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The basic properties of associative rings R satisfying a polynomial identity

p\jc\y . . . , Xnl = 0 were obtained under the assumptions that the ring was an

algebra [e.g., [4] Ch. X], or with rather strong restrictions on the ring of

operators ([1]). But it is desirable to have these properties for arbitrary rings,

and the present paper is the first of an attempt in this direction. The problem

is almost trivial for prime or semi-prime rings but quite difficult in arbitrary

rings. The known proofs for algebras have to be modified and in some cases

new proofs have to be obtained as the existing proofs fail to exploit the known

structure. In the present paper we extend the results of [1] on the nil subal-

gebras of a ring with an identity for arbitrary multiplicative nil semi-groups

of the ring and for arbitrary rings.

Finally, we extend our results to rings with a pivotal monomial and as a

consequence we show that the nil multiplicative semigroups of a simple ring

of bounded index are nilpotent.

1. Notations. Let Ω be a set of linear mappings of a ring R into a ring

T, i.e., given a mapping ΩxR-*T, denoted by w.r. and satisfying

w(rs) = (wr)s = r(ws)
(1.1) w^Ω; r, sε R.

{+ ) = wr + ws

Let Xι, x2, . . . , be an infinite set of indeterminates. Let Ώlxl be the free

ring generated by the {xi) and the symbols of Ω, and among the elements of

S M , we restrict ourselves to the set Ωίxl of all polynomials pZxl = wΣιv{i)Xi1

• Xin which are finite sums of different monomials. #,\ * Xin preceded by an

element w>yi) of the set Ω.
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In most applications (e.g., algebras over a field F=Ω) Ω is a commutative

ring, then Ωίxl is the free ring generated by Ω and {#/} as long as only additive

structure of Ω[_x] is considered.

For pLx] = Σw(/)ΛV - Xin we define degree, linearity, multilinearity in the

usual way, and we set Ω(p) = {w(i)} the set of all coefficients of pίxl. Thus

Ker Ωip) = {r\r^R, wr = 0 for all w e Ω(p)}. We shall also decompose p[_x~] =

A?M + piM + * * + p£xl in homogeneous components pft_x~\ of degree / and

note that also pjίxli e £[#].

If i>M e £ M then for every substitution Xi = n<BR, the element pίri,

r2, . . . ] is a well defined element in if, and if ptr'] ••= 0 for all substitutions we

say that /> = 0 is a polynomial identity of R.

In the linearization process of a polynomial identity one starts with a

monomial π(#) = πixu , Xr) = miXi m2Xi - "ffikXiink-n* where w/ is either 1

or a monomial not containing Xi', then one replaces Xι by ΛΓI + ^ S +I and write

(1.2)

where the sum ranges over all 2̂  monomials obtained from π by the distribntive

law. 7Γi = 7r(#i, X2, . . . , Xr) and 7r2fc = π(xr+u *2> . . . 9 xr) and all other πj a re

different monomials of degree <k in ΛΓi and # r +i.

This simple observation is applied to the following extension of the lineariza-

tion process.

LEMMA 1. Let R satisfy a polynomial identity pίxu Xz, . . , xί\ = 0 of

degree d, and let p =A + ί i + * " * +pd be the decomposition of p in homogeneous

component pj of degree j . Let πix) —wXi^Xit' Xir be a monomial of degree r

appearing in pLx], then R satisfies a polynomial identity:

(1.3) J)ίXu . ,Xrl = U)Xιm ' Xr + ~prΐ.Xu , Xrl +pr + iίXu . . . , Xrl

+ " +3>dlXi, , Xrl

where jfo e β M is homogeneous of degree j and the coefficients Ω{pj)θ:Ω(pj)

for r<j<d, and prίxl = 'Σw<i)Xii' -Xir is homogeneous multilinear with mono-

mials *XiX2 ' ' 'Xr

In particular for r — d, J){_x~\ is multilinear and homogeneous.

