A NEW DEFINITION OF THE n-DIMENSIONAL
QUASICONFORMAL MAPPINGS

PETRU CARAMAN

Introduction

In this note we shall extend, for arbitrary », Pesin’s [11] bidimensional
definition for quasiconformal mappings and establish its equivalence with
Gehring’s [7] and Viisild’s [15] definitions.

The four Viisild's [15] definitions are the following:

1° A homeomorphism % = f(x) of a domain DC R" is called K-quasiconformal
(1K< ), if §(x) is uniformly bounded in D and §(x) <K a.e.” in D, where,
for each r, 0<r<d (x, frD), we put (according to Viisdld [15]):

L(x,7)= max |f(x) -f1|, Il 7r = Irnin L f(x) = f(x) ],

|z’ ~z|=r z’ ~zl=r

T(x, r) =m{f[B(x, )1},

<y —AnL(z, 9" —1lim_ L")
A (v I A WP
=— L(x, 7)

0(x) =max[d(x), d(x)], do.(x) = lix;r}) 102.7)

and A,7" is the volume of the #-dimensional ball B(x, ) wtih the centre x and
the radius 7.

2° A homeomorphism ¥ = f(x) of a domain D< R" is called K-quasiconformal
(1K< ) if

%M(I‘) < M(I™) < KM(I)

for each curve family I'c D, where M(I) is the module of I" and I'* is its
image.
We recall (see Fuglede [5]) that

M(I') = inf p"dr,
pEF) BB
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where F(I') is the family of functions p(x) =0 Borel-measurable defined for all
xe R", so that Lpdsg 1 for each curve r& I and dr is the element of volume.

3° A homeomorphism %= f(x) of a domain DCR" is' called K-quasicon-
formal (1= K< ), if it is ACL (abSolutely continuous on lines), a.e. differen-
tiable and

%maxlf’(x)|”§ |J(®)l < Kmin| f'(x)]"

a.e. in D, where we put

max| f'(x)| = fl}zlu‘cllf’(x)dxl, min| f'(x)| =|1An%1_11lf'(x)dxl

and f'(x) is the derivative operator of f(x) i.e. the linear transformation of R"
so that

x4+ 4%) = f(x) + f1(x) 4z + O(| 4x)).

4° A homeomorphism % = f(x) of a domain DC R" is called K-quasiconformal
(1< K< ), if

%(—M(A) <M(A™) < KM(A),

for all the rings A with closure Ac D, where M(A) is the module of A and
A* is its image.

A homeomorphism ¥ = f(x) is called gquasiconformal according to one of the
above definitions if it is K-quasiconformal for some K.

The equivalence of the preceding four definitions of the K-quasiconformal
homeomorphisms has béen established for 7= 3 by Viisild [15] and for arbi-
trary » by Chén Hang-1én in [4] and by us in some lectures about the 7-di-
mensional quasiconformal homeomorphisms delivered in Bucarest (1. I-31. III.
1964).

Gehring [7] gives the two following definitions :

The metric definition. A homeomorphism % =f(x) of a domain DCR" is

said to be K-quasiconformal if §z(x) is uniformly bounded in D and

a.e. in D.

The geometric definition, The terms of this definition are the same as those
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of the fourth Viisild’s definition, but the meaning of the module of a ring is
somewhat different. So, the module of Viisil4’s definition is the quantity (see
p. 7 of [151):
=__Yn_ |
M(A) = 31
where w, is the (nz —1)-dimensional Lebesgue measure of the sphere |xi=1
and M(Is) is the module of the family of arcs which join the boundary com-
ponents of the ring A in A; the module of Gehring’s definition is the quantity

l1/(71—1)

| wa
mod A"lc-—“(A)

’

where C(A) is the conformal capacity of the ring A (see Loewner [9]). From
M(I's) =C(A) .

(see Krivov in [8] and Sabat in a unpublished Note), which also follows im-
mediately from Gehring’s theorem 1 of [6] (its tridimensional proof remaining

the same for arbitrary »), we obtain
M(A) = mod™ 4,

which implies the equivalence Gehring’s geometric definition of K-quasicon-
formal homeomorphisms with Vaisild's definitions of K" '-quasiconformal
homeomorphisms.

Viisdld’s inequalities (5.2) of [15]:
3(x) <87 N x), ou(x) <6Y"(x),

which hold a.e. in D, imply that

The class of K-quasiconformal homeomorphisms according to Gehring's metric
definition is contained in the Viisdld's class of K" “-quasiconformal homeomor-
phisms and the Viisild's class of K-quasiconformal homeomorphisms is contained
in the class of K*'™ quasiconformal homeomorphisms according to Gehring's metric
definition. The bound K*" is best possible.

