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In the present paper, we first prove the following

THEOREM 1. Let K be a field, x a transcendental element over K, and V* a

valuation ring of K{x). Set V= V* Π K. Denote by p* and p the maximal ideals

of V* and V respectively. If (i) V*/p* is not algebraic over V/p and (ii) the

value group of V* is isomorphic to Ίf (Z~the module of rational integers), i.e.,

F * is of rank n and discrete in the generalized sense,2) then V*/p* is a simple

transcendental extension of a finite algebraic extension of V/p.

Then we show some applications of this theorem to the theory of fields.

At the end of this paper, we shall discuss the theorem above without assuming

(ii).

Besides usual terminology on rings and fields, we make the following

definitions: (1) a field L is said to be ruled over its subfield K if L is a simple

transcendental extension of its subfield containing ϋf, (2) a field L is said to be

anti-rational over its subfield K if no finite algebraic extension of L is ruled

over K and (3) a field L is said to be quasi-rational over its subfield K if

every subfield of L which contains K properly is not anti-rational over K.

The writer likes to express his thanks to his friends in Harvard University

and Purdue University, especially to Professor Zariski, for their discussion on

these topics.

1. Proof of Theorem 1

We use induction argument on n. If n ~ 0, then the assertion is obvious.

Received April 22, 1966.
i) The work was supported by NSF Grant GP-3512.
2> Under the presence of the condition (i), this {ii) is equivalent to that the value

group of V is isomorphic to Zn, as is easily seen from the fact that V{y)~ V[y]pv[v} is
a valuation ring dominated by V* whenceV* is transcendental modulo p* over V/p.
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Assume now that n = 1. Since K(x) = K(x~1)f we may assume that # e F*.

Set i?= FMp'nvoj. Since F* is a discrete valuation ring, so is F. If height

(p* Π F M ) = 1, then i? is a valuation ring and i?= F*, hence F*/ρ* = (V/p)(,x).

Assume now that height (p*n VίxD # 1 . Then i? is a regular local ring of

Krull dimension 2 and the residue class field Rl{p*ΓιR) is a finite algebraic

extension of V/ρ. Therefore this case is included in the following result of

Abhyankar [1] : 3 )

LEMMA 1. Let K* be a field with discrete^ valuation ring V*. // R is a

regular local ring of Krull dimension r^>2 dominated by V* such that (i) the field

of quotient of R is K*f (ii) trans.degi?/m V*/j>*>r- 1, m and p* being the maximal

ideals of R and F * respectively, then V*/p* is ruled over Rim.

Proof, Starting with R= i?0, we consider the sequence of regular local rings

Ri such that each R§ (i>0) is the quadratic dilatation of 2?, -i along F*. Let

pi be the maximal ideal of 2?, . Since F* is discrete, U Ri = F*. This shows

that there is one ί, say y, such that F*/p* is algebraic over Rjjpj we choose

the smallest j . At each step, trans.deg^/p, Λ+i/pf+i + Krull-dim i?/n<Krull-

dim i?,. Therefore i? may be replaced by i?y-ι, hence we may assume that

y = 1. Then, denoting by Xu - . . , Xr a regular system of parameters of i?, we

see that x*/xu - - . , ̂ rM are algebraically independent modulo p* over R/p.

Therefore height pi = 1 and i?i is a valuation ring. Thus i?i = F* and the proof

of Lemma 1 is completed.

We go back to the proof of Theorem 1. We consider the case n>l. Let

q* be the prime ideal of height 1 in F* and set q = q* Π F. Compare V*/(\*

and F/q. The residue class field of F*/q* is not algebraic over that of V/(\

by our assumption. This shows that V*/q* is not algebraic over V/q because

these rings are valuation rings. Therefore the case n = 1 can be applied to

V%> and Fq, and we have VQ /(\* =*K'(t) with a finite algebraic extension iΓ'of

Vq/(\. Let F' be (F7<f) Π Kf. Then V is an extension of F/q and the residue

class field of V is a finite algebraic extension of VIp. Therefore the induction

assumption can be applied to F*/q* and F', and we complete the proof of

Theorem 1.

3) For the convenience of the readers, we shall give a complete proof.
4> This "discrete" may be understood to be the one of generalized sense. For, the

presence of (ii) implies that V* must be of rank 1.
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2. Lϋroth theorem

The original form of Liiroth theorem is as follows:

Let K be a field. If t is a transcendental element over K and if L is a subfield

of K{t) properly containing K> then L is a simple transcendental extension of K.

As was proved by Igusa L2],5) this can be generalized as follows:

LUROTH THEOREM. Assume that tu »tn are algebraically independent

elements over a field K. If L is a field between K and K\tu . . . , /«) such that

trans, degs L = 1, then L is a simple transcendental extension of K.

