ON THE ASYMPTOTIC BEHAVIOR OF FUNCTIONS HARMONIC IN A DISC

J. E. MCMILLAN

Let D be the open unit disc, and let C be the unit circle in the complex plane. Let f be a (real-valued) function that is harmonic in D. A simple continuous curve $\beta: z(t)(0 \leqq t<1)$ contained in D such that $|z(t)| \rightarrow 1$ as $t \rightarrow 1$ is a boundary path with end $\bar{\beta} \cap C$ (the bar denotes closure). If also $f(z(t)) \rightarrow a(-\infty \leqq a \leqq+\infty)$ as $t \rightarrow 1$, then β is an asymptotic path of f for the value a, and f is said to have the asymptotic value a. If there is an asymptotic path of f, for a value $a(-\infty \leqq a \leqq+\infty)$, with end the point ζ of C, then f is said to have the asymptotic value a at ζ. Let A denote the set of points of C at which f has an asymptotic value. If $-\infty \leqq u<v \leqq+\infty$, set $A(u, v)=\{\zeta \in C$: there exists a real number a such that f has the asymptotic value a at ζ and $u<a<v\rangle$, and set $A^{\prime}=A(-\infty,+\infty)$. We use repeatedly the fact that $A(u, v)$ is a Borel set (see [5, Theorem 7 (iii)]), and is therefore measurable. Let $d(z, S)$ denote the Euclidean distance from the point z to the set S in the plane. For a sequence $\left\{\Gamma_{n}\right\}$ of Jordan arcs in D and an $\operatorname{arc} r$ in C, the symbol $\Gamma_{n \rightarrow r}$ means that to each $\varepsilon>0$ there corresponds a natural number n_{ε} such that if $n>n_{\varepsilon}$, then

$$
\Gamma_{n} \subset\{z: d(z, \gamma)<\varepsilon\} \text { and } \gamma \subset\left\{z: d\left(z, \Gamma_{n}\right)<\varepsilon\right\} .
$$

The following theorem is closely related to the theorem [4, Theorem 1] for meromorphic functions.

Theorem 1. Let $\zeta \in C$ and suppose that there exists a sequence $\left\{z_{n}\right\} \subset D$ such that $z_{n} \rightarrow \zeta$ and $f\left(z_{n}\right) \rightarrow+\infty$. Then at least one of the following three statements holds.
(i) Each open arc containing ζ contains the end of an asymptotic path of f for the value $+\infty$.
(ii) ζ is one endpoint of an arc $\gamma \subset C$ such that there exist a sequence $\left\{a_{n}\right\}$ of real numbers and a sequence $\left\{\Gamma_{n}\right\}$ of Jordan arcs such that

Received February 3, 1966.

$$
a_{n} \uparrow+\infty, I_{n}^{\prime} \subset\left\{z \in D: f(z)=a_{n}\right\}, \Gamma_{n} \rightarrow \gamma .
$$

(iii) For each real number M and open arc γ containing ζ, the set $\gamma \cap A(M,+\infty)$ has positive Lebesgue measure.

Remarks. At each $\zeta \in C$, the real part of the elliptic modular function satisfies neither (ii) nor (iii). The real part of a holomorphic function having the spiral asymptotic values 0 and 1 satisfies, at each $\zeta \in C$, neither (i) nor (iii). The real part f of a holomorphic function constructed by MacLane [2, p. 75] is such that A^{\prime} is dense on C, f has neither of the asymptotic values $\pm \infty$, and there exists a set $E \subset C$ with positive measure such that f does not have an asymptotic value at any point of E. Let ζ be a point of C such that the intersection of E with each open arc containing ζ has positive measure. Then neither (i) nor (ii) holds, and for each open arc γ containing ζ, the measure of $\gamma \cap A^{\prime}$ is less than the measure of γ.

We first prove
Lemma. Let λ be a real number, and suppose that Δ is a component of $\{z \in D: f(z)>\lambda\}$. Then either there exists an asymptotic path α of f for the value $+\infty$ such that $\alpha \subset \Delta$, or there exists a set $E \subset C$ with positive exterior Lebesgue measure such that each $e^{i \theta} \in E$ is the end of an asymptotic path α_{9}, for a finite value, such that $\alpha_{\theta} \subset \Delta$.

Remark 1. By making simple modifications in the following proof, an analogous lemma for holomorphic functions can be established. Thus, the proofs of the theorems [3, Theorem 2] and [4, Theorem 1], which are based on the lemma [3, Lemma 2], can be simplified.

Remark 2. The proof of this lemma involves a combination of ideas from the papers [1], [2] and [3].

