A NOTE ON TANGENT BUNDLES
KENICHI SHIRAIWA

Dedicated to Professor K. NosHiro for his 60th birthday

The tangent bundle of a differentiable manifold is an important invariant
of a differentiable structure. It is determined neither by the topological structure
nor by the homotopy type of a manifold. But in some cases tangent bundles
depend only on the homotopy types of manifolds.

In this note we shall show.that homotopy spheres and homotopy real pro-
jective spaces have homotopically equivalent tangent bundles respectively. Also,
the action of ©,, the group of the homotopy spheres, on an oriented smooth
manifold by the connected sum does not have an effect on the structure of the
tangent bundle (2=5).

1. Let M" be a differentiable manifold of dimension n. Let &, & be vector
bundles over M”. If & is equivalent (or isomorphic) to ¢, then we shall denote
it by £=£". Let t(M") be the tangent bundle of M".

TueoreM 1. Let D" be a homotopy n-sphere. Let f: S"—=>>.\" be an orienta-
tion preserving homotopy equivalence of the standard n-sphere S" onto 33". Then
FH (™M) =(S"). In other words, f is covered by a bundle map f of t(S™) onto
(3™

Remark. If n is even and #%2 (mod 8), then this is a consequence of a
theorem of Takeuchi [11].

Proof. If n<7, Theorem 1 is well known and derived by the similar argu-
ment that follows. Therefore, we assume #=>8. Let ¢/ = f*(3)”) and ¢ = ¢(S™).
We shall show that r=+'. Let § be an oriented #-plane bundle over S™. Let
a(8) Emn-1(SO(n)) be the characteristic class of £. By the classification theorem
(Steenrod [10]) it is sufficient to prove that a(r) = a(¢"). Leti:SO(xn)—>SO(n+ 1)
be the inclusion, and let iy : 7s-1(SO(n)) > 1,-1(SO(n+1)) be the induced
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homomorphism. Then a(z') € Ker 74, since homotopy spheres are stably paral-
lelizable (Kervaire-Milnor [6]). By a result of Kervaire [7], (See also Steenrod
[10]), Ker i, = Z, the group of the integers, if # is even, and Ker iy = Z,, the
group of integers mod 2, if # is odd. And in both cases a(r) generates Ker

. It is also easy to see that Ker i, is a direct summand of 7s-1(SO(n)).

Case 1. Let n be odd. Then Ker ix=2;, and a(r)%0. Therefore, it is
sufficient to prove that a(r') %0, that is, >}" is not parallelizable for #»=8.

LemMma 1 (A. Dold). If 23" is paratlelizable, then S™ is an H-space.

Since we do not find the proof of Dold, we shall give a proof of the lemma.
(Cf. Adams [1])

Proof of Lemma 1. Let 4c>)"x>)" be the diagonal. Let p: >)"x "> >)"
be the projection on the first factor. Then it is well known that there exists
a closed tubular neighborhood U of 4 such that p,=p|U : U~ >)"is equivalent
to a suitable closed disk- bundle- associated to the tangent bundle +(>,”). Since
S17 is parallelisable, (21") is trivial. Therefore, there exists a homeomorphism
h: Ux3"x D" such that

a) U—~h—>2"xD
AN /
PNy

is commutative, where D" is a closed #-disk and ¢ is the projection.
b) £ maps 4 onto 2)"x{0} in such a way that x(x, x) = (x, 0) for x=>,%,
where 0 € D” is the origin of the disk D”.

Let ¢ : D"—>S" be -a map such that

(i) ¢(@D™)=x,€S", where aD" = S"™! is the boundary of the disk D",

(ii) ¢(0) = x, = the base point of S”, and

(iii) ¢ is of degree 1.

Let 2 : E”XE""S" be a Pontrjagin-Thom map defined by

k(Z"xE"— U)=x.,
RlU=¢rh, where » : >)"x D" > D" is the projection.

Then it is easy to see that 2|{y} x> " : {y} x> "=>S" is of degree 1 for each
ye 2" and k(4) = x,.
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Now 7n(X"x ") =22 +74(2")=Z+Z is generated by 7, : S" -
SVixypC 3 "x " and 4 ¢ S">yox 23"c2)"x >)”, where i, and i, are maps
of degreel. Leti :S"—>4c>"x >)"bea map of degree 1. Then {z} = {4} + {é.},
where the bracket means a homotopy class.