Indeed, the affine mapping

yt= Kz(:—l)ln(n—nxz (i= 1’ e, n)

is K-quasiconformal according to Viisild’s third (analytic) definition, because
it is ACL and satisfies the corresponding inequalities, the latter being implied
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by some of Viisild’s relations (5.1) of [15]:

max |y ()]" _ A I VA2 Y VR P
[T Ao An min |y (x)|" in!

which hold in every point of differentiability with /%0 and where y'(x) maps
the unit ball onto an ellipsoid with semi-axes ;= * * + =4,>0, which in our

case are of the form ;= K**"V/""~1 Byt
Bu() =
(see also (5.1) of [15]1) implies
du(x) = % = K"

and the bound K¥" cannot be improved.

The equivalence of Viisild’s definitions of K" '-quasiconformal homeomor-
phisms and Gehring’s geometric definition of K-quasiconformal homeomorphisms,
combined with the preceding relationship between Viisild’s and Gehring’s metric
definitions, imply that

Gehring's class of K-quasiconformal homeomorphisms according to the metric
definition is contained in his class of K-quasiconformal homeomorphisms according
to the geometric definition, which in its turn is contained in his class of K" V"
quasiconformal homeomorphisms according to the metric definition. The bound
K*" D% s best possible.

Thus all the six definitions of quasiconformal homeomorphisms are equi-

valent.

1. A new class of #n-dimensional quasiconformal mappings

We begin with some preliminary definitions.

A family of surfaces {Z,} (0<a<1) is called regular of parameter k (1<
k< ) relatively to the point x,, if the surfaces I, are the images of the spheres
|t] =a by the homeomorphism x= ¢(#) of the ball |#|<1 on a neighbourhood
of the point % = ¢(0) and

max|x — x]

im2E3 ____ _p
a0 MIn | x—1x0|
*E3e
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A homeomorphism X = f(x) is called regular in x, if it maps a regular family
of parameter % relatively to x, in a regular family of parameter 2’ (1<k'< «)
relatively to f(x,). The quantity

(1) q(xy) = inf kR,

where the infimum is taken over all regular families relatively to x,, is called
the characteristic of the mapping x=f(x) in x,.

A homeomorphism x = f(x) is called regular in a domain DCR", if it is
regular in each of its points.

A homeomorphism x=f(x) of a domain Dc R" is called Q-quasiconformal
in Pesin's sense in D, if it is regular in D, the characteristic q(x) is uniformly
bounded in D and

gy =@

a.e. in D. A quasiconformal homeomorphism in Pesin’s sense is a Q-quasicon-

formal one for some Q.

Remark 1. This definition of Q-quasiconformal mappings is a generalisation
of Pesin’s [11] corresponding to bidimensional definition of the ‘‘general Q-
quasiconformal mappings”; in Pesin’s definition the preceding inequality must
hold everywhere in D. Our general definition than Pesin’s original one has the
advantage to be equivalent with Gehring’s metric definition (as we shall prove
at the end of this note).

Remark 2. Markushevitch [10] considered the class of continuous mappings
% =f(x) in a domain DC R", so that for every ¥« Zc D, where mZ =0,

(a) f(x) is one-to-one in a neighbourhood U(x) of x and

(b) in U(x) there is a sequence {I(x)} of surfaces that are homeomorphic

to spheres and

(W lim a0, tm pEla poo, ImET L p>0 mRw =,
where 7;(x), Ri(x) denote the minimum, respectively the maximum, of the
distances from x to Ij(x), I''(x) the image of Ii(x) and 7{(¥), R}(X) the cor-
responding distances from ¥ to 7}(x). He observed that one can substitute each
sequence {I(x)} by the family {I(x)}, which fills a neighbourhood of x and
then the first condition of (A) became unnecessary.
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We remark that if we impose to this class of mappings the additional con-
dition to be one-to-one everywhere in D (i.e. Z=¢) and that inf k(x)k'(x),
where the infimum is taken over all the families {/(x)} of surfaces that are
homeomorphic to spheres, must be uniformly bounded and inf k(x)%'(x) £ K
a.e. in D, then the class of Markushevitch’s continuous locally one-to-one map-
pings reduce to the class of K-quasiconformal mappings in Pesin’s sense. The
main result Markushevitch proved about his class from above is its differenti-
ability a.e. in D.

We give now a slight generalisation of our former definitions of Q-quasi-
conformal homeomorphisms with one and two sets of characteristics [2, 3],
which represent particular casés of the definition of the Q-quasiconformal map-
pings in Pesin’s sense.

We recall first that the characteristics of an ellipsoid E are the quantities

(©) Th  Pm=T2 Gok=1,...,nm;m=1,...,2-1),

where 7% are the directing cosines of the axes of E and @m,an (a1= * * * =an>0)
are its semi-axes. The quantity p; is called the principal characteristic.

