ON α-HARMONIC FUNCTIONS

MASAYUKI ITÔ

Chapter 1. Introduction and Preliminaries

M. Riesz [8] introduced the notion of α -superharmonic functions in $n(\geq 1)$ dimensional Euclidean space \mathbb{R}^n in connection with the potential of order α . In this paper, we shall first define the α -superharmonic and α -harmonic functions in a domain D. In case $\alpha = 2$, they coincide with ones in the usual sense. Next we shall introduce generalized Laplacians $\underline{P}_f^{\alpha}(x)$ and $P_f^{\alpha}(x)$ of order α , which are, in the case $\alpha = 2$, equal to the well-known generalized Laplacians except for a universal constant. Then we shall prove the following equivalences.

1. A Lebesgue measurable function $f(\pm + \infty)$ in \mathbb{R}^n is α -superharmonic in a domain D if and only if f is lower semicontinuous and $\underline{P}_f^{\alpha}(x) \leq 0$ in D.

2. A Lebesgue measurable function f in \mathbb{R}^n is α -harmonic in a domain D if and only if f is finite continuous in D and $P_f^{\alpha}(x) = 0$ in D.

Finally we shall prove Ninomiya's domination principle as an application of the above results.

In \mathbb{R}^n , the potential of a given order α , $0 \le \alpha < n$, of a measure μ in \mathbb{R}^n is defined by

$$U^{\mu}_{\alpha}(x) = \int |x-y|^{\alpha-n} d\mu(y),$$

provided the integral on the right exists. We shall say that a measure μ in \mathbb{R}^n is α -finite if the potential $U^{\mu}_{\alpha}(x)$ is finite p.p.p. in \mathbb{R}^n . Here a property is said to hold p.p.p. on a subset X in \mathbb{R}^n , when the property holds on X except for a set E which does not support any measure $\nu \neq 0$ with finite α -energy $\iint |x-y|^{\alpha-n}d\nu(y)d\nu(x)$. M. Riesz [8] proved that every α -finite measure can be balayaged to every closed set if $0 < \alpha \le 2$, $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 3$, n = 2 or n = 1. This paper is based on this result. Let F be a closed set in \mathbb{R}^n and x be a point in $\mathscr{C}F$. We shall denote the balayaged measure

Received August 31, 1965.

of a unit measure ε_x at x to F by $\mu_{x,F}^{(\alpha)}$. Let $B(x_0; r)$ be an open ball with center x_0 and radius r. If $\alpha \neq 2$, for any x in $B(x_0; r)$,

$$d\mu_{x, \mathcal{C}B(x_0; r)}^{(\alpha)}(y) = \lambda_{x_0, r}(x, y) dy$$

with

$$\lambda_{x_0,r}(x,y) = \begin{cases} a_{\alpha}(r^2 - |x - x_0|^2)^{\alpha/2}(|y - x_0|^2 - r^2)^{-\alpha/2}|y - x|^{-n} \text{ in } \mathscr{C}B(x_0 ; r) \\ 0 \text{ in } B(x_0 ; r), \end{cases}$$

where

$$a_{\alpha} = \pi^{-(\alpha/2+1)} \Gamma\left(\frac{n}{2}\right) \sin \frac{\alpha n}{2}.$$

It holds that

$$\int d\mu_{x, F}^{(\alpha)} \leq 1 \text{ and } \int \kappa_{x_0, r}(y) dy = 1,$$

where

 $\kappa_{x_0,r}(y)$ stands for $\lambda_{x_0,r}(x_0, y)$. For a given real-valued function f Lebesgue measurable in \mathbb{R}^n , we shall denote

$$\int f(y) \kappa_{x_0,r}(y) dy$$

by $\mathfrak{M}_{\mathfrak{a}}(x_0; f, r)$. This is a generalization of Gauss' mean value.

Chapter 2. α -harmonic functions

Throughout this chapter, we assume that $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 2$ or n = 1. A measure with density f, measurable in \mathbb{R}^n , will be called the measure f. First we shall define α -superharmonic functions and α -harmonic functions.

§2.1. Definitions

DEFINITION 1.¹⁾ Let D be a domain in \mathbb{R}^n . We shall say that a function f defined in \mathbb{R}^n is α -superharmonic in D if f satisfies the following three conditions:

¹⁾ The notion of α -superharmonicity was first introduced by M. Riesz [8]. According to him, a function f is α -superharmonic in \mathbb{R}^n if f satisfies the following conditions:

⁽¹⁾ $f(x) \ge 0$ and $f(x) \equiv +\infty$ in \mathbb{R}^n ,

⁽²⁾ f is lower semicontinuous in \mathbb{R}^n ,

⁽³⁾ for each x in \mathbb{R}^n and each open ball B(x; r), $f(x) \ge \mathfrak{M}_{\alpha}(x; f, r)$.

Another kind of α -superharmonicity was introduced by Frostman [4].

(S. 1) f is Lebesgue measurable in \mathbb{R}^n ,

(S. 2) f is lower semicontinuous in D,

(S. 3) for each x in D and each open ball B(x; r) contained with its closure in D, $\mathfrak{M}_{\alpha}(x; f, r)$ exists and

$$f(\mathbf{x}) \geq \mathfrak{M}_{\alpha}(\mathbf{x} ; f, r).$$

DEFINITION 2. Let D be a domain in \mathbb{R}^n . We shall say that a function f defined in \mathbb{R}^n is α -harmonic in D if f satisfies the following three conditions:

(H. 1) f is Lebesgue measurable in \mathbb{R}^n ,

(H. 2) f is finite continuous in D,

(H. 3) for each x in D and each open ball B(x; r) contained with its closure in D, $\mathfrak{M}_{\alpha}(x; f, r)$ exists and

$$f(x) = \mathfrak{M}_a(x; f, r).$$

It is easily seen that the potential $U^{\mu}_{\alpha}(x)$ of an α -finite positive measure μ is α -superharmonic in \mathbb{R}^{n} and α -harmonic in \mathscr{CS}_{μ} .²⁾