Let £y : ma(S3"%x >3") »74(S™) be the induced homomorphism of 2 Then
ke({i2}) = ¢n, the generator of m.(S") = Z, and ki ({i1} + {22}) = E({i})) = 0.
Therefore, ke({i})) = —¢5. Thus 2 : D)*x>)">S" is of type (-1, 1).

Let j, j/ : S”-»>." be maps of degree —1, 1 respectively, which preserve
base points. Let m : S®xS”—S” be defined by m =ko(jxj"). Then m is of
type (1, 1) and preserves base points. Thus = defines an H-space structure

on S”.

CoroLLARY. (Adams [11) Homotopy n-spheres are parallelizable if and only
ifn=1, 3, or 7.

Proof. By the result of Adams [1], S” is an H-space if and only if n=1,
3, or 7. Hence, if >)" is parallelizable, » =1, 3, or 7. Conversely, a homotopy
n-sphere is parallelisable for » =1, 3, 7, since 7,-1(SO(#)) =0 in this case.

Now the proof of Theorem 1, Case 1 is complete.

Case 2. Let n be even. Then Ker i, =Z and a(<) generates Ker i,. Since
alt") € Ker iy, alz!) =malc) for some integer m. We shall show m =1. .

Let p : SO(n) »SO#)/SO(rn —1)=S""" be the projection. Then it is well
known that py : mn-1(SO(7)) - ws-1(S™™!) = Z maps Ker i, monomorphically on-
t0 2 mn-1(S™ N Cra-i(S™). (Steenrod [10]) Now we need the following lemma.

LemMa 2. Let & be an oriented n-plane bundle over S™. Then the Euler class
X(8) = —pela(8)) € H'(S™, 7p-1(S™™)) = mai(S™7H).

Proof. Let #: E»S" n': E'->S” be the associated principal bundle and
the (z — 1)-sphere bundle of & respectively. Let ¢ : E~ E' be the associated

principal map. Then

is commutative and the restriction of ¢ on the fibre is equivalent to p : SO#) »S""".

Now consider the following commutative diagram ;
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———)n'n(S")i»:,._l(SO(n))—-—)n‘n—x(E)—-—')
I, e
—>1a (S -1(S™ )~y (EN)—,
where each row is the exact sequence of the homotopy groups of the bundles
E and E' respectively. Then 4(cs) = a(2), and — pula($)) = — ped(en) = — 4'(tn).
But — 4'(¢s) is identified with the Euler class X(¢) of ¢. (Cf. Steenrod [10]).
This completes the proof of the lemma.

Returning to the proof of Theorem 1, we get X(t') = mX(r) by our assump-
tion a(r') =ma(r) and Lemma 2. But the Euler class of the tangent bundle
of a differentiable manifold is identified with the Euler characteristic of the
manifold. Thus X(¢) = X(¢!) = twice of the generator of H"(S"”, na-1(S"™1)),

and this implies m =1.

2. Let M” be a connected closed oriented differentiable manifold of dimension
n. Let >)” be a homotopy #z-sphere.

THEOREM 2. Let n=5. Let M™% >)" be the connected sum of M" and )"
Then there exists an orientation preserving homeomorphism f : M"—>M"# )" such
that f*(c(M™$ >")) =<(M").

Before proving Theorem 2, we need the following two lemmas.

LemMma 3. Let My, M: be closed oriented smooth n-manifolds. Let f: M;—M,
be a map satisfying the following conditions.

(1) There exists a neighborhood U(p) of p € M, such that f|U(p) : U(p) > M,
is a differentiable imbedding.

(i) f is covered by a bundle map 7 (M) >t(M.).

Then there exists a bundle map F : t(M\) ~»t(M:) covering f such that (a)
F = df, the differential of f on (M) | VD), where VI p) is a neighborhood of p
contained in U(p), and (b) F =71 on (M) | (M- U(p)).

Proof. Let U,cU(p) be a closed neighborhood of p diffeomorphic to the
closed disk D" of radius 1. Let Vip)CU, 'be the neighborhood corresponding
to the open disk of radius 1/2. Since U, is contractible, t(M,)|U, is trivial
and «(M))|U,=U,xR", where R" is the real z-space. Since f|U(p) is a
differentiable imbedding, t(M.)| f(T) = AU x R".