We say that a mapping ¥ =f(x) maps an infinitesimal ellipsoid E[(C), x]
into an infinitesimal ellipsoid EL(C'), f(x)], if it is one-to-one and continuous
in a neighbourhood of x and maps every ellipsoid Ex[(C), x] with the centre
x, the characteristics (C) and the minimum semi-axe a, =/ sufficiently small
on a Jordan surface f(Ex) comprised between two bomothetical ellipsoids
EnL(C), f(x)] and Ex[(C), f(x)] with the centre f(x), the characteristics (C')
and the minimam semi-axes A|, 4} so that

,

- n
lim7r=1,

as Ej shrinks itself homotheticaly to the point x.

A mapping ¥ = f(x) of a domain DC R" is called Q quasiconformal with two
sets of characteristics (C), (C"), if it is one-to-one and maps every infinitesimal
ellipsoid EL(C), «]into an infinitesimal ellipsoid E[(C"), f(x)], where the princi-
pal characteristics p.(x), pi(x) are uniformly bounded in D and

pl(x)pi(x) =Q

a.e, in D.
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Remark. The continuity of f(x) is implied by the continuity of a mapping
which maps infinitesimal ellipsoids into infinitesimal ellipsoids.

The class of Q-quasiconformal homeomorphisms with a set of characteristics
in D is obtained from the preceding one by putting pi(x) =1 in D. The con-

formal mappings are obtained for Q@ =1.

2. Some properties of the homeomorphisms @Q-quasiconformal
in Pesin’s sense

In this chapter as we deal only with @-quasiconformal homeomorphisms in
Pesin’s sense we shall call them simply @Q-quasiconformal homeomorphisms.

Obviously, the inverse of a Q-quasiconformal homeomorphism is also a Q-
quasiconformal homeomorphism. Then, the composite of a Q-quasiconformal
homeomorphism and a @Q’-quasiconformal homeomorphism is a QQ’-quasicon-
formal homeomorphism.

We recall that the module of dilatation [2] is the quantity

|Az|s—0 lels

laf(xo) | = lim 1 4f (x)]

where dx=x— %, 4f (%) = f(x) — f(x) and |d4x|s—0 means that x—x, in the

direction s.

THEOREM 1. Let % =f(x) be a quasiconformal homeomorphism differentiable
kaf (x")f be the module of dilatation in the direction s, in x,. Then
for the module of dilatation {@f g;“

n x, and let

l, in every direction s where it exists, holds

(2)

1 19f(xy) af(xo)] af(xo)p
q(x,)‘ 0So I—l = ( )!

where q(x) is the characteristic (1) of %= f(x).

Proof. Let {3.} be a regular family of surfaces of parameter % relatively
to %. According to the hypotheses of the theorem, ¥ = f(x) maps {Z.} into a
regular family of surfaces of parameter 2. Hence

hm'f(xa) f(JCo”s

Ix, xo‘e,
S kl m-————2
a0 If(xa "’f(xb)lso ! h

a0 | Xa— —%ls =

where x, € 2. and | f(x,) — f(x0)ls, | ¥z — %o|s are norms of vectors with %, —xo of
direction s. Then



152 PETRU CARAMAN

’af(xo\l [lf(xa) —fxls 1 f(x) = flx)]s,, lx.,—xols,,l<kk, af(xo)i-
a-;o ]f(x, —-f(Xo)Iso lxa xoL° Ixu--xolg :

But this inequality holds for every regular family relatively to x,, so that

|25 < gt [ 25220

Now, changing between them s and s,, we obtain also the first part of the
inequality (2).

TueoreM 2. The Jacobian J of a homeomorphism % = f(x), quasiconformal in
DC R” is zero in a point xy of differentiability if and only if all its partial deri-

vatives of the first order are zero.

Proof. Let J(x) =0 and suppose, by absurde, that at least one partial deri-
vative of the first order, say %2(x)=0. Then {%(;—f)l %0 and the preceding

theorem yields |Z%Q‘ %0 in all the directions s. Hence, the theorem 6 of

[2] implies J(x) 0. The absurdity obtained establishes the theorem.

THEOREM 3. Let the quasiconformal homeomorphism % = f(x) be differentiable
at x%. Then

| 4f (%) _ {af(xo) | =

Af(x) = im0 = NP1+ Pr-a[J(#)],
sss0 | 42]

[ 4f (x| _ . c19f(xo) Drc e e et J(x) |
._l = - = n
A5 (%) Im = 1nf| 3 ] ,,/ 2 p,’"; L

3)

where Af(xo), Ar(%) are respectively the maximal and the minimal dilatation of
f(x) in x and pm (m=1, ..., n—1) are the characteristic parameters of the
affine transformation

af (xo)
ox!

(4) fl(x, x) = f(xo) + =

We can speak of the characteristic parameters of an affine transformation,
because it can be considered as a quasiconformal homeomorphism with a set

of characteristics.