§ 2.2. Elementary properties

PROPERTY 1. Let f and f' be α -harmonic in a domain D. If f(x) = f'(x) in D, then f(x) = f'(x) almost everywhere in \mathbb{R}^n . In fact, for any open ball $B(x_0; r_0)$ contained with its closure in D and any x in $B(x_0; r_0)$, it holds that

$$\int (f(y) - f'(y)) \lambda_{x_0, r_0}(x, y) dy$$

= $a_{\alpha} (r_0^2 - |x - x_0|^2)^{\alpha/2} \int_{\mathcal{C}B(x_0; r_0)} (f(y) - f'(y)) (|y - x_0|^2 - r_{\theta}^2)^{-\alpha/2} |y - x|^{-n} dy$
= $f(x) - f'(x) = 0$

by Lemma 4 which we shall be given in §2.3. Put

$$g(x) = \begin{cases} 0 \text{ in } B(x_0 ; r_0) \\ (f(x) - f'(x))(|x - x_0|^2 - r_0^2)^{-\alpha/2} \text{ on } CB(x_0 ; r_0) \end{cases}$$

Then the potential of order 0 of the measure g is equal to 0 in $B(x_0; r_0)$. By the unicity theorem of M. Riesz³, g(x) = 0 almost everywhere in \mathbb{R}^n . Hence f(x) = f'(x) almost everywhere in $\mathcal{C}B(x_0; r_0)$. This completes the proof.

²⁾ Cf, [8], n°20.

³⁾ Cf. [8], n°11.

MASAYUKI ITÔ

PROPERTY 2. If f is harmonic in the usual sense in \mathbb{R}^n , it is α -harmonic there. In fact, let x_0 be a point in \mathbb{R}^n and r be a positive number. Using the polar coordinate (ρ, σ) with center at x_0 , we have

$$\mathfrak{M}_{\alpha}(x_{0} ; f, r) = a_{\alpha} r^{\alpha} \int_{r}^{\infty} (\rho^{2} - r^{2})^{-\alpha/2\rho - 1} \Big(\int_{S(x_{0}; 1)} f_{\rho, \sigma} d\sigma \Big) d\rho,$$

where $S(x_0; 1)$ is a unit sphere with center x_0 . Since f is harmonic in the usual sense in \mathbb{R}^n ,

$$f(x_0) = \frac{1}{\omega_n} \int_{\mathcal{S}(x_0; 1)} f_{p, \sigma} d\sigma,$$

where ω_n denotes the area of the unit sphere. Hence

$$f(x_0) = \mathfrak{M}_{\alpha}(x_0; f, r).$$

PROPERTY 3. If f is α -harmonic and bounded from below in \mathbb{R}^n , then it is constant. In fact, without loss of generality we may assume that f is non-negative. By M. Riesz's decomposition theorem⁴, there exist α -finite positive measure ν and a non-negative constant C such that

$$f(x) = U^{\nu}_{\alpha}(x) + C$$

in \mathbb{R}^n . Suppose that f is non-constant. Then there exist a point x_0 in \mathbb{R}^n and a positive number r_0 such that $\nu(B(x_0; r_0)) > 0$. Let ν' be the balayaged measure of ν to $\mathscr{C}B(x_0; r_0)$. For any x in $B(x_0; r_0)$,

$$U_{a}^{\nu'}(x_{0}) = \int U_{a}^{\nu}(y) \lambda_{x_{0},r_{0}}(x, y) dy = \int |y-z|^{a-n} \lambda_{x_{0},r_{0}}(x, y) dy d\nu(z)$$

< $\int U_{a}^{\varepsilon_{x}}(y) d\nu(y) = U_{a}^{\nu}(x).$

In particular,

$$U^{\nu}_{a}(x_{0}) > \int U^{\nu}_{a}(y) \kappa_{x_{0}, r_{0}}(y) dy = \mathfrak{M}_{a}(x_{0}; U^{\nu}_{a}, r_{0}).$$

This contradicts our assumptions.

PROPERTY 4. Let f be harmonic in the usual sense in \mathbb{R}^n . If it is bounded from below, it is constant. This follows from Properties 2 and 3.

PROPERTY 5. Let f be α -harmonic in \mathbb{R}^n . If there exist an α -finite positive

⁴⁾ Cf. [8], n°31 and n°32.

measure ν and a positive constant C such that

$$|f(x)| \le U^{\nu}_{a}(x) + C$$

in \mathbb{R}^n , then f is constant. In fact, for any x_0 in \mathbb{R}^n and any positive number r,

$$|f(x_0)| = |\int_{\mathscr{C}B(x_0; r)} f(y) \kappa_{x_0, r}(y) \, dy| \le \int_{\mathscr{C}B(x_0; r)} |f(y)| \kappa_{x_0, r}(y) \, dy$$

$$\le \int_{\mathscr{C}B(x_0; r)} (U_{\alpha}^{\nu}(y) + C) \kappa_{x_0, r}(y) \, dy = \mathfrak{M}_{\alpha}(x_0; U_{\alpha}^{\nu}, r) + C.$$

Since $\lim_{r \to \infty} \mathfrak{M}_{\alpha}(x_0; U_{\alpha}^{\nu}, r) = 0^{5}$, $|f(x_0)| \leq C$. By Property 3, f is constant.

PROPERTY 6. Let f be harmonic in the usual sense in \mathbb{R}^n . If there exist an α -finite positive measure ν and a non-negative constant C such that

$$|f(x)| \leq U^{\nu}_{a}(x) + C$$

in \mathbb{R}^n , then f is constant. This follows from Properties 2 and 5.

§2.3. Four Lemmas

Let D be a domain in \mathbb{R}^n and a function f defined in \mathbb{R}^n be $\mu_{x, \mathcal{CD}}^{(\alpha)}$ -integrable for any x in D. We denote by $E_{f, D}(x)$ the following function

$$\begin{cases} f(x) \text{ in } \mathcal{C}D\\ \int f(y) d\mu_{x, \mathcal{C}D}^{(\alpha)}(y) \text{ in } D. \end{cases}$$

LEMMA 1. Let $B(x_0; r_0)$ be an open ball and f be a Lebesgue measurable and bounded function in \mathbb{R}^n . Then $E_{f_1, B(x_0; r_0)}(x)$ is α -harmonic in $B(x_0; r_0)$.

