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To the memory of TADASI NAKAYAMA

In the arithmetic theory of automorphic functions on a symmetric bounded

domain J& = G/K, as developed recently by Shimura and Kuga [2], [2a], it is im-

portant to consider a family of (polarized) abelian varieties on J2) obtained

from a symplectic representation p (defined over Q) of G (viewed as an

algebraic group defined over Q) satisfying a certain analyticity condition.

Recently, I have determined completely such representations, reducing the

problem to the case where G is a Q-simple group and where p is a Q-primary

representation (C3], C4H). It has turned out that, besides the four standard

solutions investigated already by Shimura, there exist two more non-standard

solutions, one of which comes from a spin representation of the orthogonal

group and thus gives a family of abelian varieties on a domain of type (IV).

The purpose of this short note is to explain how one can construct most simply,

starting from the ' 'regular representation" of the corresponding Clifford algebra,

examples of such families, including also the non-analytic case.

1. Let V be an ^-dimensional vector-space over R, provided with a non-

degenerate symmetric bilinear form S of signature (p, q). We denote byC =

C{V, S) the corresponding Clifford algebra, by C+ (resp. C~) its even (resp.

odd) part, and define the "spin group" (or "reduced Clifford group" in the

terminology of [1]) as follows:

(D G = t e e C Ί * ' t f = l , gVg"ι=V),

c denoting the canonical involution of C. We assume thatp, q>0> n = p + q>2.

The following Proposition is well-known (see e.g. [1], 2.9).

PROPOSITION 1. l) G is a connected semi-simple Lie group and the mapping
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φ defined by

φ(g)x=gxg~1 for,

is a covering homomorphism of order 2 from G onto the connected component of

the identity of SO(V, S) (the special orthogonal group).

2) Every maximal compact subgroup K of G can be written uniquely in the

form

(2) K=G(V+)G(V-),

where V= V+ 4- V- is an orthogonal decomposition of V such that S\ F+^>0,

S\ F_<£0 and where G(F-r), G(V~) denote the corresponding spin groups imbedded

in a natural way in G.

Now, let F = F+4- F- be an orthogonal decomposition of F as described

in Proposition 1, and take an orthogonal basis (ei} . . , , en) of V with S(^ , ed

= ± 1 in such a way that (e\, . . . , βp) (resp. (ep+i, . . ., en)) forms a basis of V+

(resp. F-) then, in C one has

. ί ! f o r

(3) e)=\

I - 1 for

£ί €>• = — ej eι for j

Put further

e+ = ^i £/>,

(4)

+̂ and e- are elements in C*, which are uniquely determined up to a sign

± 1 only by V+ and F_.

PROPOSITION 2. 77z£ correspondence x—>^ΐV^+( = eZ1χte~) is a "positive"

involution of C+, i.e. the bilinear form trie^x'e+y) (x> y<= C f) is symmetric and

positive-definite.

Proof From eL+ = dr e+, it is clear that this correspondence is an involution

of C+, so that the bilinear form tr(e+ιxce+y) is symmetric. To prove the

positivity, let us put

C + (F ± ) (resp. C{V±)) denoting the even (resp. odd) part of the Clifford
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algebras C(V±), imbedded in a natural way in C= C(V). Then, one has C+ =

Cί + Cί (direct sum), and e+ and e- commute elementwise with Ct and anti-

commute elementwise with Ct (i.e. one has e±x = — xe± for all # e C i ) . It

follows that one has (Cί) 2 = (Cί) 2 = Cl, Cΐ Cί = Cί Ct = Cΐ and also that,

writing x, )»εC + in the form

# = #*. + #-, ^=3 ; ++3 ; - with x+, y+ e Cΐ, #-, ̂ - e C-,

one has e^xe* = #+ - #1. Therefore one has

(5) tr{elιxe+y) = fr(*+.?+ - *->>-)•

From this it is easy to see that {^ *, Γ(*x< - - - <ir)} forms an orthogonal

basis of C+ with respect to this metric, and that one has tr{e+ιxe+x) = 1 for all

x=βix

 mβir. This proves our assertion.

Remark. By a similar argument, one can show that the correspondence

x-*e+1xce+ (resp. e^sίe-) is a positive involution of C, if p is odd (resp. if q is

even).