Proof. If J(x) %0, (3) holds from the Theorem 14 of [3]. If J(x) =0, then
Theorem 6 of [2], Theorem 14 of [3] and Theorem 1 imply Ar(x0) = A¢(x) =0,
that is, (3) holds again,
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LemMa 1. Let ¥ = A(x) be an affine transformation with the principal charac-

teristic p.. Then p,=q, where q is the caracteristic in (1).

Proof. Obviously, pi=q. We shall prove that p,=gq.

If we consider a regular family of parameter 2 =p, in a point %o, obviously
kE' Zp1.

Let Ex= E4[(C), %] be the ellipsoid mapped by ¥ = A(x) in a sphere. Ej
is comprised between two concentric spheres S, S:, with the radius », 7 so
that ;;‘—pl, i.e. E; lies in Si and is tangent to it and lies outside S; and is
tangent to it. For the family of ellipsoids {Ex} we have kk'= p;, where &' =1
because A(Ex) is a sphere.

 Let us consider now a regular family {3} of parameter k<p;, and let
Sy {3} and comprised between two spheres Si, S5, with the radius r¥, ¥, so
that :—::=k0 <p,, Let Ef be an ellipsoid comprised between S¥, S¥, with the
same directing cosines rj (5, =1, ..., #) and the same distribution of the
semi-axes as Ex. Obviously, 7, r{ = kw7 are respectively the minimum and
the maximum semi-axes of Ef. But ¥ = A(x) maps Ex in a sphere by stretch-
ing the minimal semi-axe p;A times and the maximal semi-axe only A times.
Hence, the direction of the semi-axes of E; being the same as those of E;, we
conclude that ¥= A(x) maps Ej; into another ellipsoid A(E;) by stretching the
minimal semi-axe p;4 times and the maximal A times. Thus, the maximal semi-
axe of A(E)) is pjArs and the minimal kir;. Hence, the principal character-
istic of A(E}) is pff = %‘; and A(Ef) is comprised between the spheres with

* *

radii R =kidr; and R =pdr;. Thus r‘*g}

72

=p;. If instead E; we consider

* *
%= ko is unchanged, but Il—g‘; does not decrease, so that, in
2 H

2%,, then obviously

this case

r;:R‘:; pi.  But this inequality holds for all 2, with the corresponding
ko<p1. T}21enz, as for all 3 with a diameter sufficiently small kk, <p;, we con-
clude that kk' = p,, where %' is the parameter of the family {4(2)}.

Thus in both cases (=p: and £<p,) we have kk'=p,. But kk'=p, for
the family of ellipsoids {Es} and we conclude that q(x,) = inf k&' = p,(x,) where

xo is an arbitrary point.

TuroreM 4. Let the quasiconformal homeomorphism % = f(x) be differentiable

at xy. Then
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A5 (%)
(5) JERIETE 20

Proof. This theorem is a consequence of the preceding theorem and lemma
and of Theorem 15 of [3].

THEOREM 5. Let % = f(x) be a homeomorphism quasiconformal in D and x=
F7UE) its inverse. Then Af(x) < o a.e. in D and As-1(%) < o a.e. in f(D).

The theorem is established arguing exactly as in the proof of lemma 1 in
[2], which asserts that the conclusions of our theorem hold for quasiconformal
homeomorphisms with two sets of characteristics. We have only to change the
set of families of ellipsoids of characteristics (C) by a set of regular families
of surfaces of a parameter %k(x) sufficiently small for %%’ be uniformly bounded.

We shall give now an elegant proof of the Rademacher-Stepanov theorem.
We precede it by some definitions.

We recall (see Bouligand p. 66 of [1]) that a half-line OT from an accumu-
lating point 0 of a set E is called semi-tangent at 0 to the set E if every right
circular cone, with the vertex in 0, the axis OT the opening and the altitude
sufficiently small, contains at least a point of E different from 0. The set of
all semi-tangents is called the contingent of the set E at 0. The contingent of
an isolated point is considered the empty set. The bilateral contingent (see
Rogerin [13]) is called the set of all straight-lines with the property that the
pairs of half-lines which composed them belong to the contingent.

We recall also the following

Rocer’s THEOREM. In every cartesian g-dimensional set, with the eventual
exception of a set of p-dimensional Carathéodory measure zero, the subset where
the bilateral contingent does not contain a (g — p)-dimensional linear manifold
coincides with that in which the bilateral contingent reduces to a p-dimensional
linear manifold and the whole contingent to a system of (p+ 1)-dimensional

linear semi-manifolds admitting the preceding one as a base.

RADEMACHER-STEPANOV THEOREM. Let u(x) be a real continuous function in
a domain DC R". Then u(x) is differentiable a.e. in a measurable set EC D, if

and only if
(6) Au(x) < o

a.e. in E.
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Proof. The necessity is proved as in Theorem 25 of [2].