Proof. Evidently $E_{f, B(x_0; r_0)}(x)$ is finite continuous in $B(x_0; r_0)$. Hence it is sufficient to prove the condition (H. 2). By Lusin's theorem, there exists a sequence (f_m) of functions of class C^2 with compact support such that $f_m(x)$ $\rightarrow f(x)$ almost everywhere in \mathbb{R}^n as $m \rightarrow \infty$, and

$$|f_m(x)| \le M, |f(x)| \le M \text{ in } \mathbb{R}^n,$$

where M is a positive constant. Since f_m is of class C^2 with compact support,

$$f_m(x) = \int |x-y|^{\alpha-n} k_m(y) \, dy$$

where

5) Cf. [8], n°31,

MASAYUKI ITÒ

$$k_m(y) = \int |y-z|^{(2-\alpha)-n} \Delta f_m(z) \, dz.$$

Let μ_m be the balayaged measure of the measure k_m to $\mathscr{C}B(x_0; r_0)$. Then

$$U^{\mu m}_{\alpha}(x) = \begin{cases} f_m(x) \text{ on } \mathcal{C}B(x_0 ; r_0) \\ \int f_m(y) \lambda_{x_0, r_0}(x, y) \, dy \text{ in } B(x_0 ; r_0). \end{cases}$$

By Lebesgue's bounded convergence theorem,

$$U^{\mu m}_{a}(x) \rightarrow E_{f, B(x_0; r_0)}(x)$$

almost everywhere in \mathbb{R}^n as $m \to \infty$. On the other hand, being

$$\int \lambda_{x_0,r_0}(x, y) \, dy \leq 1,$$

it holds that

 $|U_{\alpha}^{\mu_m}(x)| \leq M \text{ in } \mathbb{R}^n.$

Hence by Lebesgue's bounded convergence theorem,

$$\int U^{\mu m}_{\alpha}(y) \kappa_{x_1,r}(y) dy \rightarrow \int E_{f,B(x_0;r_0)}(y) \kappa_{x_1,r}(y) dy$$

as $m \to \infty$ for any open ball $B(x_1; r)$ contained with its closure in $B(x_0; r_0)$. Since $S_{\mu_m} \subset \mathscr{C}B(x_0; r_0) \subset \mathscr{C}B(x_1; r)$,

$$U^{\mu m}_{\alpha}(x_1) = \int U^{\mu m}_{\alpha}(y) \kappa_{x_1,r}(y) \, dy.$$

Consequently

 $E_{f, B(x_0; r_0)}(x_1) = \mathfrak{M}_{\alpha}(x_1, E_{f, B(x_0; r_0)}, x).$

This completes the proof.

LEMMA 2. Let $B(x_0; r_0)$ be an open ball and a function f be Lebesgue measurable in \mathbb{R}^n . If f is κ_{r_0, r_0} -integrable, for any fixed x in $B(x_0; r_0)$ f is λ_{x_0, x_0} (x, y)-integrable and $E_{f, B(x_0; r_0)}(x)$ is α -harmonic in $B(x_0; r_0)$.

Proof. First we shall show that in $B(x_0; r_0)$

$$\int |f(y)| \lambda_{r_0,r_0}(x, y) dy < +\infty.$$

In fact, for any fixed x in $B(x_0; r_0)$, there exists a positive constant M such that

 $|y-x|^{-n} \le M |y-x_0|^{-n}$

for any y in $\mathscr{C}B(x_0; r_0)$. Now

$$\begin{split} & \int |f(y)| \lambda_{x_0,r_0}(x, y) \, dy \\ &= a_{\alpha} (r_0^2 - |x - x_0|^2)^{\alpha/2} \int_{\mathscr{C}B(x_0;r_0)} |f(y)| (|y - x_0|^2 - r_0^2)^{-\alpha/2} |y - x|^{-n} dy \\ &\leq M (r_0^2 - |x - x_0|^2)^{\alpha/2} r_0^{-\alpha} \int |f(y)| \kappa_{x_0,r_0}(y) \, dy < +\infty. \end{split}$$

Similarly as Lemma 1, $E_{f, B(x_0; r_0)}(x)$ is finite continuous in $B(x_0; r_0)$. Put

$$f_m^+(x) = \inf (f^+(x), m), f_m^-(x) = \inf (f^-(x), m),$$

where

$$f^{+}(x) = \sup (f(x), 0), f^{-}(x) = -\inf (f(x), 0)$$

By Lemma 1, $E_{f_{m,B}(x_0;r_0)}(x)$ and $E_{f_{m,B}(x_0;r_0)}(x)$ are α -harmonic in $B(x_0;r_0)$. Hence

$$E_{f_{m,B}(x_{0};r_{0})}(x) = \mathfrak{M}_{\alpha}(x; E_{f_{m,B}(x_{0};r_{0})}, r),$$

and

$$E_{f_{m,B}(x_{0};r_{0})}(x) = \mathfrak{M}_{a}(x; E_{f_{m,B}(x_{0};r_{0})}, r),$$

for any open ball B(x; r) contained with its closure in B(x; r). Since $(E_{f_m, B(x_0; r_0)})$ tends increasingly to $E_{f^+, B(x_0; r_0)}$,

$$\mathfrak{M}_{\alpha}(x ; E_{f_{m,B}(x_{0}; r_{0})}, r) \to \mathfrak{M}_{\alpha}(x ; E_{f_{m,B}(x_{0}; r_{0})}, r)$$

as $m \to \infty$. Consequently

$$E_{f^+, B(x_0; r_0)}(x) = \mathfrak{M}_{\alpha}(x; E_{f^+, B(x_0; r_0), r}(x))$$

for any x in $B(x_0; r_0)$ and any open ball B(x; r) contained with its closure in $B(x_0; r_0)$. Similarly we obtain that

$$E_{f^{-}, B(x_0; r_0)}(x) = \mathfrak{M}_{\alpha}(x; E_{f^{-}, B(x_0; r_0)}, r)$$

Therefore

$$E_{f, B(x_0; r_0)}(x) = E_{f^+, B(x_0; r_0)}(x) - E_{f^-, B(x_0; r_0)}(x)$$

= $\mathfrak{M}_{\alpha}(x; E_{f^+, B(x_0; r_0)}, r) - \mathfrak{M}_{\alpha}(x; E_{f^-, B(x_0; r_0)}, r)$
= $\mathfrak{M}_{\alpha}(x; E_{f, B(x_0; r_0)}, r).$

This completes the proof.

