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Let Γ be the unit circle and D be the open unit disk in the complex plane,

and denote the Riemann sphere by Ω. By an arc at a point C e Γ w e mean a

continuous curve Λ: z = z(t) ( 0 ^ ί < l ) such that \z(t)\ <1 for O^t < 1 and

limz(t) = C. A terminal subarc of an arc A at C is a subarc of the form z = z{t)

(to^t<l), where 0 ^ / 0 < 1 . Suppose that f(z) is a meromorphic function in

D. Then A(f) denotes the set of asymptotic values of/; and if CeΓ, then

C(/, C) means the cluster set of / at C and C*(/, C) is the outer angular cluster

set of / at C (see [13]). The principal cluster set of / at C is the set

π(/,o = ncΛ(/,c),
Λ

where A ranges over all arcs at C. As is well known, this set is of importance,

and was introduced some time ago, in connection with the theory of boundary

correspondence under conformal mapping. More recently the set

Πx(ΛC)=ΠCv(/, O,

where X ranges over all chords of the unit circle at C, has received attention,

notably in the work of Meier [12], who has used this set, which we call the

chordal principal cluster set of / at C, in the formulation of his topological

analogue of Plessner's theorem.

Because of the significance of the chordal principal cluster set in this

connection as well as others, the present paper is devoted to a more systematic

investigation of this set for its own sake as well as its relation to the principal

cluster set.

It is evident to begin with that both Π(/, 0 and Ώx<f, O are closed subsets

of Ώ, and that
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Π(/, C) s Πχ(/, 0 SCcί/, C) gC(/, C).

Any condition, then, that-guarantees that IH/.ζ) =C*(/ f C) also ensures that

Π ( / , C) = Πx(/, C), and several general conditions of this sort are known (see,

e.g., DO, p. 389]).

Let M be a closed subset of Ω. Then Gross [11, p. 21] has shown that

there exists a meromorphic function f in D and a point C& Γ such that

ΓK/, C) =Λf there is even a holomorphic function with this property [11, p.

223.

We first show (Theorem l) that this assertion is still valid if Π(/, C) is

replaced by Πχ(/, O. Then we prove (Theorem 2) that if N is a closed

subset of Mf there exists a meromorphic function f(z) in Z) for which Πχ(/,C)

Suppose that there exist two chords, Xx and X2i at a point C e Γ a n d a

function /U) in D for which

Then we say that C is a chordally ambiguous point of /. We prove (Theorem

3ϊ that given an enumerable subset E of Γ, there exists a bounded holomorphic

function in D for which each point of E is a chordally ambiguous point of /.

Each point C G £ then is a point for which Πx(/, 0 = φ, and / is, in particular,

a normal function (see [13]). We show (Theorem 4), however, that "most"

points ζ<ΞΓ, in a metrical as well as in a topological sense, are points at

which Πx(/, C) =¥ φ for a normal meromorphic function /. We prove (Theorems

5, 6) that if, in addition, the set A(f) is "small" in a metrical 3ense, and / is

not identically constant, then "most" points C e Γ i n a certain sense are such

that actually Πχ(/, C) = Q. We also derive (Theorem 7) a sufficient condition

for a normal holomorphic function,/ in D to satisfy Πχ(/, O*Φ at an indi-

vidual point Ce Γ.

The next three theorems (Theorems 8, 9, 10) and corollaries thereto deal

with the existence of functions / with the property that Π (/, O = Πx(/> C) = S

for every C e Γ, where S may be certain subsets of Ω.

Define the exceptional chordal principal cluster set of / at C e Γ to be the

set
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where X ranges over all but at most one of the chords at C. This set is also

of importance in Meier's work Q2l We prove (Theorem 11) a topological

analogue (and a generalization) of a metrical theorem [5, p. 32, Theorem 6]

involving Π?.

Finally, some problems are posed in the Remarks scattered throughout the

paper.

By a continuum we mean a nonempty, closed, connected subset of Ω; it

may consist of only a single point.

LEMMA 1. Let M be a closed subset of J2, Then there exists a sequence of

continua Kn (n= 1, 2, 3, . . . ) such that M= Γ\Kn.