For the sufficiency let G be the #-dimensional surface u=u(x) of R*,
which has as orthogonal projection on the »-dimensional plane # =0 just D and
let Gy be the subset of G, which has as orthogonal projection the subset E,C E
where (6) holds. This implies that in every point P G, the contingent to G
does not contain the semi-tangent Ox and therefore can be neither the whole
(n+1)-dimensional space, nor the semi-space. Hence, by the preceding Roger’s
theorem, applied in the particular case g=#+ 1, p = », we obtain that, with an
eventual exception of a set of #-dimensional Carathéodory measure zero, at the
points of G, the contingent is reduced to an z-dimensional plane, namely the
tangent plane to the z-dimensional surface G at that point. But every set of
n-dimensional Carathéodory measure zero is projected on any of the coordinate
planes in a set of n-dimensional Lebesgue measure zero. Besides, the existence
of a tangent plane not parallel with Oz in a point of G, implies the differenti-
ability of #=u(x) in the corresponding point ¥ E,. Thus we have proved
the differentiability of # = u(x) a.e. in E, and by the hypotheses of the theorem,

a.e. in E. This completes our proof of Rademacher-Stepanov theorem.

THEOREM 6. Let ¥=f(x) be a quasiconformal homeomorphism in DC R".
Then f(x) is differentiable a.e. in D.

Proof. Theorem 5 implies that for the » functions () (=1, ..., n)
of the mapping % =f(x) the hypotheses of Rademacher-Stepanov theorem hold.
Hence, every #'(x) is differentiable a.e. in D and then all the » functions are
differentiable simultaneously a.e. in D, which is the same for the differentiability
of f(x) a.e. in D.

TueoreM 7. Let %= f(x) be a Q-quasiconformal homeomorphism of x| <1 in
%1 <1, so that £(0)=0. Let 3C{|x| <1} be a Jordan surface, B=[2"""D""/2
3" AnQ" ' 1M, Ry= mirzll F D], r=4d\(0, 3) i.e. the distance from 0 to X and An

€
the volume of \x|<1. Then
-(B/|x" B
(V)] Ree <lf@<—7—p
log 7o
| %]
Sor every xe {[f(1Z] <R)IN (1x] <n)}.

Proof. Let xie{lx|<n}, %0 and |x,|=7. Let us estimate the volume
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of f(rn<|xl<n). The preceding theorem implies that f(x) is differentiable
ae. in |#|<1. Let E be the set of points of differentiability of f(x). We as-
sume, without loss of generality, that ¢(x) <@ in E. De la Vallée-Poussin
decomposition theorem (see Saks p. 151 of [14]) and

mfLC(ap)]
lim = s

=|J(®)],

which holds in any point of differentiability and where C(ap) is a cube with
the centre in x and the side length ap, with limas=0 (see Rado and Reichel-

yoro

derfer chap. V, §2 of [12]) imply

A>mfinslslsr) zmfinslslsmnEl= | 1]lde.

L (MEIxSr)nE
Hence, by (3) and mE=m(|x|<1)
7o
(8) An> *@‘,];_—l S A}‘dT = —Q“,l,‘__l S A;dr = Q”_ "-ldrs A?fdg:
(r1<!xl<r.)n147 r1$lx|<r. .

7o K w2
= grai) 7| § S T apsin IS - e sindnnady - - - d9any=

QY. 0 ‘
1 7y n- Ed £ . e . 27 »
=@_—15nr 2d7’So s Sosm 2191 s e Sln'gn—zdlgl' . 'd’&n-zjo Afrd’lsn-l,

where S is the sphere |x|=1. Holder’s inequality yields
27w n 27 2 x 2m
@ ([, arrd9nes) s [ aFra0nes(§ | rdtn) "= @an 7 Airidae.
But, by (3)
27 2x
(10) §, Asradnesz [ NI rddpei=10) > 21 f (1) |

in E, i.e. for almost all » (7,<7<1), or for at least one 2 (=1, ..., n—2)
for almost all %, (0<#:<n) and where 1(#») is the length of the image of

|xl=7, %e=const. (k=1,...,n—2).

Inequalities (8), (9) and (10) imply

An> 2([ /é(f;)l "drSo .. Sosinn—zgl e o e sinOpoedSy v+ dp-2>

) 5x/6 snf6 e .
({7'er(;¢'1"‘ log r:sn/s e .Sn/G sin""*d « - - sindn-2ddy - -+ ddn-2>
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2!f(x)!" p” <57/6 v57/6 _
> gunmiim=n12( )71 108 ;35 e Sﬂ,s ddy - ddp-a=

!f(xx\!n 1 7

"2.n—1)m—4)/23n—2n.Qn-1 7

hence

(n-1)(n-4)/2on-~2 n-1q1/n
FEEANE 3 rAQT ]

E(

logI ]
which proves the second part of the inequality (7) for every x & {|x| < 7).
But we have seen that the inverse mapping x = f !(x) is also Q-quasiconformal
with the same @ and applying the inequality just established to x= f (%), we
obtain
\n=1)(n=4)/2 qn~-2 -141/n
2 3" rA.Q" ,

R
lglf(xx)l

lel<

for every xe 7 '(1%| = Ry, hence

..2(1!—1)(1!—()/2 3"‘2nAn0""

[f D> R~ gm0,

which completes our proof.
TueoreM 8. Let % = f(x) be a Q-quasiconformal homeomorphism in D. Then

max | f (%) — f(x)|

- lo— zol =r < 3 [B(Q+2)3)"
Bun) = T T =7 < B@i+ 2 ’

=2yl =1

where B is the constant of the preceding theovem and Q. is a quantity so that
q(x) < Q. everywhere in D.