Proof. Let v% be the degree of Xi in the monomial π{χ) and v = Max vi,

and let τ be the number of x% of degree v in π(x). Consider the pairs (puτ)
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ordered lexicographically and our proof will be by induction on these pairs (p,

r ) :

Let π(x) contain k different Xi then by setting Xj = 0 for all xj not appearing

in π(x), and choosing χlt . . . , χr for the Xj appearing in π{x), we clearly get

from βίx~} a polynomial pίxu • , xΛ e J2M> which holds in Ry containing the

monomial π(x) and for which Ω(pi)QQ(pj).

If p = 1 (then r = r), 7τ is multilinear and we can assume that π(x) — WX1X2

• xr. Next we obtain a polynomial ~p[_x~\ e J2[#] satisfied in i? of the same

type as p but whose monomial contain all the #, , i = 1, 2, . . . , r, in the fol-

lowing way: 3>J>i, . . . , xrl - ?[0, x2, . . . , Xrl e J2M, and it is satisfied in #

and with the same properties i.e., π(x) is a monomial in it and the set of

coefficients of the monomials of degree jQ:Ω(pj)QΩ(pj), and all monomials of

~pι contain Xι. Repeat this process with 3i to obtain a polynomial identity p2

whose monomials will contain both Xi and xz; and so on- . Finally the

polynomial ~pίxi, . . . , xΛ is necessarily of the form (1.3) as all its monomials

are of degree > r, and those of degree r must contain all xu x2, . . . , xr I

furthermore none of the monomials is repeated.

So let P>1, and Xu . . . , Xk be x's appearing in π(x). Consider the poly-

nomial identity of R, qίxu . . - , Xk+il = 0 given by:

qίχu . . . , Xk+il = qtxi + Xk+u X2, . . . , Xk] ~ qlxi, Xu . . - , Xkl

X2, . . . , %k]

It follows readily from the remarks preceding (1.2) that qlxleΩtx] and

Ω(qj)^Ω(pj)^Ω(pj). Furthermore, q = 0 in R is a consequence of the distributive

law of (1.1); and finally it follows by (1.2) that qίxl contains a monomial

with the coefficient w as that of 7r(#), but for which we have the pair (p, τ - l)

if r > l or (p-Ί, λ) for some A if τ = 1. In both cases we can apply our induc-

tion to obtain the required polynomial identity ]p = 0 of (1.3).

2. Multiplicative nil semigroups of rings.

The theory of the Lower Radical (e.g., [4]) is well known to hold also for

semi-groups with a zero. For further references we recall some of the defini-

tions and results required later-

Let S denote a semi-group with a zero, which in our applications will always

be a multiplicative subset of a ring R. A subset M S S is an ideal if SM and
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AS usual we construct for each ideal the quotient semi-group SI M,

which is the set S with all elements of M are identified with the zero.

An ideal / ς S is said to be nilpotent modulo M of index k if Ik = {aia2-

fljfe|fl, e / } ς M Then the union of a finite number of ideals nilpotent mod M

is also an ideal and it is nilpotent mod M. Denote by Nι(S/M) the union of

all nilpotent ideals mod M, which is an ideal in S containing M, but need not

be nilpotent.

We define for every ordinal λ:

No(S/M) = M

Nλ(S/M) = Ni(S/Nχ-ι) if λ is not a limit ordinal

Nχ(S/M) = ΌN?(S/M) for limit ordinals λ.

The basic properties of the Lower Radical is the following:

LEMMA 2. i) There exists an ordinal a such that No = Nx for all τ>a. The

ideal Nσ is the minimal ideal Q in S containing M such that NΛS/Q) = Q (i.e.,

S does not contain ideals # Q which are nilpotent mod Q)

ii) Each ideal Nλ is locally nilpotent (mod M) that is, every finite set in

Nx generates a nilpotent (mod M) semi-group.

Proof. The proofs are well known for the case of rings (e.g. [4]) and it

is even simpler for semigroups. As we shall need here only the fact that

N\(SIN?) -N9 and (ii) we reproduce their proofs. The first is evident by

chosing a to be the first ordinal for which Np = N?+i, and to prove (ii) let

Si, . . . , st^Nx, and the proof is carried by induction on λ. If λ is a limit

ordinal, then the finiteness of t puts our set in an N9 with a<λ where induc-

tion can be used.