Proof. The lemma is obviously true if M = φ or M = 42. Suppose that M

is a nonempty proper closed subset of Ώ. There is no loss of generality in

assuming that ^ $ M . Then there is a neighborhood U of °° such that MC\U

= ψ, where U denotes the closure of U. Since the distance between M and Ό

is positive, if εi>0 is sufficiently small the closure of the open spherical cap

with radius βi about any point of M as center lies in Q - U. By the Heine-Borel

theorem, finitely many of these spherical caps suffice to cover M; denote them

by D\9 D],-. . . , Dx

nι. We h a v e

and

\JD)c:Q-U.

Now the distance between M and the frontier of \JD) is positive, and so it is

again possible to find a positive &<γ and a finite number of open spherical

caps D], D]y . . ., D\% with radii e2 about points of M as centers such that

and

Repeating the argument we obtain for every m > 1 a set of open spherical caps
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D?, D?t . . - , D™m with positive radii εm<εj!ψi about points of M as centers

such that

and

Mm "m-i

\JDf c u Z
l j l

nm

For every natural number m, let 7V= UẐ y1- Then clearly

and

(1) M = Π T m .
m = l

Let Pi, P2, . . . , Pm, . . . be a sequence of parallels of latitude lying in

U and tending monotonically with m to oo e Ω. For each / = 1, 2, . . . , nu

let L) be an open arc of a circle of longitude such that L)<^Ω-Tι and Z,}

extends from a point on the frontier of D) to a point of Pi if that Is possible,

or to a point on the frontier of some D\ with &=*/ otherwise. Evidently the

set

T,u(\JLy)uPi

is a continuum call it K\. Now for each j - 1, 2> . . . , n2 we define Lj simi-

larly, except that we use the sets D) and P* instead of D) and Pi, and further

arrange it so that

which is evidently possible. The set

is a continuum which we call K2. Proceeding in this way by induction, we
00

define the continua Kίt Ku . . . , Km, . . . . We claim that M= ΠKm. How-%
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ever, this is obvious in view of (l) and the facts that ΠPm=<ρ and that
l

(

and the lemma is proved.

THEOREM 1. Let M be a closed subset of Ω and C be a point of Γ. Then

there exists a holomorphic function fiz) in D such that Πx(/, C) = M .

Proof. For convenience we may take C = 1. Denote by B the circle
z ~~ ~2~ ~T' C ° n s i c i e r the enumerably many chords at C with initial points

on B, which satisfy the conditions

a r g U - 1 ) = ιr i j j S . - £ ( n β 0,1,2, . . . ) ,

and arrange these chords in a sequence

(2) Λi, Λ2, . . . , Xn> . . .

Between every pair of chords (2) that are neighboring in the geometrical sense,

we describe an arc A at 1, having no point in common with any chord (2), so

as to oscillate between the pair of chords Xt X1 in question in such a way that

any chord at 1 lying between X and X1 intersects A in every neighborhood of

the point 1. Arrange the enumerably many arcs thus defined in a sequence

(3) Λi, At, . . . , An, . . . .

Let

( 4 ) {ωu βfc, . - . , βfe, . . . }

be the set of complex numbers whose real and imaginary parts are both rational.

For every n, define a continuous function g%n{z) on An in such a way that if

the two neighboring chords (2) between which An lies areX and X', and if Xo

is any chord at 1 lying between X and X\ then for every natural number k, in

every neighborhood of the point 1 the chord Xo intersects the arc An in a point

at which the function gzniz) assumes the value ωk. According to Lemma 1,

there exists a sequence of continua Ku Kι, . . . , Kn, . . . such that M = ΠKn.
n = l

For every n, άeήne a continuous function gm-i(z) on Xn in such a way (see [7,

p. 194]) that Cχtι(g2n-i, D=Kn. I t follows from H7] that there exists a holo-
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morphic function f{z) in D such that, for every n,

)) ) -gon-i(z)) = 0.

This implies that for every n,

CXu(fyl)=Kn,

whereas if X is any chord at 1 not in the sequence (2), then

Cχ(f,l) = Ω.

Evidently Πx(/, l) = M, which was to be proved.

THEOREM 2. Let M and N be closed subsets of Ω with MEN, and let Q be a

point of Γ. Then there exists a meromorphic function /U) in D such that

/, C) = N.

