
MULTIPLY HARMONIC FUNCTIONS

KOHUR GOWRISANKARAN

1. Introduction

Let Ω and Ω! be two locally compact, connected Hausdorfϊ spaces having

countable bases. On each of the spaces is defined a system of harmonic func-

tions satisfying the axioms of M. Brelot [2]. The following is the description

of such a system. To each open set of Ω is assigned a vector space of finite

continuous functions, called the harmonic functions, on this set. An open set

V is called regular if it is non-empty, relatively compact, and if, for any finite

continuous function / on the boundary dV of F, there exists a unique continuous

function on F, equal to / on dV and a harmonic function on F, non-negative

if / is non-negative. The restriction to V of this function will be denoted by

H/. For any x<=V, the functional f->Hι/(x) is a non-negative Radon measure

Q'X on 37. The systems of harmonic functions are assumed to satisfy the

following three fundamental axioms.

I. AXIOM (1). The harmonic functions have the sheaf property.

II. AXIOM (2). Ω and Ω1 have bases consisting of their regular domains.

III. AXIOM (3). On every domain of the spaces, any harmonic function u>0

has the property that either u = 0 or u is nowhere zero on the domain of definition.

Further, for every point of the domain, the positive harmonic functions taking the

value 1 at this point are equi-continuous at this point.

DEFINITION. A lower semi-continuous, extended real valued function v on

an open set F is called hyper harmonic, if v never takes the value — °o and,

for any regular domain IFc jy c F, and # e W,

A hyperharmonic function on an open set is called a superharmonic function
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if it is not identically -f- °° on any connected component. A superharmonic

function £2:0, is called a potential if any harmonic function uSp also satisfies

Let there be potentials >0 on each one of the spaces Ω and Ωf. (This as-

sumption is made to avoid trivialities.)

The object of this paper is to consider functions on Ω x Ω' which are

superharmonic in each variable for every fixed value of the other. Let δ be

an open subset of ΩxΩ\ let MH(δ) [resp. MS{δ)l be the class of all finite

continuous (resp. lower semi-continuous and > — °o) functions on δ, that are

harmonic (resp. superharmonic) in each variable for every fixed value of the

other. The paper can be divided into two parts. The first part deals with

the general properties of elements in MH and MS. It is shown that the

product of regular domains (which form a base for Ω x Ω1) have a special role

to play in the discussions. A convergence property for any increasing directed

family of multiply harmonic functions (viz. elements of MH) is demonstrated.

This leads to the important result that any real valued function v, on any open

set δ c Ω x Ω', and hyperharmonic in each variable for every fixed value of the

other, is lower semi-continuous, if it is lower bounded on every compact set.

The second part deals with the integral representation of positive multiply

harmonic functions on ΩxΩf. It is proved that (MH)+ {Ω x Ω1) is a lattice for

the natural order and that it has a compact base (for the compact convergence

topology). Choquet's theorem on integral representation then assures the exis-

tence of a unique measure vu, corresponding to each positive multiply harmonic

function u, on the compact base, charging only the extreme elements such that

u = \Hvu(dH). The set of extreme elements of the compact base is shown to

be homeomorphic to Δ\ x Jί, where A\ (resp. Δ[) is the fine boundary [or

equivalently the set of minimal harmonic functions belonging to a compact

base of the positive harmonic functions] on Ω (respectively Ωf).

These results are true for multiply harmonic functions in any finite number

of variables; [viz. the functions that are harmonic in each variable for every

fixed value of all the other variables]. The same proofs carry over without

any substantial change. We have considered here the case of two variables,

for the sake of simplicity.

2. For any open set ωczΩxΩ', let MH(ω) be the class of all multiply
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harmonic functions on ω. That is, MH(ω) is the class of all finite continuous

function on ω, that are harmonic in each variable for every fixed value of the

other. Corresponding to ΩxΩ'y the class will be denoted simply by MH. It

is clear that MH(ω) is a real vector space, for every ω. We shall first prove

the following three fundamental properties of these classes. The first of these

three properties is an immediate consequence of the local nature of the defini-

tion of harmonic functions on Ω and Ω'.

Pi. (Sheaf property)-' If u &MH(ω), then u belongs to MH(δ) for every

open subset δ of ω. Conversely, if u is a finite continuous function on an open set

ω and if ue. MH(δ) for some neighbourhood δ of each point of ω, then u belongs

to MH(ω).

P2. (Λ base for open sets of Ωx Ω1)

Let ω c Ω and ω' c Ω1 be regular domains of the respective spaces and Γ = dω

x dωf. For any finite continuous function f on Γ, there exists a function Γf on

ω x ω'y having the following properties.

1) Γ/>0 if / ^ 0 .

2) Γf = / on Γ and Γ/ is continuous on ωx ωf.

3) Γf belongs to MH(ωXω').

and

4) Γ/(x, y) is a harmonic function of x&ω for every fixed y&dωf and a

harmonic function of y e ω' for every ΛΓG dω.

Moreover, Γ/ is uniquely determined by /, subject to the above four conditions.

Proof: Uniqueness. Suppose that Γ/ and Γ/ are two functions on ω x ώ't
corresponding to a finite continuous function / on Γ, verifying the above four

conditions.

