
ON α-HARMONIC FUNCTIONS

MASAYUKI ITO

Chapter 1. Introduction and Preliminaries

M. Riesz [8] introduced the notion of α-superharmonic functions in n{>l)-

dimensional Euclidean space Rn in connection with the potential of order a.

In this paper, we shall first define the α:-superharmonic and α-harmonic func-

tions in a domain D. In case a = 2, they coincide with ones in the usual sense.

Next we shall introduce generalized Laplacians P}(x) and P}{χ) of order oc,

which are, in the case a = 2, equal to the well-known generalized Laplacians

except for a universal constant. Then we shall prove the following equivalences.

1. A Lebesgue measurable function / ( ΐ 4- °°) in Rn is a-superharmonic in

a domain D if and only iff is lower semicontinuous and P}(x) <;0 in D.

2. A Lebesgue measurable function f in Rn is a-harmonic in a domain D

if and only if f is finite continuous in D and P}(x) •= 0 in D.

Finally we shall prove Ninomiya's domination principle as an application

of the above results.

In Rn, the potential of a given order a, 0<a<n, of a measure μ in Rn

is defined by

provided the integral on the right exists. We shall say that a measure μ in

Rn is a-finite if the potential Z7ΪU) is finite p.p.p. in Rn. Here a property is

said to hold p.p.p. on a subset X in Rn, when the property holds on X except

for a set E which does not support any measure v*-0 with finite a-energy

\\\x-y\*~ndv(y)dv{χ\. M. Riesz [8] proved that every α-finite measure can

be balayaged to every closed set if 0<α<2, 0 < α < 2 or 0 < α < l according to

n>3, n = 2 or n = 1. This paper is based on this result. Let F be a closed

set in Rn and x be a point in "toF. We shall denote the balayaged measure
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of a unit measure εx at x to F by μ{χ,V Let B(x0 r) be an open ball with

center x0 and radius r. If α * 2, for any # in B(x0 r),

dμ^B^rλyY^λxtAx, y)dy

with

k~^l 2 ) t t / 2 ( l^-JCo | 2 -r 2 )- β / 2 b-^r n ώf VB(xo r)
1 0 WI..5U0 i Λ,

where

It holds that

5 % k and Jc .
where

κχ6.r(y) stands for λx%,r(x*t y). For a given real-valued function / Lebesgue

measurable in Rn, we shall denote

by 9K?(#o /, r). This is a generalization of Gauss' mean value.

Chapter 2. a: harmonic functions

Throughout this chapter, we assume that 0 < a < 2 or 0 <t a < 1 according to

w>2or w = l. A measure with density/, measurable in Rn, will be called the

measure /. First we shall define oc -super harmoriic functions and a -harmonic

functions.

§ 2.1. Definitions

DEFINITION l.x> Let D be a domain in Rn. We shall say that a functiQn /

defined in Rn is α-superharmonic in D if / satisfies the following three condi-

tions :

x> The notion of α-superharmonicity was first introduced by M. Riesz [8]. According
to him, a function / is α-superharmonic in.jR* if./ satisfies the following conditions:

(1) / ( Λ ) > 0 and / [ * ) $ + oo in R»t

(2) / is lower semicontinuotfs in RM,
(3) for each x in Rn and each open ball B(x r), f(x)>$Jl*{x ;/, r).

Another kind of α-superharmonicity was introduced by Frostman [4].
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(S. l) / i s Lebesgue measurable in Rn

}

(S. 2) / i s lower semicontinuous in D,

(S. 3) for each x in D and each open ball B(x r) contained with its

closure in D, Wa(x /, r) exists and

DEFINITION 2. Let D be a domain in i?n. We shall say that a function /

defined in Rn is α-harmonic in Z) if / satisfies the following three conditions •*

(H. 1) / is Lebesgue measurable in Rn

y

(H. 2) / is finite continuous in D,

(H. 3) for each x in D and each open ball B(x r) contained with its

closure in D, Wa(x /, r) exists and

It is easily seen that the potential Ua(x) of an a -finite positive measure μ

is αr-superharmonic in Rn and αr-harmonic in

§ 2.2. Elementary properties

PROPERTY 1. Let f and f be a-harmonic in a domain D. If fix) =f'{x) in

D, then f(χ)=ff(χ) almost everywhere in Rn. In fact, for any open ball B(x*\

r0) contained with its closure in D and any A: in B(xo rQ)9 it holds that

(fly) -

by Lemma 4 which we shall be given in §2.3. Put

I 0 in B(xi) r0)

X (fix) -/'U))(U~Λ:oΓ-r5)~α / 2 on CB(xo r0).