MASAYUKI ITÔ

For a general domain D, we get in the same way the following

LEMMA 2'. Let D be a domain in \mathbb{R}^n and a function f be Borel measurable in \mathbb{R}^n . If is $\mu_{x, \, {\mathfrak{G}} D}^{(\alpha)}$ -integrable for any x in D, $E_{f, D}(x)$ is α -harmonic in D.

LEMMA 3. Let a function f be α -harmonic in a bounded domain D. If f is finite continuouus on \overline{D} and f(x) = 0 almost everywhere in CD, then f(x) = 0 in D.

Proof. Let x_0 be a point in \overline{D} such that

$$f(x_0) = \max \{f(x) ; x \in \overline{D}\}.$$

Suppose that $f(x_0) > 0$. Then x_0 is not on the boundary of *D*. Let $B(x_0; r)$ be an open ball contained with its closure in *D*. Then

$$\begin{aligned} \mathfrak{M}_{\alpha}(x_{0} ; f, r) &= \int f(y) \kappa_{x_{0}, r}(y) \, dy \\ &= \int_{\mathscr{C}B(x_{0} ; r) \cap D} f(y) \kappa_{x_{0}, r}(y) \, dy \leq \int_{\mathscr{C}B(x_{0} ; r) \cap D} f(x_{0}) \kappa_{x_{0}, r}(y) \, dy \\ &< \int f(x_{0}) \kappa_{x_{0}, r}(y) \, dy = f(x_{0}). \end{aligned}$$

This contradicts the α -harmonicity of f. Therefore $f(x) \le 0$ in D. Similarly we obtain $f(x) \ge 0$ in D, and hence f(x) = 0 in D.

LEMMA 4. Let f be α -harmonic in a domain D. For each open ball contained with its closure in D,

$$f(x) = \int f(y) \lambda_{x_0,r}(x, y) \, dy$$

in $B(x_0; r)$ and f is analytic in D.

Proof. Similarly as Lemma 2, for any x in $B(x_0; r)$,

$$\int |f(y)| \lambda_{x_0,r}(x, y) \, dy < +\infty.$$

By Lemma 2, $E_{f, \Gamma(x_0; r)}(x)$ is α -harmonic in $B(x_0; r)$. Put

$$g(x) = f(x) - E_{f, B(x_0; r)}(x).$$

Then g(x) = 0 in $B(x_0; r)$. Consequently in $B(x_0; r)$,

$$f(x) = \int f(y) \lambda_{x_0 r}(x, y) dy.$$

Hence by M. Riesz's theorem⁶, f is analytic in $B(x_0; r)$. $B(x_0; r)$ being arbitrary, f is analytic in D. This completes the proof.

§2.4. Extension of generalized Laplacian

Now we shall introduce another mean value of a function. Let f be a Lebesgue measurable function in \mathbb{R}^n . If

$$\gamma \int_{1}^{\infty} \rho^{-\gamma - 1} (\rho^2 - 1)^{\gamma/2 - 1} \mathfrak{M}_{\alpha}(x ; f, r\rho) d\rho$$

exists for a positive nember γ , we denote it by $\mathscr{A}_{\alpha,\gamma}(x; f, r)$. Since

$$\gamma \int_{1}^{\infty} \rho^{-\gamma - 1} (\rho^2 - 1)^{\gamma/2 - 1} d\rho = 1,$$

 $\mathscr{A}_{\alpha,\tau}(x; f, r)$ is considered as a kind of mean values of f. By M. Riesz's formula,

$$\mathcal{A}_{\alpha,\tau}(x \; ; \; f, \; r)$$

= $C_{\alpha,\tau,n} r^{\alpha} \int_{\mathcal{C}B(x;r)} (|x-y|^2 - r^2)^{\tau/2 - \alpha/2} |x-y|^{-\tau - n} f(y) \; dy,$

where

$$C_{\alpha,\tau,n}=\frac{\pi^{-n/2}\Gamma(\frac{n}{2})\Gamma(1+\frac{\tau}{2})}{\Gamma(\frac{\alpha}{2})\Gamma(1+\frac{\alpha}{2})}.$$

We denote the mean value corresponding to $r = \alpha$ by $\mathcal{A}_{\alpha}(x; f, r)$. Thus

$$\mathscr{A}_{\alpha}(x ; f, r) = \frac{\alpha r^{\alpha}}{\omega_n} \int_{\mathscr{C}B(x; r)} |x - y|^{-\alpha - n} f(y) \, dy$$

We denote

$$\lim_{\varepsilon\to 0}\frac{\omega_n}{\alpha\varepsilon^\alpha}\left(\mathscr{A}_\alpha(x\ ;\ f,\ \varepsilon)-f(x)\right)$$

by $\underline{P}_{f}^{\alpha}(x)$. In particular, when

$$\lim_{\varepsilon\to 0}\frac{\omega_n}{\alpha\varepsilon^{\alpha}}\left(\mathscr{A}_{\alpha}(x ; f, \varepsilon) - f(x)\right)$$

exists, we denote it by $P_f^{\alpha}(x)$. For $\alpha = 2$, $P_f^{\alpha}(x)$ coincides with the generalized Laplacian except for a universal constant⁷.

⁶) Cf. [8], n°26.

