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Introduction

In this note we shall extend, for arbitrary n, Pesin's [11] bidimensional

definition for quasiconformal mappings and establish its equivalence with

Gehring's [7] and Vaisala's [153 definitions.

The four Vaisala's [15] definitions are the following:

1° A homeomorphism x=f(x) of a domain Dc:Rn is called K-quasiconformal

(1 <LK< °o)t if §(χ) is uniformly bounded in D and δ(x)^K a.e.1' in Z>, where,

for each r, 0<r<d (x, frD), we put (according to Vaisala [15]) :

L(x, r) = max |/(*') -/(*) |, l(x, r) = min \f(x') -f(x) |,
|a;'-χ|=r \x'-x\=r

) = m{flB(x,r)l},

δ(x) = ^

and ^4rtr
n is the volume of the ̂ -dimensional ball B(x, r) wtih the centre x and

the radius r.

2° A homeomorphism x=f(x) of a domain Da Rn is called K-quasiconformal

) if

for each curve family ΓcZ), where M(Γ) is the module of Γ and Γ* is its

image.

We recall (see Fuglede [5]) that

M{Γ)= inf f pVr,

Received July 23, 1965.
l ) a.e. = almost everywhere.
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where F(Γ) is the family of functions p(x) >0 Borel-measurable defined for all

x e Rn, so that pd$.ϊ>l for each curve γ e Γ and dτ is the element of volume.
r τ - ' • • • • ! -• • • " • • ' . - '

3° A homeomorphism #==/(#) of a domain D^Rn is called K-quasicon-

formal (1 ̂ iΓ< °°), if it is ACL (absolutely continuous on lines), a.e. differen-

tiable and

a.e. in D, where we put

min \f'(x)Δx\
| Δ | 1

and f'(x) is the derivative operator oί fix) i.e. the linear transformation of Rn

so that

f(x+Jx)=f(x)+f'{x)jχ+O(\Jx\).

4° A homeomorphism x-f(x) of a domain DaRn is called K-quasiconformal

), if

for all the rings A with closure Ac/), where M(A) is the module of A and

^4* is its image.

A homeomorphism x~f(x) is called quasiconformal according to one of the

above definitions if it is ϋΓ-quasiconformal for some K.

The equivalence of the preceding four definitions of the iΓ-quasiconfόrmal

homeomorphisms has been established for n = 3 by VSisSla [15] and for arbi-

trary n by Chen H&ng-len in Π4] and by us in some lectures about the n di-

mensional quasiconformal homeomorphisms delivered in Bucarest (1. 1-31. III.

1964).

Gehring [7] gives the two following definitions:

The metric definition. A homeomorphism #=/(#) of a domain DaRn is

said to be ii-quasiconformal if δt.{x) is uniformly bounded in D and

a.e. in D.

The geometric definition. The terms of this definition are the same as those
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of the fourth Vaisala's definition, but the meaning of the module of a ring is

somewhat different. So, the module of Vaisala's definition is the quantity (see

p. 7 of [15]) :

where ωn is the (n -l)-dimensional Lebesgue measure of the sphere 1*1 = 1

and M(ΓA) is the module of the family of arcs which join the boundary com-

ponents of the ring A in A the module of Gehring's definition is the quantity

where C(A) is the conformal capacity of the ring A (see Loewner[9]). From

M{ΓA) = C(A) .

(see Krivov in [8] and Sabat in a unpublished Note), which also follows im-

mediately from Gehring's theorem 1 of [6] (its tridimensional proof remaining

the same for arbitrary «), we obtain

which implies the equivalence Gehring's geometric definition of ϋί-quasicon-

formal homeomorphisms with Vaisala's definitions of ϋΓ^-quasiconformal

homeomorphisms.

Vaisala's inequalities (5.2) of [15]:

which hold a.e. in D, imply that

The class of K quasiconformal homeomorphisms according to Gehrings metric

definition is contained in the Vάisάlas class of ^^-quasiconformal homeomor-

phisms and the Vάisάlas class of K quasiconformal homeomorphisms is contained

in the class of K2ln-quasiconformal homeomorphisms according to Gehring's metric

definition. The bound K2ln is best possible.