We show here that our Theorem 1 can be applied in order to derive this

Luroth theorem from its original form.

LEMMA 2. Let K and K1 be fields of finite transcendence degree over a common

field k. If an element x is transcendental over both K and K1 and if K(x) = K'(x),

then either K^K1 or both K and K1 are ruled over k*}

Proof. Consider the valuation ring V* = KIX1XKM and set V=K'ΠV*.

If V contains K\ then 7* =/Γ'M**™ and K-*V*/*V*ZK' in this case. If

V does not contain K\ then the rank of V is 1, hence trans.deg*? V/(xV*f) V)

<trans.deg* Kf = trans.deg^ K This shows that V*/xV* is not algebraic over

V/(xV* Π V). Therefore K^ V*/xV* is ruled. Symmetrically, we also have

that K1 is ruled. This completes the proof of Lemma 2.

Proof of Luroth theorem. We use induction argument on n. If n = 1, then

it is the original form, and we assume that n>\. Then we may assume that

h is transcendental over L. Consider /Γ(/i)c£(/,")e/iΓ^X/,, . . . , tn)m Then

by our induction assumption, we see that L(h) - K(tu x) with a transcendental

element x over K(tι). Applying Lemma 2 to L{U) = K{x)(ti), we have either

L~K{x) or L is ruled over K. Since K is algebraically closed in L (because

so is in K{ti, . . . , /*)), we have L^.K(x)> completing the proof.

3. Anti-rational fields

THEOREM 2. Let k, K, L be fields and x a transcendental element over L such

5> In the classical case, this generalization was done by Weber [5].
6> Cf. Zartski problem which will be discussed in § 5. On the other hand, Samuel [3]

proved that K~K' if furthermore (i) k contains infinitely many elements and (ii) K and
K' are finitely generated over k.



88 MASAYOSHI NAGATA

that (i) kQKQL(x), (ii) K is anti-rational over k and (iii) L is finitely generated

over k. It follows then K^L.

Proof. Assume that KφL. Then L*K{L)<^L{x), and L(x) is algebraic

over K(L). This shows that there is a transcendence base ti9 . . - , tn of L(x)

over K consisting only of elements of L. K{U, . . . , tn) has a valuation ring

Fo such that (i) KQVQ and (ii) Fo has prime ideals p p ^ ^ ^pn^>0 = pnn

such that *, e pit foΦiv+i for each i = 1, . . . , n (hence, pi = /,-(VΌ)*,). The residue

class field of Fo is K Let F* be an extension of Fo in L(x) (i.e., F* is a

valuation ring of L{x) such that 7* Π !£(*!, . . . , * » ) = Fo). Since L(x) is

algebraic over JΓ(flf . . . , ίΛ), the residue class field F*/ί3* of F* is a finite

algebraic extension of K. Set V=V*Γ\L. Then F is of rank n because U are

all in L, hence trans.deg* V/(jι* Π F)<trans.deg* L - «<trans.degjfeL(^) - « =

trans degifeK Thus V*/p* is not algebraic over V/(p*Π F), hence is ruled by

Theorem 1. Since F*/ί>* is a finite algebraic extension of K, we got a con-

tradiction to that K is anti-rational. Thus Theorem 2 is proved.

COROLLARY 1. Let L be a finitely generated field over a field k. If sub fields

Kι and Kz of L are anti-rational over k (&£/£,), then KiiK*) is also anti-rational

over k. Therefore there is the largest anti-rational sub field of L over k.

Proof. Assume that Ki(K2) is not anti-rational. Then there is a finite

algebraic extension M of KL(Kt) which is ruled over k - M = Mf(t), t trans-

cendental over M'Ώk. Since KiQM'(t), we have Kι(K%) cAf'. This contradicts

to that M'(t) is algebraic over Kι(K*).

COROLLARY 2. Let L be a field finitely generated over a field k. If L is, in

two ways, pure transcendental extension of common transcendence degree, say n>

over its two sub fields K and K1 containing k and if K is anti-rational over k, then

Proof. Since K^K'iti, . . . , tn) = L with algebraically independent elements

t\9. . . , tn over K't we see that KQK*. Since K is algebraically closed in L,

we have K = K'.

THEOREM 3. Let L be a finitely generated field over a field k. Let A be the

largest anti rational sub field of L over k. Then L is quasi-rational over A.

Proof. We prove the assertion by induction on trans.deg^ L =* r. If r = 0,%
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then L must be anti-rational, and L = A. This settle the case. Assume now

that r>0. Assume that a field K between A and L is anti-rational over A.

Since L is not anti-rational over k (because of the assumption that r>0), there

is a finite algebraic extension V of L which is ruled over k : L' = L"(/), /

transcendental over L"Ώk. Since A is anti-rational and contained in L\ we

have AG.L". Hence A^L'ΉL. Since K is anti-rational over A, we see that

K<zL" 0 L similarly. Thus K is an anti-rational subfield of L" Π Z, over A.

