
DEFINITIONS FOR A CLASS OF PLANE
QUASICONFORMAL MAPPINGS

F. W. GEHRINGυ

Dedicated to Professor K. NOSHIRO on his sixtieth birthday

1. Introduction. This report is a survey of some of the many different

ways of characterizing a class of plane quasiconformal mappings. This class

was considered by Ahlfors [4] in his treatment of the Teichmuller problem,

and it has been studied rather extensively in the last ten years.

In order to simplify notation, we shall consider only mappings between

finite plane domains. Hence in what follows, D and D' will denote domains

in the finite plane R\ and/will denote an orientation preserving homeomorphism

of D onto D1. Next for each quantity δ associated with Z), such as a point,

subset, or family of subsets, we shall let δ' denote its image under /. Finally

given \<K< <*>, we let QK denote the class of all 2f-quasiconformal homeo-

morphisms /, and Q the union of the classes Qκ for 1<K< °°.

In the following sections we first list nine equivalent definitions for the

class QK. Then we give three additional definitions for the class Q in the

special case where /) = £)' = R2. Finally we indicate where one may find proofs

for the equivalence of these definitions.

2. Closure of the class of differβntiable quasiconformal mappings. Given

1<K<°°, we let Qκ denote the class of diffeomorphisms / which map each

infinitesimal circle in D onto an infinitesimal ellipse with axis ratio bounded

above by K. Then Qκ is the class of ϋC-quasiconformal mappings studied by

Grotzsch and Teichmuller, and it is well known that many important extremal

problems for mappings in Q% have solutions in Qΐc. This fact is, at first,

rather surprising since Qί is obviously not closed under uniform convergence
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on compact sets. We are thus led to our first characterization for the class

QK (See Π 8 J ) .

DEFINITION 1. / e QK if and only if there exists a sequence of mappings fn ^ Qκ

of Dn onto D'n such that fn^J'uniformly on each compact subset of D.

3. Analytic definition. We say that / is absolutely continuous on lines or

simply ACL in D if for each disk U with ΌcD, f is absolutely continuous on

almost all line segments in U which are parallel to one of the coordinate axes.

For such an /, the complex derivatives fz = -K- (/* — if?) and fz - -FT (/* + ify)

exist a.e. in D, and it follows that / i s differentiable a.e. in D [141 The analytic

definition for the class Qκ can then be stated as follows (See [81 [14], [201

and [231).

DEFINITION 2. / e Qκ if and only iff is ACL in Dand\f\\ + |/sl ^K(\fz\ - |/i|)

a.e. in D.

If / e QK by Definition 2, then the fact that / is a homeomorphism implies

that fz and fz are locally ZΛintegrable. Hence the following is an alternative

formulation of Definition 2 (See [73 and [91).

DEFINITION 2.'. f&Qκ if and only if f has L2 derivatives and satisfies fz = μfz
τr 1

a.e. in D, where \μ\^k—fr-rτm

4. Configurations with one conformal invariant. Let Σ be a configuration

consisting of a domain bounded by m Jordan curves, together with n boundary

points and p interior points distinguished. Then the four cases where Σ has

precisely one conformal invariant or module are as follows (See p. 88 in [ 3 D .

1°. m=2, « = 0, /> = 0,

2ό. w = l , Λ = : 4 , ί = 0,

3°. m = 1, n = 2, p = 1,

4°. m = 1, n = 0, p = 2.

In the first case, 21 is a ring i? and an obvious conformal invariant is mod R,

the logarithm of the radius ratio of any conformally equivalent annulus. In

the second case, Σ is a quadrilateral Ω and a convenient invariant is mod Ω,

the side ratio of any conformally equivalent rectangle. In the third case, Σ

is a Jordan domain 4 with a boundary arc oc and an interior point zQ distinguished,
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and we may take as a conformal invariant the harmonic measure ω(a zQ) of

cc at zo. Finally in the fourth case, Σ is a Jordan domain Δ with two interior

points zι and z2 distinguished, and the hyperbolic distance h(Δ zu z2) between

z\ and 22 is a conformal invariant.

5. Rings. Each of the above configurations may be used to characterize

the class Qκ. In particular, since many distortion properties for quasiconformal

mappings can be obtained from studying how the moduli of certain extremal

rings are changed under the mappings, the following characterization is of

some interest (See [15] and [241).

DEFINITION 3. / e Qκ if and only if mod Rf<K mod R for all rings R with

It is possible to associate with each ring in ^-space, w>3, a modulus or

conformal capacity which is invariant with respect to Mδbius transformations

[19], and hence Definition 3 suggests a way of defining quasiconformality in

higher dimensions [12].

6. Quadrilaterals. Historically, the first definition given for the class Qκ

is the following due to Ahlfors [4] (See also [22].).

DEFINITION 4, / e Qκ if and only if mod Ωf<K mod Ω for all quadrilaterals

Ω with ~Ωc:D.