¹⁾ Çf. [1], pp. 17-18,

§ 2.5. Inverse distribution of $r^{\alpha-n}$

We consider the distribution D_{α} such that

$$D_a * r^{a-n} = -\delta,$$

where δ is Dirac's distribution. By Deny's theorem⁸⁾,

$$D_{\alpha} = C_{\alpha, n} \operatorname{pf.} r^{-\alpha - n}$$

where

$$C_{\sigma,n} = \pi^{-n} \frac{\Gamma\left(\frac{n-\alpha}{2}\right) \Gamma\left(\frac{n+\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(1-\frac{\alpha}{2}\right)}$$

and the distribution pf. $r^{-\alpha-n}$ is defined as follows:

pf.
$$r^{-a-n}(\varphi) = pf. \int |x|^{-a-n} \varphi(x) dx^{9}$$

for a function φ of class C^{∞} with compact support.

LEMMA 5. Let f be a measurable function defined in \mathbb{R}^n , and x_0 be a point in \mathbb{R}^n . If f is a function of class C^2 in a neighborhood of x_0 and

$$\int_{\mathscr{C}B(x_0;\varepsilon_0)} |y|^{-\alpha-n} f(x_0-y) \, dy < +\infty$$

for a positive number ε , then $P_f^{\alpha}(x_0)$ exists and

$$P_f^{\alpha}(x_0) = \mathrm{pf.} \int |y|^{-\alpha - n} f(x_0 - y) \, dy.$$

Proof. Without loss of generality we may assume that $x_0 = 0$. By our assumptions, for any y in some neighborhood of 0,

$$f(y) = f(0) + \sum_{i=1}^{n} y_i \frac{\partial f}{\partial y_i}(0) + \frac{1}{2} \sum_{i, j=1}^{n} y_i y_j \frac{\partial^2 f}{\partial y_i \partial y_j}(0) + \psi(y),$$

where $\psi(y) = o(|y^2|)$ and $y = (y_1, y_2, ..., y_n)$. Hence

$$\int_{B(0;\varepsilon)} \psi(y) |y|^{-a-n} dy < +\infty$$

for any sufficiently small positive number ϵ . Hence

⁸⁾ Cf. [2], p. 153.

⁹⁾ Çf. [9], p. 42.

$$pf. \int f(-y) |y|^{-\alpha - n} dy$$

exists, and

$$pf. \int f(-y) |y|^{-\alpha-n} dy = pf. \int f(y) |y|^{-\alpha-n} dy$$
$$= \lim_{\varepsilon \to 0} \left(\int_{\mathscr{C}B(\sigma;\varepsilon)} |y|^{-\alpha-n} f(y) dy + f(0) I^{(1)}(\varepsilon) + \sum_{i=1}^{n} \frac{\partial f}{\partial y_{i}} (0) I_{i}^{(2)}(\varepsilon) \right)$$
$$+ \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial y_{i} \partial y_{j}} (0) I_{ij}^{(3)}(\varepsilon) \right).$$

where $I^{(1)}$, $I_i^{(2)}$ and $I_{ij}^{(3)}$ are functions in r(r = |y|) satisfying the following conditions:

(1)
$$\frac{dI^{(1)}}{dr}(r) = \omega_n r^{-\alpha-1},$$

(2)
$$\frac{dI_i^{(2)}}{dr}(r) = r^{-\alpha-1} \int_{S_1} y_i ds,$$

(3)
$$\frac{dI_{ij}^{(3)}}{dr}(r) = r^{-\alpha-1} \int_{s_1} y_i y_j ds,$$

where S_1 is the unit sphere with center 0 and ds is the area-element on S_1 . Since y_i and $y_i y_j (i \neq j)$ are harmonic in the usual sense in \mathbb{R}^n ,

$$\int_{S_1} y_i \, ds = 0 \ and \ \int_{S_1} y_i \, y_j \, ds = 0 \ (i \neq j) \, .$$

On the other hand

$$\int_{S_1} y_i^2 ds = \frac{1}{n} \int_{S_1} y^2 ds = \frac{\omega_n}{n} |y|^2.$$

Therefore

$$pf. \int |y|^{-\alpha - n} f(y) dy$$

$$= \lim_{\varepsilon \to 0} \left(\int_{\mathscr{C}B(o;\varepsilon)} |y|^{-\alpha - n} f(y) dy - \frac{\omega_n}{\alpha \varepsilon^{\alpha}} f(0) + \frac{\omega_n}{n(2 - \alpha)} \varepsilon^{2 - \alpha} \Delta f(0) \right)$$

$$= \lim_{\varepsilon \to 0} \left(\int_{\mathscr{C}B(o;\varepsilon)} |y|^{-\alpha - n} f(y) dy - \frac{\omega_n}{\alpha \varepsilon^{\alpha}} f(0) \right)$$

$$= \lim_{\varepsilon \to 0} \frac{\omega_n}{\alpha \varepsilon^{\alpha}} (\mathscr{A}_{\alpha}(0; f, \varepsilon) - f(0)).$$

Consequently

$$P_f^{\alpha}(0) = \mathrm{pf.} \int |y|^{-\alpha - n} f(-y) \, dy.$$

This completes the proof.

§2.6. Main theorems

THEOREM 1. Let f be a Lebesgue measurable function defined in \mathbb{R}^n and D be a domain in \mathbb{R}^n . Assume that

(1) f is lower semicontinuous and $f(x) > -\infty$ in D,

(2) f is $\kappa_{x,r}$ -integrable for any x in D and any open ball B(x; r) contained with its closure in D. Then f is α -superharmonic in D if and only if $\underline{P}_f^{\alpha}(x) \leq 0$ in D.

