AN EXISTENCE THEOREM IN POTENTIAL THEORY

MASANORI KISHI

Dedicated to the memory of Professor TADASI NAKAYAMA

1. Concerning a positive lower semicontinuous kernel G on a locally compact Hausdorff space X the following existence theorem was obtained in [3].

THEOREM A. Assume that the adjoint kernel \check{G} satisfies the continuity principle. Then for any separable compact subset K of X and any positive upper semicontinuous function u(x) on K, there exists a positive measure μ , supported by K, such that

> $G\mu(\mathbf{x}) \ge u(\mathbf{x})$ G-p.p.p. on K, $G\mu(\mathbf{x}) \le u(\mathbf{x})$ on S μ , the support of μ .

Nakai [4] proved the theorem without assuming the separability of K. Using Kakutani's fixed-point theorem he simplified a part of the proof. But he needed prudent considerations on topology in order to avoid the separability. In this paper we shall give a simpler proof of the theorem without assuming the separability. We shall deal with a slightly more general kernel and use Glicksberg-Fan's fixed-point theorem.

2. A lower semicontinuous function G(x, y) on $X \times X$ with $0 \le G(x, y) \le +\infty$ is called a non-negative l.s.c. kernel on X. The kernel G, defined by $\check{G}(x, y) = G(y, x)$, is called the adjoint kernel of G. The potential $G\mu(x)$ of a positive measure μ is defined by $G\mu(x) = \int G(x, y) d\mu(y)$. The adjoint potential $\check{G}\mu(x)$ is similarly defined. The adjoint kernel \check{G} is said to satisfy the continuity principle when finite continuous is every adjoint potential $\check{G}\mu$ of a positive measure μ with compact support which is finite continuous as a function on $S\mu$.

3. We shall prove

Received April 12, 1965.

THEOREM B. Let G be a non-negative l.s.c. kernel on a locally compact Hausdorff space X. Assume that G(x, x) > 0 for any $x \in X$ and the adjoint kernel \check{G} satisfies the continuity principle. Then for any compact subset K of X and any positive finite upper semicontinuous function u(x) on K, there exists a positive measure μ , supported by K, such that

$$G\mu \ge u$$
 $G \cdot p \cdot p \cdot p$. on K^{1} ,
 $G\mu \le u$ on $S\mu$.

4. First we prove

THEOREM C. If G is a non-negative finite continuous kernel on a compact Hausdorff space K such that G(x, x) > 0 on K, there exists a positive measure μ on K such that

$$G\mu(\mathbf{x}) \ge 1$$
 on K,
 $G\mu(\mathbf{x}) = 1$ on S μ .

Proof. Denote by $\mathcal{M}_1(K)$ the totality of positive unit measures on K. This, with the vague topology, is compact and convex. We define a point-toset mapping φ on $\mathcal{M}_1(K)$ as follows: we put, for any $\mu \in \mathcal{M}_1(K)$,

$$\varphi(\mu) = \Big\{ \nu \in \mathcal{M}_1(K) ; \int G \mu d\nu = \inf_{\lambda \in \mathcal{M}_1(K)} \int G \mu d\lambda \Big\}.$$

Since G(x, y) is finite continuous, $\varphi(\mu)$ is non-empty and convex, and the mapping $\varphi : \mu \rightarrow \varphi(\mu)$ is closed in the following sense: if nets $\{\mu_{\alpha}; \alpha \in D, a \text{ directed} set\}$ and $\{\nu_{\alpha}; \alpha \in D\}$ converge vaguely to μ and ν respectively and if $\nu_{\alpha} \in \varphi(\mu_{\alpha})$ for any $\alpha \in D$, then $\nu \in \varphi(\mu)$. Consequently by Glicksberg-Fan's fixed-point theorem² there exists a measure $\mu_{0} \in \mathcal{M}_{1}(K)$ such that $\mu_{0} \in \varphi(\mu_{0})$. Then $m_{0} = \int G\mu_{0} d\mu_{0} = \inf_{\lambda \in -1(K)} \int G\mu_{0} d\lambda$ does not vanish, since G(x, x) > 0 on K. The measure $\mu = m_{0}^{-1} \mu_{0}$ fulfills all the requirements.

5. Using Theorem C we prove

THEOREM D. If G is a non-negative l.s.c. kernel on a compact Hausdorff space K such that G(x, x) > 0 for any $x \in K$ and if the adjoint kernel \check{G} satisfies

134

¹⁾ This means that every compact subset of the exceptional set $\{x \in K; G\mu(x) < u(x)\}$ does not support any positive measure $\lambda \neq 0$ such that $G\lambda d\lambda < \infty$.

²⁾ Cf. [1] and [2].

the continuity principle, then there exists a positive measure μ on K such that

- (i) $G\mu \ge 1$ G-p.p.p. on K,
- (ii) $G\mu \leq 1$ on $S\mu$.