For any fixed / e 9 α / , Γ}(x, yf) and Γ}(x, yf) are two finite continuous

functions on ώ, harmonic in ω and further Γ/{x, / ) = f(x, yf) = Γ/(x, yf), for

every #e3α>. Since ω is a regular domain, we have, Γ}(ΛΓ, / ) = Γ}(x, / ) , for

every x&ω. This is true for all y^dω'. Now, consider Γ/(x, y) and Γ}{x, y),

for any fixed jceάj. By a similar argument, it can be easily seen that Γ}{x, y)

= Γ%xt y\ for every jΈω' (and for every x&ώ). This proves the uniqueness

of />.

Existence. Set, for every finite continuous function / on Γ,
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0/U y) = f/U z')p'Z{dz)tf\dz') if U y)t=ωxω'.

= j / U z')$\dz') if U 3/)eaa)Xfl)'.

= \/(z, yϊpχ(dz) if (ΛΓ, )/)εα)X3ω'.

= / U jθ if U jOeΓ.

We shall show that Φf meets our requirements. The conditions (l) and

(4) are obviously true, and by definition Φ/ = f on Γ, Let now g and gf be

finite continuous functions on dω and dω1 respectively. Then Φgg> is equal to

GG\ where G(x) = Hg(x) for χ(=ω and G(*) = g(x) for #e;a<u and G' defined

similarly. Hence Φgg> is continuous on ω x ω'. It follows that Φ/ is continuous

on ωXωf, for any / which is a finite linear combination of elements of the

form gg\ since Φ/ is then equal to a finite linear combination of Φgg>. Since

every finite continuous function on Γ can be approximated uniformly by func-

tions of the form /, to complete the proof of the condition (2), it is enough

to show that if {/„} is a sequence of finite continuous functions on Γ, converging

uniformly to / and such that Φ/n is continuous on ω x ω1 then Φf is continuous.

Let M>1 be a real number such that H'ΐ^M on ω and Hf^M on ω*. Given

ε>0, there exists an integer N such that l / « - / | < ηrp for n>N, uniformly

on Γ. It is easily seen that if n>N, then for every (x, y) eωxω', \Φ/n(x, y)

-Φ/(x, y)\<*, for every U y)z=ωxdω'ϋdωx ω\ I ^ U ^ - ^ U j ί K - g ^

e and | / Λ - / I < - Λ j f ^ e on Γ. This shows that Φf is the uniform limit on

ωxω1, of Φ/M; and hence Φf is also continuous on ωxω*.

It remains to verify the condition (3). Let y^ω1 and δ be any regular

domain a'δciω. Then

pί(ώ) JJ/(fc y) p7

, yjp7idξ) (by definition)
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= Φ/{x, yo) (by definition)

This .shows that Φ/(x, y) is harmonic in x^ω for every fixed y^ωf and it

can be similarly proved that Φ/(x, y) is harmonic in y^ωf for every fixed #eω.

This completes the proof.

LEMMA 1. Let u be a finite valued function defined on an open subset δ of

Ωx Ωf. Ifu>0 and harmonic in each variable for each fixed value of the other

variable, then u is continuous on δ.

Proof: Let (xn, yn) in δ converge to (xf, y')<=δ. For every fixedy, u(xn, y)

-*u(xf,y). Let Fcj? and F ' c β ' be regular domains of the respective spaces

such that (#', y) G F X F ' C VX V'czδ. We can assume that U«, yn) e Vx V1

for all »>1. Now {u(xn, y)} is a sequence of positive harmonic functions on

V and further u(xn, y) -*&U', y) for every y& V\ where u(x\ y) is another

positive harmonic function on V. Hence u(xn> y) converges locally uniformly

to u(x'f y) for j> e V1. It follows that, given e>0, and a neighbourhood W of

y (with W c Wf c V) y there exists an integer N (depending on e and W)

such that

I u(xn, y) - «U', y) I < -|- for n^N and all j ; e W.

Suppose N' is an integer ^N such that ^ e ί̂ ' for all n>Nf. Then, for all

^^lίU'.^K- - (1)

Again by the continuity of u(xf, y) on F', there exists an integer N">Nf such

that

\u(x\ yn) - u(x'9 y) I < -|- for w>iV" (2)

From (1) and (2), we have the inequality

\u(x', y')-u{xn, yn)\<e for n>N".

This proves the continuity of u at (x\ y!)^δ. But this point being arbitrary

in 5, it follows that u is continuous on δ. This proves the lemma.

P 3 . (Convergence Property). Let δ^Ωx Ω1 be a domain and let Miei be an

increasing directed family of functions in MH{δ). Then, the upper envelope u of
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this family is either identically + °° on δ or u belongs to MH(δ).

Proof Let Ei = {χt=δ : u(x) = 4- °°} and E 2 = δ- Eι. We shall show that

both Eι and J5 are open.

Let Uo, JΌ) e Ei. Let F c # and F' c β' be regular domains of the respective

spaces such that Uo, jv) G F x y c F x F ' c δ , Now {«, Uo, 3>)}*e/ is an in-

creasing directed family of harmonic functions on F' and u{xQ, vo) =sup w, (#0,

yQ) a -f 00. v being a domain, it follows that &Uo, j>) = + °° for all ye. V.

Now, fixing y e F', we can similarly prove that u(xf y) = 4- 00 on Fx F'. Hence

Uo, y0) E:VX V't-Ei. This is true for every point of Eu This shows that

Ei is an open subset of δ. An exactly similar argument shows that Eι is also

an open subset of δ. Now, δ being a domain, one of Ei or £2 has to be void.