Proof. It will be convenient again to take C = l. According to Lemma 1

there are sequences of continua Kn {n = 1, 2,3, . . . ) and Ln (n = 1, 2, 3, . . . )

such that

M=C\Kn

and

00

(5) N = -Γ[Ln.
n=l

Define the circle B and the sequences (2), (3) as in the proof of Theorem 1.

For w = l, 2, 3, . . . , define Bin-i as the lower semicircular arc at 1, and B 2ή

as the upper semicircular arc at 1, of the circle of diameter 1 + —r\ that is

internally tangent to Γ at 1. Define a continuous function hn(z) on Bn in such

a way [7, p. 194] that

(6) Cxjhn, 1 ) =LH ( ή = l9 2 , 3, . . . ' ) ,

and suppose that the functions gn(z) (n = 1, 2, 3, . . . ) are defined as in the

proof of Theorem 1. Denote by ψ z) the resulting continuous function defined

[
V « = l

It is readily seen that there is no loss of generality in assuming that N

does not contain oo as an isolated point (cf. [2, p. 5]). Let vn ^n = 1, 2, 3, . . .)
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be a sequence of complex numbers in N that is everywhere dense in N in the

sense that every isolated point of N occurs infinitely often as a term of the

sequence. (In case N=φ, the sequence {vn) is undefined and the rest of the

construction is unnecessary.) Clearly there will be no harm in our assuming

that the sequence {ωn) has been redefined so as to contain the sequence (vn)

as a subsequence, because the resulting sequence is still enumerable and every-

where dense on Ω.

Consider Xu Λι, and B\. It follows from the definition of ψ(z) that each

of these arcs contains a point at which ψ assumes the value vι. Let /i be a

Jordan curve in D that contains these three points but contains no other point

of any of the three arcs in question. Denote by δι the positive distance between

Jι and Γ, and by X[, Λ[y B\ terminal subarcs of Xif Λ2, B> lying in the annulus

Ax' 1 - δi < \zI < 1. It follows again from the definition of φt z) thiat each of the

arcs Xιf Aι, Bi, Xu Λu B[ contains a point in the annulus A\ at which ψ assumes

the value vi. We let /2 be a Jordan curve in Aι that contains these six points

but contains no other point of any of the six arcs in question. Denote by δz

the positive distance between /2 and Γ, and by X'3, Λ'3, Bi terminal subarcs of

Xzy ΛZi Bs lying in the annulus A*: 1 - &< Ul <1. We proceed in this fashion

by induction, and then define the skeleton S to be the set

S = (Xi U Ax U Bι) U ( U (X'n U Λ'n U Bn))'U ( U/»)

On iS we define the function ψ(z) to equal the constant vn everywhere on /«

and to coincide with ψ(z) at every other point of 5. Then it is evident that

ψ is continuous on S. Consequently (cf. [2]) there exists a meromorphic

function f(z) in D such that

(7) lim|/U) -?>(*) 1 = 0.
ZEΞS

This implies, in view of the proof of Theorem 1, that Πχ(/, 1) = M ; and (5)

and (6) show that Π ( / , D^N. Finally, (7) and the definition of ψ on the

sequence {Jn) make it clear that for every arc Ξ at 1,

• CΞ(/, DE

and hence IΊ(/, 1) = N9 which completes the proof.

Remark 1. It would be interesting to know whether Theorem 2 remains
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valid if the word "meromorphic" therein is replaced by "holomorphic". It is

clear from the proof of Theorem 2 that this is so in case JV= φ.

THEOREM 3. Let E be an enumerable subset of Γ. Then there exists a bounded

holomorphic function f(z) in D such that every point of E is a chordally ambiguous

point of f

Proof, Let «(C) be a bounded nonnegative real-valued function of C e Γ

such that, at every point ζn^E, the limits of. u(ζ) as C approaches CΛ from

either side exist and are unequal (see, e.g., [14, p. 73]). Let u(z) UeZλ) be

the Poisson integral with respect to uiC). Then C9, p. 62] u(z) is a bounded

harmonic function in D, and Q5, p. 131] if C* e E, uiz) possesses distinct chordal

limits on any two distinct chords at Cn. Let v(z) be a harmonic conjugate of

u(z) in D and set

The function f(z) then evidently has the desired properties.