Indeed, the affine mapping

is iΓ-quasiconformal according to Vaisa*la's third (analytic) definition, because

it is ACL and satisfies the corresponding inequalities, the latter being implied
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by some of Vaisala's relations (5.1) of Cl5]:

λ2->λn m i n | / U ) | n χ^'1

which hold in every point of differentiability with / # 0 and where y'(x) maps

the unit ball onto an ellipsoid with semi-axes >U> ^>λn>0, which in our

case are of the form Λ = iΓ2(l"1)/Λ(n"I). But

<5z.(*)=^

(see also (5.1) of [15]) implies

and the bound K2ln cannot be improved.

The equivalence of Vaisala'V definitions of if1"" ^quasiconformal homeomor-

phisms and Gehring's geometric definition of iΓ-quasiconformal homeomorphisms,

combined with the preceding relationship between Vaisa'la's and Gehring's metric

definitions, imply that

Gehring's class of K quasicon formal homeomorphisms according to the metric

definition is contained in his class of K quasicon formal homeomorphisms according

to the geometric definition, which in its turn is contained in his class of jζ2{n~1)fn.

quasiconformal homeomorphisms according to the metric definition. The bound

K2{n'1)ln is best possible.

Thus all the six definitions of quasiconformal homeomorphisms are equi-

valent.

1. A new class of ^-dimensional quasiconformal mappings

We begin with some preliminary definitions.

A family of surfaces {Σ*} (0<α:<l) is called regular of parameter k (1 ̂

k < °° ) relatively to the point x<>9 if the surfaces Σa are the images of the spheres

U 1 = or by the homeomorphism x=ψ(t) of the ball | / | < 1 on a neighbourhood

of the point * 0 = <p (0) and

max I x - xo |

Vί? m
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A homeomorphism % = f{x) is called regular in x0 if it maps a regular family

of parameter k relatively to x0 in a regular family of parameter k1 (l<*k'< oo)

relatively to fixo). The quantity

(1) q{xo) = inf kk',

where the infimum is taken over all regular families relatively to x<>, is called

the characteristic of the mapping x = f(x) in #0.

A homeomorphism x—fix) is called regular in a domain Dc.Rn

f if it is

regular in each of its points.

A homeomorphism x = f(x) of a domain DaRn is called Q-quasiconformal

in Pesin's sense in D, if it is regular in Z>, the characteristic q(x) is uniformly

bounded in D and

a.e. in D. A quasiconformal homeomorphism in Pesin's sense is a Q-quasicon-

formal one for some Q.

Remark 1. This definition of Q-quasiconformal mappings is a generalisation

of Pesin's Π l ] corresponding to bidimensional definition of the "general Q-

quasiconformal mappings" in Pesin's definition the preceding inequality must

hold everywhere in D. Our general definition than Pesin's original one has the

advantage to be equivalent with Gehring's metric definition (as we shall prove

at the end of this note).

Remark 2. Markushevitch [10] considered the class of continuous mappings

x=f(x) in a domain DdRn

f so that for every x^Zc.Df where mZ=0f

(a) fix) is one-to-one in a neighbourhood U(x) of x and

(b) in U{x) there is a sequence {Π(x)} of surfaces that are homeomorphic

to spheres and

(A) lim-^Lx), |g) l ^ j
ri\x)

where n(x)f Ri(x) denote the minimum, respectively the maximum, of the

distances from x to Γi(x)f Γ\(x) the image of Π(x) and rl{x), R'i(x) the cor-

responding distances from x to Γ'i(x). He observed that one can substitute each

sequence {Dix)} by the family {Γχ(x)}, which fills a neighbourhood of x and

then the first condition of (A) became unnecessary.
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We remark that if we impose to this class of mappings the additional con-

dition to be one-to-one everywhere in D (i.e. Z = ψ) and that inf k(x)k'{x),

where the infimum is taken over all the families {Γχ(x)} of surfaces that are

homeomorphic to spheres, must be uniformly bounded and inf k{x)k'(x) ^K

a.e. in D, then the class of Markushevitch's continuous locally one-to-one map-

pings reduce to the class of ϋΓ-quasiconf ormal mappings in Pesin's sense. The

main result Markushevitch proved about his class from above is its differenti-

ability a.e. in D.