COROLLARY. If K is a maximal compact subgroup of G corresponding to the

orthogonal decomposition V— V+ + V- and if e± is as defined by (4), then one

has

(6) K= {g(=G\e+g=ge+ (or e-g=ge-)}.

Proof. Call K* the group defined by the right-hand side of (β). Then,

from the above proof, one has K* = GΓiCt and so, by Proposition 1, K* con-

tains K. On the other hand, since x-*e?xe+ is a positive involution, K* =

{g<^G\gce+g= ev) is compact. Therefore, from the maximality of K, one has

K=K*, q.e.d.

2. The notation being as in 1, let us now consider the representation p of

G in C+ defined by the left multiplication:

pig) : x—>gx for ΛΓGC+.

Fixing a maximal compact subgroup K of G once and for all, we consider the

following problem.

PROBLEM. Find all pairs (A, 7), where

1) A is a non-degenerate alternating form on C+ which is invariant under all

p(g)(g<EΞG), and
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2) / is a complex structure on C f which is commutative with all p(k)

satisfying the following condition •

(7) A{x, Ty) (x, )>εC+) is symmetric and positive-definite.

If moreover one has a lattice L in C+ such that

(8) A(x, y)(=Z for all x, y^L,

then one obtains an (analytic) family of polarized abelian varieties

Pgκ=(C+/L, p(g)lβ(g)~\ A)

parametrized by gKtΞGjK, or rather by ΓgK^Γ\G/Kf where Γ=GL =

<geG\gL=L} (cf. [2], [4]).

PROPOSITION 3. All solutions of the above problem are given as follows:

(9)

(10)

where a is an inυertible element in C+ such that aL = — a and bι and b2 are

elements in C f and C±

} respectively, satisfying the following conditions:

I
b1

(12) tr{b^axcy) +tr{b2axe-y)(x, y<=C+) is symmetric and positive-definite.

Proof. Let (A, /) be a solution of our problem. Then, first of all, there

exists a uniquely determined (non-singular) linear transformation / of C f onto

itself such that one has A(x, y) = tr(f(x)c y). From the invariance of A

under the left multiplication by G, one obtainsfor all g(Ξ G, ΛΓG C+.

Since the linear closure of G is equal to C f ([1], II. 4. 3, II. 5. l), this implies

that one has f{xy) = Λ;/(^) for all x, y e C+. Hence, putting /(l) β = Λ, one gets

f(x) = xac, where Λ is invertible and such that a - —a, because A is non-

degenerate and alternating. This proves (9). Next, since, by Proposition 1,

the linear closure of if is Ct = C^{V+)CJt(V-)J it follows from the commuta-

tivity of / with the left multiplication by K that one has

= xl(y) for all x e Cί, y e C+,
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and so, in particular, I(x) = xl(l) for X<Ξ Ct. Let uz be any invertible element

in Ct then one has I(x) = xu^Iiuo) for # e C i . Therefore, writing ^ £ C f

in the form x— x^. -\- x- with ΛΓ+ e Ct, X- ̂  Ct, one has

Hence, putting 61 = y(/( l ) + thιl(u*))( e C f ) , fe= }g: 1(

according as # is even or odd), one gets (10). From 72 = - 1 and i- =

( ~ 1) 2 one gets (11), and from the condition (7) one gets (12), q.e.d.

EXAMPLE 1. In the case where bι=λχcΓι, &2 = Mtf^-)"1 with non-zero real

numbers Λi, λ2, the conditions (11), (12) reduce to the following:

ae- — — e-ct,

<t=λl-λ\>0,

λ2>0.

EXAMPLE 2. In the case where bι = 0, b2- λ2(ae-)~1 with a non-zero real

number λ2, the conditions (11), (12) reduce to the following:

de-a- λle-,

λ2>0.

EXAMPLE 3. In the case p or q = 2, the symmetric space ^ = G/K has a

G-invariant complex structure and becomes an irreducible symmetric domain of

type (IV). In this case, it is of particular significance to consider those solu-

tions of our problem which further satisfy an "analyticity condition" (H2)

saying that the induced map J@ -* J& = ~G/K is complex analytic, where ~G

= Sp(C*, A) (the symplectic group) and K is a maximal compact subgroup

of G defined by K= {g<Ξ G\gIg~L= /}. In the notation of [3], [4], this condi-

tion can also be expressed by saying that dp(Ho) = ϊ/o, where Ho and Ho are

respective H elements for G and G. If one identifies the Lie algebra 9 of G

with a certain linear subspace of C+ in a natural way, then one has HQ — ± -n~e+

or ±-^-e- according as p = 2 or q = 2. On the other hand, one has Ho = ± -s-/.

