ON EXTENSIONS OF TRIADS

YASUTOSHI NOMURA

Dedicated to the memory of Professor Tadasi Nakayama

Introduction

As an extension of a result due to W. D. Barcus and J. P. Meyer [4], T. Ganea [8] has recently proved a theorem concerning the fibre of the extension $E \cup C F \rightarrow B$ of a fibre $\operatorname{map} p: E \rightarrow B$ to the cone $C F$ erected over the fibre F. In this paper we shall establish a generalized Ganea theorem which asserts that the homotopy type of the fibre of a canonical extension ξ^{\prime} of a triad $A \xrightarrow{f} Y \stackrel{g}{\stackrel{g}{-}} B$ (cf. [13]) is determined by those of f and g (see Theorem 3.4). This generalization yields a proof of a well-known theorem of Serre on relative fibre maps (see Corollary 3.9) and, as done by various authors (cf. [1], [10], [12]), a theorem of Blakers- Massey (see Corollary 4.4).

Our result can be used to derive a dual EHP sequence which generalizes a conditionally exact sequence established by G. W. Whitehead [15] and TsuchidaAndo [14]. The dual product introduced by M. Arkowitz ([2], [3]) allows us to describe the third homomorphism in that sequence.

Throughout this paper we will work in the category of spaces with basepoints, generally denoted by $*$, and based maps. Homotopies are assumed to respect base-points. The closed unit interval is denoted by I. Given a path $\omega: I \rightarrow X$ in X, we denote by $\omega_{u, v}$ the path defined by $\omega_{u, v}(t)=\omega((1-t) u+t v)$, where $0 \leqq u \leqq v \leqq 1$. For paths ω, τ with $\omega(1)=\tau(0)$, the path consisting of ω followed by τ will be denoted by $\omega+\tau$, and the inverse of ω by $-\omega$. As usual, Ω and S are used, respectively, to denote the loop and suspension functors. $E X$ and $C X$ denote the space of paths in X emanating from the base-point and the cone over X respectively.

We are indebted to T. Ganea for sending us a preprint of [8].

[^0]
§ 1. Preliminaries

Let $A \xrightarrow{f} Y \stackrel{g}{\square} B$ be a triad and let $E_{f, g}$ be its mapping track, as defined in [13], i.e.,

$$
E_{f, g}=\left\{(a, r, b) \in A \times Y^{1} \times B \mid f(a)=\gamma(0), g(b)=\gamma(1)\right\}
$$

with projections $P_{1}: E_{f, g} \rightarrow A, P_{2}: E_{f, g} \rightarrow B$. In particular, let E_{f}^{-}and E_{g} be, respectively, the mapping track constructed for the triads $A \xrightarrow{f} Y \stackrel{g}{\longleftrightarrow} *, * \longrightarrow Y$ $\stackrel{g}{\longleftrightarrow} B$, which are usually called the fibres of f, g.

Let $I: \Omega Y \rightarrow E_{f, g}$ be the natural injection. Then we have
Lemma 1.1. (see [13]) $I_{*}\left(\gamma_{1}\right)=I_{*}\left(\gamma_{2}\right)$ for $\gamma_{1}, \gamma_{2} \in \pi(V, \Omega Y)$ if and only if there exist $\alpha \in \pi(V, \Omega A), \beta \in \pi(V, \Omega B)$ such that $\gamma_{1}=(\Omega f)_{*}(\alpha)+\gamma_{2}+\left(\Omega_{g}\right)_{*}(\beta)$.

Now let $\gamma_{1}: E_{P_{2}} \rightarrow E_{f}, \gamma_{2}: E_{P_{1}} \rightarrow E_{g}$ be the maps induced by the following homotopy-commutative diagram

Lemma 1.2. (Dual excision theorem) χ_{1} and χ_{2} are homotopy equivalences.
Proof. We define $\Gamma_{2}: E_{g} \rightarrow E_{P_{1}}$ by $\Gamma_{2}(\beta, b)=(e ; *, \beta, b)$, where e is the constant path at the base-point of A. Then it is easily seen that Γ_{2} is a homotopy inverse of χ_{2}.

Next let the diagram

be homotopy-commutative. This induces the map $\chi: E_{f, g} \rightarrow E_{f, g^{\prime}}$ and the commutative diagram

where the vertical maps are appropriate projections.
Lemma 1.3. There exist a homeomorphism $\Xi: E_{x} \rightarrow E_{\Phi_{1}, \Phi_{2}}$ and an injection $l: \Omega E_{f}, g_{i} \rightarrow E_{\Phi_{1}, \Phi_{2}}$ such that the following diagram is homotopy commutative:

in which i and P are natural injection and projection, respectively. In particular, for a triple $A \xrightarrow{g} B \xrightarrow{h} C$, the fibre of the natural map $\%: E_{\text {hog }} \rightarrow E_{h}$ is of the same homotopy type as E_{g}.

Proof. It is sufficient to define Ξ by setting

$$
\Xi(\alpha, \tilde{\gamma}, \beta ; a, \gamma, b)=((\alpha, a),(\tilde{\gamma} \circ \tilde{h}, \gamma),(\beta, b))
$$

for $a \in A, b \in B, \gamma \in Y^{\prime}, \alpha \in E A^{\prime}, \beta \in E B^{\prime}, \tilde{\gamma} \in E\left(Y^{\prime l}\right), \gamma(0)=f(a), \gamma(1)=g(b)$, $\alpha(1)=\psi_{1}(a), \beta(1)=\psi_{2}(b)$, where $\widetilde{h}: I^{2} \rightarrow I^{2}$ is a homeomorphism indicated by the following picture:

Now, let a cotriad $A \stackrel{f}{\leftarrow} X \xrightarrow{g} B$ be given. We define its mapping cylinder $C_{f, g}$ to be the space obtained from $A \vee(X \times I) /(* \times I) \vee B$ by the identifications $f(x)=(x, 0), g(x)=(x, 1), x \in X$. The injections $I_{1}: A \rightarrow C_{f, g}, I_{2}: B \rightarrow C_{f, g}$ are obviously defined. The mapping cylinder of a cotriad $* \longleftarrow X \xrightarrow{g} B$ is denoted by C_{g}, which is usually called the cofibre of g. Any point $x \in X$ defines a path \hat{x} in $C_{f, g}, C_{g}$ or $S X$ which is given by

$$
\hat{x}(t)=(x, t), \quad 0 \leqq t \leqq 1 .
$$

Lemmas $1,1 \sim 1.3$ are dualized as follows:

Lemma 1.1'. Let $Q: C_{f, g} \rightarrow S X$ be the map defined by shrinking A and B to a point. Then $Q^{*}\left(\gamma_{1}\right)=Q^{*}\left(\gamma_{2}\right)$ for $\gamma_{1}, \gamma_{2} \in \pi(S X, V)$ if and only if there exist $\alpha \in \pi(S A, V), \beta \in \pi(S B, V)$ such that $\gamma_{1}=(S f)^{*}(\alpha)+\gamma_{2}+(S g)^{*}(\beta)$.

Lemma 1.2'. (Excision theorem) Let $\chi_{1}^{\prime}: C_{f} \rightarrow C_{I_{z}}$ and $\chi_{2}^{\prime}: C_{g} \rightarrow C_{I_{1}}$ be the maps induced by the homotopy-commutative diagram

Then χ_{1}^{\prime} and χ_{2}^{\prime} are homotopy equivalences.
Lemma 1.3'. Let the diagram

be homotopy-commutative, and let

be the associated commutative squares. Then, for the mapping $\chi^{\prime \prime}: C_{f, g} \rightarrow C_{f^{\prime}, g^{\prime}}$ induced by the above transformation, we have a homeomorphism $\Xi^{\prime}: C_{x^{\prime}} \rightarrow C_{\theta_{1}, \theta_{2}}$ such that the following diagram homotopy-commutes:

In particular, the cofibre of the natural map $C_{g} \rightarrow C_{\text {hog }}$ induced by a triple $A \xrightarrow{g} B \xrightarrow{h} C$, is of the same homotopy type as C_{h}.

The following lemmas will be needed in the later sections.
Lemma 1.4. Let $\bar{f}: Y \rightarrow \Omega X$ be the map adjoint to $f: S Y \rightarrow X$, and suppose that f and X are, respectively, m - and n-connected. Then \bar{f} is $\min (2 n, m)$-connected.

Proof. By Lemma (4.1) of Berstein-Hilton [6], we have the commutative diagram

where σ is the homology suspension. Since σ is onto for $i \leqq 2 n+1$ and monomorphic for $i \leqq 2 n$, we obtain the desired conclusion.

Lemma 1.5. Suppose we are given $f: S Y \rightarrow X$ and its adjoint $\bar{f}: Y \rightarrow \Omega X$ and let \bar{f}, Y be, respectively, m-, n-connected. Then f is $[\min (m, 2 n+2)+1]$ connected.

Proof. It is sufficient to observe that, in the following commutative diagram, the homotopy suspension E is onto for $i \leqq 2 n+2$ and monomorphic for $i \leqq 2 n+1$:

§ 2. Joins and cojoins

Given a triad $A \xrightarrow{i_{1}} A \vee B \stackrel{i_{2}}{\leftarrow} B$ consisting of inclusions, we denote its mapping track $E_{i_{1}, i_{2}}$ by $A \hat{*} B$, which is called the cojoin of A and B (cf. [2]. Hilton uses the notation $A *^{\prime} B$ in [9, p. 238]). We have the diagram

Let $A b B$ be the flat product of A and B, i.e., the fibre E_{J} of the injection $J: A \vee B \rightarrow A \times B$. Thus the sequence

$$
A \mathrm{~b} B \xrightarrow{L} A \vee B \xrightarrow{J} A \times B
$$

is essentially a fibre triple.
Lemma 2.1. p_{1} and p_{2} are null-homotopic.
Proof. Let $r: A \vee B \rightarrow A$ be the retraction resulting from shrinking B to base-point. Note that $A \hat{*} B$ is the space of paths in $A \vee B$ which emanate from A and end in B, and that p_{1} is the fibre map which assigns to each path the starting point. Then we can readily see that a null-homotopy $p_{1} \simeq 0$ is generated by the correspondence $(\gamma, t) \rightarrow \boldsymbol{r} \gamma(t), 0 \leqq t \leqq 1, \gamma \in A \hat{*} B$.