This shows that either a s + °° on<5or#< + °o everywhere on δ.

Suppose now that u < -f 00 everywhere on δ. We can assume without loss

of generality that u>0. Since u is finite at every point, it follows from the

Harnack property (axiom 30 that u is harmonic in each variable for every

fixed value of the other. Hence by the lemma 1, u is also continuous on δ.

This completes the proof.

Consequences,

PROPOSITION 1. Let u<= (MH)*(δ) where δ is a domain. Then either u>Q

everywhere on δ or u==0 on δ.

This follows immediately by considering the increasing sequence {nu} of

MH{δ) -functions.

PROPOSITION 2. Let u be a finite continuous function on an open set δaΩx Ωf.

Then u is multiply harmonic on δf if and only if for every pair of regular domains

ωdΩ and ω' c Ω* such that ωXω'aδ, u satisfies the condition u~Γu in ωx ω1.

This is an easy consequence of (P2).

THEOREM 1. Let ωaΩ and ω'c:Ω' be a pair of regular domains. Then, for

any extended real valued function f on dωx 3α/, the px x pf summability is

independent of (x, y)&ωx ω1. And in the case of a summable function /» J / U»

z')(βχX pyf){dzdzf) is an element of MH{ωXω').

Proof Let 0> — 00 be any lower semi-continuous function on dωxdω*.
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There is an increasing sequence {/«} of finite continuous functions on dωxdω'

such that ψ is the pointwise limit of fn- Then

\ψ(z, z'){p2xpγ){dzdz') =limf/ΛU z')(p* x p?) (dzdz>)

for every (x, y)&ωxωt. But, since {//„} is an increasing sequence, we have,

by the property P3, that the integral of ψ is either = -f °° or an element of

MH{ωxω'). Now, it is clear that, for any extended real valued function / on

dωxdωf

y [f(z, z')(p'χ x py')(dzdzf) is identically + °o or — °° or else an element

of MH(ωXω'). A similar result is true for the lower integral and moreover

l/S\/. The proof of the theorem is now completed easily, using the Proposi-

tion 1.

LEMMA 2. Let δ be a domain contained in Ω x Ωf. Let v be an extended real

valued function on δ, satisfying (i) v> - °o and (ii) v is hyperharmonic in each

variable for every fixed value of the other. Then v is either identically 4- °° on δ

or v is finite on an everywhere dense subset of δ.

Proof Let ωi c Ω and ω2 c Ω' be domains of the respective spaces. Assume

yΞ + oo on a non-empty open subset V of ωιXω2. Let p{V) be the projection

of V on Ω. Suppose xQ&p(V). Then, the hyperharmonic function v(xo> y) on

the section of ωιXω2 through x0 (which is homeomorphic to ω2) is -f °° on a

non-void open set, namely FΠ {(ΛΓ, y) : * = # 0 } . Hence V(XQ, y) = -f oo, for

every J G ^ . This is true for every xo&p{V). Now, for any y^ω2t the hyper-

harmonic function v(x, y) is + °o on the open non-void subset p(V) ciωi and

ωi being a domain, we have v(x, y) ΞΞ + oo for every x^ωi. This is true for

every y^w2. Hence v= + °° on ωiXω2.

Define the subset a of δ as follows*

a = {(x, y) : 3 a neighbourhood of (ΛΓ, y) contained in δ

such that Z ΞΞ + oo on this neighbourhood.}

Then a is an open set. Let (ΛΓ0, JΌ) be any boundary point in δ of σ. Then

there exists a rectangular neighbourhood N of (#0, yo) (where the sides are

connected open sets) such that σΠN^0} and iVci£. Hence, v is -f °° on a

non-void open subset Ndσ of the rectangular open (domain) iV, which implies
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that VΞΞ + oo on N. That is, (#<>, ̂ o)e<;. This being true for all the boundary-

points of a in δ, it follows that a is relatively closed in δ. Hence we have

either a = ψ or <; = δ. This completes the proof of the lemma.

DEFINITION 1. Let δ be an open subset of ΩxΩ1. Define the class MS{δ)

of multiply superharmonic functions in δ, as follows '•

v> - °° and lower semi-continuous on δ

v is hyperharmonic in each variable for

every fixed value of the other

υ £ -f oo on any connected component of δ

It is easy to see that (i) if vu v2^MS(δ) and αi>0 and αr2S0 then

(ii) if υu v2^MS(δ), then the function # = inf (vlf v2) also

belongs to MS(δ) (iii) MH{δ)c:MS(δ) and (iv) if {#,•}, S/ is any increasing

directed family contained in MS{δ)f then t> = sup Vi belongs to MS{δ) if it is
<GΞ7

not identically -f °° on any connected component of δ.

THEOREM 2. Let v be an extended real valued function on an open subset δ

contained in Ω x Ω\ satisfying (i) v > — oo, (ϋ) v is bounded below on every compact

subset of δ and (iii) v is hyperharmonic in each variable for every fixed value of

the other. Then v is lower semi-continuous on δ.

Proof Let us first prove the theorem assuming that v is superharmonic

in each variable for every fixed value of the other variable.

