ON THE NON-MINIMAL MARTIN BOUNDARY POINTS
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1. In a Green space" £ we can introduce Martin’s topology and make it
the Martin space® 2. 2 is a dense open subset of 2 and the kernel

G(p, x)
Gy D
Kip, 2} = 0 p=y*x
1 P=y=x

can be extended continuously to (p, x) € 2x 2, where G(p, x) is a Green
function in 2 and y, the fixed point of 2. £ is a metric space. 4=80 -2 is
divided into two disjoint subsets 4y, 4, and s € 4, is characterized by the fact

that K(s, x) is a minimal positive harmonic function® in rx& 2.

2. We shall show the following theorem:

THEOREM. No point of 4y is an isolated point.

Proof. Let o be an open subset of @2, {x,} (2=1,2,...) be a sequence of
points in w such that x,—»>x 4. If we denote by % the family of positive
superharmonic functions in 2, each of which dominates K(x,, ¥) on £ — w, then
inf v(y) is equal to the positive superharmonic function except a polar set.

VE X
We shall write this superharmonic function &%,(y).

In this case
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Era(y) = SK(x, ) dun(x)

where 4. is a positive mass-distribution on & N £ and the total mass of . does
not exceed 1, & being the boundary of w in 2. By the theorem of choice, we
can extract from {u») the subsequence {uh} such that u, converges vaguely to

o and the carrier of u is contained in N Q.
v(9) = [K(z y) du(®)

is a positive superharmonic function in 2, and we have
L3 MEIESTEIN

In fact, for fixed y=2 and >0 we shall denote by ¢y the mass-distribution
which can be obtained after sweeping out the unit mass on y to the exterior

of the sphere (circle) of radius 7 and with center y. Then
Ur(x) = (K, 2)déf(2)
is bounded and continuous on 2. Therefore

tim{ U7 () dut() = SU'(x)\d,a(x).

n-»>o

By reciprocal law

tim{ %, () dsf (2) = o) def(2)

nso

and by Fatou’s lemma
[#r 2 a8 ) <limf gz, (2 def () = ﬂmz)d (2.
By making -0 we can get for each ye 2

Ex,(y)<v(y).

If 0 denotes the restriction of x4 to 4 and w ‘the restriction of u to 2, then

v(y) = ~YK(::, »dp(x) + sK(x, ) dpa(x)
=u(y)+ w(y)

where « is harmonic and w is a potential, and this is just the Riesz decomposi-
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tion.

From now on let x, be a point of 4, and x be isolated. Let
Klx, 3) = | K, ) du(x)

be' the canonical representation* of K(xo, ¥). Then we can find a neighbourhood
8 of x, such that

(1) 5N o= {xo}
and
(2) w(dy—8)>0.

If we set w =8N 2, then
Ex(9) = | ER(Ndvix)
= tmaw + [ F(dix)
Ja -8 5 nAy

The first term of the last side is harmonic, because o is thin at each ‘point of
4;— 6% and therefore we can get Bx,(y) = Kz, y).

We note that p is the restriction of the mass-distribution u to (m) N4,
which is contained in § N 4 and does not contain the point %. By (1) we can

get 1:(4y) =0, that is, z is the canonical mass-distribution of #, and by (2)
1 ( y) =j < K(x, y)dv(x)>0.
FYEE)
Since

v(y) = uly) + wly)
283,02 ER b =] Ky d®) =u(y)

and # is the greatest harmonic minorant of », we have
u=u,
but the canonical mass-distribution of # has the carrier in 4; N 6=, whereas the

canonical mass-distribution of #; has positive mass only in 4; — 5. As wm>0

Y R. S. Martin, loc. cit., p. 157.
5) L. Naim, loc. cit., p. 203 (théoréme 3) and p. 205 (théoréme 5).
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the canonical mass-distribution of # has positive mass in 4, - 5 ; this is a con-
tradiction. QED.

CoroLLARY. If Ao ¢ then 4o contains at least countable points.

Remark. In the above consideration we rely upon the following argument :
we have always #=>u;, and, if #;> 0, then g, is not the caﬁonical mass-distribu-
tion of u.

Mr. K. Matsumoto has kindly pointed out the following result:

Let x, be a point of dy and v be the canonical mass-distribution of Ki(y),
then the common part of the carrier of v with 4 is contained in do.

The proof follows from the preceding remark; let E be the carrier of ».
If EN 4,¢4,, then there exist a point z, and a set A satisfying the following

conditions :

1) A is an open neighbourhood of z in 4,

2) v(A4)>0,

3) Ac 4.
We can construct an open set (in £) G : GN4=A. In this case, there exist
two positive numbers 0<p; <p such that:

i) dist (20, x0) > p,

ii) U,(z0)CG*,

iii) »(U,,(2) N 4)>0.
If we set v =2~ U,(z), under the same notations as in the proof of the above
theorem, we see from i), xo€® and, as (dNL)NAC U () NACGCNAd=AC 4,

w1 is canonical and from 4 — @ D U,,(2) N 4, #;> 0, this is a contradiction.

Osaka City University

§) We denote Up(z0) = {xe.é; dist (%, 20)<p), where the metric dist (x, 20) is the Martin’s
metric.