In the light of Lemma 2.1, we have exact rows in the following diagram

$$
\begin{gathered}
\pi_{k}(\Omega A) \oplus \pi_{k}(\Omega B) \xrightarrow{i_{1 *}+i_{2 *}} \pi_{k}(\Omega(A \vee B)) \xrightarrow{I_{*}} \pi_{k}(A \hat{*} B) \longrightarrow 0 \\
\downarrow \approx \\
\pi_{k}(\Omega(A \times B)) \longleftarrow \stackrel{(\Omega J)_{*}}{\longleftarrow} \pi_{k}(\Omega(A \vee B)) \stackrel{(\Omega L)_{*}}{\longleftrightarrow} \pi_{k}(\Omega(A b B)) \longleftarrow 0
\end{gathered}
$$

Since the composition $(\Omega J)_{*^{\circ}}\left(i_{1 *}+i_{2 *}\right)$ is the direct sum representation, it follows by a routine argument (cf. [8, the proof of Theorem 3.2]) that $I_{*} \circ(\Omega L)_{*}$ is bijective. Hence we have established

Proposition 2.2. ([2, p. 22]) $I \circ(\Omega L): \Omega(A b B) \rightarrow A \hat{*} B$ is a weak homotopy equivalence.

Corollary 2.3. Suppose that A is m-connected and B-connected. Then $A \hat{*} B$ is $(m+n-1)$-connected.
M. Arkowitz ($[2,3]$) has defined the dual product $[\alpha, \beta]$ of $\alpha \in \pi(V, \Omega A)$ and $\beta \in \pi(V, \Omega B)$ to be the unique element $\gamma \in \pi(V, \Omega(A b B))$ such that $(\Omega L)_{*}$ $(\gamma)=-\left(\Omega i_{1}\right)_{*}(\alpha)-\left(\Omega i_{2}\right)_{*}(\beta)+\left(\Omega i_{1}\right)_{*}(\alpha)+\left(\Omega i_{2}\right)_{*}(\beta)$. Further, we denote the element $I_{*}\left(-\left(\Omega i_{2}\right)_{*}(\beta)+\left(\Omega i_{1}\right)_{*}(\alpha)\right) \in \pi(V, A \hat{*} B)$ by $\langle\alpha, \beta\rangle$, and call it the
cojoin product of α and β. This is nothing but the second dual product $[\alpha, \beta]^{\prime}$ defined in [2].

Proposition 2.4. ([2, p. 22]) The weak homotopy equivalence $I \circ(\Omega L)$ sends $[\alpha, \beta]$ to $\langle\alpha, \beta\rangle$.

Proof. This is easily seen by noting, in view of Lemma 1.1, that

$$
\begin{aligned}
I_{*}\left(-\left(\Omega i_{1}\right)_{*}(\alpha)-\left(\Omega i_{2}\right)_{*}(\beta)+\left(\Omega i_{1}\right)_{*}(\alpha)\right. & \left.+\left(\Omega i_{2}\right)_{*}(\beta)\right) \\
& =I_{*}\left(-\left(\Omega i_{2}\right)_{*}(\beta)+\left(\Omega i_{1}\right)_{*}(\alpha)\right) .
\end{aligned}
$$

Now let $\bar{f}: V \rightarrow \Omega A, \bar{g}: V \rightarrow \Omega B$ be representatives of α, β and let $f: S V$ $\rightarrow A, g: S V \rightarrow B$ be adjoint to \bar{f}, \bar{g} respectively. f and g obviously induce the map $\hat{f} \hat{\not} g: S V \hat{*} S V \rightarrow A \hat{*} B$. Let $\varepsilon: V \rightarrow \Omega S V$ be the natural injection defined by $\varepsilon(v)=\hat{v}, v \in V$, With these notations we have

Lemma 2.5. $(f \hat{*} g)_{*}\langle\varepsilon, s\rangle=\langle\alpha, \beta\rangle$.
Proof. This follows from the fact that $\alpha=\left(\Omega f^{\prime}\right)_{*}(\varepsilon), \beta=(\Omega g)_{*}(\varepsilon)$ and from commutativity of the diagram

We mention here the relationship between the cup-product and the cojoin product. Let A, B be the Eilenberg. MacLane spaces $K\left(G_{1}, p+1\right), K\left(G_{2}, q+1\right)$ respectively. Let

$$
\iota \in H^{p+q}(A \hat{*} B ; G) \approx \operatorname{Hom}\left(H_{p+q}(\Omega(A b B)) ; G\right) \approx \operatorname{Hom}(G, G)
$$

be the cohomology class corresponding to the identity homomorphism of G, where G is the tensor product $G_{1} \otimes G_{2}$. Then Arkowitz [3] has proved

Proposition 2.6. $\langle\alpha, \beta\rangle^{*}(\ell)=\alpha \cup \beta$ for $\alpha \in H^{p}\left(V ; G_{1}\right), \beta \in H^{q}\left(V ; G_{2}\right)$.
Dually, the join $A * B$ of A, B is defined to be the mapping cylinder $C_{p_{1}, p_{2}}$ of the cotriad $A \stackrel{p_{1}}{\leftarrow} A \times B \xrightarrow{p_{2}} B$, where p_{1}, p_{2} are the projections. Any point of $A * B$ is represented by the symbol $(1-t) a \oplus t b, a \in A, b \in B, 0 \leqq t \leqq 1$. We have the diagram

in which $j_{1} \simeq 0$ and $j_{2} \simeq 0$. Also, if we denote the cofibre of $A \vee B \xrightarrow{J} A \times B$ by $A \# B$, we have a cofibre sequence

$$
A \vee B \xrightarrow{J} A \times B \xrightarrow{K} A \# B .
$$

Applying the same argument as in the proof of Proposition 2.2 to the diagram

$$
\begin{gathered}
0 \rightarrow H_{k}(A * B) \xrightarrow{Q_{*}} H_{k}(S(A \times B)) \xrightarrow{\left\{\left(S p_{1}\right)_{*},\left(S p_{2}\right)_{*}\right\}} H_{k}(S A) \oplus H_{k}(S B) \\
0 \leftarrow H_{k}(S(A \# B)) \stackrel{(S K)_{*}}{\leftarrow} H_{k}(S(A \times B)) \stackrel{(S J)_{*}}{\leftarrow} H_{k}(S A \vee S B),
\end{gathered}
$$

we obtain.
Proposition 2.2'. (SK) $\circ Q: A * B \rightarrow S(A \# B)$ is a weak homotopy equivalence.
Now recall that the generalized Samelson product $\langle\langle\alpha, \beta\rangle\rangle \in \pi(S(A \vee B), V)$ of $\alpha \in \pi(S A, V)$ and $\beta \in \pi(S B, V)$ is defined to be the unique element γ such that $q^{*}(\gamma)=-\left(S p_{1}\right)^{*}(\alpha)-\left(S p_{2}\right)^{*}(\beta)+\left(S p_{1}\right)^{*}(\alpha)+\left(S p_{2}\right)^{*}(\beta)$ in the exact sequence

$$
0 \leftarrow \pi(S A \vee S B, V) \leftarrow \pi(S(A \times B), V) \stackrel{q^{*}}{\leftarrow} \pi(S(A \wedge B), V) \leftarrow 0
$$

where $A \wedge B$ is the smashed product $A \times B / A \vee B$ and $q: S(A \times B) \rightarrow S(A \wedge B)$ is the identification map. Note that, in this argument, A and B are assumed to have non-degenerate base-point. The generalized Whitehead product $[\alpha, \beta]$ is defined to be the element $Q^{*}\left(-\left(S p_{2}\right)^{*}(\beta)+\left(S p_{1}\right)^{*}(\alpha)\right) \in \pi(A * B, V)$. We see from Lemma 1.1^{\prime} that the homotopy equivalence $A * B \rightarrow S(A \wedge B)$ transforms $\langle\langle\alpha, \beta\rangle\rangle$ to $[\alpha, \beta]$.

We shall need, in $\S 5$, the map $W: \Omega A * \Omega B \rightarrow B \mathrm{~b} A$ which is defined by

$$
W((1-t) \alpha \oplus t \beta)= \begin{cases}\beta_{0,2}+\alpha, & 0 \leqq 2 t \leqq 1 \tag{2.7}\\ \beta \times \alpha_{0,2-2 t}, & 1 \leqq 2 t \leqq 2 .\end{cases}
$$

for $\alpha \in \Omega A, \beta \in \Omega B$. Then the following lemma is well-known (cf. [8, §2]).
Lemma 2.8. W is a weak homotopy equivalence.
Dually, we define $W^{\prime}: A \# B \rightarrow S A \hat{*} S B$ as follows:

$$
\begin{align*}
W^{\prime}(a, b)(t) & = \begin{cases}(b, 1-2 t), & 0 \leqq 2 t \leqq 1, \\
(a, 2 t-1), & 1 \leqq 2 t \leqq 2,\end{cases} \\
W^{\prime}\left(a, b_{0}, s\right)(t) & = \begin{cases}(a, 1-s), & 0 \leqq 2 t \leqq 1, \\
(a, 1-2 s+2 s t), & 1 \leqq 2 t \leqq 2,\end{cases} \tag{2.9}\\
W^{\prime}\left(a_{0}, b, s\right)(t) & = \begin{cases}(b, 1-2 s t), & 0 \leqq 2 t \leqq 1, \\
(b, 1-s), & 1 \leqq 2 t \leqq 2,\end{cases}
\end{align*}
$$

for $a \in A, b \in B, 0 \leqq s \leqq 1$. I regret to say that I was unable to show the dual of Lemma 2.8, but we will content ourselves with a partial result (see Corollary 5.10).