Let ωc:Ω and ω1 c Ω' be regular domains of the respective spaces such that

ωXω'aδ. Define, for any x^ω and .yeω',

Let k be a real number such that v^k on ωxω'. For any fixed y&ω1, since

v(x, y) is superharmonic in x, the function φ (x, y, ω) is harmonic of

Now let x be fixed in ω. Suppose yn^ω' and > ^ G ΰ 5 ' . Then,

lim. inf. ψ{x,yn, ω) = lim. inf. [v(ζ, yn) px(dς)

>[lim.mf.v(ξ,yn)p';{dς)

(Fatou's lemma)

(v{ξ,.) is lower semi-continuous)
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(The measure p'xjs totally.finite and v(ξ, yn)^k for all n and fEω hence the

use of Faiou's lemma is justified.)

Hence ψ{x9 yt ω) is a lower semi-continuous function of jyeω', for every

Let ωi be any regular domain of Q such that ωi c ω. On the compact space

ώiXω', ψ{x, y, ω) is continuous in x for every fixed y&ω1 and lower semi-

continuous in y for every xe.ωι. Hence <p{x, y, ω) is a borel measurable func-

tion on ωi x ωf. Moreover,

fa). (1)
for every (x,

Now, define for every jew' and x<=ω,

σ(x,y, ω, ω1) = )ψ(x, y, ω) py\drj).

Once again, by the inequality (l) and the fact that v is superharmonic for

every fixed xεω, we get that σ(xt y, ω, ωf) is harmonic of y&ω' for every x^ω.

Now, we shall show that a is a continuous function on ω x ω1.

Let ωίCiΩ be a regular domain such that ωtCiω. It is clear, from the

inequality (1), that φ(x, y, ω) is lower bounded on ωiXω' and it is moreover

measurable. Since the measures pT and py are finite, by Fubini's theorem,

we get

(£, y, ω, ω') pT(dς) = Jp?1 (« ) JV(ξ, V, ω) pj'

- σi x, y, ω, ωf).

This is true for all the points x of ωi and in turn for all such regular domains.

Hence, σ(x9 y, ω, ω') is harmonic in x for every y&ω'. Suppose h(x, y) =

. Then

x,y, ω, ω')>kh{x,y) (2)

for every {x, y)&ωx ω1.

Now, the function α - kh on ω x ω1 is >0 and is harmonic in each variable
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for every fixed value of the other. Hence, by the lemma 1, σ — kh is a con-

tinuous function on ω x ω\ It follows that a = σ - k h + kh is also a continuous

function on ω x /

Let us now take a point (ΛΓ0, ^ e ί o X ω ' . Let one β and ω[<^Ωf be regular

domains of the respective spaces such that ωiCω and ωΊcω' and (#0, j o ) e

'i. Then

o, Jo, ω, ω1) = y U , j , ω, coO pTt(dx) βy[\dy)

= Jp'o1 (Φ) J* U J, ω, ωO pS (rfx)

^ JP5Ό' ' (rfŷ  J^ (^ yϊ PTO (dx) [from the inequality (2) ]

Hence {<;(ΛΓO, JO, £7, C/Ό} is an increasing directed family of real numbers (for

all the neighbourhoods Ux V of (ΛΓ0, yd where U and U' are regular domains

such that ϋxϋ'ciδ).

Define the function V on δ by setting

V(x, y) = Urn. tfU j , ί/, Uf) - sup ( U J , U, U')
U,ϋf UtU'

for every {x, y) e 5.

We shall show that (i) V is lower semi-continuous on δ and (ii) V=v on

5, and this will prove the theorem for such functions v.

From the definition, V(x,y)ύv{x,y) (using inequality (2)). Let (#0, Jo)e5

and ί) the lower semi-continuous regularisation of v. Suppose ω xωf is a

rectangular neighbourhood of (ΛΓ0, JΌ) (where the sides are regular domains)

such that ωXω'aδ. Then

#(#0, yo) = lim inf v(x,y)^ lim inf (;(Λ:,yf ω, ω')
(as, v)->(aO, Vo) (a?, ?/)-*(a?o, Vo)

= c;(̂ o, Jo, ω, ωO,

since c;(,r, j , ωt ω
1) is continuous on ωXω*. This inequality

o, Jo, α), α/)

is true for a fundamental system of regular rectangular neighbourhoods of

Uo, jo). Hence
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V{XQ, yo)^V(xo, y0) (3)

On the other hand, if λ<v{xo, yo), then there exists a neighbourhood N of

(ΛΓ0, yo), N<^δ, such that v(x, y)>λ for every (x,y) e N. Now, for any pair of

regular domains ω and ω' such that (#o, ̂ εωXω'CαjXΰj'ciV, we have

, yo, ω, ω!) = j $ 0 '

Taking the limit as the regular domains shrink respectively to #0 and jy0, we

get.

= A [2]

This is true for every λ<v(x0, yo)t hence V>v. This, combined with the

inequality (3), gives us that V=v. Hence V is lower semi-continuous.

Let now (x0, ^ ) G 5 . Let ω and ω1 be regular domains such that (#o, yo)

ω x ω ' c ί . Choose the following sequences of regular domains.

(1) {ωn} satisfying* (i) #o^ωn+icωn+iCωΛc ωn c ω

for every

and (ii)

(2) Wn) satisfying: (i)

for every n>l

and (ii) Γ\ω'n= {y0}.