Then the potential of order 0 of the measure g is equal to 0 in B(x* n). By

the unicity theorem of M. Riesz3), g(x) = 0 almost everywhere in Rn. Hence

fix) =/'(#) almost everywhere in ^B(xQ r0). This completes the proof.

*> Cf, [8], «°20.
3) Cf. [8] , n°l l .
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PROPERTY 2. If f is harmonic in the usual sense in Rn

y it is a-harmonic

there. In fact, let tf0 be a point in Rn and r be a positive number. Using the

polar coordinate (p, a) with center at x<>, we have

yjictixo t ff r) = aΛi

where S(xo \ I") is a unit sphere with center x*. Since / is harmonic in the

usual sense in Rn,

f9tnda,
(On »'-8Uβ; 1)

where ωn denotes the area of the unit sphere. Hence

PROPERTY 3. If f is a-harmonic and bounded from below in Rn, then it is

constant. In fact, without loss of generality we may assume that / is non-

negative. By M. Riesz's decomposition theorem4*, there exist ^-finite positive

measure v and a non-negative constant C such that

in Rn. Suppose that / is non-constant. Then there exist a point xQ in Rn and

a positive number n such that P(B(XQ n)) >0. Let v1 be the balayaged measure

of v to WB(xo r0). For any x in Bix* ro\

-z\ΓnλX(s,u(x, y)dydv(z)

In particular,

Ul(xo)>lul(y)κXihrAy)dy=ma(xo ί Ul, rβ).

This contradicts our assumptions.

PROPERTY 4. Let f be harmonic in the usual sense in Rn. If it is bounded

from belowy it is constant. This follows from Properties 2 and 3.

PROPERTY 5. Let f be a-harmonic in Rn. If there exist an a-finite positive

4> Cf. [8], w°31 and «°32.
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measure v and a positive constant C such that

in Rn

y then f is constant. In fact, for any XQ in Rn and any positive number r,

\f(y)\κXΰ,Λy)dy

<\ (Ut(y) +C) κXthAy)dy = m9(xo £/£, r)+C.
J<βB(xΰ; r)

Since lim 5DM*o Ul, r) =0δ ), \f(x0) \<C.

By Property 3, / is constant.

PROPERTY 6. Let f be harmonic in the usual sense in Rn. If there exist an

a-finite positive measure ι> and a non-negative constant C such that

\f(x)\<Ul(x)+C

in Rn, then f is constant. This follows from Properties 2 and 5.

§ 2.3. Four Lemmas

Let D be a domain in Rn and a function / defined in Rn be ^^^

for any x in D. We denote by E/, n(χ} the following function

ί fix) in tfD

1 ^n(y) in D.

LEMMA 1. Let B(xo r0) be an open ball and f be a Lebesgue measurable and

bounded function in Rn. Then Eftp{Xo;ro)(x) is a-harmonic in Bixo n).

Proof Evidently EfyB,χ^r^{x) is finite continuous in B{χQ n). Hence it

is sufficient to prove the condition (H. 2K By Lusin's theorem, there exists a

sequence (fm) of functions of class C2 with compact support such that fm(x)

-*f(x) almost everywhere in Rn as m-»°°, and

in Rn,

where M is a positive constant. Since fm is of class C2 with compact support,

fm(x) = \\x-y\a~nkm{y)dy

where

5> ] , n°31,
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Let βm be the balayaged measure of the measure km to fcBixo r0). Then

f mix) on &B(xQ rQ)I
c
J/(/Uo.r.(#, y)dy in B(x0 \ r0).By Lebesgue's bounded convergence theorem,

Uμam(x)->Ef,S(Xt..r0)(x)

almost everywhere in i?" as m-^oo. On the other hand, being

)λXθtro(xt y)dy<l,

it holds that

\Ulm(χ)\<M in Rn.

Hence by Lebesgue's bounded convergence theorem,

as m-> oo for any open ball B(xi r) contained with its closure in B(x<> \ r0).