§ 3. Extensions of triads

Let the diagram

be associated with a triad $A \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longleftrightarrow} B$, and consider the mapping cylinder $C_{P_{1}, P_{2}}$ of the cotriad $A \stackrel{P_{1}}{\longleftrightarrow} E_{f, g} \xrightarrow{P_{2}} B$. We define the natural extension

$$
\xi^{\prime}: C_{P_{1}, P_{2}} \rightarrow Y
$$

of the triad $(f: g)$ over $C_{P_{1}, P_{2}}$ by setting

$$
\xi^{\prime}(a, \gamma, b ; t)=\gamma(t), \xi^{\prime}(a)=f(a), \xi^{\prime}(b)=g(b)
$$

for $a \in A, b \in B, r \in Y^{1}, 0 \leqq t \leqq 1$.
Next, let $f \vee g: A \vee B \rightarrow Y$ be the map determined by f and g, i.e., the composite $A \vee B \xrightarrow{f \vee g} Y \vee Y \xrightarrow{\nabla} Y$, where ∇ is the folding map. We define

$$
\eta^{\prime}: S E_{f, g} \rightarrow C_{f \vee g}
$$

by setting, for $(a, \gamma, b) \in E_{f, g}, 0 \leqq s \leqq 1$,

$$
\eta^{\prime}(a, r, b ; s)= \begin{cases}(a, 4 s) \in C A, & 0 \leqq 4 s \leqq 1 \\ r\left(\frac{4 s-1}{2}\right) \in Y, & 1 \leqq 4 s \leqq 3 \\ (b, 4-4 s) \in C B, & 3 \leqq 4 s \leqq 4\end{cases}
$$

Introduce the homotopy-commutative diagram

in which ζ^{\prime} is the map induced by the upper square and the unlabelled arrows denote the appropriate injections and identification.

The following proposition is an extension of Proposition 1.6 of Ganea [8].
Proposition 3.3. $\zeta^{\prime}: C_{\xi^{\prime}} \rightarrow C_{\eta^{\prime}}$ is a homotopy equivalence.
Proof. ζ^{\prime} is given explicitly as follows: if $2 s \leqq 1$, then

$$
\begin{aligned}
& \zeta^{\prime}(y)=y \in Y, \zeta^{\prime}(a, s)=*, \zeta^{\prime}(b, s)=*, \\
& \zeta^{\prime}(a, \gamma, b, t ; s)=(a, \gamma, b, t ; 2 s) ;
\end{aligned}
$$

if $2 s \geqq 1$, then

$$
\begin{aligned}
& \zeta^{\prime}(y)=y \in Y, \zeta^{\prime}(a, s)=(a, 2 s-1) \in C_{f \vee g}, \\
& \zeta^{\prime}(b, s)=(b, 2 s-1), \\
& \zeta^{\prime}(a, r, b, t ; s)= \begin{cases}(a, 4 t+2 s-1) \in C_{f \vee g}, & 0 \leqq t \leqq \frac{1-s}{2} \\
r\left(\frac{2 t+s-1}{2 s}\right), & \frac{1-s}{2} \leqq t \leqq \frac{1+s}{2} \\
(b, 3+2 s-4 t) \in C_{f \vee g}, & \frac{1+s}{2} \leqq t \leqq 1 .\end{cases}
\end{aligned}
$$

for cone parameter s and cylinder one t. We consider $\varepsilon^{\prime}: C_{\eta^{\prime}} \rightarrow C_{\xi^{\prime}}$ given by

$$
\begin{aligned}
& \varepsilon^{\prime}(y)=y, \varepsilon^{\prime}(a, s)=(a, s), \varepsilon^{\prime}(b, s)=(b, s), \\
& \varepsilon^{\prime}(a, r, b, u ; s)= \begin{cases}\left(a, r, b, \frac{1-s}{4} ; 4 u\right), & 0 \leqq 4 u \leqq s, \\
\left(a, r, b, \frac{2 u(1+s)+1-2 s}{4-2 s} ; s\right), & s \leqq 4 u \leqq 4-s, \\
\left(a, r, b, \frac{s+3}{4} ; 4-4 u\right), & 4-s \leqq 4 u \leqq 4\end{cases}
\end{aligned}
$$

for suspension parameter u. It is a troublesome but routine matter to verify that ε^{\prime} is a homotopy inverse of ζ^{\prime}.

One of the main objects in this section is to prove the following theorem which generalizes Theorem 1.1 in [8].

Theorem 3.4. The fibre E_{ξ}, of $\xi^{\prime}: C_{P_{1}, P_{2}} \rightarrow Y$ has the same homotopy type as the join $E_{\bar{f}} * E_{g}$ of the fibres of f and g.

Proof. We define $F: E_{\bar{f}} * E_{g} \rightarrow E_{\bar{\xi}}$, and $G: E_{\bar{\xi}} \rightarrow E_{\bar{f}} * E_{g}$ by setting, for $a \in A, b \in B, \alpha, \beta, \gamma, \tau \in Y^{t}, 0 \leqq t \leqq 1$,

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
F(a, \alpha)=(-\alpha ; a), F(\beta ; b)=(\beta ; b) \\
\left.F((1-t)(a, \alpha) \oplus t(\beta, b))=\left\{\begin{array}{ll}
\left(-\alpha_{2} t, 1\right.
\end{array}\right) a, \alpha+\beta, b, t\right), \\
\left(\beta_{0,2 t-1} ; a, \alpha+\beta, b, t\right), \\
1 \leqq 2 t \leqq 2,
\end{array}\right. \tag{3.5}\\
G(\tau ; a)=\left(a, e_{\tau(1)}-\tau\right), G(\tau ; b)=\left(\tau+e_{\tau(1)}, b\right),
\end{array}\right\} \begin{aligned}
& G(\tau ; a, \gamma, b, t)=(1-t)(a, \gamma 0, t-\tau) \oplus t(\tau+\gamma t, 1, b),
\end{aligned}
$$

where e_{x} denotes the constant path at x.
$G \circ F$ can be deformed into the identity via a homotopy $\Phi_{u}, 0 \leqq u \leqq 2$, whose value $\Phi_{u}((1-t)(a, \alpha) \oplus t(\beta, b))$ is given by setting, if $0 \leqq 2 \leqq 1,0 \leqq u \leqq 1$,

$$
(1-t)\left(a, \alpha_{0,2}+\alpha_{2 t, 1}\right) \oplus t\left(-\alpha_{2(1-u) t+u, 1}+(\alpha+\beta)_{(1-u) t+\frac{u}{2}, 1}, b\right) ;
$$

if $1 \leqq 2 t \leqq 2,0 \leqq u \leqq 1$,

$$
(1-t)\left(a,(\alpha+\beta)_{0,1-u) t+\frac{u}{2}}-\beta_{0,(1-u)(2 t-1)}\right) \oplus t\left(\beta_{0,2 t-1}+\beta_{2 t-1,1}, b\right) ;
$$

if $0 \leqq 2 t \leqq 1,1 \leqq u \leqq 2$,
$(1-t)\left(a, \alpha_{\left.0,2 t(2-u)+\frac{u-1}{2}+\alpha_{2 t(2-u)+} \frac{u-1}{2}, 1\right) \oplus t\left(\beta_{0}, \frac{u-1}{2}+\beta \frac{u-1}{2}, 1, b\right) ; ~ ; ~ ; ~}^{\text {a }}\right.$
if $1 \leqq 2 t \leqq 2,1 \leqq u \leqq 2$,

$$
(1-t)\left(a, \alpha_{0, \frac{3-u}{2}}^{2}+\alpha \frac{3-u}{2}, 1\right) \oplus t\left(\beta_{0,(2 t-1)(2-u)+\frac{u-1}{2}}+\beta_{\left.(2 t-1)(2-u)+\frac{u-1}{2}, b\right) .} .\right.
$$

$F \circ G \simeq 1$ is verified by taking a homotopy $\Psi_{u}, 0 \leqq u \leqq 2$, whose value $\Psi_{u}(\tau$; $a, \gamma, b, t)$ is, if $0 \leqq u \leqq 1$,

$$
\left(\delta ; a,\left(\gamma_{0, t}-\tau\right)_{0,1-\frac{u}{2}}+(\tau+\gamma t, 1) \frac{u}{2}, 1, b, t\right)
$$

where

$$
\delta= \begin{cases}-\left(\gamma_{0, t}-\tau\right)_{2 t-u t, 1} & 0 \leqq 2 t \leqq 1, \\ (\tau+\gamma t, 1)_{0,(1-t, u+2 t-1} & 1 \leqq 2 t \leqq 2 ;\end{cases}
$$

if $1 \leqq u \leqq 2$,

$$
\left(\varepsilon ; a, \gamma_{0,(2-u) t}+\frac{u-1}{2}+\gamma_{(2-u) t} \frac{u-1}{2}, 1, b, t\right)
$$

where

$$
\varepsilon= \begin{cases}-\left(\gamma_{0, t}-\tau\right)_{(2-u) t+\frac{u-1}{2}, 1} & 0 \leqq 2 t \leqq 1 \\ \left(\tau+\gamma_{t, 1}\right)_{0,(2-u) t+\frac{u-1}{2}} & 1 \leqq 2 t \leqq 2\end{cases}
$$

Thus the proof of Theorem 3.4 is complete.
The composition $E_{f}^{\bar{f}} * E_{g} \xrightarrow{F} E_{\xi} \longrightarrow C_{P_{1}, P_{2}}$ will be denoted by $j: E_{f}^{-} * E_{g} \rightarrow C_{P_{1}, P_{2}}$. This is given by

$$
\begin{equation*}
j((1-t)(a, \alpha) \oplus t(\beta, b))=(a, \alpha+\beta, b ; t) \tag{3.6}
\end{equation*}
$$

Consequently, the sequence

$$
E_{f}^{-} * E_{g} \xrightarrow{j} C_{P_{2}, P_{z}} \xrightarrow{\xi^{\prime}} Y
$$

is essentially the fibre triple.
Combining Theorem 3.4 with Proposition 3.3 we obtain
Corollary 3.7. Suppose that f is p-connected and g-connected. Then ξ^{\prime} and η^{\prime} are both $(p+q+1)$-connected.