Proof of the lemma. Suppose that there does not exist an asymptotic path α of f for the value $+\infty$ such that $\alpha \subset \Delta$. We prove that there exist a (finite) number $\lambda^{\prime} \geqq \lambda$ and a component Δ^{\prime} of $\left\{z \in \Delta: f(z)>\lambda^{\prime}\right\}$ such that f is bounded in Δ^{\prime}. If this were not the case, we could choose $\lambda_{n} \uparrow+\infty\left(\lambda_{n}>\lambda\right)$, let Δ_{1} be a component of $\left\{z \in \Delta: f(z)>\lambda_{1}\right\}$, let Δ_{2} be a component of $\left\{z \in \Delta_{1}: f(z)>\lambda_{2}\right\}$, and in this way define a sequence $\left\{\Delta_{n}\right\}$ such that Δ_{n+1} is a component of $\left\{z \in A_{n}: f(z)>\lambda_{n+1}\right\}$. Let $\alpha: z(t)(0 \leqq t<1)$ be a boundary path that is
eventually in each Δ_{n}; that is, to each n there corresponds $t_{n}\left(0 \leqq t_{n}<1\right)$ such that $z(t) \in \Delta_{n}$ if $t_{n}<t<1$. Since α is an asymptotic path of f for the value $+\infty$ and $\alpha \subset \Delta$, we have a contradiction; and we have established the existence of λ^{\prime} and Δ^{\prime} with the stated properties.

By the minimum principle, Δ^{\prime} is simply connected. Let $D_{w}=\{|w|<1\}$, and let φ be a conformal mapping of D_{w} onto Δ^{\prime}. Set $F(w)=f(\varphi(w))\left(w \in D_{w}\right)$. The radial limit $F\left(e^{\prime \rho}\right)$ of the bounded harmonic function F at $e^{i \theta}$ exists for almost all $e^{i n}$, and F has a Poisson integral representation in terms of the radial limits $F\left(e^{i \theta}\right)$. Since $F(w)>\lambda^{\prime}\left(w \in D_{w}\right)$, there exists a set $E_{w}^{\prime} \subset\{|w|=1\}$, with positive measure, such that $F\left(e^{\prime \theta}\right)>\lambda^{\prime}$ if $e^{i \theta} \in E_{w}^{\prime}$. Let $E_{i v}$ be a subset, with positive measure, of $E_{: y}^{\prime}$ such that the radial limit $\varphi\left(e^{i \theta}\right)$ of φ at $e^{i)}$ exists for each $e^{i 0} \in E_{w}$. If $\varphi\left(e^{i \theta}\right) \in D$, then $\left.F\left(e^{i \theta}\right)=f(\varphi)\left(e^{i \theta}\right)\right)=\lambda^{\prime}$, so $\varphi\left(e^{i 0}\right) \in C$ if $e^{i \theta} \in E_{w}$. Set $E_{z}=\left\{\varphi\left(e^{i n}\right): e^{i \theta} \in E_{w}\right\}$. By an extension of Löwner's lemma [6, p. 34], E_{z} has positive exterior measure. But if $\zeta \in E_{z}, \zeta=\varphi\left(e^{i f}\right)$, the set $\left\{\varphi\left(r e^{i \theta}\right): 0 \leqq r<1\right\}$ is a boundary path, with end ζ, that is contained in Δ^{\prime} and on which f has the limit $F\left(e^{i \theta}\right)$ at ζ. This completes the proof of the lemma.

Proof of Theorem 1. We clearly may suppose that $f(0)<f\left(z_{n}\right)-1(n \geqq 1)$. Let d_{n} be the component of $\left\{z \in D: f(z)>f\left(z_{n}\right)-1\right\}$ that contains z_{n}. Since $f\left(z_{n}\right) \rightarrow+\infty$, each disc $\{|z| \leqq r\}(0<r<1)$ intersects only finitely many Δ_{n}. Since $0 \neq \Delta_{n}$, there exists a level curve L_{n} on the boundary of Δ_{n} such that 0 and Δ_{n} are contained in different components of $D-L_{n}$. Thus, it is easy to see that if (ii) does not hold, then the diameter of Δ_{n} tends to zero as $n \rightarrow \infty$. We suppose now that neither (i) nor (ii) holds. We wish to prove that (iii) holds, and we let M be a real number and γ an open arc containing ζ. Let γ^{\prime} be an open subarc of r that contains ζ and is such that no asymptotic path of f for the value $+\infty$ has end contained in γ^{\prime}. Let n_{0} be such that $f\left(z_{n_{0}}\right)-1>M$ and $\bar{\triangleleft}_{n_{0}} \cap C \subset \gamma^{\prime}$. It follows from the lemma that $\gamma \cap A(M,+\infty)$ has positive exterior measure. Thus, since $A(M,+\infty)$ is measurable, (iii) holds; and the proof of Theorem 1 is complete.