We give now a slight generalisation of our former definitions of Q-quasi-

conformal homeomorphisms with one and two sets of characteristics C2, 3],

which represent particular cases of the definition of the Q-quasiconformal map-

pings in Pesin's sense.

We recall first that the characteristics of an ellipsoid E are the quantities

(C)

where y\ are the directing cosines of the axes of E and amian (tfi 2̂  2rαΛ>0)

are its semi-axes. The quantity pi is called the principal characteristic.

We say that a mapping x =f(x) maps an infinitesimal ellipsoid El(C), x\

into an infinitesimal ellipsoid EL(C'), f(x)l, if it is one-to-one and continuous

in a neighbourhood of x and maps every ellipsoid EtΣiC), x\ with the centre

ΛΓ, the characteristics (C) and the minimum semi-axe an-h sufficiently small

on a Jordan surface f(Eh) comprised between two homothetical ellipsoids

EKUC), f(x)l and Eh'2l{C'),f(x)l with the centre f(x), the characteristics (CO

and the minimam semi-axes h\, h\ so that

as Eh shrinks itself homotheticaly to the point x.

A mapping x=f(x) of a domain Dc:Rn is called Q quasiconformal with two

sets of characteristics (C), (CO, if it is one-to-one and maps every infinitesimal

ellipsoid EL(C), xl into an infinitesimal ellipsoid EL(C'), / ( * ) ] , where the princi-

pal characteristics p<Xx), p[(x) are uniformly bounded in D and

a.e, in D.
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Remark, The continuity of fix) is implied by the continuity of a mapping

which maps infinitesimal ellipsoids into infinitesimal ellipsoids.

The class of Q quasiconformal homeomorphisms with a set of characteristics

in D is obtained from the preceding one by putting p[(x) = 1 in D. The con-

formal mappings are obtained for ζ) = 1.

2. Some properties of the homeomorphisms Q-quasiconformal
in Pesin's sense

In this chapter as we deal only with Q-quasiconf ormal homeomorphisms in

Pesin's sense we shall call them simply Q-quasiconformal homeomorphisms.

Obviously, the inverse of a Q-quasiconformal homeomorphism is also a Q-

quasiconformal homeomorphism. Then, the composite of a Q-quasiconformal

homeomorphism and a Q'-quasiconformal homeomorphism is a QQ'-quasicon-

formal homeomorphism.

We recall that the module of dilatation [2] is the quantity

where dx=x-Xo, Jf(xo) =/(#) ~f(xo) and \Jx\s->0 means that x-+xQ in the

direction s.

THEOREM 1. Let # = / ( # ) be a quasiconformal homeomorphism differentiable

in Xo and let ^ *° be the module of dilatation in the direction sQ in xQ. Then
dSo

for the module of dilatation j ~"^r^- » in every direction s where it exists, holds

where q(x) is the characteristic (l) ofx=f(x).

Proof Let {Σ*} be a regular family of surfaces of parameter k relatively

to XQ. According to the hypotheses of the theorem, x=f(x) maps {Σ*} into a

regular family of surfaces of parameter kr. Hence

where x*^ΣΛ and \f(xΛ) —f{xo)\s, Ix* - Xo\s are norms of vectors with xΛ — Xo of

direction 5. Then
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But this inequality holds for every regular family relatively to Xo, so that

Now, changing between them 5 and $0, we obtain also the first part of the

inequality (2).

THEOREM 2. The Jacobian J of a homeomorphism x=f(x), quasiconformal in

Dc:Rn is zero in a point Xo of differentiability if and only if all its partial deri-

vatives of the first order are zero.

Proof. Let J(xQ) = 0 and suppose, by absurde, that at least one partial deri-

vative of the first order, say Xq(xQ) =¥0. Then

df(xo)

dfixo)

theorem yields
ds

) and the preceding

in all the directions s. Hence, the theorem 6 of

C2] implies J(x*) * 0. The absurdity obtained establishes the theorem.