Using the above identification, we can represent 7 as follows ;
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J7 U X R AU R”

is given by /(x, y) = (f(x), glx)y), where g : U;~>GL(n, R) is a suitable map
to the full linear group of R”, and thus g(x) operates on R”. It is clear that
glal,, where oU, is the boundary of U;, is homotopic to zero. Since df is a
bundle map on (M) IU; covering f, df(x, y) = (f(x), g'(x)y) for some
g’ 1 U,»GL(n, R). (Essentially g'(x) is dfz) g'|oV{(p) is homotopic to zero as
before. Hence g|2U; is homotopic to g'|aV(p). Using a homotopy between
g and g', we can construct a map g” : U;>GL(n, R) such that

(i) g"|aoU, = g, and

(i) g"|Vip) = g'.

Define F : t(M,) - (M) by

(a) F=/ on t(M\)|(M,—T,), and

(b) F(x, y) = (f(x), g"(x)y) on t(M)|U..
Then F satisfies the required properties of the lemma.

LemMma 4. Let My, M,, N be closed connected oriented smooth manifolds of
dimension n. Let f: M~ M, be an orientation preserving homeomorphism satisfy-
ing the following conditions :

(i) f is a diffeomorphism on a neighborhood U(p) of p = M,.

(i) fSio(Mz)) =<(M)).

Then there exists an orieﬁtation preserving homeomorphism h: M, % N—> M, N such
that h is covered by a bundle map < M, % N) » (M. % N), i.e. B (c(M: % N))=<(M,% N).

Proof. First observe that f satisfies the conditions of Lemma 3.

Let D™ be the unit disk. Let 2 ; D" - M, be an orientation preserving smooth
imbedding such that 2(D”)cVip), where V(p) is the neighborhood given in
Lemm 3. Then feok : D"->M, is an orientation preserving smooth imbedding.

Let » : D">N be a smooth imbedding which reverses orientation. Then
M. % N is obtained from the disjoint union (A — £(0)) + (N — 7(0)) by identifying
k(ix) with »((1 = #)x) for each x= S" ™' =9D"” and each 0<¢<1. In other words,
ye kiInt D" —0) is identified with ro¢ek(y), where ¢ : Int D" ~0-Int D" -0
is a diffeomorphism defined by ¢(fx) =(1—1¢)x for x= S*™' and O<t<1,‘ and
Int D" is the interior of D”.

Now (M, # N) is obtained from the disjoint union (r(},) —the fibre over
k(0)) + (VN — the fibre over »i0)) by identifying (k(fx), y) with (#({(1 —#)x),
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drod¢odk™(y)), where y is a tangent vector at k(#x), for each x S™ ' and
0<t<1. ‘

Similary, M, # N is obtained from the disjoint union (M, — fo2(0) + (N — 7{0))
by identifying fok(¢x) with »((1—-#)x) for each x€S™ ' and 0<¢<1. And
©(M: ¥ N) is obtained from the disjoint union (r(M;) - the fibre over f°k(0)) +
(N — the fibre over 7(0)) by identifying (feok(tx), y") ‘with (r((1—-8t)x),
dredg-d(f-k)"'(y")), where y' is a tangent vector at fok(tx).

Define 4 : M N- M. N by

(M, - Ek(0)) = f, and
2| (N —7(0)) = the identity map.

Then % is an orientation preserving homeomorphism.

Let F: (M) >7(M;) be the bundle map covering f éiven by Lemma 3
such that F=df on =(M,)| V(p). Define H : t(Mi$N)->t(M; % N) by

Hlz(M,) —the fibre over %2(0) = F, and
H!t(N) — the fibre over 7(0) = the identity map.

Then it is easy to see that H is a bundle map covering #.

Proof of Theorem 2. Since M™ is diffeomorphic to M " #S™, we shall prove
the existence of an orientation preserving homeomorphism 42: M™% SToM™E S
which is covered by a bundle map (M1 ¥ S™) > (M 4 >3™). It is well known
that there exists an orientation preserving homeomorphism f: $”—>>)" which
is a diffeomorphism except one point foxj n=5.

Theorem 1 implies f*(r(23"))=(S™). - Thus the conditions of Lemma 4
is satisfied, and Theorem 2 follows.