Let us fix j/6ω'. Since (̂ΛΓ, J;) is superharmonic on ω,

φ(χo, y, ωn) = J P U ^ P S T W ^ / V U , jr) C2]

as n tends to infinity. Hence,

Uo, yo, (Ony ω'm) = l im

(monotone conv. theorem).

(Note that the monotone convergence theorem is applicable, as in the proof

of the earlier part). From this we get
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V(xo, y<>) Srlim σ(xo, yo, ωn, ω

This is evidently true whatever be the domain ω'm (m>l). Hence

lim \v(xQi y) p'yΰ

m(dy)

Thus we get V=v and this shows that v is lower semi-continuous on δ.

To complete the proof of the theorem, let us consider a v as in the hypo-

theses of the theorem. Let V> 0 and V > 0 be continuous potentials on Ω and

Ω1 respectively. Then clearly, for every positive integer N, the function vN

defined by

y) = Inf ίv(x, y), NV(x)

is lower semi-continuous on δ. It follows that v which is the increasing limit

of vN is also lower semi-continuous on δ. The proof is complete.

3. ΛΓiϊ-minorants

Let ω c Q be a relatively compact open set and dω its boundary. Consider

the Dirichlet problem with the trace on ω of the family of all neighbourhoods

of all points of Bω. Then the finite continuous functions are resolutive for

this problem [7]. And to each point x^ω, corresponds a positive Radon measure

μ'x on the compact space dω, such that the upper (Perron) solution ///, cor-

responding to any extended real valued function / on dω satisfies the equation

Hy(x) = \f(z)μχ(dz). In particular, all the borel measurable functions ψ on

dωy that are μϊ-summable, are resolutive and the solution H?(x) = \φ(z)μχ(dz).

LEMMA 3. Let ω c # and ω ' c Q1 be relatively compact open subsets. Let v be

a multiply-superharmonic function defined on an open set containing ω x ω'. Let,

for every x&ω and y&ω1,

W ' ' U y) = J»(& 7i)μ°x{dς)μ;\dη).

Then Dv'°' is multiply-harmonic on ωxωf. Moreover, if ωι and ω[ are open sets

such that αJiCαj βnd ωΊciω', then D'SUto>x^D'υ'w' in ωιXω[,
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Proof, Let h (x, y) = \dμϊ dμ$\ for every (x, y)eωx ω'. Then clearly, h (x,y)

is harmonic in each variable for every fixed value of the other and also

A>0, hence h e MH(ω x ω'). It follows that ^adμdZμy' e MH{ω x ω')t for every

real number cc.

Let ^ be a real number such that v^k on 3ίox3α;'. For every -η&ω1, since

ι>(£, η) is super harmonic of £, we have v(xt 7/)>U(?, y)μx(dξ), for every xeα).

The latter function is harmonic in ω. Let φ(x, γ) -\v(ξ, χ/)μx(dς)9 for every

(x, η)^ωXωf. Then, by Fatou's lemma, it is easily proved that φ{χtη) is lower

semi-continuous on ωf

t for every xeω. Now, if δ1 is any regular domain such

that δ' c ω'9 then

(Fubini's theorem)

It follows that φ(xt y) is superharmonic on ω', for every Λr̂ α). From this we

deduce that

Also, Z>yfM>/ is harmonic on ω', for every fixed x&ω. Now, by using FubinΓs

theorem and the fact that ψ(x, .) is harmonic on ω, it is proved easily that

Dυ%to' is also harmonic in AT-for every fixed y&ωf. Further DviUi'^kh, from

which we deduce that Dv'tυ' is continuous on ωxω', using the lemma 1.

Suppose α)i and ω[ are open subsets of ω and ω' respectively such that ωi

and ωίcω'. Then, for any u&MH(ωXωf), we have evidently

Applying this to Dυt<0'&MH(ωXω')t we get
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This proves the lemma.

THEOREM 3. Let δ and δ1 be open subsets of Ω and Ωf respectively. For any

v e MS(3x 3f), if there exists a multiply harmonic minorant, then there is a greatest

multiply harmonic minorant.

Proof. Suppose v>h where h e MH{δ x δf). Let {ωn x ω'n}„& be a sequence

of relatively compact open rectangles of ΩxΩ' such that li) ωnxωn^ωn+iX

ωf

n+ιoδxδf for every n>l and (ii) U ωnXω'n^ δxδ1.
n

Now, consider Dn

υ = DΊ!*tW'u9 as defined in the lemma 3. For every (xt y)

ε ί x J ' , Z>3U, j>) is defined for all n after a certain stage and is a decreasing

sequence of reaί numbers. Let Dυ(xt y t = ίίm Dΐ(x, y). Since Dlix,y)^v{xty)

for every U y)^ωnxωf

n and all M, we get that Dυ(x, y)^v(χ, y) for all U, 3;)

eδx<5'. For every point U, <y)e(5x5/, there exists a connected neighbourhood

V which is contained with its closure in ωnx ω'n> for all n after a certain stage.

From the lemma 3, we have that Dn

υ is a decreasing sequence of multiply

harmonic functions on V, for all n after a certain stage. But, since v>h on

δxδ\ we get Z)yUj>)^£>AU, j>) =h(x9y) for every U ^ e ^ x ω ή . This shows

that the limit of £>Ux, y) i$ multiply harmonic in V. It follows that Dv is a

multiply harmonic function on δxδ' and Dυ^v.