Since S^aftBKx* I r^cVBlxi r),

Consequently

E f , B { x 9 ; r 0 ) ( X i ) = 5 K β ( Λ Γ i , £ > . * < * : r β > , x h -

This completes the proof.

LEMMA 2. Let B(x0 r0) be an open ball and a function f be Lebesgue

measurable in Rn. If f is κr^ru'integrabley for any fixed x in BiXo I r0) / is λXo,Xo

(x, y) -integrable and E/tBίχ0:rt){x) is oc-harmonic in B(x0 r0).

Proof First we shall show that in B(xo r0)

In fact, for any fixed x in B{x0 \ r0), there exists a positive constant M such

that
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for any y in <€B{xo r0). Now

Similarly as Lemma 1, £/,*<*,;*-,)(*) is finite continuous in B(x0 r0). Put

/£(*) = inf (/+(*), m), /«(#) = inf (/"(*), m),

where

/ fU> =sup ( / ω , 0), / " U ) = -inf (/(JΓ), 0).

By Lemma 1, £/+,B U o . ro)(ΛΓ) and -E/m.BUo-.ro)̂  a r e αr-harmonic in

Hence

^>i. Λ( t. r.) U) = 3^« U jB/t. 5(x0 r0), r),

and

u.;r,>(*) = 3 R . U Ef^mxo'.u), r),

for any open ball £(# r) contained with its closure in B(x r). Since

(£/+,j?(Λro;ro)) tends increasingly to £/+,B(*o;ro),

as w -> °°. Consequently

for any x in 5(Ar0 r0) and any open ball B{x r) contained with its closure

in B(xo r0). Similarly we obtain that

Therefore

ί Ef+,B(xo;rD)> r) -WAX I Ef-.mxo;r9),

Ef,BWr0), r).

This completes the proof,
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For a general domain D, we get in the same way the following

LEMMA 2'. Let D be a domain in Rn and a function f be Borel measurable

in Rn. If is βx^D-integrable for any x in D, E/tD(x) is a-harmonic in D.

LEMMA 3. Let a function f be a-harmonic in a bounded domain D. If f is

finite continuouus on ~D and fix) = 0 almost everywhere in *€D, then fix) = 0 in

D.

Proof. Let x0 be a point in Ί) such that

f(xo) - max {fix) # e ~D).

Suppose that f(x0) >0 . Then x0 is not on the boundary of D. Let Bix0 r)

be an open ball contained with its closure in D. Then

/, r) = $f(y) fcXo.Ay) dy

f(xo)tcχΛ,r(y)dy
B(x;r)rD

This contradicts the αr-harmonic ity of /. Therefore / U ) < 0 in D. Similarly

we obtain f{χ)>0 in D, and hence fix) = 0 in D.

LEMMA 4. Let f be ac-harmonic in a domain D. For each open ball contained

with its closure in D,

fix) =§f(y)λXo,Λx,y)dy

in Bixo r) and f is analytic in D.

Proof. Similarly as Lemma 2, for any x in Bixo ', r),

4- oo.

By Lemma 2, Ef,j(Xo;r)ix) is a -harmonic in Bix0 \ r). Put

g(x) = fix) -Ef,mxiir)lx).

Then gix) = 0 in BixQ r). Consequently in Bix0 r)y
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Hence by M. Riesz's theorem0, / is analytic in B(xQ r). B(xQ r) being

arbitrary, / is analytic in D. This completes the proof.

§ 2.4. Extension of generalized Laplacian

Now we shall introduce another mean value of a function. Let / be a

Lebesgue measurable function in Rn. If

exists for a positive nember r, we denote it by *jxfΛt ΐ{x I f, r). Since

τj*f<%, r(x /, r) is considered as a kind of mean values of /. By M. Riesz's

formula,

Λ v ( ^ U r)

= Ca,r,nr*[ i\x-y\2-r2)rl2-a/2\x-yΓ-nf(y)dy,
J ΊgBixyr)

where

We denote the mean value corresponding to r = α by «ja/,(x ', f, r). Thus

^fΛ(x;f,r) = -^\ \x-y\-"-nf(y)dy
<ΰn J Ίgmx; r)

We denote

lim-^i^TAx',/,*)-fix))

by Pyix). In particular, when

l im-^UV.U ;/, e)~/U))

exists, we denote it by P}(x). For a = 2, P/U) coincides with the generalized

Laplacian except for a universal constant 7\

6> C i [8], w°26.
7 ) Cf. [1], PP 17-18,
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§2.5. Inverse distribution of r*~n

We consider the distribution D* such that

•Da*r*'n = -δ,

where δ is Dirac's distribution. By Deny's theorem8',

where

Λ

and the distribution pf. r~a~n is defined as follows:

pf. r-*-n(φ) ^

for a function ψ of class C30 with compact support.