THEOREM 3. Let the quasiconformal homeomorphism x = f{x) be differentiate

at XQ. Then

(3)

where Λf(x<>), λ/(xQ) are respectively the maximal and the minimal dilatation of

fix) in XQ and pm (m = 1, . .,, w - 1) are the characteristic parameters of the

ajfine transformation

(4)

We can speak of the characteristic parameters of an aίBne transformation,

because it can be considered as a quasiconformal homeomorphism with a set

of characteristics.

Proof. If J(xo) * 0, (3) holds from the Theorem 14 of [3]. If f{xQ) = 0, then

Theorem 6 of [2], Theorem 14 of [3] and Theorem 1 imply Λ/(xQ) = λ/(xo) = 0,

that is, (3) holds again,
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LEMMA 1. Let x = A(x) be an affine transformation with the principal charac-

teristic pi. Then pi —q, where q is the caracteristic in (l).

Proof. Obviously, pi > q. We shall prove that px = q.

If we consider a regular family of parameter ^ ί i i n a point xQt obviously

kV>pι.

Let Eh- EhL(C), xj be the ellipsoid mapped by # = A(x) in a sphere. Eh

is comprised between two concentric spheres Si, S2, with the radius n, r2 so

that — = Pu i.e. EH lies in Si and is tangent to it and lies outside S2 and is

tangent to it. For the family of ellipsoids {Eh) we have kk1 = pl9 where k1 = 1

because A (Eh) is a sphere.

Let us consider now a regular family {Σ} of parameter k<pi, and let

ΣQ&{Σ} and comprised between two spheres Sf, Sϊ, with the radius r*, rt, so

that -^ = &o<A> Let Et be an ellipsoid comprised between Sΐ, S2*, with the
r*

same directing cosines r& (i, k- 1, . . . , #) and the same distribution of the

semi-axes as Eh, Obviously, r?,r?=zkor? are respectively the minimum and

the maximum semi-axes of Et,. But x = A(x) maps £/, in a sphere by stretch-

ing the minimal semi-axe piλ times and the maximal semi-axe only λ times.

Hence, the direction of the semi-axes of Et being the same as those of Eh, we

conclude that x= A(x) maps Et into another ellipsoid A(E£) by stretching the

minimal semi-axe pd times and the maximal λ times. Thus, the maximal semi-

axe of A(Et) is piλrf and the minimal kdrt Hence, the principal character-

istic of A(Et) is pΐ = ηr and A(E%) is comprised between the spheres with

radii i?2* = *cλr2* and R?=pdrΐ. Thus -^ ^ = ^ . If instead Et we consider
r2 Ri

r* i?*
2Ό, then obviously ~^ = k0 is unchanged, but ~ does not decrease, so that, in

r2 Ri

this case —ςj—-̂ > î. But this inequality holds for all ΣQ with the corresponding
r2 Ri

ko<pι. Then, as for all Σ with a diameter sufficiently small kk*<pi, we con-

clude that kk'^pi, where k1 is the parameter of the family {A(Σ)}.

Thus in both cases (k>pι and k<px) we have kW^p\. But kk'^pt for

the family of ellipsoids {£"/,} and we conclude that q(xo) = inf kk'=pι(xo) where

Xo is an arbitrary point.

THEOREM 4. Let the quasiconformal homeomorphism x=f(x) be differentiate

at XQ. Then
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(5) l/(*o)|2

Proof. This theorem is a consequence of the preceding theorem and lemma

and of Theorem 15 of [3].

THEOREM 5. Let x=f(x) be a homeomorphism quasiconformal in D and x =

/~1(3f) its inverse. Then Λ/(x) < °° a.e. in D and Λ/-ι(x) < °° a.e. in f(D).

The theorem is established arguing exactly as in the proof of lemma 1 in

[2], which asserts that the conclusions of our theorem hold for quasiconformal

homeomorphisms with two sets of characteristics. We have only to change the

set of families of ellipsoids of characteristics (C) by a set of regular families

of surfaces of a parameter k(x) sufficiently small for kk1 be uniformly bounded.

We shall give now an elegant proof of the Rademacher-Stepanov theorem.