Proof. Let xoe D and let {3.} (0<a<1) be a family of surfaces regular
of parameter % relatively to x. The family {f(Z,)} (0<a<1) is regular of
parameter %'. Suppose now we chose {J.}, so that 22'<@Q:+1 and 3,C D.
Then

rréazx!x— %o néazx!f(x) = f(xo)!
2= 00000 €% ]
(11) min[z=w] ~* " “min| 72~/ )] ¥ !

for all « £ ay (@, sufficiently small). Let

po=max!|x— x|, e =max|f () - f(x)],
€3y

2ESa,
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and

'

1) #=g) =L o) = L{] 2E=5) 4] ) = Lire - )],
0o 0o Do - 0o
X xo_
Do

|% —%o|=pb to |#]=1 and 3. to Z.. Finally let

where x'= Obviously ¢(0) =0, |x—x|=po corresponds to |x'|=1,

1 , 1
4} mggl,l,,lxl>k+l Q;—I—Z Ry= mlgln¢!¢(x)|>kr+1 Q+2

Obviously the Q-quasiconformality of ¥ = f(x) in D implies the Q-quasiconfor-
mality of ¥’ = ¢(x') in the domain bounded by 2%, because we obtain x' from
% and ¥ from ¥ by a product (in functional sense) of translations and homo-
theties. Hence, as for ' = ¢(x'), the hypotheses of the preceding theorem hold,
we see that

e-—(Bllx'n" (Bl B B
@ ey SRTET<lsE< - 2N L PO S
P 8@t 2)|x|
-1

holds for every x'E[qb Izl R) N (Ix’l —Q +2)]

* ' isti T 1°: pX> _1

Let 7 Ifn'x’n»lfp I(%")|. We distinguish two cases: 1 " Z (@Qrxe) and

0. k _ 1 .
27 W< @ity

°. 1 . ; .
1°: »f ;m,- In this case, (13) and e< @, + 2 imply

e—[B(QﬁZ)'_Y‘ e-(Blix'l)"

B B
e 1 @ DT <8
E@+2)[#]
for every #' in
Hence
15) (x| <B 9) gLB@ 2
( o] < BQu+ DT,

for all #{, x4 in (14).

2°: < ( Q1-1i-2)"' - In this case we distinguish two possibilities which we
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1 * 1
< — .
examine successively: A. 7y < —(Q F2) and B. (Ql+2)‘ 7 < (©+2)
ARz }r g5 Let i, be the surface of the family {4} which lies inside
the surface ¢ '(|1¥'|= R,) and is tangent to it. In this case
min {#'| < _1
2’ EZay - (Ql+2)‘

hence (11) implies on the one hand

1
Il <€
Jax 7 1<@my
and on the other hand, since ¢(3%,) is inside |#|= Ry> ~—— o +2 and tangent to
it,
min [¢(x") | >t .
2’EXay (Ql+2)z
Thus, in this case
(D]
16) Lol (g 49y
¢ Toth] <@

for all xj, x: in the domain between 2., and 3. But this ring contains the
ring (14) so that (16) holds for all x{, x} in (14).

B. @—IPT)‘<": < (—Q-l}_}_—z—), Arguing as in A of 2°, we conclude that in
this case (16) holds for all xi, x} in the intersection of the ring (14) with the
closed ring E bordered by 2., and 3.,. Besides, (13) implies that (15) holds
for all x{, x; in the intersection of (14) with CE (CE =the complement of E
and E =the closure of E).

Let now xi, x; be in the ring (14), but xj€ E and x; CE. Let also x{ be

in
<1 1
20 gy s 1= l<(Q;+2)z}
Then (16) and (15) yield
FICAIRrICAIRrIcAlL 3p LBt
an ol = Tow] l¢(xz)l"(Ql+2) 'Be
But

(Ql+2)2y B(Ql+2)e[B(Ql+2)3]n§B(Ql+2)3e[8(01+2;a)n’
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then (17) holds for all #{, 7 in (14) for both cases 1° and 2°.

But (17) also holds for all #{, x; in any ring of the following sequence:

1

(18) W =

[%'] (m=0,1,2,...).