Since the chordal principal cluster set is empty at a chordally ambiguous

point, and since a bounded holomorphic function is normal, Theorem 3 implies

the existence of normal holomorphic functions f(z) in D for which there exist

points CGΓat which Πx(/, C) = 0. However, although there exists a normal

holomorphic function f{z) in D such that ΪI(/ , C) = <ρ for every Q^Γ (see [5,

p. 30, Theorem 3]), in a metrical as well as in a topological sense there cannot

be many points CG Γ for a normal meromorphic function f(z) in D at which

Πχ(/, C) = 0, This is shown by the following three theorems, which are im-

mediate consequences of the Lemma, Theorem 2, and Theorem 1 in [3] if we

observe that for the set Πτ(/, C) considered there we have always Πτ</, C)ϋ

Πx</,C>.

THEOREM 4. If fiz) is a normal meromorphic function in D> then there exists

a residual subset Q of Γ of measure 2 /r such that, for every C e Q, we have

Πx(f,O*φ.

Remark 2. It would be interesting to know whether the requirement that

the function be normal may be dropped in Theorem 4, at least for holomorphic

functions (cf. [5, p. 32, Question 7]).

THEOREM 5. If f(z) is a nonconstant normal meromorphic function in D for
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which A( f) is of linear measure zero, then there exists a residual subset R of Γ

such that, for every Ce R, we have Πx(/, 0 = Ω.

THEOREM 6. If f(z) is a nonconstant normal meromorphic function in D for

which Alf) is of harmonic measure zero, then there exists a residual subset S of

Γ of measure 2π such that, for every C ε 5 , we have Π*(/, C) = Ω.

THEOREM 7. Let f(z) be a normal holomorphic function in Df and suppose

that ζ(ΞΓ. If f is unbounded in some Stolz angle Δ at C, then Πx(/, C) # Φ.

Proof. If X is any chord at <L, then Q O E C Ϊ ( / , O , otherwise L"4, p. 402,

Theorem 4] / would be bounded on A. Hence, « e Π x ( / , O .

Remark 3. Let μ(z) denote the elliptic modular function in D. If C e Γ

and if C is not one of the enumerably many vertices on Γ of the modular

figure, is it true that μ is unbounded in some Stolz angle at C? If so, it would

follow from Theorem 7 that, for every ζ^Γ, we have Π%(μ, C) - Tl(μ> 0 *Φ,

which would answer [5, p. 33, Question 81

THEOREM 8. There exists a holomorphic function f(z) in D such that Π(/, C)

= Πx(/, C) = Q for every C e Γ.

Proof. This theorem is an immediate consequence of [6, p. 1255, Corollary

21

THEOREM 9. There exists a nonconstant holomorphic function f(z) in D such

that Π ( / O = Πχ(/, C) = { «>} for every C e Γ.

Proof. Consider the holomorphic function f\z) constructed in [8, Theorem

11 For every CΪΞΓ, it is evident that (I) «> e cx(f, C) for every chord X at C,

Cύ) that ° ° e C Λ ( / , O for. every arc A at C, andXHO that {<*,} = Cx'(/,C) for

some chord X* at C and the conclusion of the theorem follows.

COROLLARY 1. Let ωei?. Then there exists a nonconstant meromorphic

function f\z) in D such that Π (/, C) = Πx(/, C) = {ω} for every C e /'.

Proof. Denote by g(z) the function considered in Theorem 9. If ω= *>,

let f(z) ~g(z) Λf ω = 0, l e t / U ) = - ~ ; if ω*0, <», let f(z) ==-~ + o>.

Remark 4. In view of Theorem 2, the following problem is suggested by

Corollajy 1 and Theorem 8: Let M be a nonempty closed subset of Ω. Does
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there exist a meromorphic function f{z) in D such that Π(/, C) = Πx(/, C) = M

for every C& Γ? Cf. Remark 5.

THEOREM 10. There exists a nonconstant holomorphic function f(z) in D such

that Πx(/, C) = {0} for every CeiΓ.

Proof. Let K be the circle \z \ = -70 and consider the set S of all points

on the circle K of the form

where 0. tiUU . . . is a ternary fraction in which each tj is either 0 or 2. For

every z e 5, let Xz be the chord extending from the point z to the point

S — C? tΞ 1 ,

where 0. bib2bz . . . is the binary fraction such that, for y= 1, 2, 3, . . . ,

jθ if </ = 0,
3 Xl if fc = 2.

