a.
Since u never vanishes, we have that φ1(2iz2 + a) + φ2(a) 6= 0 for any
z2 ∈ C, which clearly implies that −φ2(a) is a Picard-value of the function
φ1 in C. Next, consider (2.4) on the complex plane z1 − iz2 = b. We
have that φ1(2iz2 + b) + φ2(b) 6= 0 for any z2 ∈ C, which implies that
−φ2(b) is also a Picard-value of φ1. Therefore, the entire function φ1 has
two distinct Picard-values, which is of course absurd, since a non-constant
entire function has at most one Picard-value. The conclusion (ii) is thus
proved.

§3. The case 1
m

+ 1
n

< 1

The following theorem deals with entire solutions of the partial differ-

ential equations (1.1) when 1
m

+ 1
n

< 1.

Theorem 3.1. Let g be an entire function in C2, and m and n integers

satisfying that 1
m

+ 1
n

< 1. Then u is an entire solution of the partial

differential equation

(3.1) (uz1)
m + (uz2)

n = eg

in C2 if and only if

(i) u = f(c1z1 + c2z2) when m = n, where f is an entire function in C

satisfying that

(3.2) f ′(c1z1 + c2z2) = ce
g(z)
m ,

and c1, c2, c are constants satisfying that cm
1 + cn

2 = 1 and cm = 1;
and

(ii) u = c1z1 + c2z2 + c3, or u = F (z1), or u = G(z2), when m 6= n, where

c1, c2, c3 are constants satisfying that cm
1 + cn

2 = eg, and F and G are

entire functions in C satisfying that

(3.3) (F ′(z1))
m = eg, (G′(z2))

n = eg.

Similar to Remark 2.2, explicit expressions of f in (3.2), and F and G

in (3.3) can be given in terms of g. And we also have the following corollary,

whose proof is similar to the one of Corollary 2.3.
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Corollary 3.2. Let g be an entire function in C2. Then the partial

differential equation (3.1) admits an entire solution in C2 if and only if

(i) g(z1, z2) ≡ g(cm−1
1 (c1z1 +c2z2), c

n−1
2 (c1z1 +c2z2))+2kπ for an integer

k and some constants c1, c2 with cm
1 + cn

2 = 1, when m = n; or

(ii) g is an one variable function in z1 or z2, when m 6= n.

Example 3.3. (1) As in Examples 2.4(1), the partial differential equa-
tion (3.1) with g(z) = z2

1 + z2
2 does not have any entire solutions.

(2) Let g = mec(z1+z2) + mc(z1 + c2), a transcendental entire function

in C2, where c is a constant satisfying that 2cm = 1. Then u = eec(z1+z2)
is

an entire solution of (uz1)
m + (uz2)

m = eg, which is of the form (i) of The-
orem 3.1. Examples of entire solutions for the forms in (ii) of Theorem 3.1
can be trivially given.

§4. Proofs of Theorems 2.1 and 3.1

We now give the proofs of Theorem 2.1 and Theorem 3.1.

Proof of Theorem 2.1. The sufficiency is obvious. To prove the neces-
sity, let u be an entire solution of (2.1). Then

( uz1 + iuz2

e
g

2

)( uz1 − iuz2

e
g

2

)

= 1.

Therefore, there exists an entire function h in C2 such that
uz1+iuz2

e
g
2

= eih

and then that
uz1−iuz2

e
g
2

= e−ih, from which it follows that

(4.1) uz1 = e
g

2
eih + e−ih

2
= e

g

2 cos h, uz2 = e
g

2
eih − e−ih

2i
= e

g

2 sinh

(cf. [Ma], [GI]). Using the fact that uz1z2 = uz2z1 , we obtain that

(4.2)
( 1

2
gz1 + hz2

)

sinh =
( 1

2
gz2 − hz1

)

cos h.

We consider two different cases in the following.

Case (I): 1
2 gz1 +hz2 6≡ 0. In this case, by (4.2), we have that cos h 6≡ 0.

Thus, (4.2) can be written as

(4.3) tanh =
1
2 gz2 − hz1

1
2 gz1 + hz2

.
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We will employ Nevanlinna theory to show that h is a constant. To this
end, we first assert that

(4.4) T (r, h) = o{T (r, tan h)} + O(1),

where T (r, F ) denotes the Nevanlinna characteristic function of a mero-
morphic function F in C2. Recall the following basic facts: A meromorphic
function F is transcendental if and only if limr→∞

T (r,F )
log r

= +∞; and if F

is a non-constant polynomial, then T (r, F ) = d log r +O(1) for some d 6= 0.
Thus, the equality (4.4) is obvious if h is a non-constant polynomial, since
tanh is transcendental. If h is a constant, (4.4) is trivial. When h is tran-
scendental, (4.4) follows from the following theorem in our paper [CLY]: If
F is a transcendental meromorphic function in C and G is a transcendental
entire function in C2, then limr→∞

T (r,F (G))
T (r,G) = +∞. Hence, (2.4) always

holds. On the other hand, we have that T (r, Fzj
) = O{T (r, F )} for any

meromorphic function F outside a set of finite Lebesgue measure (see e.g.
[St], [V]). We thus deduce, from (4.3) and (4.4), that outside a set of finite
Lebesgue measure,

T (r, h) = o{T (r, tan h)} + O(1) = o{T (r, g) + T (r, h)} + O(1)

and so that

(4.5) T (r, h) = o{T (r, g)} + O(1) = o{log r},

since g is a polynomial. Then (4.5) implies that h must be a constant by the
basic facts on the Nevanlinna characteristic mentioned above. Therefore,
we then obtain, by (4.1), that

(4.6) uz1 = c1e
g
2 , uz2 = c2e

g
2 ,

where c1 = cos h and c2 = sinh are constants, which clearly satisfy that

(4.7) c2
1 + c2

2 = 1.