Proof. Put $m = \inf_{x \in K} G(x, x) > 0$, and take a finite number of open neighborhoods U_i $(1 \le i \le N)$ such that $\bigcup_{1}^{N} U_i \supset K$ and $G(x, y) > \frac{1}{2}m$ in $U_i \times U_i$. There exists an increasing net $\{G_{\alpha}; \alpha \in D, a \text{ directed set}\}$ of non-negative finite continuous functions $G_{\alpha}(x, y)$ on $K \times K$ such that $G_{\alpha}(x, y) > \frac{1}{2}m$ in $\bigcup_{1}^{N} U_i \times U_i$ and $\lim_{D} G_{\alpha}(x, y) = G(x, y)$ at any point $(x, y) \in K \times K$. Then by Theorem B there exists a positive measure μ_{α} on K such that $G_{\alpha}\mu_{\alpha} \ge 1$ on K and $G_{\alpha}\mu_{\alpha} = 1$ on $S\mu_{\alpha}$. The net $\{\mu_{\alpha}; \alpha \in D\}$ is bounded. In fact, for a point $x \in S\mu_{\alpha} \cap U_i$,

$$1 = G_{\alpha} \mu_{\alpha}(x) = \int G_{\alpha}(x, y) d\mu_{\alpha}(y)$$
$$\geq \int_{U_{i}} G_{\alpha}(x, y) d\mu_{\alpha}(y) > \frac{1}{2} m \mu_{\alpha}(U_{i})$$

and hence $\mu_{\alpha}(U_i) \leq \frac{2}{m}$ and $\mu_{\alpha}(K) \leq \frac{2N}{m}$. Thus there exists a cluster point μ . Put

 $D' = \langle \alpha' = \langle \alpha, \omega \rangle; \omega$, a vague neighborhood of μ containing $\mu_{\alpha} \rangle$.

Then D' is a directed set with the natural order. Putting, for $\alpha' = \langle \alpha, \omega \rangle \in D'$, $\mu_{\alpha'} = \mu_{\alpha}$ and $G_{\alpha'} = G_{\alpha}$, we see that $\mu_{\alpha'} \to \mu$ vaguely and $G_{\alpha'}(x, y) \nearrow G(x, y)$ at any point $(x, y) \in K \times K$. We shall show the validity of (i) and (ii) for μ .

Proof of (i). Suppose that there exists a positive measure $\lambda \neq 0$ such that $S_{\lambda} \subset \{x \in K; G_{\mu}(x) < 1\}$ and $\int \check{G} \lambda d\lambda < \infty$. Since \check{G} satisfies the continuity principle, we may assume that $\check{G}\lambda$ is finite continuous on K. Hence

$$\int d\lambda > \int G\mu d\lambda = \int \check{G}\lambda \, d\mu = \lim_{D'} \int \check{G}\lambda \, d\mu_{\alpha'}$$
$$= \lim_{D'} \int G\mu_{\alpha'} d\lambda \ge \lim \, \sup_{D'} \int G_{\alpha'} \mu_{\alpha'} d\lambda \ge \int d\lambda.$$

Proof of (ii). Let x_0 be an arbitrary fixed point on $S\mu$, and put

 $D'' = \{ \alpha'' = \langle \alpha', U \rangle; U, \text{ a neighborhood of } x_0 \text{ containing a point } x_{\alpha'} \text{ of } S\mu_{\alpha'} \}.$ This is a directed set with the natural order. Putting, for $\alpha'' = \langle \alpha', U \rangle \in D'',$ $x_{\alpha''} = x_{\alpha'}, \ \mu_{\alpha''} = \mu_{\alpha'} \text{ and } G_{\alpha''} = G_{\alpha'}, \text{ we see that } x_{\alpha''} \to x_0, \ \mu_{\alpha''} \to \mu_0 \text{ and } G_{\alpha''}(x, y) \nearrow$ G(x, y) along D". Hence for any $\alpha_0^{\prime\prime} \in D^{\prime\prime}$

$$1 = \lim_{D''} G_{a'} \mu_{a''}(x_{a''}) \ge \lim_{D''} G_{a_0''} \mu_{a''}(x_{a''}) = G_{a_0''} \mu(x_0).$$

Consequently $G\mu(\mathbf{x}_0) = \lim_{D''} G_{\alpha''}\mu(\mathbf{x}_0) \leq 1$.

6. From Theorem D follows immediately

THEOREM E. Let G be a non-negative l.s.c. kernel on X such that G(x, x) > 0 for any $x \in X$ and the adjoint kernel \check{G} satisfies the continuity principle. Then for any positive finite continuous function u(x) on a compact set K, there exists a positive measure μ , supported by K, such that

$$G\mu(x) \ge u(x) \qquad G-p.p.p. on K,$$

$$G\mu(x) \le u(x) \qquad on S\mu.$$

In fact, G'(x, y) = G(x, y)/u(x) is a non-negative l.s.c. kernel on K, the adjoint kernel of which satisfies the continuity principle. Hence by Theorem D there exists a positive measure μ on K such that

$$G'\mu \ge 1$$
 $G' \not p. p. p. on K,$
 $G'\mu \le 1$ on $S\mu$.

This μ fulfills the requirements of Theorem E.

7. Now we can prove Theorem B. Let $\{u_{\alpha}(x); \alpha \in D\}$ be a decreasing net of positive finite continuous functions on K such that $u_{\alpha}(x) \searrow u(x)$. Then there exists a positive measure μ_{α} on K such that

$$G\mu_{\alpha}(\mathbf{x}) \ge u_{\alpha}(\mathbf{x}) \qquad G \cdot p. p. p. \text{ on } K$$
$$G\mu_{\alpha}(\mathbf{x}) < u_{\alpha}(\mathbf{x}) \qquad \text{ on } S\mu_{\alpha}.$$

The net $\{\mu_{\alpha}\}$ is bounded, and similarly as in the proof of Theorem D, a subnet converges vaguely to a cluster point μ of the net $\{\mu_{\alpha}\}$. This μ fulfills the requirements of Theorem B.

References

- K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.
- [2] I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., **3** (1952), 170-174.

136

- [3] M. Kishi. Maximum principles in the potential theory, Nagoya Math. J., 23 (1963), 165-187.
- [4] M. Nakai, On the fundamental existence theorem of Kishi, Nagoya Math. J., 23 (1963), 189-198.

Mathematical Institute

Nagoya University