Remark As in Proposition 1.5 of [8], there exists a map $\Gamma: \Omega Y \rightarrow \Omega C_{P_{1}, P_{2}}$ such that $\Omega \xi^{\prime} \circ \Gamma=$ identity. It is sufficient to define I by $\Gamma(\omega)(t)=(*, \omega, * ; t)$. Note that the diagram

is commutative, in which $\bar{\sigma}$ is the canonical injection
Now we shall deduce the well known theorem of Serre on relative fibre maps from Corollary 3.7. For this purpose we prove.

Theorem 3.8. Let $\Phi_{1}: C_{P_{1}} \rightarrow C_{g}$ and $\Phi_{2}: C_{P_{2}} \rightarrow C_{f}$ be the maps induced by the homotopy-commutative diagram (3.1). Then the cofibres of Φ_{1} and Φ_{2} have the same homotopy type as those of ξ^{\prime}.

Proof. Let the diagram

be associated with the cotriad P_{1}, P_{2}. Using this, the maps $\chi_{1}^{\prime}: C_{P_{1} \rightarrow C} C_{i_{2}}$ and $\chi_{2}^{\prime}: C_{P_{2}} \rightarrow C_{i_{1}}$ are obviously defined. On the other hand, $\xi^{\prime}: C_{P_{1}, P_{2}} \rightarrow Y$ determines the maps $k_{1}: C_{i_{2}} \rightarrow C_{g}$ and $k_{2}: C_{i_{1}} \rightarrow C_{f}$. We see easily that the compositions $k_{1} \circ \chi_{1}^{\prime}$ and $k_{2} \circ \chi_{2}^{\prime}$ coincide with $\mathscr{\Phi}_{1}$ and Φ_{2}, respectively. Since both $C_{k_{1}}$ and $C_{k_{2}}$ are equivalent to $C_{\xi^{\prime}}$ by Lemma 1.3^{\prime}, and since χ_{1}^{\prime} and χ_{2}^{\prime} are homotopy equivalences by Lemma 1.2^{\prime}, we conclude that $C_{\Phi_{1}}$ and $C_{\Phi_{2}}$ are equivalent to $C_{\xi^{\prime}}$, which completes the proof.

Corollary 3.9. (Serre theorem on relative fibre maps) Suppose that f is p-connected and $g q$-connected, and that g is a fibration. Let $\bar{\Phi}_{1}: C_{\pi_{1}} \rightarrow C_{g}, \bar{\Phi}_{2}$: $C_{\pi_{2}} \rightarrow C_{f}$ be the maps determined by the commutative square:

where $\operatorname{Ker}(f: g)$ is the fibre space induced from g by f. Then \bar{D}_{1} and $\bar{\emptyset}_{2}$ are ($p+q+1$)-connected.

This follows from Corollary 3.7 and Theorem 3.8, observing that $\overline{\mathscr{D}}_{1}$ and $\bar{\Phi}_{2}$ are, respectively, equivalent to Φ_{1} and Φ_{2} of Theorem 3.8.

Theorem 3.10. Suppose that f is p-connected and g-connected. Let V be a 1 -connected space such that $\pi_{i}(V)=0$ for $i \geqq p+q+1$. If A, B, Y and V have the homotopy type of $C W$-complexes, then the following sequence is exact:

§ 4. Lifting cotriads

Let $A \stackrel{f}{\longleftrightarrow} X \xrightarrow{g} B$ be a cotriad and let

be the associated diagram. Consider the mapping track $E_{1_{1}, l_{2}}$ of the triad I_{1}, I_{2} and let $f \Delta g: X \rightarrow A \times B$ be the composition $X \xrightarrow{\Delta} X \times X \xrightarrow{f \times g} A \times B$, where Δ is the diagonal injection. We define $\xi: X \rightarrow E_{L_{1}, l_{2}}$ and $\eta: E_{f \Delta g} \rightarrow \Omega C_{f, g}$ by setting, for $x \in X, \alpha \in E A, \beta \in E B$,

$$
\begin{aligned}
& \xi(x)=(f(x), \hat{x}, g(x)), \quad \hat{x}(s)=(x, s) \in X \times I \subset C_{f, g} \\
& \eta(x, \alpha \times \beta)(s)= \begin{cases}\alpha(4 s), & 0 \leqq 4 s \leqq 1, \\
\left(x, \frac{4 s-1}{2}\right), & 1 \leqq 4 s \leqq 3, \\
\beta(4-4 s), & 3 \leqq 4 s \leqq 4 .\end{cases}
\end{aligned}
$$

Introduce the following homotopy-commutative diagram

in which I is the injection and ζ is the map induced by the lower (homotopycommutative) square

Proposition 4.2. $\zeta: E_{\eta} \rightarrow E_{末}$ is a homotopy equivalence.
As shown in [12], we can deduce the Blakers-Massey theorem on excisive triads from the Serre theorem on relative fibre maps. For this purpose we prove

Theorem 4.3. Suppose that f is p-connected and g-connected. Then ξ and η are $(p+q-1)$-connected.

Proof. We consider the homotopy-commutative diagram

in which the square is associated with the triad I_{1}, I_{2}. By Lemma $1.2^{\prime}, I_{2}$ and I_{1} are, respectively, p - and q-connected. Applying Theorem 3.8 to the above square, the map

$$
\chi: C_{D_{1}} \rightarrow C_{I_{2}}
$$

induced by the above homotopy-commutative square, is $(p+q+1)$-coanected.
Now it is easily seen that the composition

$$
C_{f} \longrightarrow C_{p_{1}} \xrightarrow{\chi} C_{L_{2}},
$$

in which the first map is determined by ξ, coincides with the homotopy equivalence $\chi_{1}^{\prime}: C_{f} \rightarrow C_{1_{2}}$ of Lemma 1.2'. Thus, $C_{f} \rightarrow C_{p_{1}}$ is $(p+q)$-connected, and therefore, by resorting to Proposition 4.2 and the sequence

$$
C_{\xi} \rightarrow C_{f} \rightarrow C_{p_{1}} \rightarrow S C_{\xi} \rightarrow S C_{f} \rightarrow S C_{p_{1}} \rightarrow \cdots,
$$

we can infer that ξ and η are $(p+q-1)$-connected.
Suppose further that g is a cofibration and

is the associated commutative diagram, where Coker $\langle f: g\rangle$ is the space obtained from $A \vee B$ by the identification $f(x)=g(x), x \in X$. Let

$$
\bar{\eta}: E_{f \Delta g} \rightarrow \Omega \text { Coker }\langle f: g\rangle
$$

be the map given by $\bar{\eta}=\Omega q \circ \eta$, where $q: C_{f, g} \rightarrow \operatorname{Coker}\langle f: g\rangle$ is the canonical equivalence. Note that, since g is an inclusion, $E_{f \Delta g}$ can be identified with the space consisting of $(\alpha, \beta) \in E A \times E B$ such that $i_{1} \alpha(1)=i_{2} \beta(1)$, i.e., the space $S_{i_{1}, i_{2}}$ as defined in [13].

Since $\bar{\eta}$ is homotopic to $m: S_{i_{1}, i_{2} \rightarrow \Omega}$ Coker $\langle f: g\rangle$ which is given by

$$
m(\alpha, \beta)=\left(\Omega i_{1}\right)(\alpha)-\left(\Omega i_{2}\right)(\beta)
$$

and since the sequence

$$
\pi_{k}\left(\Omega^{2} \operatorname{Coker}\langle f: g\rangle\right) \rightarrow \pi_{k}\left(T_{i_{1}, i_{2}}\right) \rightarrow \pi_{k}\left(S_{i_{1}, i_{2}}\right) \xrightarrow{m_{*}} \pi_{k}(\Omega \text { Coker }\langle f: g\rangle)
$$

is exact by Proposition 3.3 of [13], where $T_{i_{1}, i_{2}}$ is the subspace of $E A \times E B \times$ $E E$ Coker $\langle f: g\rangle$ consisting of $(\alpha, \beta, \tilde{\gamma})$ such that $\tilde{\gamma}(s, 1)=i_{1} \alpha(s), \tilde{r}(1, t)=i_{2} \beta(t)$, it follows

Corollary 4.4. (Blakers-Massey) If f and g are, respectively, p - and q connected, and if g is a cofibration, then $T_{i_{1}, i_{2}}$ is $(p+q-2)$-connected.