Proof. First suppose that f is α -superharmonic in D. For any x in D and any open ball B(x; r) contained with its closure in D,

$$\int_{\mathscr{C}B(x;r)} |x-y|^{-\alpha-n} |f(y)| \, dy < +\infty.$$

In fact,

$$\int_{\mathscr{C}B(x;r)} |f(y)| \kappa_{x,r}(y) dy$$

= $a_{\alpha} r^{\alpha} \int_{\mathscr{C}B(x;r)} |f(y)| (|y-x|^2 - r^2)^{-\alpha/2} |x-y|^{-n} dy$
 $\geq a_{\alpha} r^{\alpha} \int_{\mathscr{C}B(x;r)} |f(y)| |y-x|^{-\alpha-n} dy.$

Hence

$$\int_{\mathscr{C}B(x;r)} |x-y|^{-a-n} |f(y)| dy < +\infty.$$

f being α -superharmonic in D, there exists a positive number r_x such that

$$f(\mathbf{x}) \geq \mathfrak{M}_{\alpha}(\mathbf{x} ; f, r)$$

for any $0 < r \le r_x$. We take an arbitrary positive number ϵ such that $\epsilon < r_x$. Then

$$\mathcal{A}_{\alpha}(x \; ; \; f, \; \varepsilon) - f(x)$$

= $\alpha \int_{1}^{\infty} \rho^{-\alpha - 1} (\rho^2 - 1)^{\alpha/2 - 1} (\mathfrak{M}_{\alpha}(x \; ; \; f, \; \varepsilon \rho) - f(x)) d\rho$
 $\leq \alpha \int_{r_{\alpha}/\varepsilon}^{\infty} \rho^{-\alpha - 1} (\rho^2 - 1)^{\alpha/2 - 1} (\mathfrak{M}_{\alpha}(x \; ; \; f, \; \varepsilon \rho) - f(x)) d\rho.$

Now

$$\alpha \left| \int_{r_{\#}/\varepsilon}^{\infty} \rho^{-\alpha-1} (\rho^2 - 1)^{\alpha/2-1} (\mathfrak{M}_{\alpha}(x \ ; \ f, \ \varepsilon \rho) - f(x)) d\rho \right|$$

$$\leq \alpha \int_{r_x/\varepsilon}^{\infty} \rho^{-\alpha-1} (\rho^2 - 1)^{\alpha/2-1} | \mathfrak{M}_{\alpha}(x ; f, \varepsilon \rho) - f(x) | d\rho$$

$$\leq \alpha \int_{r_x/\varepsilon}^{\infty} \rho^{-\alpha-1} \left(\rho^2 - \left(\frac{r_x}{\varepsilon}\right)^2 \right)^{\alpha/2-1} | \mathfrak{M}_{\alpha}(x ; f, \varepsilon \rho) - f(x) | d\rho$$

Putting $r = \frac{\varepsilon}{r_x} \rho$, we obtain

$$\begin{aligned} &\alpha \int_{r_x/\varepsilon}^{\infty} \rho^{-\alpha-1} \Big(\rho^2 - \Big(\frac{r_x}{\varepsilon}\Big)^2 \Big)^{\alpha/2-1} \big| \mathfrak{M}_{\alpha}(x \ ; \ f, \ \epsilon\rho) - f(x) \big| d\rho \\ &= \alpha \Big(\frac{\varepsilon}{r_x}\Big)^2 \int_{1}^{\infty} r^{-\alpha-1} (r^2 - 1)^{\alpha/2-1} \big| \mathfrak{M}_{\alpha}(x \ ; \ f, \ rr_x) - f(x) \big| dr \\ &\leq \alpha \Big(\frac{\varepsilon}{r_x}\Big)^2 \int_{1}^{\infty} r^{-\alpha-1} (r^2 - 1)^{\alpha/2-1} (\mathfrak{M}_{\alpha}(x \ ; \ |f|, \ rr_x) + |f(x)|) dr \\ &\leq \Big(\frac{\varepsilon}{r_x}\Big)^2 (\mathfrak{M}_{\alpha}(x \ ; \ |f|, \ r_x) + |f(x)|). \end{aligned}$$

Since we may assume that f(x) is finite, $\mathfrak{M}_{\alpha}(x; |f|, r_x) + |f(x)|$ is finite. Hence

$$\underline{P}_{f}^{a}(x) \leq \lim_{\varepsilon \to 0} \frac{\omega_{n} \varepsilon^{2-a}}{\alpha r_{x}^{2}} \left(\mathfrak{M}_{a}(x ; |f|, r_{x}) + |f(x)| = 0 \right)$$

In order to prove the converse, suppose that $P_f^{\alpha}(x) \leq 0$ in *D*, and let $B(x_0; r_0)$ be an open ball contained with its closure in *D*. Then it is sufficient to prove the following inequality:

$$f(x) \ge \int_{\mathcal{C}B(x_0; r_0)} f(y) \lambda_{x_0, r_0}(x, y) dy$$

in $B(x_0; r_0)$. By the condition (2),

$$\int |f(y)| \lambda_{x_0,r_0}(x, y) \, dy < +\infty.$$

We take an open ball $B(x_0; r_1)$ such that $\overline{B(x_0; r_0)} \subset B(x_0; r_1) \subset \overline{B(x_0; r_1)} \subset D$. Since f is lower semicontinuous and $f(x) > -\infty$ in D, there exists a sequence (φ_m) of continuous functions with compact support in \mathbb{R}^n which tends increasing to f on $\overline{B(x_0; r_1)}$. Put

$$f_m(x) = \begin{cases} \varphi_m(x) & in \ B(x_0 \ ; \ r_1) \\ f(x) & on \ CB(x_0 \ ; \ r_1). \end{cases}$$

Then $(E_{f_{m}, B(x_{0}; r_{0})})$ tends increasingly to $E_{f, B(x_{0}; r_{0})}$ as $m \to \infty$. Hence it is sufficient to prove that $f(x) \ge E_{f_{m}, B(x_{0}; r_{0})}(x)$ in $B(x_{0}; r_{0})$ for any m. Now let φ be a function of class C^{∞} with compact support in \mathbb{R}^{n} such that $\varphi(x) \ge 0$ in \mathbb{R}^{n} and $\varphi(x) = 1$ in $B(x_{0}; r_{0})$. And let μ_{γ} be the balayaged measure of the measure φ to $\mathscr{C}B(x_0; r_0)$. Put

$$g(x) = \int |x-y|^{\alpha-n} \varphi(y) \, dy - \int |x-y|^{\alpha-n} d\mu_{\epsilon}(y).$$