If λ - (0 + 1, then si, . . . , st belongs to a union of a finite set of nilpotent

ideals mod iVp which is nilpotent—hence, su ) = SjxSi2 Sik e JVP for some fixed

k and all products of k elements of the s/s. This set {s(/)} is finite and therefore

it follows by induction that {s(f)} is nilpotent mod M which clearly implies the

nilpotency of {si, . . . , s*}.

We need also the following property of nil semi-groups:

LEMMA 3. Let M be an ideal in S, and let S be nil mod M. If S does not

contain nilpotent ideals mod M, then there is an infinite set a\, a*, . . . , an, . . .

of elements in S with the property that aιaia$- * -an$M for every n, but aiaj^
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M if i>j.

Proof. As S is nil mod M, choose in S an element a&M but such that

β ' e M . Suppose au . . . , an-i have been chosen such that <3i#2 α»-i$M

but β/βyEMwhen j<i, then choose an as follows:

Let b = didi. . . an-\ £Ξ Λf, and S does not have nilpotent ideal—the ideal {b)

generated by b is not nilpotent. This implies that bSbψM, as otherwise the

ideal j ^ ' c M So let bxb$M for some # e S as S is nil we can choose x such

that b(xb)2 e M. Repeating our process with bxb replacing by we choose .yeS

with bxbybxb$M> and finally we set an-xbybxb^M. Now <zi<z2

# * - an-ιan — ban

= bxbybxb&M, and aiaj^M for j<,i<n — l. Finally anaj - xbybx (βi -an-i)aj

e M since a M - i^eM, and Λ« = xbyb(xb)2ybxb e M as b(xb)2 e M. This com-

pletes the proof of the lemma.

The following lemma takes into account the addition of the ring R which

contains the semi-group S

LEMMA 4. L ί̂ Ωo= (wi, . . . , ̂ ») &e # finite set of operators of Ω, and

s<=S, WiS^O for every Wi^ΩQ}. For s^S, if

then s<=Nλ(R/M).

Proof. We use induction on λ. For λ = 0, our condition requires that

- Ω0M= 0, hence s e MNo(S/M).

Let A>0, we get M;, s = ΣMVβy» with 0,7 e Nχ{R/M) and the number of the

<3,y is finite, hence our proof is immediate if λ is a limit ordinal. If λ = p + 1 ,

then the finite set of elements a\j generates a nilpotent ideal modulo NP(S/M)

and say it is of index n, then

.*oβ(1)*iβι2)Λ2' 0(w)#« e N?(S/M) for all */ e S and all β'fl of the set {0,7}. Hence,

by (1.1)

' ' Xn-\SXn = (XoS ' ' * SXn-l)(WiS)xn = (XQS ' * ΛΓΛ-IS^-I) * Σ WjnaijuXn
j

jn

Thus, J2o(#os#is- sXn)Q*ΣΩoN9{S/M) for arbitrary ΛΓ/ e S. It follows, therefore,

by induction that x^sxis sxn^NP(S/M) and consequently the ideal {s} gener-

ated by s in S is nilpotent modulo iVP, and hence 5GiVp+1(S/M). q.e.d.

3 Our main result is now-
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THEOREM 5. Let R be a ring with a polynomial identity pίxl = 0 of degree

d and coefficients Ω(p)QΩ, and let M= Ker Ω(p), and S be a multiplicative

subset of R. Then:

i) If S is nilpotent mod MOS of index n then Sίdl21 generates a nilpotent

ideal modulo M in the ring R, of index < (d+l)2n.

it) If S is nil mod MΠS then

Remark. Clearly in our case Mis a two sided ideal in the ring R and hence

NΛR/M) is the sum of all nilpotent ideals in the ring.

Proof. Let /?* denote the ring obtained by adjoining a unit to R. Let

R*TR* denote the two sided ideal in R generated by T, where T is any subset

of R.