Thus, for instance, in the case Ho= ~oe- > HQ= ^~ I, the condition (H2) says



440 I. SATAKE

that I{x) = e-x, i.e. bι = 0, hi = 1. The condition (12) then reduces to saying that

fr(α#££-jy) is symmetric and positive-definite, or in other words, that ae- is a

"positive" element with respect to the involution x-^eZιxte~) (which implies,

besides the condition a = —a, that all the eigen-values of the linear trans-

formation x ^>ae-x{x& C+) are positive real numbers).

Remark I. If one puts

then the alternating form A and the complex structure / given in Proposition

3 are invariant also under the left multiplication by 6 and K, respectively.

Therefore, one has actually a family of polarized abelian varieties Pgκ -

(C* /L, gig'1, A) parametrized by gK e 3 = G/K, of which our family becomes a

subfamily. It is not difficult to verify that the group G is of hermitian type,

if and only if p = 2 (4) or q 3 2 (4). In that case, identifying the Lie algebra if

of G with {*eC* | # ' + * = 0}, one sees that if =β nC~t + Q Π Cί is a Cartan
~ ~ ~ 1 1

decomposition of 9 and an //-element for G is given by Ho = ± -«• £+ or ± -K-e-.

Remark 2. The simplest way to assure the measure-finiteness of the

quotient space Γ\3 is to assume that V and S are both defined over Q and

that L is in CQ= C+( VQ, S). The first condition implies that there exists a

vector-space VQ over Q contained in V such that V- VQ®QR and that S is a

canonical extension to V of a bilinear form on VQ. In this case G has a

structure of an algebraic group defined over Q and Γ=GL is a so-called

arithmetic subgroup of G. The condition (8) then implies that A is also defined

over Q, or what amounts to the same by Proposition 3, that a e CQ.

Remark 3. If one denotes by Z the center of C*, one has

R if * 3 l (2),

c if Λ s 0 , f + t f 3 l (2),

RΘR if Λ S O , -ξ- +<7=iO (2).

In the first and second cases, C+ is R-simple and the representation p is R-

primary (of type (βi) it p-qm ± 1 (8), of type (a2) if p-q= ± 3 (8), of type
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(α3) if n = 0 (4) and q = 1 (2), of type (b) if n = 2 (4) and <? = 0 (2)) ; in the

third case, C+ is the direct sum of two central simple algebras C+l and C+"

over R and so p has two R-primary components (of type (at) if n = 0 (4) and

p-q = 0 (8), of type (β8) if n = 0 (4) and i> - ζ? = 4 (8), of type (c) if n = 2 (4)

and <7 = 1 (2)) (see [4]). In the third case, our solution (A, /) decomposes

in an obvious sense into the direct sum of two similar solutions (A1, Γ) and

(A", /") relative to C f / and C¥". In the case where V and S are defined over

Q, C+ is not Q-simple, if and only if n is even and / ( —1)~2~ det (S) e Q, and,

in that case, p has two Q-primary components p' and p". Then L, taken to

be contained in CQ, is commensurable to a direct sum of two lattices V and

L" in CQ' and C Q " , respectively. Thus our family of abelian varieties is iso-

geneous to the "Whitney sum" of two families {P'gκ = (C*'/L'y p'(g)Γβ'(g)~\ A')}

and { P ^ = (C+"AL", p'\g)Γp"(g)~\ A"))

3. We denote by ,^{L, e-y a, blf h) the family of polarized abelian varieties

determined by the data (L, e~, α, bif b2) as given in 2. We shall now examine

the condition under which two families of this form are equivalent. We recall

that two families {(W/M, Iz, A) ( 2 G Λ ) , {{W'/Mf, Γz, A
f) {zf e j^')} are

called to be equivalent, if there exist a complex analytic isomorphism ψ of £0

onto 3} and a linear isomorphism Ψ of flΓ onto W satisfying the following

conditions:

(13)

Ψ{L) = L',

for 2

for x,

with a positive rational number μ.