~CoroLLARY 1. Let M;, M. be connected closed oriented smooth n-manifolds
whose underlying topological manifolds are homeomorphic (n=5). Suppose for any
orientation preserving homeomorphism f : My—>M., f*c(M,) is not equivalent to
o(M,). Then M, is_not diffeomorphic to the connected sum of M, and >)" for
any homotopy sphere >". ‘

CoROLLARY 2. If n=5, then (M™#3.") x R* is diffeomorphic to M x R* for
k=n+2 and for any homotopy sphere >,".

This is clear by Mazur [8]. -
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3. Let M” be a closed differentiable z-manifold which is homotopically
equivalent to the real projective n-space P”. Then we shall call M" a homotopy
real projective n-space (Cf. [41, [9]).

TueoreM 3. Let M" be a homotopy real projective n-space. Let f : P"->M"
be a homotopy equivalence. Then F*(c(M™)) is equivalent to t(P").

This is a generalization of Lemma 4 of Hirsch-Milnor [4].

Proof.. By Theorem (3.6) of Atiyah [3], J/(z(P™) =J(f*(¢(M))). By (6.3)
of Adams [2], J: KO(P")-»J(P") is an isomorphism: Thus f*(c(M")) is
stably equivalent to (P"). If » is odd, Corollary (1.11) of James-Thomas [5]
implies that f*(+tM™))=7(P”). Therefore, it remains the case » is even.

Let #» be even. Let >)” be the universal covering manifold of M”. Then
>3" is a homotopy sphere and f is covered by a homotopy equivalence
f:8"-3" Thus

-

) ; #

Ly
is commutative, where p, p' are projections. Therefore, p™*(<(M"*)) =¢(3}")
and p*(c(P™)=c(S™). Since /*(<(33"))=~r(S”) by Theorem 1, f*p’*(r(M'i))
=p*(<(P™) =p* fF(c(M™)).

Now our proof proceeds as the one given in Hirsch-Milnor (4] with a slight
modification. ‘

Since t(P") and f*(¢(M")) are stably equivalent, «(P")| P! is equivalent
to FXc(M™)IP"" Let c€ H"(P", n.-1(SO(n))) be the obstruction for
extending the isomorphism % : «(P”)|P" '~ f*(c(M™"))|P"! over P". (The
coefficients are twisted).

The case # =2 is trivial, so we assume 74,

Let i : SO(n) - SO(n + 1) be the inclusion. Then

0—>Ker i,—>7-1(SO(1))—> 7510 SO(n + 1)) =0

is exact, where Ker 7, = Z is generated by « = a(z(S™)) and each homomorphism
is compatible with the operation of m(0) = Z,. And the operation of the

generator ao of m(0) is trivial on m,-1(SO(%+1)) and ao(a) = — a (Cf. Steenrod
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[10]). The above exact sequence induces the following exact sequence

S HNP, 2t SO+ 1)) —>H"(P”, Ker i) “>H"(P", 2p-i( SO(n)))
~E>H"4P”, 7u-1{SO(n + 1)))—>0.

Since H* Y(P", nn-1(SO(n+1)))=0 or Z, and H*(P”, Keri,) =Z, H'(P",
Ker 7,) is mapped monomorphically into H"(P”, ns-(SO(xn))). If we choose
an isomorphism % : «(P")|P" '~ f*(M"))|P"™" carefully, £ can be extended
over P" as an stable equivalence t(P")® 1= f*(«(M")) @1, where 1 is a trivial
line bundle over P”. Thus i,.(c) =0, and c< Image of j.

Considering the similar exact sequence over S”, it is easy to see that
p:S* > P" induces a homomorphism p* : H*P", ns-1(SO(n))) » H*(S",
7n-1(SO(n))) which is a monomorphism on the image of j. Thus ¢=0 if and
only if p*(¢) =0.

Now p*(¢) is the primary obstruction for the existence of an isomorphism
PH(PM))=p*f*(z«tM™)). But they are isomorphic as mentioned above. Thus
p*(c) =0, and it follows ¢=0. Therefore, £ can be altered so that it can be
extended to an isomorphism t(P”)= f*((M")) over whole P”".

CoroLLARY. Let M” be a homotopy real projective n-space. Then M™x R*

is diffeomorphic to P"x R* for k=n +2.

For this corollary we need only the stable equivalence of {P”) and f*(r(M"))
for a homotopy equivalence f: P”"—~M". This is shown at the beginning of
the proof.
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