For every integer m set μ(m) the index of nilpotency of the ideal R*SmR*

modulo M. Thus μ(n) = 1 in case (i) of our theorem since Sn^M.

Let m be any integer > I γ I where [ ] denotes the largest integer <-«p

The proof begins similarly to the proof of this theorem for algebras given in

[1]:

Consider the sets T2j-i = Sm'JR*SJ'\ T2j = Sm~jR^Sj for i = l,2, . . . , m.

Note that if aι e T* then aiak e R*SmR* if k <ι, and a] e i?*Sm"1/?*. By choosing

a% arbitrary in Tf , the products a&z ar (for any r) will range on a set of

generators of the additive sets TiT2 Tr =- (Sm"1i?*) rSy where 2 j = ror2j+l

= r.

For any w e i2[̂ >], a coefficient of the polynomial i>M, we apply Lemma 1

and obtain the polynomial ~pZxu . . . , xr~\ which we write in the form:

(3.1) WXiXf 'Xr=> - ϊ v l > i , . . . , Xrl ~ pr+iίXu - , Xrl ~ ' ' ' ~"3dlXh - . , Xr].

Letting Xi = a% e T, the last relation shows in view of the preceding remarks

that

(3.2) w(Sm-1R*)rSJ'ciΩ(pr)(R*SmR*) + YiΩ(Pi)(R*Sm-1R*)

Indeed, ΩCpr) G Ωipr) and the monomials x^ - Xir in ~pr differ from Xi&

- - xr, hence it must contain a product XiXj with y < ί so that the substitution

Xi = β, yields an element in Ω(pr)(R*SmR*) and as for other monomials of Jik,

being of degree k > r, they necessarily contain a product #,•*/ with j< i so they

yield elements in Ω(pk)(R*Sm~1R*)^Ω(pk)(R*Sm~1R*), which completes the
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proof of (3.2).

The validity of (3.2), for any w^Ω(pr) yields by multiplying on the left

by R* and on the right by Sr"y/?*:

(3.3)

Note that for r — d, the second summand does not appear. Now multiply both

sides of (3.3) by (R*Sm~ιR*)r+ί and apply (3.3) for » = r +1 in the terms under

sum, then noting that (R*SmR*)(R*Sm-1RΎ&R*SmR we get:

Ω(pr)(R*Sm-ίR*)ΐίr+ί)ςzΩ(pf)(R*SmR*) + Ω( pr+>)(R* Sm R)

+ Σ

Repeating this process we finally get:

where f(r) = ( r+1) + [ ( r + l ) + ( r + 2) + +d]<l + - ^ ± 1 1 = δ <

This being true for r = 0,1, . . . , d yields

(3.4) Ω(p)(R*Sm~1R*)δc:Ω{p)(R*SmR*).

Next multiplying both sides of (3.3) by ( ^ S ^ " 1 ^ * ) 5 and apply (3.4) to the

right side we get Ω{p){R*Sm-1R*)2δ^Ω{p)(R*Sm~ίR*)\R*SmR*)<^Ω(p)(R*SmR*)2.

Continuing and multiplying again by (R*Sm~1R*)δ and so on we finally obtain:

From the preceding definition of μ = μ{m) it follows that Ω(p)(R*SmR*)μ

= 0. Hence ^(ί)(/?*Sm"1/?*)μδ = 0 which shows that for w>[-^]< μ(m-l) <

μ(m)δ. Now μ(n)=l, so

< ( J + 1 ) 2 M , which means that S[d/2] generates a nilpotent ideal mod M of index

<(d+l)2n, and (i) is proved.

To prove (ii), let il/0 = SΠ M= {s |se S, Ω(p)s^θ). Consider the Lower

Radical Nσ(S/M0) of Lemma 2. If Nσ*S, then S has no nilpotent ideals mod

NO(S/MQ) and hence we obtain by Lemma 3 a set of elements au a2, . . . , ar

in S such that a,ιa%- 'ar$N0 but every other product #/,- β, fc for which

some iv+i<iυ will belong to Nσ. This will always be the case if k>r, or if it

is the product of these r elements but in a different order.