LEMMA 5. Let f be a measurable function defined in Rn

y and x0 be a point in

Rn. If f is a function of class C 2 in a neighborhood of x0 and

for a positive number ε, then P/{XQ) exists and

Proof. Without loss of generality we may assume that #0 = 0. By our

assumptions, for any y in some neighborhood of 0,

f(y) =/(0) + ±y^ (0) + \ J / m ^ - ( 0 )

where ψ(y) = oi\y*\) and y = (3̂ 1, ̂ 2, . . . ,^«). Hence

for any sufficiently small positive number e. Hence
8 ) Cf. [2], p. 153.
9> Cf. [9], p. 43.
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exists, and

\y\—nfiy)dy + /(0)/αi(ε) + ±%- {0)I?\e)

where Ia\ iψ and Ifj are functions in r ( r = \y\) satisfying the following con-

ditions :

(1) - ^ ( r )

(2) ^ ( r )

(3) ΞLjL. (r) = r-*-1

at
(4) their integral constants are 0,

where Si is the unit sphere with center 0 and ds is the area-element on Si.

Since jy, and yiyj(i*j) are harmonic in the usual sense in Rn,

\ yids = 0 and \ yiyjds = 0 (i*j).
J Si J Si

On the other hand

Therefore

= lim(f

Consequently
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This completes the proof.

§ 2.6. Main theorems

THEOREM 1. Let f be a Lebesgue measurable function defined in Rn and D

be a domain in Rn. Assume that

(1) f is lower semicontinuous and f(x)> — °o in Dt

(2) / is κx,r-integrable for any x in D and any open ball B(x r) contained

with its closure in D. Then f is cc-superharmonic in D if and only if P}(x) <0

in D.

Proof. First suppose that / is αr-superharmonic in D. For any x in D and

any open ball B(x r) contained with its closure in D,

In fact,

( \f(y)\*χ.Λy)dy
)

\f{y)\l\y-x\t-r*)-n\x-y\-ndy
\ r)

1
%B{x; r)

Hence

J %B(x -,r)

f being α:-superharmonic in D, there exists a positive number rx such that

>I8te ;/, r)

for any 0<r<rx. We take an arbitrary positive number ε such that e<rx

Then

"1(p t-l)β Λ-1(TOβte ; / , εp) -f(x))dp

p--1(f-i) l*-ιW.iχ /, ep) -f(χ))dP.
Jrxlt

Now
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rx/e

^ m Λ x / , εP) - f(x)\dp.

Putting r = — p, we obtain

" - 1 ( r 1 - l ) /1-1|3R.U /, rrx) -f(x)\dr

-Λ-1{ri-ί)'lli-\ΊRΛx |/ |, rrx)+ \f(x)\)dr

.U I/I, ̂ ) + !/U) | ) .

Since we may assume that fix) is finite, Wlaix I |/ | . r*) + !/(JC)| is finite. Hence

P>U)<lim-^4a-OTeU; I/I, rx)+ \f(x)\=0.

In order to prove the converse, suppose that P}(x)<>Q in D, andlet^(.r0;

rQ) be an open ball contained with its closure in D. Then it is sufficient to

prove the following inequality:

f(y)λXo,roix,y)dy

in B(xo n). By the condition (2),

We take an open ball B(xo n) such that B{χ0 n)<z:Bixo n) ^B(x0;

Since / is lower semicontinuous and f(x)> — °° in D, there exists a sequence

{ψm) of continuous functions with compact support in Rn which tends increasing

to /on £Uo n). Put

n)
mX \ f ( ) on

Then (E/m,B(χ0;r0)) tends increasingly to Ef,Buo;ro) as m->°°. Hence it is

sufficient to prove that f{x)^.Efm,B^\r^{x) in B{x0 r0) for any m. Now let

ψ be a function of class C00 with compact support in Rn such that ψ(x)>0 in

i?n and ψ(x) = 1 in 5U 0 ^ . And let ^ ? be the balayaged measure of the
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measure ψ to ^Bixo r0). Put

g{x) = \\x-yΓn

Then g(x) is finite continuous in Rn and g(x) = 0 on &B(x<> r0). Moreover

for any x in J5(#0 ί r0), PJ(#) exists and

Pi(x) =D**(r*-n*φ)(x) -Ptγix).