Hence, by our induction assumption, we have K= A. This completes the proof.

4. Quasi-rational fields

The following is obvious by the definition of quasi-rationality:

LEMMA 3. If a field L is quasi-rational over its subfield k, then any field

between k and L is quasi-rational over k.

Now we prove the following

THEOREM 4. Let L be a finitely generated field over a field k. If there is a

sequence of fields Li such that k~ LoCLίCi cL» = L, each Li (/= 1, . . , n)

being quasi-rational over Lί-i, then L is quasi-rational over k.

Proof. It suffices to prove the case n = 2. We prove the assertion by

induction on r = trans. deg^L. Assume that K is an anti-rational subfield of

L = L2 over k. There is a finite algebraic extension ZΛof L which is ruled

over Li : L'-Ltf{t), t being transcendental over L"Ώ.Lu Then L" contains K.

Thus we see that L* = L"' f)L has an anti-rational subfield K over k. On the

other hand, L* is quasi-rational over L% by virtue of Lemma 3. Therefore, by

our induction assumption, we see that L* is quasi-rational over k. Therefore

the anti-rationality of K implies that K~ky which proves Theorem 4.

5. Zariski problem

The motivation of the present work arose from the following

ZARISKI PROBLEM.7) Let K and K1 be finitely generated fields over a field k.

Assume that simple transcendental extensions of K and Kf are k-isomorphic to each

other. Does it follow that K and K1 are k-isomorphic to each other?

7} This problem was raised by O. Zariski in 1949 at Paris Colloquium on algebra and
the theory of numbers. Cf. [4].
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In other words, this asks whether or not the condition K(x) = Kf(x'), with

x, x1 transcendental over K, K' respectively, implies K=K'.

This problem is not solved yet. But there are some special cases where

the answer is affirmative.

One important remark is that k may be replaced by an arbitrary anti-rational

subfield of K(x). This remark gives easy proof in each of the following cases,

(i) K is anti-rational over k. In this case, K-K'.

(ii) K is a separably generated extension of k and trans.deg* K=*l.

(in) k is algebraically closed, trans.degfc/iΓ=2, and K contains an anti-

rational subfield A over k which is different from k.

(iv) k is an algebraically closed field of characteristic zero and

trans.degArϋC=2.8>

Another easy affirmative case is:

(v) x-x1 and k has infinitely many elements.9)

6. Some other problems

For simplicity, let k be an algebraically closed field. Then for function

fields over k, there are obvious implications:

Rational =* uni-rational =* quasi-rational.

Existence problem of uni-rational fields seems to the writer to be still open,

though the existence has been claimed by Italian geometers in three dimensional,

characteristic zero case. (In positive characteristic case, Zariski gave an example

of a uni-rational field of transcendence degree 2 which is a purely inseparable

extension of a rational field. The open problem is the existence of uni-rational

fields whose separable extension can be rational.) We like to add here the

existence problem of quasi-rational fields. In particular:

Let tu . . . , tn be algebraically independent elements over k and let fufu ft

be non-zero elements of kίtu . . . , tnl. Let K be the field k(tu - . . , tn, x> y)

with defining equation fix2 + fry* = fa Then K is quasi-rational over k. Are

there any choice of n,fu A* ft such that K is not uni-rational?m

There is another problem:

8> This case was discussed by Segre [4].
9> See footnote 5).

ί β ί If w = l, then k(t\) is a Ci-field, hence K must be rational.
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Is Theorem 1 true without assuming the condition (ii).p

As for this, we can prove the following

THEOREM 5. Let Ky K(x), F*, p*t V and p be as in Theorem 1, but not

assuming (ii). Then V*lp* is a subfield of a simple transcendental extension of

the algebraic closure of V/p.

Proof. In order to prove this, we may assume that K is algebraically closed.

Let y <Ξ V* be such that y modulo p* is transcendental over V/p. Then V*

contains V(y) = VCjOprfy]. Since K(x) is a finite algebraic extension of K(y)>

we see that the value group G of V is of finite index in that of V*. Since K

is algebraically closed, G is divisible, hence the value group of F* coincides with

G. y can be expressed in the form ll(atx- bdI H{cjX- dj) (<*,-, bi, cj, dj<Ξ K).

Since G coincides with the value group of V*, we may assume that these linear

factors are units in F*. Since y modulo p* is transcendental over V/p, we see

that at least one of these linear factors is transcendental modulo p* over V/p.

Thus we may assume that y is a linear polynomial in x. Then K(x) =K(y)

and F* = V(y). Hence V*/P* = (V/p)(y modulo p*), which completes the proof.
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