= s 27
Indeed let

N R 1 y
Sm= { x| (Qﬁ_z)m}» m=_ (r_:rg,gmlx l, Rm= mlgm'¢(x’)l rm—|mm g~ @,
where ., is the surface of the family {J.} which lies inside S, and is tangent
1 1
(@i gy and rn< o gy
Let " = (Q:+ 2)™x' be a homothetic tramsformation with the ratio of similitude

(@ +2)™ and put

to it. Let us consider, as above, the cases 7y =

x”
o) =of g gy | = 16.
Then

lgGeD] _ X))
o) 12

<B(Ql+ 2)3e[B(Q,+21’]"

holds for all x{, x; in the corresponding ring of the sequence (18), because #{',
1

' lie in (14) and for X(x") hold the conditions of the case 1° for 7, = ZoF o)y

o * —1__— .
and of the case 2° for rm<(Ql_|_2)m+2

But for every 7"<E?—_1|_—2—)2 the sphere |x'| =7’ is contained in one of the
1

rings (18); thus

max | ¢ (x|

tat | =7’ 3 [B(Q+23]n
|1’171_n, l¢(x')l<B(Q'+2) e

and according to the notations (12)

max | £ (%) = f(xo)] max [ (2]

lz=apl=r = lz’l=r" < 3,[B(Q;+2)°)"
I I;nln |f(x) f(Xo)! 'r,f}l_nllﬁb(x,)l B(Ql+ 2) e B

where = py»'. As this inequality holds for every » <~~~ it holds also for

(Q +2)2
r—0 and this completes our proof.
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3. The equivalence of the definition of quasiconformal homeomor-
phisms in Pesin’s sense with the other definitions

THEOREM 9. The definition of quasiconformal homeomorphisms in Pesin’s

sense is equivalent with those of Gehring and Viisdld.

Proof. The preceding theorem implies that a quasiconformal homeomor-
phism in Pesin’s sense has d.(x) uniformly bounded in D and thus it is quasi-
conformal according to Gehring’s metric definition.

The converse inclusion is obvious, because d,(x) < K means that the family
of the spheres (which is a regular family of parameter 1) is mapped in regular
family of parameter k'(x) < K. Thus the definition of quasiconformal homeo-
morphisms in Pesin’s sense is equivalent with Gehring’s definition of quasicon-
formal homeomorphisms and hence is equivalent also with Vdiisild’s definitions

and with Gehring's other definition.

CoROLLARY 2. Let X =f(x) be a quasiconformal homeomorphism in Pesin's
sense in DC R™. Then J(x) %0 a.e. Moreover, if E is a measurable set in D, then

E* = f(E) is also measurable and
mE* = ‘F!](x) lde.

This is a consequence of Gehring’s theorem 6 in [7] or Viisild’s theorems
6.9 and 6.10 in [14].

We recall that an A-point or point of affinity (see [2]) of a mapping
%=f(x) is a point %, in a neibourhood of which f(x) is continuous and one-
to-one and is differentiable and J(xy) = 0.

LemMa 2. Let ¥=f(x) be a regular homeomorphism. Then any regular
family of surfaces 5, (0<a<1) of parameter k (1 <k< ) relatively to an A-
point xy is mapped in a regular family of parameter k' (1 <k < ) if and only
if the affine transformation fi(x, %) given by (4) maps the family {3.} (0<a<1)
in a regular family of parameter k'

Proof. For the sufficiency, let

malex—-xol
TE2 —
min | x— x| ke,

rE3g
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In the A-point x, (3) imply

where hm ea=0.
/pl(xo) * Pu- ,(xo)lj’(xo)l =) = [ f1(z, xu\ f(x‘))I - [Qf(xo) | < Af(x0) =
PN | %— % |
Pr-1(m) [ J(%) ],

="pu%) - -
Hence

where s is the direction of the vector x — %
maxlf(x) - fx0)] mz;x!fl(x %) f(xo)|+max[ls(x )l lx— xol]

—'_ =
95.' rmn [f(%)— f(xo)l Py mm [ f1(x, xo)—f(xo)l~max[le(x xo)llx—xﬂ]

max | e(x, xo) |
14+ #&3s i
max | F1(% %) —f (%)!

max | f1(x, %) — f(x) | max [2—2%|
SE,.,mmIfl(x %) — f(xo)|a-.o maXIe(x, %) | =
1- 211: Ifl(x %) —f(%)|
maxlx-xol
2=
irgfle(x, %)
1+ a5 )T | i (k+e¢)a1'1éaicle(xxo)l
_ Tmmale) | Al s/m)]
Skl el =¥ ey max le(z %]
Yoer AT e8]
lx”~xol

1- min | f1(x, %) —f(x)]
2EZa
min | x— x| (2+eq)
rEZg

(% + &) max | e(x, o)
rE3g

14+ —
" pl(xo) cce pn—x(xo) U(xo)l
T D) -
=34 ‘I,If? (k+ea) max Je(x.2%0) | =k,
p.,_x(x.,) Jx ]

) nV/Px(xo)

where

lfx(x %) "f(xo) |= !:éaéx lfl(x; %) “f(xo) l
[ £1(x", %0) = f(x0) | ==rgi21: [ £1(x, %) — Flx) |.