Suppose ueMHiδ x δf) and u£v. Then Z>5U y) >DZ(x, y) == « U 3;) for

every {x, y)&ωnxωfn. From which, we deduce easily that Dv(x, y)^u(x, y)

for every element of δ x δ'. The proof is complete.

An important corollary is the following result.

THEOREM 4. The set of all non-negative multiply harmonic functions on any

open rectangle is a latίice for the natural order. The set of all multiply harmonic

functions on an open rectangle is a complete lattice.

Proof. Let δxδ' be an open rectangle. Let ux and u2 be any two non-

negative multiply harmonic functions on δxδ9. Let t> = inf(ι?i, v2). Then

vGzMS(δxδ') and z>>0. Hence by the theorem 3, v has got the greatest

multiply harmonic minorant u. It is clear that u is the greatest element in

MHiδxδ') such that u$uf and u^u2. On the other hand, let w=inf ( -ulf
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- « Λ Then weMSiδxδ1) and w>> - («x + u2)<ΞMH{δ xδ'). Let - « ' be the

greatest Mϋf-minorant of w. Then it is obvious that u'>Ui and z*2 and u1 is

the smallest element of MH^δxδ') which majorises both uι and u-i. This proves

that (MH) + (δxδf) is a lattice.

Let {ui)im be any family of multiply harmonic functions on δxδ' such that

there is a h^MH(δxδ') with A^&, for every ι"e/. Then, ϋ (the lower semi-

continuous regularisation of υ = Inf κ, ), belongs to MS(<5 x δ') and δ>A. Clearly

the greatest M#-minorant of v is the lower bound of {ui)im Now the proof

of the theorem is completed easily.

DEFINITION 2. For any open rectangle δxδ', the class MP(δxδ') is defined

as follows:

MP(δxδ') = {veΞMS(δxδ') : 0>O and the greatest M#-minorant

of v is identically zero.}

PROPOSITION 3. For any pair of elements vu ^ e MPiδx δf), and real numbers

^O and αr2S0, α i ^ + α ^ e M P l i x i ' ) and iid (vl9 v2) e MP{δx δf).

Proof. The proof would be complete if we show that yi +

This is easily deduced from the fact that D'w w> is additive in w for any pair

of relatively compact open sets ω and ω1.

4. The Integral Representation

Let us recall the integral representation of positive harmonic functions on

Ω and Ω'. Let JXo be the class of all positive harmonic functions on Ω> taking

the value 1 at XQ. Let Δi be the set of all extremal or minimal harmonic

functions contaiued in JXύ. To every positive harmonic function u on Ω} there

corresponds a unique Radon measure, called the canonical measure associated

to uy μu on Aχ0> charging only Δu such that u= \kμu(dh). Moreover, JXtt is

compact (by the axiom 30. Let Δy0, Δ[ etc. be defined similarly for Ω', relative

to a point yo&Ω'.

LEMMA 4. If {un) is a sequence of positive harmonic functions on Ω and un

converges locally uniformly on Ω to a harmonic function u, then the canonical

measures μUli of un (on ΔXo) converge weakly to the canonical measure μu of u {on
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Proof. Since un(xo)-»u(xo), it is clear that the measures μUl, on JXo are

strongly bounded for μuSΔXϋ) = \h(χo)μUn(dh) = un(xo)J Hence from any

subsequence of /iMn, it is possible to choose a weakly convergent subsequence.

But the limit of any such weakly convergent subsequence, is evidently μu> (by

the uniqueness of integral representation), since

limfax) μ»Jdh) = lim unt(x) = u(x) = §h(χ)μu(dh)

for every x&Ω.

Hence it follows that {μUn} is itself weakly convergent to μu. The proof is

complete.

LEMMA 5. Let u > 0 be a multiply harmonic function on Ωx Ωf. For every

y e Ωf

t let py be the canonical measure on ΔXo associated to the harmonic function

u(.t y) on Ω. Let δ be a regular domain contained in Ω* and yi&δ. Then,

(1) ψ Ω'-+Ίfl+(JXo) defined by φ(y) = vu

y

is weakly continuous and (2) for any finite continuous function f on ΔXo, the function

is pyι-integrable.

Proof Suppose {yn} is a sequence in Ω' converging to / e Ω\ Since u

is a continuous function, given e>0, we can find a neighbourhood V of x'^Ω

and V of y'<=& such that \u(x,y)-u(x",y")\<* for (x",y"), (x,y)<= VxV.

If yn^ V for n>N, then \u(x,yn) - u(x, y')\<ε for n>N and all x<= V. In

other words, u(x, yn) converges locally uniformly on Ω to the function u(x, y').

Hence by the lemma 4, vyn coverges weakly to vu

y>. That is, y-*vu

y is continuous

for the weak topology on 9Jl+(A0). Now, the second part follows immediately.

COROLLARY. In particular, the mapping y-*vu

y is pyi-adequate [1] for every

regular domain δc:Ωf and all points yι in δ.