We precede it by some definitions.

We recall (see Bouligand p. 66 of [1]) that a half-line OT from an accumu-

lating point 0 of a set E is called semi-tangent at 0 to the set E if every right

circular cone, with the vertex in 0, the axis OT the opening and the altitude

sufficiently small, contains at least a point of E different from 0. The set of

all semi tangents is called the contingent of the set E at 0. The contingent of

an isolated point is considered the empty set. The bilateral contingent (see

Rogerin [13]) is called the set of all straight-lines with the property that the

pairs of half-lines which composed them belong to the contingent.

We recall also the following

ROGER'S THEOREM. In every cartesian ^-dimensional set, with the eventual

exception of a set of />-dimensional Caratheodory measure zero, the subset where

the bilateral contingent does not contain a (q-p) -dimensional linear manifold

coincides with that in which the bilateral contingent reduces to a /^-dimensional

linear manifold and the whole contingent to a system of (/> + l) -dimensional

linear semi-manifolds admitting the preceding one as a base.

RADEMACHER-STEPANOV THEOREM. Let u(x) be a real continuous function in

a domain D<^Rn. Then u(x) is differentiate a.e. in a measurable set E<^D, if

and only if

(6) Λu(x)<™

a.e. in E.
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Proof. The necessity is proved as in Theorem 25 of [2].

For the sufficiency let G be the ^dimensional surface u = u(x) of Rn+1,

which has as orthogonal projection on the w-dimensional plane u = 0 just D and

let Go be the subset of G, which has as orthogonal projection the subset Eo c E

where (6) holds. This implies that in every point P e G 0 the contingent to G

does not contain the semi-tangent Ou and therefore can be neither the whole

(n + 1)-dimensional space, nor the semi-space. Hence, by the preceding Roger's

theorem, applied in the particular case q = n + 1, p = n, we obtain that, with an

eventual exception of a set of w-dimensional Caratheodory measure zero, at the

points of Go the contingent is reduced to an n- dimensional plane, namely the

tangent plane to the ^-dimensional surface G at that point. But every set of

w-dimensional Caratheodory measure zero is projected on any of the coordinate

planes in a set of n- dimensional Lebesgue measure zero. Besides, the existence

of a tangent plane not parallel with Ou in a point of Go implies the differenti-

ability of u = u(x) in the corresponding point #ej£ 0 . Thus we have proved

the differentiability of u = u(x) a.e. in Eo and by the hypotheses of the theorem,

a.e. in E. This completes our proof of Rademacher-Stepanov theorem.

THEOREM 6. Let x=f(x) be a quasiconformal homeomorphism in Dc:Rn.

Then f(x) is differentiable a.e. in D.

Proof. Theorem 5 implies that for the n functions x\x) (ί= 1, . . . , n)

of the mapping x=f{x) the hypotheses of Rademacher-Stepanov theorem hold.

Hence, every x*(x) is differentiable a.e. in D and then all the n functions are

differentiable simultaneously a.e. in D, which is the same for the differentiability

of f(x) a.e. in D.

THEOREM 7. Let x—f(x) be a Q quasiconformal homeomorphism of | x | < l in

1*1^1, so that f{0)=0. Let 2M{ 1*1^1} be a Jordan surface, B^[_2{n"1){n'A)l2

3n~27rΛ«Otί"1J1/n, 2?o = m i n | / U ) | , ro = rf(O, Σ) i.e. the distance from 0 to Σ and Λn

the volume of \x\ ̂  1. Then

r>
\t) /Cot? <» i / \X)i •

for every # e {[/"H \x\ <R0)lΓ\(\χ\ <rQ)}.

Proof. Let Xi e {\x\ ^ r0}, # i ^ 0 and \xt\ = n. Let us estimate the volume
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of f(ri^\x\^rQ). The preceding theorem implies that f(x) is differentiate

a.e. in \x\ ̂ 1 . Let E be the set of points of differentiability of f(x). We as-

sume, without loss of generality, that q(x) ^ Q in E. De la Vallee-Poussin

decomposition theorem (see Saks p. 151 of [14]) and

which holds in any point of differentiability and where C(ocp) is a cube with

the centre in x and the side length acp, with limα/>=0 (see Rado and Reichel-
|/-»00

derfer chap. V, § 2 of [12]) imply

An>mf{rι£\x\£r0) >mfln^\x\^n) ΠEl = J \J\dv.