First of all, let V= V+ + VL be another orthogonal decomposition of V,

and let K' and ̂ '_ be the corresponding maximal compact subgroup of G and

the element defined by (4). We assert that, if the system (a, bu fa) satisfies

the conditions in Proposition 3 with respect to e~, then so does the system

also with respect to ±ef- and the family ^ ( L , ±eL, α, bu fa) is equivalent

to c^(L, e-, a, bi, fa). In fact, the only condition for (a, bu fa) which depends

on the choice of e- is (12). Since there exists ^ e G such that K1 = gϊλKgu

±e'- = gϊιe-gι, the condition (12) relative to e- implies that
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is symmetric and positive-definite, i.e. (12) holds with respect to ±e'-, and

vice-versa. Moreover, it is clear that, if one defines an analytic isomorphism

ψ of G/K1 onto G/K by ψ : gK' ->ggιK and puts Ψ= id., then the two families

^ ( L , ±e-9 a, bu b2) and J*(L, e-f a, bu b2) are equivalent by {ψ, Ψ), which

proves our assertion. Therefore, in the following we shall fix e- once and

for all and write simply as «^(L, a} bίt b2) instead of JP(L, e-, a, bίt b2).

PROFOSITION 41*. Two families ^(L, a, bu b2) and J*(L', a', b[, bί) are

equivalent, if and only if there exist an element g2 in G and an invertible element

v in Ch such that one has

(14)

L1 = g2Lv,

a1 = μv~ιaυ

ft = υ'%v

with a positive rational number μ.

Proof Suppose that the two families are equivalent by (ψy ψ). Then,

first an analytic automorphism ψ of 3 = G/K onto itself is given by a corres-

pondence of the form

ψ : gK—>gιgK

with gι e G. Hence, putting Ψi{x) = g2x for %<^C\ one sees that (ψ, Ψι) defines

an equivalence of ^ ( L , a, blt b2) to JP{g2L, a, bu b2). Therefore, replacing Ψ

by SFf'SF, one may assume from the beginning that ψ = id.

Next, let us consider the set Jzf of all linear transformations Φ of C f

satisfying the condition

Φ{g-I(g-1x))=gΠg-ιΦ(x))

or what amounts to the same,

Jzf is clearly a linear subspace of Jz^(Cf), the vector-space of all linear endo-

morphisms of C+ into itself. Let us first consider the case where n is odd.

Then, C4" being central simple, J?f{C+) can be identified with C+0C+ by the

1} When the rationality condition as stated in Rem. 2 is satisfied, this Proposition is
an easy consequence of a density theorem of Borel.
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linear isomorphism defined by

Φn,υ(x) = UXV for X G C+.

We make g^G operate on C f (g>Ĉ " in the following manner:

u 0 v—>(gug~1) ® v.

Then, from the definition, ^f is clearly invariant under this operation of G.

On the other hand, if one denotes by Cr the homogeneous part of C of degree

r (with respect to any orthogonal basis of V), then Cr ® v (or: even, I ; G C \ I ; # 0 )

is a G-invariant subspace of Cf(g)C+, which is irreducible since the re-

presentation of g^G in this space is nothing else than the skew-symmetric

tensor representation of degree r of ψ(g) <^SO(V, S). Moreover, since n is

odd, two subspaces Cr®v, Cr>®vf (r, rf: even) are G-isomorphic if and only

if r = r'. Therefore Jzf is a direct sum of subspaces of the form Cr ® v with

v^C+. Now if CrΘvι<=Jzf with ^ ^ F O , then one has from (*)

= uxvφ[ -f e-uxυφ1

for all ΛreC+. If 0<r<n, then one can always find u-e^ #Γ which is not

commutative with ^- then {u, ue~, e-u) are linearly independent, contradicting

the above equality. Thus we should have r = 0, and so Jzf c 1 ® C+. Therefore

one can write ?Γ in the form ?Γ(#) = xυ with an invertible element υ in C f . In

the case where ^ is even, one has instead the linear isomorphism '

defined in the same way, Z denoting the center of C+ and the similar argument

as above gives us again Ψ{x) - xv with ι/ε C+. Then, in either case, the con-

ditions (14) with £2= 1 follow from (13) immediately. The converse ('if part)

is trivial, q.e.d.