There are several variants of this definition where the quadrilaterals are

restricted to various subclasses. For example, one can show that / e Qκ if

mod Ω'^K mod Ω for all quadrilaterals Ω which are rectangles [15]. It is also

true that f^Qκ if mod Ω'^K mod Ω for all quadrilaterals Ω with mod Ω = 1

[17]. On the other hand, it is not known if /<= Qκ provided that mod £'<ifmod Ω

for all quadrilaterals Ω which are squares, that is for all Ω which are rectangles

with mod Ω = 1.

7. Harmonic and hyperbolic measures. For 0 < ^ < l , let μ{r) denote the

modulus of the ring bounded by the unit circle Ul = 1 and the segment Q^x^r,

y = o. We then can characterize the class Qκ by means of the remaining two

configurations 21, with just one conformal invariant, as follows (See [17].).

DEFINITION 5. f^Qκ if and only if for each Jordan domain Δ with J C D%
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for all aC-dJ and z0 e Δ.

DEFINITION 6. / e Qκ if and only if for each Jordan domain Δ with

for all zu zz e Δ.

8. Extremal lengths. Let Γ be a family of arcs or Jordan curves in the

finite plane R2, and let F(Γ) denote the family of functions p which are non-

negative and Borel measurable in R2 and for which

for each locally rectifiable r e Γ. The modulus of Γ is defined as

M(Γ) =inff( fdxdy, p ε ί t / 1 ,

and the extremal length is given by Λ(Γ) = ^ . Γ » Because each of the con-

formal invariants mentioned above can be expressed in terms of extremal

lengths, [3] and [16], the following characterization is of interest [27].

DEFINITION 7. / e QK if and only if λ(Γ') <,Kλ(Γ) for all curve families Γa D.

This definition suggests another way of defining quasiconformality in higher

dimensions [27],

We say that / preserves the curve families of extremal length zero if for

each family ΓcJ9, λ(Γ') =0 if and only if λ(Γ) =0. From [25] and [27] we

obtain the following characterization for the class Q.

DEFINITION 7'. / e Q if and only if f preserves the curve families of extremal

length zero.

9. Distortion of infinitesimal circles* Given a homeomorphism /, we set

max 1/(24- h) -f(z)\
H(z) = lim sup IΛI

min
|Λ|=r

for each z e D . Then / e Q* if and only if / is a diffeomorphism with H<K
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in D. We have the following analogous characterization for Qκ (See [11] and

[211).

DEFINITION 8. / e Qκ if and only if H is bounded in D and H<K a.e. in D.

There exists a homeomorphism / e Qκ for which H- K2 on a set of Hausdorff

dimension 2 [11]. Hence, except when K- 1, it is not possible to replace the

two conditions in Definition 8 by the single requirement that H<KdX all points

of Zλ However, for the class Q we obviously have the following characteriza-

tion.

DEFINITION 8'. / e Q if and only if H is bounded in D.

Again these definitions suggest how one may define analogous classes in

higher dimensions.

lO Distortion of angles. A conformal mapping is an angle preserving

diffeomorphism. There is an obvious modification of this characterization for

Qκ On the other hand, it is not immediately clear how to proceed for Qκ.

This is because a mapping / e Qκ may have an exceptional set E of zero measure

at which it is not differentiate thus an angle with vertex in E may be

carried by / onto a pair of arcs with no tangents at their common endpoint.

In order to circumvent this difficulty, given two arcs n and γ2 which meet

only at a common endpoint zo, we let

A(n, r») = lim inf 2 arcsin ( ^ T f '
u \Zι—ZQ\'t\Zo—Z\

This is a kind of angular measure for the topological angle formed by ri and

72 at 3o,.,and it reduces to the smaller of the two angles formed by n and γ2

when these arcs are segments. We then have the following characterization

for the class Qκ (See [2].).

DEFINITION 9. / e Qκ if and only if the following two conditions are satisfied.

(i) For all zoeD and all segments γlt rz^D which form an angle at zOf

Air'u rί)>0.

(ii) For almost all zo^D and all segments γXi rzCiD which form an angle at

zo, A(r'u rί)> 2f<A(ri» ra).

Except when K= 1, one cannot replace conditions (i) and (ii) in Definition
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9 by the single requirement that A(γ[, rf

2)>~^ A(γlt γ2) for all Z<><ΞD and all

segments γu u^D which form an angle at z0.

There are, of course, other ways to assign an angular measure to a topological

angle. For a quite different method and an analogous characterization of the

class Qκ> see [263 (See also [1].).

11. Extension property. Suppose now that D = D' = R%. Then / clearly

can be extended to be a homeomorphism / of the finite 3-space Rz onto itself.

Given any such /, we set

max !/(* + /*)-/(#) I
H(x) = Urn ^rn s u p ^ ~ ~ r

r-o ^ mm\f(x+h)-f(x)\
|Λ|-r

for each x&R*, and following Definition 8' we say that / G Q if and only if

H is bounded in R*. Q is then the class of quasiconformal mappings of J?3 onto

itself, and from Theorem 10 of [12] and a recent extension theorem due to

Ahlfors [6], we obtain the following characterization for the class Q.