Corollary 4.5. Suppose that f is p-connected and $g q$-connected. Then, for any $C W$ complex V with $\operatorname{dim} V \leqq p+q-2$, the following sequence is exact:

$$
\pi\left(V, \Omega C_{f, g}\right) \longrightarrow \pi(V, X) \underbrace{f_{*}}_{g_{*}} \pi(V, B, B)
$$

The dual of Theorem 3.8 is stated as follows:
Theorem 4.6. Let $\Phi_{1}^{\prime}: E_{g} \rightarrow E_{1_{1}}$ and $\varpi_{2}^{\prime}: E_{f} \rightarrow E_{1_{2}}$ be the maps induced by the homotopy-commutative square (4.1). Then the fibres of Φ_{1}^{\prime} and Φ_{2}^{\prime} are homo-topy-equivalent to those of ξ.

§ 5. The dual EHP sequence

In this section we construct, for a triad $A \xrightarrow{f} Y \stackrel{g}{\leftarrow} B$, a dual of the EHP sequence and examine its behaviour. The dual EHP cohomology sequence was first defined by G. W. Whitehead [15] and has been extended by TsuchidaAndo [14].

First, consider the map $\mu: E_{f}^{-} \times E_{g} \rightarrow E_{f, g}$ defined by

$$
\mu((a, \alpha),(\beta, b))=(a, \alpha+\beta, b)
$$

for $a \in A, b \in B,-\alpha, \beta \in E Y$, and the "projections" $\Pi_{1}: E_{f}^{-} \times E_{g} \rightarrow E_{f, g}, \Pi_{2}$: $E_{f}^{-} \times E_{g} \rightarrow E_{f, g}$ defined by

$$
\begin{aligned}
& \Pi_{1}((a, \alpha),(\beta, b))=(a, \alpha, *) \\
& \Pi_{2}((a, \alpha),(\beta, b))=(*, \beta, b)
\end{aligned}
$$

We say that an element $\rho \in \pi\left(S E_{f, g}, V\right)$ is primitive with respect to μ if and only if $(S \mu)^{*}(\rho)=\left(S I_{1}\right)^{*}(\rho)+\left(S I_{2}\right)^{*}(\rho)$.

Now let

$$
q: E_{f}^{-} * E_{g} \rightarrow S\left(E_{f}^{-} \times E_{g}\right)
$$

be the map which shrinks to a point the ends of the join. We have a map

$$
\mathscr{H}=Q^{\circ} j: E_{f}^{-} * E_{g} \rightarrow S E_{f, g},
$$

where $j: E_{f}^{-} * E_{g} \rightarrow C_{P_{1}, P_{2}}$ and $Q: C_{P_{1}, P_{2}} \rightarrow S E_{f, g}$ are defined in (3.6), (3.2). Then we see at once that $\mathscr{M}=(S \mu) \circ q$. Note that \mathscr{H} is equivalent to the map obtained from μ by the Hopf construction. The following lemma allows us to call \mathscr{I}^{*} the dual Hopf invariant associated with the triad f, g.

Lemma 5.1. (cf. [10, Theorem 1]) $\rho \in \pi\left(S E_{f, g}, V\right)$ is primitive with respect to μ if and only if $\mathscr{A}^{*}(\rho)=0$.

Proof. We consider the diagram associated with the join $E_{f}^{-} * E_{g}$:

$$
\pi\left(E_{\bar{f}, *}^{-} E_{g}, V\right) \stackrel{q^{*}}{\leftarrow} \pi\left(S\left(E \bar{f} \times E_{g}\right), V\right) \underbrace{\left(S p_{1}\right)^{*}}_{\left(S p_{2}\right)^{*}} \pi\left(S E_{g}, V\right) .
$$

Then, by Lemma $1.1^{\prime}, q^{*} \circ(S \mu)^{*}(\rho)=0$ if and only if there exist $\alpha \in \pi\left(S E_{f}^{-}, V\right)$, $\beta \in \pi\left(S E_{g}, V\right)$ such that

$$
(S \mu)^{*}(\rho)=\left(S p_{1}\right)^{*}(\alpha)+\left(S p_{2}\right)^{*}(\beta) .
$$

Suppose first that the latter equality holds. We denote the injections $E_{f}^{-} \rightarrow E_{f}^{-} \times E_{g}, E_{g} \rightarrow E_{f}^{-} \times E_{g}$ by i_{1}, i_{2} respectively. Applying $\left(S p_{1}\right)^{*}\left(S i_{1}\right)^{*}$ to both sides, we obtain $\left(S \Pi_{1}\right)^{*}(\rho)=\left(S p_{1}\right)^{*}(\alpha)$. Similarly, $\left(S I_{2}\right)^{*}(\rho)=\left(S p_{2}\right)^{*}(\beta)$. This proves that ρ is primitive.

Conversely, since $\Pi_{k}=\left(\Pi_{k} \circ i_{k}\right) \circ p_{k}, k=1,2$, "primitive" implies the existence of α, β such that $(S \mu)^{*}(\rho)=\left(S p_{1}\right)^{*}(\alpha)+\left(S p_{2}\right)^{*}(\beta)$. q.e.d.

We now describe an approximation to the fibre and cofibre of ξ^{\prime} by means of the cofibres of f, g. Let

$$
\mu^{\prime}: C_{P_{1}, P_{2}} \rightarrow C_{P_{1}} \vee C_{P_{2}}
$$

be the map obtained by shrinking the "center" $E_{f, g} \times \frac{1}{2}$ of the cylinder part of $C_{P_{1}, P_{2}}$, and let $\mathscr{\Phi}_{1}: C_{P_{1}} \rightarrow C_{g}, \mathscr{\emptyset}_{2}: C_{P_{2}} \rightarrow C_{f}$ be as in Theorem 3.8. Let

$$
k_{1}: Y \rightarrow C_{f} \text { and } k_{2}: Y \rightarrow C_{g}
$$

denote natural injections and let

$$
\sigma_{1}: E_{f}^{-} \rightarrow \Omega C_{f} \quad \text { and } \quad \sigma_{2}: E_{g} \rightarrow \Omega C_{g}
$$

denote the (Freudenthal) suspension maps given by

$$
\begin{equation*}
\sigma_{1}(a, \alpha)=-\alpha-\hat{a}, \quad \sigma_{2}(\beta, b)=\beta-\hat{b} \tag{5.2}
\end{equation*}
$$

for $a \in A, b \in B, \alpha, \beta \in Y^{I}$.
Introduce the diagram

where W is the map defined in (2.7) and Δ is the diagonal injection. That homotopy-commutativity holds in the middle square, i.e., $\left(k_{2} \times k_{1}\right) \circ \Delta \circ \xi^{\prime} \simeq J^{\circ}$ $\left(\mathscr{D}_{1} \vee \mathscr{\emptyset}_{2}\right) \circ \mu^{\prime}$, can be verified by taking the following homotopy:

$$
\begin{align*}
& (a, \gamma, b ; t) \rightarrow[(\gamma-\hat{b})+*]\left(\frac{t+3 u t}{4}\right) \times[*+(\hat{a}+\gamma)]\left(\frac{t+3 u t+3-3 u}{4}\right) \tag{5.4}\\
& a \rightarrow f(a) \times[*+(\hat{a}+\gamma)]\left(\frac{3-3 u}{4}\right), b \rightarrow[(\gamma-\hat{b})+*]\left(\frac{1+3 u}{4}\right) \times g(b)
\end{align*}
$$

where $0 \leqq u \leqq 1, a \in A, b \in B, \gamma \in Y^{t}, 0 \leqq t \leqq 1$. Therefore the map θ is induced so that the right square be commutative. Moreover, using (3.6), (5.2) and (2.7), we can verify the following:
$\left[\left(\Phi_{1} \vee \Phi_{2}\right) \circ \mu^{\prime} \circ j\right]((1-s)(a, \alpha) \oplus s(\beta, b))= \begin{cases}(\alpha+\beta)(4 s) \in C_{g} & 0 \leqq 4 s \leqq 1, \\ (b, 2-4 s) \in C_{g} & 1 \leqq 4 s \leqq 2, \\ (a, 4 s-2) \in C_{f} & 2 \leqq 4 s \leqq 3, \\ (\alpha+\beta)(4 s-3) \in C_{f} & 3 \leqq 4 s \leqq 4,\end{cases}$

$$
\left[L \circ W \circ\left(\sigma_{1} * \sigma_{2}\right)\right]((1-s)(a, \alpha) \oplus s(\beta, b))= \begin{cases}\beta(4 s) \in C_{g} & 0 \leqq 4 s \leqq 1, \\ \hat{b}(2-4 s) \in C_{g} & 1 \leqq 4 s \leqq 2, \\ \hat{a}(4 s-2) \in C_{f} & 2 \leqq 4 s \leqq 3, \\ \alpha(4 s-3) \in C_{f} & 3 \leqq 4 s \leqq 4 .\end{cases}
$$

It follows that homotopy-commutativity holds in the left square.
The middle square of (5.3) induces the map $\chi: E_{\xi, \rightarrow} \rightarrow C_{g} b C_{f}$. We see at once from (5.4) that the composite $E_{f}^{-} * E_{g} \xrightarrow{F} E_{E^{\prime}} \xrightarrow{\chi} C_{g} \mathrm{~b} C_{f}$ is given as follows:

$$
(\chi \circ F)((1-s)(a, \alpha) \oplus s(\beta, b))= \begin{cases}\left(-\alpha_{2 s, 1}+\tau\right) \times\left(-\alpha_{2 s, 1}+\rho\right) & 0 \leqq 2 s \leqq 1 \\ \left(\beta_{0,2 s-1}+\tau\right) \times\left(\beta_{0,2 s-1}+\rho\right) & 1 \leqq 2 s \leqq 2\end{cases}
$$

where

$$
\tau=[((\alpha+\beta)-\hat{b})+*] \frac{s}{4}, s, \rho=[((-\beta-\alpha)-\hat{a})+*] \frac{1-s}{4}, 1-s .
$$

Further we have

$$
\left[W \circ\left(\sigma_{1} * \sigma_{2}\right)\right]((1-s)(a, \alpha) \oplus \boldsymbol{s}(\beta, b))= \begin{cases}(\beta-\hat{b})_{0,2 s} \times(-\alpha-\hat{a}) & 0 \leqq 2 s \leqq 1, \\ (\beta-\hat{b}) \times(-\alpha-\hat{a})_{0,2-2} s & 1 \leqq 2 s \leqq 2 .\end{cases}
$$

From these results we infer
Lemma 5.5. $W \circ\left(\sigma_{1} * \sigma_{2}\right)$ is homotopic to $\chi \circ F$.
Lemma 5.6. Suppose that f and g are, respectively, p - and q-connected and, further, let Y be r-connected. Then $W \circ\left(\sigma_{1} * \sigma_{2}\right)$ is $[p+q+\min (p, q, r+1)+1]$. connected and θ is $[p+q+\min (p, q, r)+2]$ connected.