It is well known that if f is bounded above in a neighborhood of the point ζ of C, then f has finite radial limits at almost all points of some open arc containing 5 . Thus, as a consequence of Theorem 1 we have

Corollary. Let γ be an arc in C. Suppose that there exists a set $S \subset \gamma$, that is dense on γ (i.e. $\gamma \subset \bar{S}$), such that to each $\zeta \in S$ there corresponds a boundary
path with end ζ on which f is bounded above. Then for each subarc γ^{\prime} of γ, either f has the asymptotic value $+\infty$ at a point of γ^{\prime}, or $\gamma^{\prime} \cap A^{\prime}$ has positive measure.

As a simple application of Theorem 1, we prove
Theorem 2. Let γ be an arc in C. Suppose that there exists a set $S \subset \gamma$, that is dense on r, such that to each $\zeta \in S$ there corresponds a boundary path with end ζ on which f is either bounded above or bounded below. Then for each subarc γ^{\prime} of r, either f has an infinite asymptotic value at a point of r^{\prime}, or $r^{\prime} \cap A^{\prime}$ has positive measure. In particular, A is dense on r.

Remark. This result is closely related to theorems of MacLane [2, pp. 10, 25] for holomorphic functions.

Proof of Theorem 2. Suppose that there exists a subarc r^{\prime} of r such that f does not have an infinite asymptotic value at a point of γ^{\prime}, and $\gamma^{\prime} \cap A^{\prime}$ does not have positive measure. Then, since A^{\prime} is measurable, $r^{\prime} \cap A^{\prime}$ has measure zero. Let ζ be an interior point of γ^{\prime} and apply Theorem 1. Either there exists an asymptotic path of f for the value $+\infty$ whose end is a subarc of r^{\prime}, or (ii) holds. In either case there exist a sequence $\left\{\Gamma_{n}\right\}$ of Jordan arcs in D and a subarc γ_{0} of γ^{\prime} such that $\Gamma_{n} \rightarrow \gamma_{0}$ and the minimum value of f on Γ_{n} tends to $+\infty$ as $n \rightarrow \infty$. Now let ζ be an interior point of r_{0} and apply Theorem 1 to the function $-f$. It follows as before that there exist a sequence $\left\{\Gamma_{n}^{\prime}\right\}$ of Jordan arcs in D and a subarc γ_{1} of γ_{0} such that $\Gamma_{n}^{\prime} \rightarrow \gamma_{1}$ and the maximum value of f on Γ_{n}^{\prime} tends to $-\infty$ as $n \rightarrow \infty$. With this contradiction the proof of Theorem 2 is complete.

Similarly, we obtain
Theorem 3. Let r be an arc in C. Suppose that there exists a set $S \subset r$, that is dense on γ, such that to each $\zeta \in S$ there corresponds a boundary path with end ζ on which f is bounded. Then for each subarc r^{\prime} of r, either f has both of the asymptotic values $+\infty$ and $-\infty$ at points of γ^{\prime}, or $\gamma^{\prime} \cap A^{\prime}$ has positive measure.

The following global result is an immediate consequence of the lemma.
Theorem 4. Suppose that f is not bounded above. Then either f has the asymptotic value $+\infty$, or for each real number M, the set $A(M,+\infty)$ has positive measure.

Remark. The real part f of a holomorphic function constructed by MacLane [2, p. 71] is such that f has neither of the asymptotic values $\pm \infty$, and at each $\zeta \in C$,

$$
\lim _{z \rightarrow \zeta} \sup f(z)=+\infty \text { and } \lim _{z \rightarrow \zeta} \inf f(z)=-\infty
$$

It is now easy to see that we also have
Theorem 5. Either f has both $+\infty$ and $-\infty$ as asymptotic values, or A^{\prime} has positive measure.

References

[1] F. Bagemihl and W. Seidel: Koebe arcs and Fatou points of normal functions, Comment. Math. Helv., 36 (1961), 9-18.
[2] G. R. MacLane: Asymptotic values of holomorphic functions, Rice Univ. Studies, 49 (1963), 1-83.
[3] J. E. McMillan: Asymptotic values of functions holomorphic in the unit disc, Michigan Math. J., 12 (1965), 141-154.
[4] J. E. McMillan: On local asymptotic properties, the asymptotic value sets, and ambiguous properties of functions meromorphic in the open unit disc, Ann. Acad. Sci. Fenn., A. I., 384 (1965), 1-12.
[5] J. E. McMillan: Boundary properties of functions continuous in a disc, Michigan Math. J. (to appear).
[6] K. Noshiro: Cluster sets, Berlin-Göttingen-Heidelberg, 1960.

University of Wisconsin-Milwaukee