Substituting these a/s in the polynomial (3.1), for every w^Ω(p) we get
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-ar)^ΈΩ(p)No(S/Mo) and therefore, also Ω(p)(ai- - ad) <Ξ

by multiplying on the right by ar+i' 'ad- It follows now by lemma 4 that

aiaz- - 'ad^Na which is a contradiction. Hence iVσ(S/Mo) = S.

In particular, this yields that S is locally nilpotent modulo Mo, which means

that for arbitrary Su &, . . . , S[j/2] e S, the multiplicative set So = {si, . . . , S[<//2j}

generated by the s, is nilpotent. It follows, therefore, by part (i) of our theorem

that S^/2] generates a nilpotent ideal in R. Thus SiS2 sr<//2J
 e Skd/2 ΊcjVi(#/Af),

and this being true for all s, e S yield that S[d//2Jc/Vi(i?/M) as required.

4. We extend our result now to rings with a (two-sided) pivotal monomial.

This notion has been introduced in [3] and followed in [2], and in the present

paper we try to define it in its most general form where the method of the

preceding section can be applied.

Let 7r be a function from the set of integers (1, 2, . . . , d) into the positive

integers. We make correspond to π a monomial π{x) = X^D ' ' ' x^d) of degree

d. Let C* = {σ} be the set of all functions a defined on (1, 2, . . . , g) for arbitrary

q and satisfying one of the, following:

1) q>d

2) The non ordered sets (τr(l), . . . , π(d)) *= ((/(I), σ(2), . . . , σ(d))

3) If q<d and the sets (π(i)) and (σ(j)) are the same, then for some

l<i<q we have [>(f+ 1) - σd^Zπb +1) - 7r(*)]<0, i.e., the order (in magni-

tude) of the pairs (σ(i), a(i+D) and (7r(ι + l), π(i)) are different.

We now define π{x) to be a pivotal (two-sided) monomial of degree J if

for every substitution Xi = «/:

This definition is a slight generalization of the notion of strong pivotal

monomial of [3] and [2].

Our aim is to show

THEOREM 6. If R has a pivotal monomial of degree d and S is a nil multi-

plicative semi-group in R then:

i) Is S is nilpotent then Sd generates a nilpotent ideal in R.

it) If S is nil then Sd^Ni(R) which is the union of all nilpotent ideals in

R (In particular S is locally nilpotent).
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Proof. First one follows the proof of Theorem 2 of [3] to show that we

can assume that π(χ) - e(x) = XiX2 Xd This is justified, since in the lineari-

zation process of (1.2) used in the proof of the quoted theorem, we have that

for each m in (1.2)--Try e C«< if i*?j and σj e CΛ< for all j if a e C*, and therefore

the arguments of that proof hold and so will be the first result that we may

take π = e.

Theorem 6 has an interesting corollary which is well known for matrix

rings over division rings"

COROLLARY 7. Let R be a simple ring whose nilpotent elements are of index

bounded by n, then the nil multiplicative semi-groups of R are nilpotent of index

<n.

Proof. The ring R of our theorem has π(x) = xn as a pivotal monomial.

Indeed, for every a<=R: if an+ί*0, then RanR= /?= Ran+1Rc: Σ Rσ(a)R, since

R is a simple ring, and if an+1 = 0 then a is nil and hence also an = Q, which

shows that 0 = RanR = Ran+1RQ ^Ra{a)R, which shows that in any case xn is

a pivotal monomial.

The rest of the proof follows now from the fact that if R is simple and

not nilpotent then Ni(R) = 0, and our result is a consequence of Theorem 6.

If R is nilpotent, then R2 = 0 and our corollary holds trivially.

A final remark is that one can define also pivotal monomials with operators

Ω by requiring that Ωύ(Rπ(x)R)^ Σ ΩQ{Rσ{χ)R) for finite sets J20. In this case
σεc π

the preceding results will be valid mod M= Ker Ωo.
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