Hence, by (3) and mE=m(\x\^l)

(8) An>φrt J V

= ?s=iΓ r"" l r f rΓ " ' ' Γ!
k£ Jrx -Ό *Ό J

("sin""2??! sin0f,-»rfΛ

where S is the sphere | * | = 1. Holder's inequality yields

(9)

But, by (3)

(10) ΐΛtrdQn-ι > fviTl rd&»-i = 1 (r)

in £, i.e. for almost all r (r1<r<l)i or for at least one k (k- 1, . . . ,' n — 2)

for almost all ϋk (0<^<jτ) and where l(r) is the length of the image of

|* | = r, ϋk = const. (* = 1, . . . , n - 2).

Inequalities (8), (9) and (10) imply

M n *• ί*5π'6 Λδπ/6

'r log £ * \ sin""2Λ
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,»όπ/6

hence

2 * 3[

which proves the second part of the inequality (7) for every ^ e {Ul ^ r0}.

But we have seen that the inverse mapping x = f~1(x) is also Q-quasiconformal

with the same Q and applying the inequality just established to ΛΓ=/~1(3CΓ), we

obtain

I

for every ^ e / ' H I ί l ^ A ) , hence

which completes our proof.

THEOREM 8. Let x-f(x) be a Q-quasiconformal homeomorphism in Zλ Then

max \/{x) —fix*)]

where B is the constant of the preceding theorem and Q\ is a quantity so that

q(x) <Ξφi everywhere in D.

Proof. Let Xo&D and let {Σ*} (0<αr<l) be a family of surfaces regular

of parameter k relatively to x0. The family {f(Σ*)} ( 0 < α < l ) is regular of

parameter k'. Suppose now we chose {ΣΛ}, so that kk'<Qι+.l and Σac:D.

Then

max I x - xo \ max 1 / (x) — f(xύ) \

* | X> m i n | / ( Λ : ) / U ) |

for all a^ao (αr0 sufficiently small). Let

Po = max] x - XoI, pi = max I /(#) -
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and

xψ(x) ,φ((oχ) Λ{/[
po P o 1 L Po

where #' = ί—??. Obviously ^ ( 0 ) = 0, I # - #01 = Po corresponds to I ΛΓ' I = 1,
Po

13c — xo\ = pi to \x'\ = 1 and Σ* to 2 ί . Finally let

= min

( lo«ί?l) l.IogΓζ?I+2)R|]

Obviously the Q-quasiconformality of x=f{x) in D implies the Q-quasiconfor-

mality of x1 = ψ(x') in the domain bounded by ΣlOf because we obtain xf from

x and x' from x by a product (in functional sense) of translations and homo-

theties. Hence, as for x\ = ψ{x')> the hypotheses of the preceding theorem hold,

we see that

(13)

holds for every x'<=\(p~x(\x'\ ^RQ) Π (\χ'\ ^^τ-Δ\
L \ \χ\\Δ' J . •••

Let r* = min 10"1 (3 )̂1. We distinguish two cases*. 1°: rf>r~ , o 2 and

l O ; n * S / Λ 1 l 9 v 2 ' I n this case, (13) and ^<Qi + 2 imply

5 . B

for every x' in

Hence

(15)

for all x'u χ[ in (14).

2 ° : ro* < TTTXO^' * n this case we distinguish two possibilities which we
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examine successively: A. rt ^jQ^y and B.

A. rt ^ ιΓi , O v 4 Let Σ'aι be the surface of the family {Σ1*} which lies inside
V tyl ~Γ £ )

the surface ^"HlxM = i?0) and is tangent to it. In this case

min \x*\<ί

hence (11) implies on the one hand

max

and on the other hand, since ^ ( X , ) is inside \xf\ = R9>Q ~ a n ( ^ tangent to

it,

Thus, in this case

(16)

for all xΊ, xΊ in the domain between Xβ and Σ'Λχ. But this ring contains the

ring (14) so that (16) holds for all x'u xl in (14).