Since S μ ? is contained in ^B(xo r0). P5j»U) = 0 in i?(#o 5 n). Hence

DΛ*g(x) = - ψ(x)

in 5(ΛΓO ^o). Now for any positive number e, we denote E/m,B{XΛ ,rβ> ~ / - ^ by

A. The function Λ is upper semicontinuous and h(x) < + oo in J5(JC0 n), and

it is equal to 0 on &B(Xo n). By Lemma 2, EfmtB(χ0.r0) is α -harmonic in

i5(^o r0). Suppose that there exists a point ΛΊ in B(xQ r0) such that h(xL) > 0

and

xeB(x0 r0)}.

Then for any open ball B(xι r) contained with its closure in B(xo I n),

cV.ίft A, r) « -S

Hence

lim - ^ - (tJxfAxi A, e) - h(xι)) < 0.

On the other hand

in JB(ΛΓ0 roV This is a contradiction. Consequently h(x)<0 in β(jt0 ro), i.e.,

in B(XQ r0). Therefore
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in B(XQ r0). In particular

i.e., / is αr-superharmonic in Zλ This completes the proof.

THEOREM 2. Let D be a domain in Rn and a function f defined in Rn be

finite continuous in D. Then f is a-harmonic in D if and only if P}(x) exists

in D and P%x) = 0 in D.

Proof Suppose that P}{x) = 0 in D. Since

for any in D and any positive number r, it holds that

\f(y)\κχ.Λy)dy< + «>

for any x in D and any open ball B{x0 \ r) contained with its closure in D.

Consequently, by Theorem 1, / is a -harmonic in D. The converse is evident

by Theorem 1.

Chapter 3. Ninomiya's dominarion principle

In this chapter, we assume that 0<α:<2, 0<α:<2 or 0 < α < l according

to w>3, n = 2 or n = 1.

THEOREM 3.10) Let μ be a positive measure with compact support such that

and let v be a positive measure. If

on Sμ, then

in Rn for any β such that

Proof By Ninomiya's theoremu>, it is sufficient to prove the following

10) N. Ninomiya [7] proved this when «>3. An alternate proof of this theorem was
given in [5].

11 > Cf. [6], p. 142.
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assertion. Let a and β be the same as Theorem 3, let λ be a positive measure

with compact support, and let p be a point in # S λ . If

Uλ*(x)<\x-pΓn

in Sx, then

Ul{x)<\x-p\*-n

in #*. To exclude the trivial case, we may assume that a<&. First we shall

show that I x -p\?~n is α-superharmonic in Rn. In fact, by M. Riesz's formula12',

where

n-*

Since the measure -^ \y-p\{?~Λ)~n is an αr-finite positive measure, | # -

ί l p " n is ar-superharmonic in Rn. On the other hand, Ui(x) is α-harmonic in

λ. Put

Then / is αr-superharmonic in tfSx. Next we shall show that / is non-negative

at infinity. In fact, let e be a positive number. Then Sx being compact, there

exists a positive number p such that

for any x in ΉB{0 p) and any y in Sx. Hence for any x in ^B(O p),

Since β>a, there exists a positive number Ro such that i?o>p, Sx is contained

in 5 ( 0 Ro) and

for any in tfB(O i?0). Finally put

12> Cf. [2], p. 151.
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Ά x ) = i f{x) in ^ S λ

ljin f(y) on the boundary of

Then / is lower semicontinuous on "€S\ and / is non-negative at infinity. By

Frostman's theorem135,

/ U ) > 0

on d&Sx. Hence there exists Xι in ΉS\ Π J5(O i?0) such that f(xι) attains the

minimum of f(x) on Wλ Π 5 ( 0 RQ). Assume that/(ΛΓi) is negative. Then

X\ is contained in >ίSχ. For any ball B(xχ r) contained with its closure in

/, r) = j ^

\ f(Xi)κXi,Ay)dy
B{0 β )

This contradicts the αr-superharmonicity of /. Consequently

Uλ

a(x)<\χ-pΓn

in i?n. This completes the proof.
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