The set S is a perfect nowhere dense subset of K. Let AuAi,A*, . . . be the

enumerably many open subarcs of K that are complementary to S. Denote by

zmu Ztm the left and right end points of A m as viewed by an observer at the

origin, and let μm be the midpoint of the arc Am.

To every point C of Γ, with the exception of an enumerable everywhere

dense subset V of Γ, there corresponds exactly one ̂ e S such that Xz is a chord

at C.

On the other hand, to every point C e V there correspond exactly two

points, Zmiy Znn, in S such that Xz>nι and XZllΛ are chords at C. The region whose

boundary is

will be called Δ;. Let Jm be an arc at C whose initial point is μm and which,

except for μm, lies in Js> and let Jm oscillate between Xzml and XZjn?_ in such a

way that every chord at C that intersects Λm also intersects Jm infinitely often

in every neighborhood of C. Also, for some ζ(=V, let /0 be an arc at C that

lies in Δς but does not intersect any Jm ( m > l ) . We may choose each Jm

(m>0) in such a manner that as z~+ζ on / m , U|-»l monotonically.
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We now define a function g(z). For every z e S , let g(z)=0 on Xz. For

m = 1, 2, 3, . . . , define g(z) =Q on /m. Finally, let g(z) = 1 on /0.

Denote by Γ the set of points on which g(z) has thus been defined. Then

it follows from the proof of [7, p. 190, Corollary 2] that there exists a holo-

morphic function f(z) in D such that

lim (f(z) — g{ z)) =Ό
2EΓ

uniformly. Clearly then, for every C<aΓ, there exists at least one chord at C

on which f(z)-*0 as z->ζ. Furthermore, it is readily seen that O G C A ( / , 0 for

every chord X at C. Hence, Πx(/, 0 -= {0}. Finally, in view of the definition

of g{z) on /o, f{z) is not identically constant.

COROLLARY 2. L̂ / ω e i 7%£?z £/ter£ msfc <z nonconstant holomorphic

function f(z) in D such that Πx(/, C) = {ω} for every ζ<= Γ.

Proof. This follows from Theorems 9 and 10.

Remark 5 Does there exist a nonconstant holomorphic (or meromorphic)

function f\z) in D such that Πx(/, C) = 0 for every CeΓ? This is related to

the following question: If f{z) is holomorphic (or meromorphic) in Z), is it

true that Πx(/, C) *<ρ at almost every or at nearly every Plessner point of /?

(By almost every (nearly every) point of Γ we mean every point of Γ with

the exception of a set of Lebesgue measure zero (first Baire category).) If

the answer to the second question is positive, then Plessner's theorem or

Meier's theorem [12, p. 330, Theorem 5] shows that the answer to the first

question is negative. Cf. Remark 2.

COROLLARY 3. Let ω be a finite complex number. Then there exists a non-

constant holomorphic function f(z) in D such that, for every C e Γ with at most

enumerably many exceptions, Π(/, C) = Πx(/, C) = {ω}.

Proof. In view of the proof of Theorem 10, there exists a nonconstant

holomorphic function f(z) in D such that, for every C& Γ, Πx(/, C) = {o>} and

there exists at least one chord X at ζ with Cχ(fζ) = {ω}. Corollary 3 now

follows from the ambiguous-point theorem [1, p. 380, Theorem 2j.

Remark 6. Does Corollary 3 remain valid if the phrase "with at most

enumerably many exceptions" is deleted?
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THEOREM 11. Let f(z) be a holomorphic function in D. Then Π?(/, O*Φ

for nearly every ζ&Γ.

Proof. According to [12, p. 330, Theorem 8], for nearly every point CeΓ,

either Πχ(/, C) = C(/, C) or there is at most one chord at C on which / is

bounded. Hence, since C(/, C)*<ρ, either Πx(/, C)#0, which implies that

Π?(/, C)*φ, or else <*> e Π?(/, C), which again means that Π£(/, 0 * 0 .

COROLLARY 4. Let f(z} be a holomorphic function in D. Then Π ? ( / , C) *</>

for almost every and nearly every ζ&Γ.

Proof. This is an immediate consequence of Theorem 11 and [5, p. 32,

Theorem 6].
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