° w<^o t< 77ΓX9T2 Arguing as in A of 2°, we conclude that in

this case (16) holds for all x[, xf

2 in the intersection of the ring (14) with the

closed ring E bordered by Σ*% and Σ'Λχ. Besides, (13) implies that (15) holds

for all x[y x[ in the intersection of (14) with CE (CE = the complement of E

and Έ = the closure of E).

Let now x[, x[ be in the ring (14), but x\^E and X'2<ECE. Let also xί be

in

Then (16) and (15) yield

But

3 n , + 2 )
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then (17) holds for all x'u x[ in (14) for both cases 1° and 2°.

But (17) also holds for all x[, x[ in any ring of the following sequence:

Indeed let

^ m i n l^'l' *« = m i n M * Ή *& = m i n l

where Σ'am is the surface of the family {Σ'a} which lies inside Sm and is tangent

to it. Let us consider, as above, the cases tmS ιΓ> . otm+2 a n d "* ^

Let #" = (Qi-\-2)mxf be a homothetic tramsformation with the ratio of similitude

2)m and put

Then

10(^01 _ \7ΛXl)\

holds for all x[, x[ in the corresponding ring of the sequence (18), because x",
1

Xi lie in (14) and for X(x") hold the conditions of the case 1° for

and of the case 2° for r£< (Q1 +2)m +"2 '
"I

But for every rf < ( n _^ ^ 2 the sphere UΊ = ̂ ' is contained in one of the

rings (18); thus

and according to the notations (12)

max I / (x) - /X*β)! max I ψ (x') I

min | / ( Λ - / U ) Γ min\ψ(xf)\
\x-xt\=r \x'\=rf

where r = pύr'. As this inequality holds for every r < 7 7 S , o . 2 . it holds also for

r->0 and this completes our proof.
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3. The equivalence of the definition of quasiconformal homeomor-

phisms in Pesin's sense with the other definitions

THEOREM 9. The definition of quasiconformal homeomorphisms in Pesins

sense is equivalent with those of Gehring and Vάisάlά.

Proof The preceding theorem implies that a quasiconformal homeomor-

phism in Pesin's sense has δiΛx) uniformly bounded in D and thus it is quasi-

conformal according to Gehring's metric definition.

The converse inclusion is obvious, because δL(x)ύK means that the family

of the spheres (which is a regular family of parameter l) is mapped in regular

family of parameter k'(x)<*K. Thus the definition of quasiconformal homeo-

morphisms in Pesin's sense is equivalent with Gehring's definition of quasicon-

formal homeomorphisms and hence is equivalent also with VaisalS's definitions

and with Gehring's other definition.

COROLLARY 2. Let x~f(x) be a quasiconformal homeomorphism in Pesin's

sense in DczRn. Then f(x) *0 a.e. Moreover, if E is a measurable set in D, then

E* = f(E) is also measurable and

= )\Kx)\dτ.

This is a consequence of Gehring's theorem 6 in [7] or Vsisala's theorems

6.9 and 6.10 in [14].

We recall that an A-point or point of affinity (see [2]) of a mapping

*=/(#) is a point xύt in a neibourhood of which/U) is continuous and one-

to-one and is difϊerentiable and J(XQ) # 0.

LEMMA 2. Let x=f(x) be a regular homeomorphism. Then any regular

family of surfaces ΣΛ ( 0 < α : < l ) of parameter k (1 ^k< oo) relatively to an A-

point XQ is mapped in a regular family of parameter k' (1 <Lk' < °°) if and only

if the affine transformation fi{x, xQ) given by (4) maps the family {Σa} ( 0 < α : < l )

in a regular family of parameter kf.

Proof For the sufficiency, let

max I x - xo 1

min | # -
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where limeα = O. In the A-point #0, (3) imply
ce-*O

\χ-χ*\

where 5 is the direction of the vector x - x<>. Hence

max! f(x) -f(xo)! max | fx{xt xQ) -f(xo)I + max [ I «(*, A ) 11 # - A13

; " " m i n | / ( * ) / ( Λ > | ^ ™ mi

lim

where

m a x ! /i(ΛΓ, AΓO) - / U O ) I

a EΣct

max | x-x0 \

max | ε{x,
1 -

max I x-

Γ

max

-/(«b) I = max \fi(x, xΛ -f(xo)!