LEMMA 6. The measures vy depend harmonically on ye. Ω1. That is, for any

regular domain δ,

if χ* » = Ji#p*(£fy), then λy

 u = vu

y for every

Proof Because of the lemma 5, we have, for any λy' "-summable function

/ o n JXo, f is z>"'-summable for py-almost every y e d δ and
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\f(K)λ*yu(dh) = \py(d^\f(h)p%{dh). [1]

In particular, if we take for/ the characteristic function of the set JXo- Δu

we get 4' u(4χ0"- Λi) = 0, since v%\J*o - Δx) = 0 for every / . Now, for any #eΩ,

= \py(dη)u(x, -η)

since vn is the canonical measure of the harmonic function u(., -η). Hence

= u(x, y) (u(x, .) is harmonic).

This is true for every x^Ω. Hence, by the uniqueness of the measure on dXo,

charging only Ji, corresponding to the harmonic function u(.t y), we conclude

that λy'u = vu

y. The same is true whatever be the point y&δ and any regular

domain δciΩ'. The lemma is proved.

LEMMA 7. The vy-summability and the sets of py-measure zero are independent

of y^Ω1. Further, for any vy-summable function f on AXΛ, \f(h>vy(dh) is har-

monic on Ωf.

Proof For every finite continuous function / on JXot consider \f(h)vy{dh).

If δ is any regular domain contained in Ω\ then

by the lemma 6. This being true for every point in δι and in turn for all the

regular domains, we conclude that \f{h)vy(dh) is harmonic on Ω1. Now, by

standard arguments (using the convergence property of any directed family of

harmonic functions on Ωf)f we deduce that for any extended real valued func-

tion / on JXo, \f(h)vy(dh) is identically + °° or - °o or else a harmonic

function on Ω'. A similar result is true for yih)py(dh). Further [f{h)pu

y{dh)

^]f(h)py{dh). The proof of the lemma is now completed easily.

COROLLARY. In particular iff is any py-summable function on ΔXo, then
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Fix, y) = \fih)hix)vu

yidh) belongs to MH.

Proof. It is clear that for any ϊ/*-summable function / on ΔXo, the function

Fix, y) is harmonic in each variable when the other is fixed. If / ^ 0 , then

F>0 and F&MH. Since any z/"-summable function is the difference of two

non-negative functions each one of which is z^-summable, the corollary is

proved.

Remark. When we are concerned with ^-summation, it is enough to consider

the values of functions on Δi.

DEFINITION 3. An element u^iMHΫ is said to be minimal if, for any

function Λe (MH)+ satisfying hύu, there exists a real number an such that

and h =

THEOREM 5. Let iMH)t = {a e {MHY : uix0, y0) = 1}. An element u e {MH)t

is minimal, if and only if there exists elements h, hf belonging respectively to A\

and J[t such that u(x, y) = h(x)hf(y).

Proof: Sufficient. Let h^Ax and Λ'eJ j . Suppose z>e (MH)+ and v^hh1.

For any x^Ω, v(x, y)^h(x)h(y)t and since h' is a minimal harmonic function

on Ω\ there is a constant ax, depending on x, such that v(x, y) = axh(x) h'(y)y

for every y&Ω1, (where Oύccxίkl). Similarly, we can find real numbers βy,

lying between 0 and 1, for every y^Ω\ such that v(x, y) = βyh(x)h'(y) for all

Are Ω. From this we easily see that ocx = βy = v, where v is some real number

between 0 and 1; and vix, y) = vh(x) h^y) for all (ΛΓ, y)<ΞΩxΩ'. That is, hhf

is a minimal element.

Necessary. Let u e (MH)ΐ be a minimal element. Consider the measures

vu

y on J*o, corresponding to u, as introduced in the lemma 5, Suppose / is any

finite continuous function on J*o, such that 0<;/^l. Then, by the lemma 7

and its corollary, Fix, y) =• \f(h)h(x)vytdh) is an element of iMHΫ. Also

Fix, y)^\ίhix)vuyidh) =u(χt y). By the minimality of u, we have a constant

ocf such that (i) O^α/^l and F(#,y) = <xfu(x,y). But #/&(#,y)> for any fixed

jyei2', has the integral representation a/u(x, y) = \a/h{χ)py{dh). Hence, by the

uniqueness of integral representation, we have, ocf = / ^"-almost everywhere on

ΔXύ. Since sets of measure zero are same for all the measures vuyiy^Ωh),
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(lemma 6), there exists a set E/dΔX(j of z>"-measure zero, for all y^Ω\ such

that ocf =f except on E/. The same is true for all such continuous functions

/ on J.ro From this we deduce that, for each y^Ωf, py is a constant multiple

of the Dirac measure at some point of Δi. Otherwise, for some jye Ω\ suppose

that the support of py contains two distinct elements z and z'. Then, there

exist disjoint compact neighbourhoods K of z and K' of z'. The ^-measure of

each one of K and K1 is >0. But by Urysohn's lemma, we can find a continuous

function ψ ' J*0-»D), 1], such that ψ = 0 on K and ψ = 1 on K1. This is a con-

tradiction to the fact that <f is a constant ^-almost everywhere on ΔXo. Again,

since sets of measure zero are identical for all the measures py {ίor y(=Ω'),

we conclude that vy = εfhβy, for some ho^ΔXύ and βy is a real number depending

on y. But υy(ΔXo — Δi) ^ 0, and hence this element ho necessarily belongs to Δi.