Proof. Since the adjoints of σ_{1}, σ_{2} are respectively $(p+r+1)$ - and ($q+r$ $+1)$-connected, it follows from Lemma 1.4 that σ_{1} and σ_{2} are respectively min $(2 p, p+r+1)$ connected and $\min (2 q, q+r+1)$-connected. Thus, by Lemma 2.8, $W \cdot\left(\sigma_{1} * \sigma_{2}\right)$ is $[p+q+\min (p, q, r+1)+1]$-connected. To prove the second half, note that, by Lemma $5.5, \chi$ is $[p+q+\min (p, q, r+1)+1]$-connected. Introduce the homotopy commutative diagram

in which the suspension maps Σ, σ are respectively $(p+q+r+2)-,(p+q+$ $\min (p, q)+3)$-connected. This completes the proof of the second half.

Lemma 5.7. The composition

$$
S\left(E_{f}^{-} * E_{g}\right) \xrightarrow{S F} S E_{\xi}, \stackrel{\Sigma}{\longrightarrow} C_{\xi}, \xrightarrow{\zeta^{\prime}} C_{\eta^{\prime}} \xrightarrow{\partial} S^{9} E_{f, g}
$$

is homotopic to $S_{c} \mathscr{M}: S\left(E_{f}^{-} * E_{g}\right) \rightarrow S^{2} E_{f, g}$, where ζ^{\prime} is the equivalence in (3.2), ∂ the map which results from shrinking $C_{f \vee g}$ and Σ the suspension map given by

$$
\begin{aligned}
& \sum(\tau ; a, \gamma, b, s ; t)= \begin{cases}\tau(2-2 t) \in Y & 1 \leqq 2 t \leqq 2, \\
(a, r, b, s ; 2 t) \in C C_{P_{1}, P_{2}} & 0 \leqq 2 t \leqq 1,\end{cases} \\
& \Sigma(\tau ; a ; t)=(a, 2 t) \text { if } 2 t \leqq 1, \quad=\tau(2-2 t) \text { if } 2 t \geqq 1, \\
& \Sigma(\tau ; b ; t)=(b, 2 t) \text { if } 2 t \leqq 1, \quad=\tau(2-2 t) \text { if } 2 t \geqq 1
\end{aligned}
$$

for $a \in A, b \in B, r \in Y^{1}, 0 \leqq s \leqq 1,0 \leqq t \leqq 1, \tau \in E Y$.
Proof. In the following diagram, the squares are homotopy-commutative:

Since $\partial_{1} \circ \Sigma^{\circ} S F$ is given, explicitly, by

$$
((1-s)(a, \alpha) \oplus s(\beta, b), t) \rightarrow \begin{cases}(a, \alpha+\beta, b, s ; 2 t) & 0 \leqq 2 t \leqq 1 \\ * & 1 \leqq 2 t \leqq 2\end{cases}
$$

we see that homotopy-commutativity holds in the left triangle by (3.6). From $\mathscr{H}=Q \circ j$, follows the conclusion of the lemma.

Let $e: C_{f \vee g} \rightarrow C_{r^{\prime}}$ and $e^{\prime}: Y \rightarrow C_{\xi^{\prime}}$ denote canonical embeddings. Combining Lemmas 5.6, 5.7 with Puppe's sequence associated with η^{\prime}, we obtain the following reuslt.

Theorem 5.8. If f, g and Y are respectively, p - q - and r-connected, and if A, B and Y have the homotopy type of $C W$-complexes, then for any 1-connected space V such that $\pi_{i}(V)=0$ for $i \geqq p+q+r+2$, the following sequence is exact:

$$
\begin{aligned}
& \pi\left(S E_{f, g}, V\right) \stackrel{\mathscr{E}^{*}}{\leftarrow} \pi\left(C_{f \vee g}, V\right) \stackrel{\mathscr{Q}^{*}}{\leftarrow} \stackrel{\pi}{\leftarrow}\left(S\left(E_{f}^{-} * E_{g}\right), V\right) \stackrel{(S \mathscr{H})^{*}}{\leftarrow} \pi\left(S^{2} E_{f, g}, V\right) \\
& \stackrel{(S \mathscr{E})^{*}}{\longleftarrow} \pi\left(S C_{f v g}, V\right) \stackrel{(S \mathscr{Q})^{*}}{\longleftarrow} \pi\left(S^{2}\left(E_{f}^{-} * E_{g}\right), V\right) \longleftarrow \cdots,
\end{aligned}
$$

where \mathscr{E}^{*} is $\left(\eta^{\prime}\right)^{*}$ and \mathscr{Q}^{*} denotes $e^{*} \circ\left(\zeta^{\prime} \circ \Sigma^{\circ} S F\right)^{*-1}$. Further, if $\pi_{i}(V)=0$ for $i \geqq p+q+r+3$, then the sequence

$$
\pi\left(E_{f}^{-} * E_{g}, \Omega V\right) \stackrel{\mathscr{M}^{*}}{\Vdash^{*}} \pi\left(S E_{f, g}, \Omega V\right) \stackrel{\mathscr{E}^{*}}{\leftarrow} \pi\left(C_{f \vee g}, \Omega V\right) \stackrel{\mathscr{Q}^{*}}{\longleftarrow} \cdots
$$

is exact.
Note that $\mathscr{Q}^{*}\left(\rho_{1}\right)=\mathscr{Q}^{*}\left(\rho_{2}\right)$ for $\rho_{1}, \rho_{2} \in \pi\left(S\left(E_{f}^{-} * E_{g}\right), V\right)$ if and only if $\rho_{2}=$ $\mathscr{A}^{*}(\tau)+\rho_{1}$ for some $\tau \in \pi\left(S^{2} E_{f, g}, V\right)$.

As an application of Theorem 5.8 we get.
Proposition 5.9. Let A and B be, respectively, p - and q-connected. Then the map $\Lambda: \Omega A * \Omega B \rightarrow S(B \hat{*} A)$ defined by

$$
\Lambda((1-t) \alpha \oplus t \beta)=(\alpha+\beta, t)
$$

is $(p+q+\min (p, q))$-connected.
Proof. Consider the triad $B \xrightarrow{i_{1}} B \vee A \stackrel{i_{2}}{\longleftarrow} A$. It follows from the theorem of Blakers-Massey that the maps $\Phi_{1}^{\prime}: \Omega A \rightarrow E_{i_{1}}^{-}, \Phi_{2}^{\prime}: \Omega B \rightarrow E_{i_{2}}$ are $(p+q-1)$. connected (cf. Theorem 4.6), where $\mathscr{D}_{1}^{\prime}, \Phi_{2}^{\prime}$ are both induced by the commutative diagram

Since $B \vee A$ is $\min (p, q)$-connected and $C_{i_{1} \nabla i_{2}}$ is contractible, it follows from Theorem 5.8 that $\mathscr{A}: E_{i_{1}}^{-} * E_{i_{2}} \rightarrow S E_{i_{1}, i_{2}}=S(B \hat{*} A)$ is $(p+q+\min (p, q)+1)$ connected.

We see that the composite

$$
\Omega A * \Omega B \xrightarrow{\Phi_{1}^{\prime} * \Phi_{2}^{\prime}} E_{i_{1}}^{-} * E_{i_{2}} \xrightarrow{\mathscr{H}} S(B \hat{*} A)
$$

is just A. This completes the proof, noticing that $\mathscr{\Phi}_{1}^{\prime} * \Phi_{2}^{\prime}$ is $(p+q+\min (p, q))$. connected.

The above proposition enables us to obtain the following result mentioned at the end of $\S 2$.

Corollary 5.10. $W^{\prime}: A \# B \rightarrow S A \hat{*} S B$, as defined in (2.9), is $(p+q+\min$ $(p, q)+2)$-connected, if A and B are respectively p - and q-connected.

Proof. Consider the commutative diagram

in which T is the switching map, A the map as defined in Proposition 5.9, T^{\prime} the involution resulting from inversing suspension parameter, and σ_{A}, σ_{B} are defined by $\sigma_{A}(a)=\hat{a}$, $\sigma_{B}(b)=-\hat{b}$. Since $\sigma_{B}{ }^{*} \sigma_{A}$ is $(p+q+\min (p, q)+3)$ connected and $S K^{\circ} Q$ is a weak equivalence by Proposition 2.2^{\prime}, we get the desired conclusion.