Then g(x) is finite continuous in \mathbb{R}^n and g(x) = 0 on $\mathscr{C}B(x_0; r_0)$. Moreover for any x in $B(x_0; r_0)$, $P_g^a(x)$ exists and

$$P_{g}^{a}(x) = D_{a} * (r^{a-n} * \varphi)(x) - P_{U_{a}}^{a\mu_{2}}(x).$$

Since $S_{\mu_{\tau}}$ is contained in $\mathscr{C}B(x_0; r_0)$. $P_{U_{\alpha}}^{x_{\mu_{\tau}}}(x) = 0$ in $B(x_0; r_0)$. Hence

$$D_a * g(x) = -\varphi(x)$$

in $B(x_0; r_0)$. Now for any positive number ϵ , we denote $E_{f_{m}, B(x_0; r_0)} - f - \epsilon g$ by *h*. The function *h* is upper semicontinuous and $h(x) < +\infty$ in $B(x_0; r_1)$, and it is equal to 0 on $\mathscr{C}B(x_0; r_1)$. By Lemma 2, $E_{f_{m}, B(x_0; r_0)}$ is α -harmonic in $B(x_0; r_0)$. Suppose that there exists a point x_1 in $B(x_0; r_0)$ such that $h(x_1) > 0$ and

$$h(x_1) = \sup \{h(x) ; x \in B(x_0 ; r_0)\}.$$

Then for any open ball $B(x_1; r)$ contained with its closure in $B(x_0; r_0)$,

$$\mathcal{A}_{\alpha}(\mathbf{x}_{1} ; h, r) = \frac{\alpha r^{\alpha}}{\omega_{n}} \int_{\mathcal{C}B(\mathbf{x}_{1}; r_{0})} |\mathbf{x}_{1} - y|^{-\alpha - n} h(y) dy$$

$$\leq \frac{\alpha r^{\alpha}}{\omega_{n}} \int_{\mathcal{C}B(\mathbf{x}_{1}; r) \cap B(\mathbf{x}_{0}; r_{0})} |\mathbf{x}_{1} - y|^{-\alpha - n} h(y) dy$$

$$\leq \frac{\alpha r^{\alpha}}{\omega_{n}} \int_{\mathcal{C}B(\mathbf{x}_{1}; r) \cap B(\mathbf{x}_{0}; r_{0})} |\mathbf{x}_{1} - y|^{-\alpha - n} h(\mathbf{x}_{1}) dy$$

$$< \frac{\alpha r^{\alpha}}{\omega_{n}} \int_{\mathcal{C}B(\mathbf{x}_{1}; r)} |\mathbf{x}_{1} - y|^{-\alpha - n} h(\mathbf{x}_{1}) dy = h(\mathbf{x}_{1}).$$

Hence

$$\overline{\lim_{\varepsilon\to 0}}\,\frac{\omega_n}{\alpha\varepsilon^\alpha}\,(\mathscr{A}_\alpha(x_1\,\,;\,\,h,\,\varepsilon)-h(x_1))\leq 0.$$

On the other hand

$$P^{a}_{-h}(\mathbf{x}) \leq -\varepsilon \varphi(\mathbf{x}) = -\varepsilon$$

in $B(x_0; r_0)$. This is a contradiction. Consequently $h(x) \le 0$ in $B(x_0; r_0)$, i.e.,

 $E_{f_{m},B(x_{0};r_{0})}(\mathbf{x}) \leq f(\mathbf{x})$

in $B(x_0; r_0)$. Therefore

 $f(\mathbf{x}) \geq E_{f, P(\mathbf{x}_0; r_0)}(\mathbf{x})$

in $B(x_0; r_0)$. In particular

$$f(\mathbf{x}) \geq \mathfrak{M}_{\alpha}(\mathbf{x}_0; f, r),$$

i.e., f is α -superharmonic in D. This completes the proof.

THEOREM 2. Let D be a domain in \mathbb{R}^n and a function f defined in \mathbb{R}^n be finite continuous in D. Then f is α -harmonic in D if and only if $P_f^a(\mathbf{x})$ exists in D and $P_f^a(\mathbf{x}) = 0$ in D.

Proof. Suppose that $P_f^{\alpha}(\mathbf{x}) = 0$ in D. Since

$$\int_{\mathscr{C}B(x;r)} |x-y|^{-\alpha-n} |f(y)| \, dy < +\infty$$

for any in D and any positive number r, it holds that

$$\int_{\mathcal{C}B(x;r)} |f(y)| \kappa_{x,r}(y) \, dy < +\infty$$

for any x in D and any open ball $B(x_0; r)$ contained with its closure in D. Consequently, by Theorem 1, f is α -harmonic in D. The converse is evident by Theorem 1.

Chapter 3. Ninomiya's domination principle

In this chapter, we assume that $0 < \alpha \le 2$, $0 < \alpha < 2$ or $0 < \alpha < 1$ according to $n \ge 3$, n = 2 or n = 1.

THEOREM 3.¹⁰⁾ Let μ be a positive measure with compact support such that

$$\iint |\mathbf{x}-\mathbf{y}|^{\alpha-n}d\mu(\mathbf{y})\,d\mu(\mathbf{x})<+\infty\,,$$

and let ν be a positive measure. If

 $U^{\mu}_{a}(\mathbf{x}) \leq U^{\nu}_{a}(\mathbf{x})$

on S_{μ} , then

$$U^{\mu}_{\beta}(\mathbf{x}) \leq U^{\nu}_{\beta}(\mathbf{x})$$

in \mathbb{R}^n for any β such that $\alpha \leq \beta < n$.

Proof. By Ninomiya's theorem¹¹⁾, it is sufficient to prove the following ¹⁰⁾ N. Ninomiya [7] proved this when $n \ge 3$. An alternate proof of this theorem was given in [5].