With the same notations and arguing as above, we have
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max |e(x, x|

_ 2E3g
max Ifx(x, %) —f(%0)]
~ max|f(x) - f(x) | o maxl 1z, x0) — f(x0)] max |2 —2%0]
<20 min [/ (%) =/ () | z lim T mm!f:(x, 7)) m n;ax Ie(x x)] =
1+ mm | f1(% %) —f (%)]
) max le(x, x0) |
2EZg
(£ +e,) max |e(x, xo)!
2ESy
1- max [Frcn wo—F @] . (B+ es) max | le(x, x0)]
== mmlx —x, | lfx(x,xlxo)_ﬂx‘,)l
> o i 2E3e im % |
=K {‘1301 (k+e¢)maxle(x, %) | =14 lfol (k+ea)maXIe(x, xo)l =
1+ mlnlfl(x, xo)“f(xo)l 1= lfl(x” xo)—f(xo)f
—
min [x—% | %7 =%]
&S
(B + e.) max |e(x, x|
_ 2E3e
"/ Px(xo) e Pn-x(xo)lf(xo)l
n-1
> lim b1 () =K.

(k+e,) max [e(x, %0)]

a0

1+ /P:(xo) Pn—x(xo)!f(xo)l
P17 (%)

Thus

B maxlfl(xxo) f(xo)l

IE o
(19) 123,1 mm | f1(%, %) “f(xo)i

implies
~ max| f(®) = f(x)]
lim 232 =
e Min | f (%) —f(%)]
zEZa

(20)

The necessity is a consequence of the sufficiency. Indeed, suppose that
(20) holds and that instead of (19) we have

max | f1(x, %) — f(x0)|

2= = pit !
E.,o mmlfx(x, %) —f(%)] ks K.

But then, by the sufficiency, we should have also

_ max|f(®) ~ f(x)]
lim min [/ (&) /()] - =k =k,
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Which would contradict (20). This completes our proof.

TueoreM 10. The definition of the class of Q-quasiconformal homeomorphisms
in Pesin's sense is equivalent with that of the class of Q-quasiconformal homeomor-

phisms according to Gehring’s metric definition.

Proof. Let % =f(x) be a Q-quasiconformal homeomorphism in Pesin’s sense
in D. By Theorem 8, 8.(x) is uniformly bounded in D.

Let g(xy) = inf £(x0)%'(x,) be the characteristic of f(x) in an A-point %, where
the infimum is taken over all regular relatively to x, families of surfaces. Let
q1(x0) = inf k(%) ki(%) be the characteristic of the affine transformation fi(x, xo)
given by (4). The preceding lemma implies g(x) = q:(%,) in every A-point x.
But Lemma 1 implies g(xo) = ¢:(%) = p1(%), where p,(x,) is the principal charac-
teristic of the affine transformation fi(x, %). Hence, the inequality ¢(x) <@
a.e. in D implies that p;(x) < @ a.e. in the set of all A-points of D. Then, by
Theorem 6 and corollary 2, p.(x) < Q a.e. in D. Thus the relation

| £ (") — flx)] im | £ () - fx)]
3 (x) —llm Ix xul 23 |x xol _ Af(xo)
¢ o LG =F ()] = i 1700 =F ) [~ Ae(m0)
Ix" xol oy |x_'x°|

where we put

max | £ (%) = f(x) | = | £ (") = f(x0)],

le—ap] =r
min |f () = fx) | =1 £ (x") = f(x0) |
and the relation (25) of [3]:

Ag(xg) -
Tfa})‘ pi(x),

both holding in every A-point of D, imply

bu(x) <4 A’ (")

Sh@) =g =Q

a.e. in D. Hence ¥ = f(x) is Q quasiconformal according to Gehring’s metric
definition.

Conversely, let ¥ =y(x) be a K-quasiconformal homeomorphism according
to Gehring’s metric definition. Then

q(x) < or(x)
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holds, because, by definition, q(x) = inf 2(x)&'(x), while §.(x) is the only product
‘k(x)k'(x) where {Z,} reduces to the family of spheres {|x'— x| =7»}. Thus g(x)

is uniformly bounded in D and ¢(x) £ K a.e. in D.

Remark. This theorem and the relationships (from the introduction) be-
tween Vdisild’s class of K-quasiconformal homeomorphisms and both Gehring’s
classes imply the corresponding relationship between the class of K-quasicon-
formal homeomorphisms in Pesin’s sense (particularly the class of K-quasicon-
formal homeomorphisms with one or two sets of characteristics) and the other

classes of K-quasiconformal homeomorphisms.
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