From (4.6), we obtain that

(4.8) c2uz1 − c1uz2 = 0.

Solving this equation yields that u(z1, z2) = f(c1z1 + c2z2) for some entire
function f , which is of the form (i) in Theorem 2.1.
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Substituting f(c1z1 + c2z2) for u in the original equation (2.1) yields
that (f ′)2(c1z1 + c2z2) = eg(z), in view of (4.7). That is, f satisfies (2.2).
Thus, we have proved the theorem in Case (I).

Case (II): 1
2 gz1 + hz2 ≡ 0. In this case, by (4.2), we have that either

cos h = 0 or

(4.9)
1

2
gz2 − hz1 = 0.

If cos h = 0, then h is a constant and thus (4.6) holds, in which case we have
already known that u is of the form (i), as shown in Case (I). Therefore, in
the following, we assume that (4.9) holds. By (4.1), we have that

uz1z1 =
1

2
e

g

2 gz1 cos h − e
g

2 hz1 sinh,

and

uz2z2 =
1

2
e

g

2 gz2 sinh + e
g

2 hz2 cos h.

Thus, we have that uz1z1 + uz2z2 = 0. Make the transformation

z1 =
w1 + w2

2
, z2 =

w1 − w2

2i
,

or

w1 = z1 + iz2, w2 = z1 − iz2.

By abuse of notation, we still use u to denote the function in w1 and w2

after the transformation. Then we have that uw1 = 1
2 uz1 + 1

2i
uz2 and thus

that

uw2w1 =
1

2

( 1

2
uz1z1 −

1

2i
uz2z1

)

+
1

2i

( 1

2
uz1z2 −

1

2i
uz2z2

)

=
1

4
(uz1z1 + uz2z2) = 0.

Integrating the equality uw2w1 = 0 with respect to w1 and then w2, we
obtain that uw2 = Φ(w2) and then that

u = φ1(w1) +

∫

Φ(w2) dw2(4.10)

:= φ1(w1) + φ2(w2) = φ1(z1 + iz2) + φ2(z1 − iz2),
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where Φ, φ1, φ2 are entire functions in the complex plane. Therefore, u is
of the form (ii) of Theorem 2.1. Substituting (4.10) for u in the original
equation (2.1), we obtain that

eg(z) = (uz1)
2 + (uz2)

2

= (φ′
1(z1 + iz2) + φ′

2(z1 − iz2))
2 + (iφ′

1(z1 + iz2) − iφ′
2(z1 − iz2))

2

= 4φ′
1(z1 + iz2)φ

′
2(z1 − iz2),

which is the desired equality (2.3). This completes the proof of Theorem 2.1.

Proof of Theorem 3.1. The sufficiency is clear. We only prove the ne-
cessity. Let u be an entire solution of (3.1). Then,

(uz1)
m + (uz2)

n = eg,

or
( uz1

e
g
m

)m

+
( uz2

e
g
n

)n

= 1.

By Cartan’s theorem mentioned in the introduction, we have that
uz1

e
g
m

= c1,
uz2

e
g
n

= c2, i.e.,

(4.11) uz1 = c1e
g

m , uz2 = c2e
g

n ,

where c1 and c2 are two constants, which clearly satisfy that cm
1 + cn

2 = 1.
We discuss two different cases in the following.

Case (1): m = n. In this case, we have by (4.11) that c2uz1 −c1uz2 = 0,
which is the same partial differential equation (4.8) in the proof of Theo-
rem 2.1, from which we know that u = f(c1z1 + c2z2), where f is an entire
function in C. The solution u is of the form (i) in the theorem. Substi-
tuting it for u in the equation (3.1), we see that f satisfies (3.2). Hence,
Theorem 3.1 holds in Case (1).

Case (2): m 6= n. By (4.11), we have that

(4.12)
c1

m
e

g

m gz2 =
c2

n
e

g

n gz1(= uz1z2).

If c1 = 0, then by (4.11), uz1 = 0. We then have that u = G(z2) for an
entire function in C. If c2 = 0, then uz2 = 0 and thus u = F (z1) for
an entire function in C. From the original equation (3.1), we have that
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(F ′(z1))
n = eg and (G′(z2))

m = eg. These are the (second and third) forms
in (ii) of the theorem. In the following, we assume that c1c2 6= 0. By (4.12),
if one of gz1 and gz2 is identically zero, then both of them are identically
zero, which implies that u is linear, i.e., u = c1z1 + c2z2 + c3 for some
constants c1, c2, c3, which clearly satisfy that cm

1 + cn
2 = eg, in view of the

original equation (3.1). This is the first form in (ii) of the theorem. Next,
we can assume that none of gz1 and gz2 is identically zero. Then we can
write (4.12) into

(4.13) e
g
m

− g
n =

mc2

c1n

gz1

gz2

.

We claim that g must be a constant. Otherwise we can use our theorem
in [CLY] mentioned in the proof of Theorem 3.1 again to deduce that, by
virtue of (4.13), outside a set of finite Lebesgue measure,

T (r, g) = o
{

T (r, e
g

m
− g

n )
}

= o
{ mc2

c1n

gz1

gz2

}

= o{T (r, g)},

which is impossible. Now that g is a constant, by (4.11) we obtain that both
uz1 and uz2 are constant, which implies that u is linear and thus has the first
form in (ii) of the theorem. This completes the proof of Theorem 3.1.
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