Now

= \h(x) βyεj1o(dh)

In particular, it follows that, for every fixed y^Ω', x-*uiχ, y) is a minimal

harmonic function. By similarity, we deduce that y->u(x, y) is also a minimal

harmonic function on Ω\ That is, 3>-*j3.v is a minimal harmonic function, say

hΌ on Ω1. Further, --•/?' ^-- = 1. Hence Aίe J{. So we have proved that κ =

AoAί where ho^Δi and h[^Δ[. The proof of the theorem is complete.

THEOREM 6. The set of all elements of (MH)*, taking the value 1 at any

point of Ω x Ω\ is equi-continuous at that point.

Proof Consider Uo, >) e Ωx Ω'. Let (MEt)ί ={we (M#) + : «(AΓ0, 3Ό) = 1}.

Let u& (MH)t Consider the measures pu

y on ΔXo, associated to u, by the

lemma 5. Let FΛy) = yy(dh). Then, by the lemma 7, FM(.y) is a positive

harmonic function on £', and further Fu(y*) = \i/"0(rfA) = JA(ΛO) pyo(dh) = «U0,

ĵ o) = 1. Hence F« e Δyo. This is true for every u e (MH)i.

Given ε>0, we can find a neighbourhood iV' of jy0 such that (i) N' is com-

pact, and (ii) for every element w^Δ'y,, the inequality \w(y) ~ w(yo)\<e/2 is

valid for all y e iV'. (This is axiom 3' for harmonic functions on Ω'.) Moreover,
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there are real numbers m and M such that, for all y^Nf and w e dyOf

[3]

Again, the Harnack property (axiom 30 for positive harmonic functions on Ω,

assures us of a neighbourhood N of x0, such that whatever be # e N and υ e JXo,

the inequality

\v(xo)-vix)\<~

is valid.

Now, for all u& (MH)t, since F«e j£β, we have

I Fu (y) - Fu {yo)! < e/2 for every y^Nf (l)

and

w^F«(j;)^M for every ^GΪV'/ (2)

Now

u(x, y) - u(xo, yo) = J J

- J A U ) ^o
Hence

as A(ΛΓ0) = 1

^ - | + | - = e if Are JV and y e AT'.

This is true for all the elements u e (MH)ΐ. That is, (MH)ΐ is equicontinuous

at (ΛΓO, :yo). It is clear that the same is valid whatever be the point (#0, y*)

chosen in Ω x Ωf. The theorem is proved.

Let us now consider the vector space X = {MH)+ - {MH)+. X provided

with the topology of uniform convergence on compact subsets of Ω-k Ω1 is a

locally convex topological vector space. The positive cone on X, for the natural

order is {MH)*. The theorem 4 asserts that (MH)+ is a lattice for the natural

order. Moreover, since Ω x Ω1 has a countable base for open sets, {MH)+ is
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metrizable. Let Uo, y*) e QxΩ1. Consider {MH)Ϊ = ( « ε (MH)+ :u(xOt yQ) = 1}.

(MH)ΐ is a base for the cone (MHΫ. From the above theorem, we deduce that

(MH)ΐ is compact, as in C3]. Hence by Choquet's theorem [4], every element

u in (MH)* is the centre of gravity of a uniquely determined measure on (MH)t,

charging only the extreme elements of this base. But, it can be easily seen

that the extreme elements of this base are precisely the minimal elements of

(MH)+, belonging to this base.

Let us now consider ΔXo and Δy0 with the topology of uniform convergence

on compact subsets of Ω and Ωf. Both ΔXo and Δ'yo are compact spaces. Consider

the mapping

defined by (u, uf)->uuf It is easy to verify that this mapping is one-one. Let

us prove the continuity of this mapping. Let KaΩxΩ' be any compact set

and e<0. Let (un, u'n)-*(uo9 u[) in the product topology. Then un-*u[ and

Un-*u0. Let ULI and K[ be the projections of K on Ω and Ω' respectively.

Then, there exists M>0 and an integer iV^O such that

(i) u(x)£M and u'(y) ^M for all # e Ku y e K[ and all u e J*o and u' e 4>0,

(ii) \un(x) —UQ(X)\< -~jτf for n^N and uniformly for ^eiiCi,

and

(iii) |«ή(^) - « ί ( ^ ) | < yV* for n>N and uniformly for y^K[.

Hence, if U j j G i Γ i X ^ D iΓ, then

< M 2 Ϊ + M 2 Ϊ = e

That is, for n>N, uniformly on the compact set Kt

This is true for every ε>0 and all the compact sets of ΩxΩ1. Hence, unu'n
converges to uouί in the compact convergence topology. Now ΔXbx Δ'ya being a

compact space, the above mapping is, in fact, a homeomorphism of ΔX(t x Jyo

onto a compact subset of (MH)£. The theorem 5 states that the minimal

elements of {MH)¥, belonging to this base are precisely the elements belonging

to the image of JiX Δ[ (under the above homeomorphism). We shall identify

the minimal elements of (MH)Ϊ with Δ\XΔ\. Thus we have proved the



48 KOHUR GOWRISANKARAN

following result.

THEOREM 7. To every u e {MH)+ corresponds a unique measure vu on (MH)t,

charging only the set Δι x Δ[ such that

u(x, y) = JA(ΛΓ) h'(y) vΛdhdh')

for every (x, y) e Ω x Ωf.

Remark. The above results (regarding the integral representation) hold

good, as well, for multiply harmonic functions on any open set of the form

δ x <5', where δ c Ω and δf c Ωf are connected open sets.
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