) - / ( A ) I = min 1/tU JC0) - / ( A )
ε2

With the same notations and arguing as above, we have
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max \ε(Xy xQ)\

^_ max \f(x) - f(xQ) I max | fί (#, xύ) - f(x0) I __ max | x-x0

^ i m * : * i r, . . x—^TTΓVI-^ l im—-/ , r , . v—Y / .. v. lim
min |/(ΛΓ) —/(ΛΓO) | ~" «*-o min | fi(x, Xo) —f(Xo)\ α->o max \ε(x, XQ

+ lϊϊin l/ΛxTxϊy1.

max |eU, xb)|

1 -

max

(k -h ett) m a x I e(x, xQ) \

•jpι(Xo) ' pn-ι(.Xs)\J(X«)\

( + . ) max
1 +

pί(Xo) ' ' ' pn-i(Xo)\J(Xo)\
n I ΪΓ-Z r

^ P?~\XQ)

Thus

max I / i (JC, ΛTo) - /(^o) I

i™ min
ίceSot

implies

ma.x\f(x)—f(xo)\

The necessity is a consequence of the sufficiency. Indeed, suppose that

(20) holds and that instead of (19) we have

max I /i (x, *0) ~ /(#o) I

) I = *"

But then, by the sufficiency, we should have also

max|/(#) -

f
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Which would contradict (20). This completes our proof.

THEOREM 10. The definition of the class of Q quasiconformal homeomorphisms

in Pesin's sense is equivalent with that of the class of Q quasiconformal homeomor-

phisms according to Gehring's metric definition.

Proof. Let χ=f(x) be a Q-quasiconformal homeomorphism in Pesin's sense

in D. By Theorem 8, δL(x) is uniformly bounded in D.

Let q{xo) = inf k(xo)kf{xo) be the characteristic of f(x) in an A point xOi where

the infimum is taken over all regular relatively to x0 families of surfaces. Let

qι{xo) = inf &iUo)&i(#o) be the characteristic of the affine transformation fι{x} x*)

given by (4). The preceding lemma implies q(xQ) -qι(xo) in every ^4-point xo.

But Lemma 1 implies q(x0) =qΛxo) =pι(xo), where pΛxo) is the principal charac-

teristic of the affine transformation fΛx, XQ). Hence, the inequality q{x)^Q

a.e. in D implies that pι{x) <* Q a.e. in the set of all A-points of D. Then, by

Theorem 6 and corollary 2, px{x) <>Q a.e. in D. Thus the relation

~ lϊm L<Z*I < l*-^l
- l i n t I/«)-/(*)! •

where we put

max \f(χ) -f(xo)\ = I/UO ~/Uo)|,

πώn_J/(x) -/Uo)I = I/U") ~ / U ) |

and the relation (25) of [3] :

both holding in every A-point of D, imply

dL{x) ^ ^ ^ ^ pL(χ) = q(χ)

a.e. in D. Hence x-f{x) is Q quasiconf̂ ormal according to Gehring's metric

definition.

Conversely, let J = /(jtr) be a iΓ-quasiconformal homeomorphism according

to Gehring's metric definition. Then
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holds, because, by definition, q(x) ^ inf k(χ)k'(x), while dL(x) is the only product

k(x)k'(x) where {Σ*} reduces to the family of spheres {\xf-x\ = r). Thus q(x)

is uniformly bounded in D and q(x) ^K a.e. in D.

Remark. This theorem and the relationships (from the introduction) be-

tween Vaisala's class of iΓ-quasiconformal homeomorphisms and both Gehring's

classes imply the corresponding relationship between the class of iΓ-quasicon-

formal homeomorphisms in Pesin's sense (particularly the class of iΓ-quasicon-

formal homeomorphisms with one or two sets of characteristics) and the other

classes of if quasiconformal homeomorphisms.
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