It follows, in particular, that in the case where q = 2 and V and S are defined

over Q the number of equivalence-classes (with ψ = id.) of the families of the form

^ ( L , a, 1, 0) for a fixed lattice L in CQ is finite, as is easily seen from the

reduction-theory of positive elements in an involutorial algebra.

Finally we remark that similar results can be obtained, whenever one has

a group G realized as a subgroup of the unitary group of an involutorial

semisimple algebra 21, such that the linear closure of G coincides with 31, and
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a representation μ of G induced from the regular representation of $ί. Actually,

Kuga [2] considered already the case where G = SL(2, R) and where p is a

direct sum of a certain number of copies of the regular representation, with

a beautiful application to the theory of automorphic forms with respect to the

group of units of an indefinite quaternion algebra over Q.

ADDENDUM. The notation being as in the text, let V and S be both defined

over Q and let L be a lattice in CQ. In general, the (left) regular representation

P of G in C+ being Q-reducible, the abelian variety ^fgκ = (C+/L> pigMpig)'1)

is not simple in the sense of isogeny. We shall add here some indications

on the decomposition of <j*fgκ in the most important special cases. Namely,

we assume that the complex structure / is given by I(x) = e±x (which

implies that p or #=Ξ2 (mod. 4)), and consider the following two extreme

cases:

(i) the case where gK is a 'generic' point of Γ\G/K;

(ii) the case where gK corresponds to a decomposition V= V'+ + VL defined

over Q.

To begin with, it is clear that the endomorphism algebra EndQ(,V^κ) =

)ΘQ of the abelian variety <j*fgκ is the commutator algebra of

' 1 in the full linear endomorphism algebra J^Q(C+) of C+, where C+ is

viewed merely as a vector-space defined over Q. By definition, for a generic

gK, EndQ(cj?/^) coincides with the commutator algebra of {p{g)Iρ(g)"1\g^G}

in JZ^Q(C+), which by a similar argument as in the proof of Proposition 4 (or

by using the density theorem of Borel) can be proved to be consisting of all

right translations x->xv with V^CQ. Thus one has

(lδ) EnάQ(^fgκ)~CQ.

From the well-known results on the structure of Clifford algebra (see Rem. 3),

one can therefore conclude that

(16)

2 2 j / i or 2 2 J / 2 if ί i s l (2),

if n^O (2) and / ( - l ) ^

or

if n = 0 (2) and /( -1) *det($) e Q,
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where u^i (resp. c-afί, c-afί') is a simple abelian variety of dimension 2 2

(resp. 2 2 ) without complex multiplication, cjχf2 (resp. CJJ/J, .^/Π is a simple

abelian variety of dimension 2 2 (resp. 2 2 ) with endomorphism algebra

isomorphic to a central quaternion algebra over Q (which depends only on S
— -1

and not on gK), and *J4% is a simple abelian variety of dimension 2 2 with

endomorphism algebra isomorphic to Q(y (-l)~2"det(S)). Here the notation

m^4 stands for the direct product of m copies of the abelian variety <J4 and

^f-^cj^f1 means that <srf and <j*f' are isogeneous to each other.

Let us now consider the case (ii). To simplify the notation, we shall

assume g=l, and consider only the case where I(x) = e+x. Since the decom-

position V= V+ -f V- is defined over Q, we can take an orthogonal basis {e[,

. . . , e'n) of VQ with S(e'i, el) = ai in such a way that (#ί, . . . , ep) (resp.

{e'p+i, . . . , e'n)) forms a basis of (V+)Q (resp. ( F - ) Q ) . Then, e[ ep being

a scalar multiple of e±, the commutator algebra of I in J^Q(C f) is equal to
that of the left translation x-*(e[ •£/>)#, which is defined over Q. Hence, in

P(p-D

view of (eί *e'p)2= ( - l) 2 αri* •a:/*, it follows that one has

( -
p(p-l)

Therefore one concludes that

(18) ^fgK^2n~2E,

where E is an abelian variety of dimension 1 (i.e. an elliptic curve) with
/ P(p-l)

endomorphism algebra isomorphic to Q(y (-1)" 2 <xι- -ap).

In conclusion, we note that, applying a similar construction for the 'twisted*

Clifford algebra obtained from a quaternionic skewhermitian form (see C4Π),

one may obtain a family of abelian varieties whose generic member is iso-

geneous to a direct product of simple abelian varieties with endomorphism

algebra isomorphic to a central division algebra of dimension 16.
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