Lemma 5.11. Let $\varepsilon: Y \rightarrow \Omega$ SY denote the canonical embedding, $\varepsilon(y)=\hat{y}$. Let $W^{\prime}: C_{g} \# C_{f} \rightarrow S C_{g} \hat{*} S C_{f}$ be the map described in (2.9). Then the homotopy class of the composition

$$
Y \xrightarrow{e^{\prime}} C_{\xi^{\prime}} \xrightarrow{\theta} C_{g} \# C_{f} \xrightarrow{W^{\prime}} S C_{g} \hat{*} S C_{f}
$$

coinsides with the cojoin product $\left\langle\left(\Omega S k_{2}\right) \circ \varepsilon,\left(\Omega S k_{1}\right) \circ \varepsilon\right\rangle$, where $k_{1}: Y \rightarrow C_{f}, k_{2}$: $Y \rightarrow C_{g}$ are inclusions.

Proof. This follows from

$$
\begin{aligned}
{\left[\left(W^{\prime} \circ \theta \circ e^{\prime}\right)(y)\right](t) } & =\left[\left(W^{\prime} \circ K^{\circ} \circ\left(k_{2} \times k_{1}\right) \circ \Delta\right)(y)\right](t) \\
& = \begin{cases}(y, 1-2 t) \in S C_{f} & 0 \leqq 2 t \leqq 1, \\
(y, 2 t-1) \in S C_{g} & 1 \leqq 2 t \leqq 2 .\end{cases}
\end{aligned}
$$

With the above preliminaries, we can establish the dual EHP sequence for a triad $A \xrightarrow{f} Y \stackrel{g}{\longleftrightarrow} B$.

Theorem 5.12. Let $A \xrightarrow{f} Y \stackrel{g}{\square} B$ be a triad in which A, B, Y have the homotopy type of $C W$-complexes. If f, g and Y are respectively p-, q - and r-connested, then the diagram

commutes and exact rows for 1 -connected space V such that $\pi_{i}(V)=0$ for $i \geqq p$ $+q+\min (p, q, r)+2$, where \mathscr{P}^{*} is the map induced by $\left\langle\left(\Omega S k_{2}\right) \circ \varepsilon,\left(\Omega S k_{1}\right)_{\varepsilon}\right\rangle$ and $R^{*}=\left(W^{\prime} \circ \theta \circ \Sigma \circ S F\right)^{*-1}$ is bijective.

Proof. Note that $W^{\prime}: C_{g} \# C_{f} \rightarrow S C_{g}{ }^{\hat{}} S C_{f}$ is $(p+q+\min (p, q)+2)$-connected. Then we see that the theorem follows from (3.2), Lemmas 5 6, 5.11.

Corollary 5.13. If Y is r-connected, then, for a 1-connested space V such that $\pi_{i}(V)=0$ for $i \geqq 3 r+2$, we have an exact sequence:

$$
\begin{gathered}
\pi(S \Omega Y, V) \stackrel{\mathscr{C}^{*}}{\longleftarrow} \pi(Y, V) \longleftarrow \pi(S(\Omega Y * \Omega Y), V) \quad \stackrel{(S \mathscr{L})^{*}}{\longleftarrow} \pi\left(S^{2} \Omega Y, V\right) \\
R^{*} \mid \approx \\
\mathscr{P}^{*}=\langle\varepsilon, \varepsilon\rangle *< \\
\pi(S Y \widehat{*} S Y, V) \\
W^{\prime *} \mid \approx \\
\pi(Y \# Y, V) .
\end{gathered}
$$

This follows by applying Theorem 5.12 to the triad $* \rightarrow Y \leftarrow *$.
In case where V is the Eilenberg-MacLane space in Corollary 5.13, \mathscr{P} can be described in terms of cup-products in the light of Lemma 2.5 and Proposition 2.6.

Finally, we shall furnish \mathscr{E}^{*} with some meaning. Consider the situation (3.1). Let $v: C_{f v g} \rightarrow V$ be given and write $u: Y \rightarrow V$ for the composite $Y \xrightarrow{k} C_{f v g} \xrightarrow{v} V . \quad v$ gives rise to liftings $\tilde{f}: A \rightarrow E_{u}, \tilde{g}: B \rightarrow E_{u} . \quad$ Let us denote the action of ΩV on E_{u} by $m: \Omega V \times E_{u} \rightarrow E_{u}$. Then we get.

Proposition 5.14. Let τ denote the adjoint of $\eta^{\prime *}(v)$. Then

$$
m_{*}\left\{\tau, P_{2}^{*}(\tilde{g})\right\}=P_{1}^{*}(\tilde{f}) .
$$

Moreover, given $h: K \rightarrow A, k: K \rightarrow B$ with $f \circ h \simeq g \circ k$, we can find $l: K \rightarrow$ $E_{f, g}$ such that $P_{1} \circ l \simeq h, P_{2} \circ l \simeq k$. We see easily that the composite

$$
S K \xrightarrow{S l} S E_{f, g} \xrightarrow{\eta^{\prime}} C_{f \vee g} \longrightarrow S A \vee S B,
$$

where the last arrow is the identification map resulting by shrinking Y to a point, is homotopic to the difference $j_{1} \circ(S h)-j_{2} \circ(S k)$, where $j_{1}: S A \rightarrow S A \vee S B$, $j_{2}: S B \rightarrow S A \vee S B$ are inclusions. Thus, in case K is a suspension, $v^{\circ} \eta^{\prime} \circ(S l)$ represents the generalized Toda bracket $\left\{\begin{array}{cc}f \\ u_{g-k} \\ g-k\end{array}\right\}$ (see [5]).

Further, we assume $f \circ h \simeq g \circ k \simeq 0$. Then h, k can be lifted to $\widetilde{h}: K \rightarrow E_{f}^{-}$, $\widetilde{k}: K \rightarrow E_{g}$. We may choose the composite

$$
K \xrightarrow{\{\widetilde{h}, \widetilde{k}\}} E_{f}^{-} \times E_{g} \xrightarrow{\mu} E_{f, g}
$$

for l. As $\eta^{\prime} \circ \mathscr{A} \simeq 0, v \circ \eta^{\prime}$ is primitive with respect to μ. Therefore we get

$$
v^{\circ} \eta^{\prime} \circ(S l) \simeq v^{\circ} \eta^{\prime} \circ\left(S \Pi_{1}\right) \circ S\{\widetilde{h}, \widetilde{k}\}+v^{\circ} \circ \gamma^{\prime} \circ\left(S \Pi_{2}\right) \circ S\{\widetilde{h}, \widetilde{k}\} .
$$

A simple caiculation shows
Proposition 5.15. $v{ }^{\circ} \eta^{\prime} \circ(S l): S K \rightarrow V$ represents the difference $-u_{f}(h)+u_{g}$ (k) of functional u-operations.

§ 6. The EHP sequence

This section studies the situation dual to that considered in $\S 5$. Namely, by generalizing a result of Ganea [8] to a cotriad, we will regain "symmetry".

Let $A \stackrel{f}{\longleftrightarrow} X \xrightarrow{g} B$ be a cotriad and consider the associated diagram (4.1). The notations of $\S 4$ will be used without specific mention.

First, we try to seek an approximation to the fibre and to the cofibre of ξ. Introduce the diagram

in which μ is the "multiplication" defined at the beginning of $\S 5, \nabla$ the folding map, $\mathscr{\Phi}_{1}^{\prime}$ and $\mathscr{\square}_{2}^{\prime}$ the maps as defined in Theorem 4.6, and q_{2}, q_{1} are the projections. It is easily seen that the middle square homotopy-commutes, and hence induces the maps ρ, ν.

Theorem 6.2. Let f, g be respectively p-, q-connected and let X be r-connected. Then ρ is $[p+q+\min (p, q, r+1)-1]$ connected and ν is $[p+q+\min (p, q, r$ $+1)-2]$-connected.

Proof. Apply the suspension functor to the right square and then augment as follows:

in which $p_{1}: E_{1_{1}, l_{2}} \rightarrow A, p_{2}: E_{1_{1}, l_{2}} \rightarrow B$ are projections, r the map determined by the commutative diagram :

and l the map induced by the identification maps Q, Q_{3}. It follows from 1.3^{\prime} that l is a weak homotopy equivalence, since C_{r} is homotopy-equivalent to the mapping cylinder of a cotriad $* \leftarrow C_{\xi \rightarrow *}$. Also, by Theorems 4.3 and 4.6, $\Phi_{1}^{\prime} * \Phi_{2}^{\prime}$ is $(p+q+\min (p, q))$-connected.

Define a map $\xi^{\prime}: C_{p_{1}, t_{2}} \rightarrow C_{f, g}$ as the canonical extension of a triad $A \xrightarrow{I_{1}} C_{f, g} \stackrel{I_{2}}{\longrightarrow} B$ (see §3). We see that $\xi^{\prime} \circ \gamma=$ identity. Since the fibre of ξ^{\prime} is
equivalent to $E_{1_{1}}^{-} * E_{I_{2}}$, by Theorem 3.4 , we get the following commutative diagram

$$
\begin{aligned}
& 0 \rightarrow H_{k}\left(E_{I_{1}}^{-} * E_{I_{2}}\right) \xrightarrow{j_{*}} H_{k}\left(C_{p_{1}, p_{2}}\right) \xrightarrow{\xi_{*}^{\prime}} H_{k}\left(C_{f, g}\right) \rightarrow 0 \\
& 0 \leftarrow H_{k}\left(C_{\uparrow}\right) \stackrel{h_{*}}{\uparrow} H_{k}\left(C_{p_{1}, p_{2}}\right) \stackrel{\gamma_{*}}{\longleftrightarrow} H_{k}\left(G_{f, g}\right) \leftarrow 0,
\end{aligned}
$$

in which the rows are exact for $k \leqq p+q+\min (p, q, r+1)+1$. Chasing this diagram, we conclude thet $h \circ j$ is $(p+q+\min (p, q, r+1)+1)$-connected.