DEFINITION 10. If I) = Df = R2

y then / e Q if and only iff has an extension

12. Compactness property. Beurling and Ahlfors obtained in [10] two

characterizations for the class of homeomorphisms of the real line R1 onto

itself which can be extended to be quasiconformal mappings of R2 onto itself.

The first of these involves a symmetry condition, the so-called p-condition,

while the second makes use of a compactness condition. Definition 10 suggests

that there might be two analogous characterizations for the class Q in the

special case where Zλ= Df = R2. This is indeed true, and it is not difficult to

see that Definition 8' is really a localized 2-dimensional form of the p-condition

characterization. For the other characterization, given a family F of homeo-

morphisms of R2 onto itself, we sayAIthat F satisfies the compactness condition

(A) if each sequence of mappings / » G F , which leave the points 0 and 1 fixed,

contains a subsequence of mappings which converge to a homeomorphism,

uniformly on each compact set in i?2. Then if we let 5 and T denote arbitrary

similarity mappings, the 2-dimensional analogue of the Beurling-Ahlfors com-

pactness characterization can be stated as follows (See Corollary 8 of [12].).
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DEFINITION 11. // £> = D' = R2, then / e Q if and only if the family of all

mappings of the form S°f° T satisfies the compactness condition (A).

13. Quasiconformal circles. Given a Jordan curve C^R2, we let

h(Γ\ - en Ul -Z2! U3-24I + U2 - Zϋl l ^ ~ 2ll
R \ \s 1 — SUΌ 1 1 1 j '9

|Zl-Z3| \Z2~Zi\

where the supremum is taken over all ordered quadruples of points zu z2, z?,t zA e C.

Then it is not difficult to see that l£fe(C)< °? and that k(C) = 1 if and only

if C is a circle. Ahlfors has also shown [5] that C is a quasiconformal circle,

that is the image of a circle under a quasiconformal mapping of R2 onto itself,

if and only if k(C)< °°. We are thus led to our final characterization of the

class Q (Compare with Lemma 4 of [13].).

DEFINITION 12. // jD = Z>' = i?2, then f^Q if and only if sup.-*(C')<<»,

where the supremum is taken over all circles CCLR2,

14. Equivalence of these definitions. Proofs for the equivalence of Defini-

tions 1, 2, 3, 4, 7, and 8 can be found either in the references already quoted

or in the recent book by Lehto and Virtanen [18]. The equivalence of Defini-

tions 5 and 6 and of Definition 9 with the above is proved in [17] and in [2],

respectively. That Definitions 10 and 11 yield the same class Q when D = D'-R2

follows from [6] and Theorem 10 of [12] and from the plane version of

Corollary 8 of [12]> respectively. Finally we sketch a proof to show that the

characterization of Definition 12 is equivalent to the others.

We show first that if D = D1 = R2 and if / e Qκ, then

(1) * ( θ £ c s c ( 2 arcsin β

for all circles C<^R2

y where μΓ1^) is the inverse of the function μ(r) defined

in section 7. For this choose a circle Cc:R2

y let z[y zf

2i 23, z\ be an ordered

quadruple of points on C, and let g and h be Mobius transformations with

g(zi) = °° and foz[) = <». Then h°f°g~ι& QK in Rz and it maps g{zd onto

h{z'i). Since zu z2> z%, ZA is an ordered quadruple of points on C and since g

maps C onto a line,

\g(Zι) -g{Zz)\ + U U ) -g(Zz) I = \g(Zι) ~g{Zz) I,

and Theorem 2 of [2] implies that
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\h(z[)-h(zi)\(2) sinί 1 arcoinί ^Wf

Because cross ratios are preserved under h, (2) implies that

and (l) follows. For each K and C there exists an / e Q t for which (1) holds

with equality. Hence inequality (1) is sharp.

We prove next that if D and D' are arbitrary and if for some constant K,

4

(3)

for all circles C<^D, then / e QKt We do this in two steps.

We observe first that for each Jordan curve CdR2

f

(4)

where d(C) and a(C) denote the diameter and area, respectively, of the bounded

component Δ of the complement of C. To see this, choose zu 2 8 G C SO that

Ui - 231 = d(C) by making a preliminary change of variable, we may assume

that 2]=0 and z3 = d(C). Next for each x, 0<x<d(C), choose z2, ZAeC so

that zi, z2f zs, ZA is an ordered quadruple of points on C and so that the open

segment joining z> and z\ lies in the intersection of Δ and the vertical line

through z = x. Then

2x(d(C)-x)<\z1-z2\

and if we integrate this inequality from 0 to d(C), we obtain (4).

Next from (3) and (4) it follows that

(5) rf(C')2<ς — α ( C ' )

for each circle Cc:D. Using (5), one can show by means of a familiar length-

area argument that / is ACL in D (See, for example, Step 1 in the proof of

Theorem 2 in [11].). Then / is differentiable a.e. in D by [14], (5) implies

that \fz\ + \M<K{\fz\ - |/i|) at each point of differentiability, and hence/e Qκ.

The desired equivalence is now an immediate consequence of what we have

proved above.
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