¹¹⁾ Cf. [6], p. 142.

assertion. Let α and β be the same as Theorem 3, let λ be a positive measure with compact support, and let p be a point in \mathscr{CS}_{λ} . If

$$|U_a^{\lambda}(\mathbf{x}) \leq |\mathbf{x} - \mathbf{p}|^{\beta - i}$$

in S_{λ} , then

$$|U_a^{\lambda}(x) \leq |x-p|^{\beta-n}$$

in \mathbb{R}^n . To exclude the trivial case, we may assume that $\alpha < \beta$. First we shall show that $|x-p|^{\beta-n}$ is α -superharmonic in \mathbb{R}^n . In fact, by M. Riesz's formula¹²,

$$|\boldsymbol{x}-\boldsymbol{p}|^{3-n}=\frac{1}{K_{\alpha,\beta-\alpha}}\int|\boldsymbol{x}-\boldsymbol{y}|^{\alpha-n}|\boldsymbol{y}-\boldsymbol{p}|^{(\beta-\alpha)-n}d\boldsymbol{y},$$

where

$$K_{\alpha,\beta-\alpha} = \pi^{n/2} \frac{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta-\alpha}{2}\right) \Gamma\left(\frac{n-\beta}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right) \Gamma\left(\frac{n-\beta+\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}.$$

Since the measure $\frac{1}{K_{\alpha,\beta-\alpha}}|y-p|^{(\beta-\alpha)-n}$ is an α -finite positive measure, $|x-p|^{\beta-n}$ is α -superharmonic in \mathbb{R}^n . On the other hand, $U_{\alpha}^{\lambda}(x)$ is α -harmonic in \mathscr{CS}_{λ} . Put

$$f(\mathbf{x}) = |\mathbf{x} - \mathbf{p}|^{\beta - n} - U_{\alpha}^{\lambda}(\mathbf{x}).$$

Then f is α -superharmonic in $\mathscr{C}S_{\lambda}$. Next we shall show that f is non-negative at infinity. In fact, let ε be a positive number. Then S_{λ} being compact, there exists a positive number ρ such that

$$|x-y|^{\alpha-n} \leq (1+\varepsilon)|x-p|^{\alpha-n}$$

for any x in $\mathscr{C}B(O; \rho)$ and any y in S_{λ} . Hence for any x in $\mathscr{C}B(O; \rho)$,

$$U_{a}^{\lambda}(\mathbf{x}) \leq (1+\epsilon) \,\lambda(\mathbf{R}^{n}) |\mathbf{x}-\mathbf{p}|^{a-n}.$$

Since $\beta > \alpha$, there exists a positive number R_0 such that $R_0 \ge \rho$, S_{λ} is contained in $B(O; R_0)$ and

$$|x-p|^{\beta-n} \ge (1+\varepsilon) \lambda(R^n) |x-p|^{\alpha-n}$$

for any in $\mathscr{C}B(O; R_0)$. Finally put

¹²⁾ Cf. [2], p. 151.

$$\bar{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{in } \mathcal{S}S_{\lambda}, \\ \lim_{\substack{y \in \mathcal{S}S_{\lambda}}} f(y) & \text{on the boundary of } \mathcal{C}S_{\lambda}. \end{cases}$$

Then \overline{f} is lower semicontinuous on $\mathscr{C}S_{\lambda}$ and \overline{f} is non-negative at infinity. By Frostman's theorem¹³⁾,

 $\bar{f}(\mathbf{x}) \ge 0$

on $\partial \mathscr{C}S_{\lambda}$. Hence there exists x_1 in $\overline{\mathscr{C}S_{\lambda}} \cap B(\overline{O}; R_0)$ such that $\overline{f}(x_1)$ attains the minimum of $\overline{f}(x)$ on $\overline{\mathscr{C}S_{\lambda}} \cap \overline{B(O; R_0)}$. Assume that $\overline{f}(x_1)$ is negative. Then x_1 is contained in $\mathscr{C}S_{\lambda}$. For any ball $B(x_1; r)$ contained with its closure in $\mathscr{C}S_{\lambda}$,

$$\mathfrak{M}_{\alpha}(\mathbf{x}_{1} ; f, r) = \int f(y) \kappa_{\mathbf{x}_{1}, r}(y) dy$$

$$\geq \int_{\mathscr{C}S_{\lambda} \cap B(0; R_{0})} f(y) \kappa_{\mathbf{x}_{1}, r}(y) dy \geq \int_{\mathscr{C}S_{\lambda} \cap B(0; R_{0})} f(\mathbf{x}_{1}) \kappa_{\mathbf{x}_{1}, r}(y) dy$$

$$\geq \int f(\mathbf{x}_{1}) \kappa_{\mathbf{x}_{1}, r}(y) dy = f(\mathbf{x}_{1}).$$

This contradicts the α -superharmonicity of f. Consequently

$$U^{\lambda}_{\alpha}(\mathbf{x}) \leq |\mathbf{x} - \mathbf{p}|^{\beta - n}$$

in R^n . This completes the proof.

References

- M. Brelot: Éléments de la théorie classique du potentiel, Les cours de Sorbonne, 3e cycle, Centre de Documentation Universitaire, Paris, 1960.
- [2] J. Deny: Les potentiels d'énergie finie, Acta Math., 82 (1950), 107-183.
- [3] O. Frostman: Potentiel d'équilibre et capacité des ensembles, Comm. Sem. Math., Lund, 3 (1935), 1-118.
- [4] O. Frostman: Sur les fonctions surharmonique d'ordre fractionnaire, Ark. Math. Astv. Fysik., 16 (1939), 16-35.
- [5] M. Ito: Remarks on Ninomiya's domination principle, Proc. Jap. Acad., 40 (1964), 743-746.
- [6] N. Ninomiya: Sur un principe du maximum dans la théorie du potentiel, Jour. Math., Osaka City Univ., 12 (1961), 139-143.
- [7] N. Ninomiya: Sur un principe du maximum pour la potentiel du Riesz-Frostman, Jour. Math., Osaka City Univ., 13 (1962), 57-62.
- [8] M. Riesz: Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math., Szeged, 9 (1938), 1-42.
- [9] L. Schwartz: Théorie des distributions 1, Paris Hermann, 1951.

Mathematical Institute

Nagoya University

¹³⁾ Cf. [3], p. 69.