Now, since $Q_{3} \circ j=S \mu^{\circ} Q_{2}$ by (3.6), homotopy-commutativity of (6.3) implies

$$
\begin{aligned}
S \rho^{\circ} S K^{\circ} Q_{1} & \simeq S i \circ S \mu^{\circ} \circ Q_{2} \circ\left(\mathscr{\Phi}_{1}^{\prime} * \mathscr{\emptyset}_{2}\right) \\
& =S i \circ Q_{3} \circ j \circ\left(\mathscr{\Phi}_{1}^{\prime} * \Phi_{2}^{\prime}\right) \simeq l \circ h \circ j \circ\left(\mathscr{\Phi}_{1}^{\prime} * \Phi_{2}^{\prime}\right) .
\end{aligned}
$$

Upon noticing that $S K^{\circ} Q_{1}$ is a weak equivalence by Proposition 2.2', we infer that S_{ρ} is $[p+q+\min (p, q, r+1)]$-connected.

Finally, the connectivity of ν follows from the homotopy-commutative diagram

where the vertical maps are "suspension maps", the left of which is $[p+q+$ $\min (p, q)]$-connected, whereas, the right is $[p+q+\min (r, p+q-1)]$-connected.
q.e.d.

Next, using the map $\mu^{\prime}: C_{f, g} \rightarrow C_{f} \vee C_{g}$ which results from shrinking the center of cylinder to a point, we define the Hopf invariant

$$
H: \Omega C_{f, g} \rightarrow C_{f} \hat{\star} C_{g}
$$

associated with a cotriad f, g as the composition

$$
\Omega C_{f, g} \xrightarrow{\Omega_{\mu^{\prime}}} \Omega\left(C_{f} \vee C_{g}\right) \xrightarrow{I} C_{f} \hat{\approx} C_{g} .
$$

The following is dual to Lemma 5.1.
Lemma 6.4. Let $r_{1}: C_{f, g} \rightarrow C_{f} \vee C_{g}, r_{2}: C_{f, g} \rightarrow C_{f} \vee C_{g}$ be the "injections" which are respectively the compositions of $C_{f, g} \rightarrow C_{f}, C_{g}$ (projections) with C_{f},
$C_{g} \rightarrow C_{f} \vee C_{g}$. Then $H_{*}(\tau)=0$ for $\tau \in \pi\left(V, \Omega C_{f, g}\right)$ if and only if the equality $\left(\Omega_{\mu^{\prime}}\right)_{*}(\tau)=\left(\Omega r_{1}\right)_{*}(\tau)+\left(\Omega r_{2}\right)_{*}(\tau)$ holds.

Now we shall define $F^{\prime}: C_{\xi} \rightarrow C_{f} \hat{*} C_{g}$, dual to the map F defined in (3.5). Put

$$
\begin{array}{lr}
F^{\prime}(x, s)=\left(\mu^{\prime} x\right) \frac{1-s}{2}, \frac{1+s}{2}=-\hat{x}_{0, s}+\hat{x}_{0, s} \quad x \in X, 0 \leqq s \leqq 1, \\
F^{\prime}(\beta)=\mu^{\prime} \beta \quad \beta \in E_{1_{1}, L_{2}} \subset\left(C_{f, g}\right)^{I},
\end{array}
$$

where $-\hat{x}_{0, s} \in\left(C_{f}\right)^{l}, \hat{x}_{0, s} \in\left(C_{g}\right)^{l}$. This corresponds to the map \mathscr{T} defined by Ganea [8]. We see easily that the following diagram is commutative:

Observe that it seems difficult to define a dual of G^{\prime} given in Theorem 3.4.
Lemma 6.5. The composite map

$$
\Omega^{2} C_{f, g} \xrightarrow{\text { injection }} E_{\eta} \xrightarrow{\zeta} E_{\xi} \xrightarrow{\bar{\sigma}} \Omega C_{\leftrightarrows}^{\Omega F^{\prime}} \Omega\left(C_{f} \hat{*} C_{g}\right)
$$

is homotopic to ΩH, where $\bar{\sigma}$ is the suspension map.
Lemma 6.6. The diagram homotopy-commutes:

where ω is the involution switching factors and σ_{1}, σ_{2} are given as follows:

$$
\begin{aligned}
& \sigma_{1}(\alpha, x ; s)= \begin{cases}\alpha(2 s) & 2 s \leqq 1 \\
(x, 2-2 s) & 2 s \geqq 1\end{cases} \\
& \sigma_{2}(x, \beta ; s)= \begin{cases}\beta(1-2 s) & 2 s \leqq 1 \\
(x, 2-2 s) & 2 s \geqq 1 .\end{cases}
\end{aligned}
$$

Hence, if f, g and X are respectively $p-, q$ - and r-connected, then F^{\prime} is $[p+q+$ $\min (r+1, p, q)-1]$-connected.

Proof. This follows by combining the following facts:
ρ is $[p+q+\min (p, q, r+1)-1]$ connected by Theorem 6.2,
W^{\prime} is $[p+q+\min (p, q)-1]$-connected by Corollary 5.10,
σ_{1}, σ_{2} are respectively $[p+\min (p, r)+1]-[q+\min (q, r)+1]$ connected by Lemma 1.5.

Lemma 6.7. Let $l_{1}: S \Omega E_{f} \rightarrow X, l_{2}: S \Omega E_{g}^{-} \rightarrow X$ be respectively the composite maps of canonical ones:

$$
\mathrm{S} \Omega E_{f} \longrightarrow E_{f} \xrightarrow{q_{1}} X, \quad \mathrm{~S} \Omega E_{g}^{-} \longrightarrow E_{g}^{-} \xrightarrow{q_{2}} X .
$$

Then the homotopy class of the composition

$$
\Omega E_{f} * \Omega E_{g}^{-} \xrightarrow{t * t} \Omega \Omega E_{f} * \Omega E_{g}^{-} \xrightarrow{W} E_{g}^{-} \mathrm{b} E_{f} \xrightarrow{\nu} E_{\xi} \xrightarrow{\text { projection }} X
$$

coincides with the generalized Whitehead product $\left[l_{1}, l_{2}\right]$, where t denote inversions.
This follows from the fact that the above composition is equal to $\nabla \circ\left(q_{2}\right.$ $\left.\vee q_{1}\right) \circ L \circ W \circ(t * t)$.

Combining Lemmas $6.5,6.6,6.7$ with Theorem 6.2 and noting that $\bar{\sigma}$ is $(p+q+r-1)$-connected, we get

Theorem 6.8. Let f, g and X be p-, q - and r-connected respectively, and let k be a positive integer. Then, for any CW-complex K with $\operatorname{dim} K+k \leqq p+q+$ $\min (r+1, p, q)-3$, we have the following exact sequence

$$
\begin{aligned}
& \begin{array}{c}
\pi\left(K, \Omega^{k+1} E_{f \Delta g}\right) \rightarrow \cdots \pi\left(K, \Omega E_{f \Delta g}\right) \xrightarrow{(\Omega \eta)_{*}} \pi\left(K, \Omega^{2} C_{f, g}\right) \xrightarrow{(\Omega H)_{*}} \\
\downarrow \downarrow \\
\pi\left(K, \Omega^{k+1} X\right) \longrightarrow \longrightarrow
\end{array} \\
& \pi\left(K, \Omega\left(C_{f} \hat{*} C_{g}\right)\right) \longrightarrow \pi\left(K, E_{f \Delta g}\right) \xrightarrow{\eta_{*}} \pi\left(K, \Omega C_{f, g}\right)
\end{aligned}
$$

in which P_{*} is the map induced by $\left[l_{1}, l_{2}\right]$ and R the bijection $(t * t)_{*^{\circ}}\left(\Omega F^{\prime} \circ \bar{\sigma} \circ\right.$ $\left.\nu^{\circ} W\right)_{*}{ }^{-1}$.

References

[1] S. Araki, On the triad excision theorem of Blakers and Massey, Nagoya Math. J. 6 (1953), 129-136.
[2] M. Arkowitz. The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23.
[3] M. Arkowitz, Commutators and cup products, Illinois J. Math. 8 (1964), 571-581.
[4] W. D. Barcus and J.-P. Meyer, The suspension of a loop space, Amer. J. Math. 80 (1958), 895-920.
[5] M. G. Barratt, Homotopy operations and homotopy groups, A. M. S. Summer Topology Institute, Seattle (1963).
[6] I. Berstein and P. J. Hilton, On suspensions and comultiplications, Topology 2 (1963), 73-82.
[7] T. Ganea, P. J. Hilton and F. P. Peterson, On the homotopy-commutativity of loop-spaces and suspensions, Topology 1 (1962), 133-141.
[8] T. Ganea, A generalization of the homology and homotopy suspension, Comm. Math. Helv. 39 (1965).
[9] P. J. Hilton, Homotopy theory and duality, mimeographed notes, Cornell University (1959).
[10] P. J. Hilton, Note on a theorem of Stasheff, Bull. Acad. Pol. Sci. 10 (1962), 127-130.
[11] J. C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math. 58 (1953), 325-350.
[12] I. Namioka, Maps of pairs in homotopy theory, Proc. London Math. Soc. (3) 12 (1962), 725-738.
[13] Y. Nomura, An application of the path-space technique to the theory of triads, Nagoya Math. J. 22 (1963), 169-188.
[14] K. Tsuchida and H. Ando, On the generalized cohomology suspension, Sci. Rep. Fac. Lit. Sci. Hirosaki Univ. 10 (1963), 35-45.
[15] G. W. Whitehead, On the homology suspension, Ann. of Math. 62 (1955), 254-268.

Nagoya Institute of Technology

Nagoya, Japan

[^0]: Received June 21, 1965.

